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Abstract: Removal of lateral constraints to restore rivers has become increasingly common in
river resource management, but little is known how the interaction of de-channelization with flow
influences ecosystem structure and function. We evaluated the ecosystem effects of river widening to
improve sediment relations in the Thur River, Switzerland, 12 years after implementation. We tested
if restored and non-restored reaches differed in water physico-chemistry, hyporheic function, primary
production, and macroinvertebrate density and composition in relation to the flow regime. Our results
showed that (i) spatio-temporal variation in sediment respiration and macroinvertebrate taxonomic
richness were driven by interactions between restoration and flow; (ii) riverbed conditions including
substrate size, organic matter content, and groundwater–surface water exchange changed due to
restoration, but (iii) physico-chemistry, hydraulic conditions, and primary production were not altered
by restoration. Importantly, our study revealed that abiotic conditions, except channel morphology,
changed only marginally, whereas other ecosystem attributes responded markedly to changes in
flow-restoration interactions. These results highlight integrating a more holistic ecosystem perspective
in the design and monitoring of restoration projects such as river widening in resource management,
preferably in relation to flow-sediment regimes and interactions with the biotic components of
the ecosystem.

Keywords: flow regime; river restoration; sediment regime; sediment respiration; periphyton;
macroinvertebrates; ecosystem structure and function; channelization

1. Introduction

Flow regime is a principal driver of riverine ecosystems [1–3], maintaining habitat conditions
and connectivity, and influencing flora and fauna [4–7]. Sediment regime also sustains riverine
ecosystems [8], driving channel morphology and riverbed heterogeneity, and structuring aquatic and
riparian communities [9–12]. Flow and sediment regimes mutually interact, as streamflow transports
sediment, and river morphology formed by sediment transport determines hydrodynamics. Therefore,
both regimes and their interaction play a decisive role in maintaining habitat structure and ecosystem
heterogeneity. Until recently, and rather surprisingly, flow and sediment regimes have been studied
separately [13,14], especially in the context of river management [8].
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Many ecological attributes of rivers worldwide have been compromised for human needs, mostly
through the alteration of flow and sediment regimes. Longitudinal and latitudinal connectivity of water
and sediment is dramatically reduced by dams, weirs, and levees, decreasing the physical complexity
(ecosystem homogenization) of river channels [15,16]. For example, more than 14,000 km (22%) of rivers
in Switzerland have been channelized [17]. Such artificial constraints increase flow velocity and river
incision, inducing river-floodplain disconnection [18,19]. In addition, river morphology is simplified
by eliminating important hydro-geomorphic processes, reducing sinuosity and homogenising instream
habitats among others [20]. Collectively, human interventions have severely modified flow and
sediment regimes in rivers with concomitant impacts on resident biota.

Responding to a recent mandate to achieve good ecological status of water bodies, restoration
of laterally protected rivers and/or channel reconfiguration has been established as a priority action
in various restoration programs in Europe [21], and also globally. A primary goal of these actions is
to restore river hydromorphology, resulting in increased habitat heterogeneity for flora and fauna.
Through specific restoration actions, river areas with wider channels that foster local sediment
deposition and gravel bar development, or areas with greater sediment inputs that increase sediment
heterogeneity of streambeds, can create and sustain ecological hotspots with enhanced habitat diversity
along rivers [22].

In this study, we assessed the effects of artificial river widening and its interactions with the natural
flow on ecosystem structure and function at a reach scale in the Thur River, Switzerland, 12 years after
de-channelization. We tested if restored and non-restored reaches differed in water physico-chemistry,
hyporheic function, primary production, and macroinvertebrate density and composition, in response
to intra-annual flow conditions. The spatial scale of study, i.e., reach scale (102–103 m), is quite
relevant in such medium-size rivers with dynamic gravel bars where erosion and deposition processes
dominate ecosystem structure and function, properties inherent in the response of river ecosystems to
restoration measures [23].

2. Materials and Methods

2.1. Study Site

We examined the Thur River, the largest river in Switzerland free of retention structures such us
reservoir complexes. The Thur is a seventh order (Strahler order) perialpine river draining a catchment
of 1730 km2 (Figure 1A), originating in the north-east alpine region of Switzerland from Mount Säntis
(2502 m a.s.l.). Lacking large retention structures, the flow regime of the Thur is natural and dynamic,
fluctuating from 3 to 900 m3/s with an average discharge of 47 m3/s (1995–2016 records). As with many
rivers in Switzerland, the Thur was channelized with stone rip-rap in the 1890s for flood protection.
In the 1990s, lateral rip-rap from different channel sections of 1–3 km in length was removed to allow
the formation of new gravel bars and increase the hydrological connectivity between the river and
riparian areas. In the 2002, a 1-km channel of protection (lateral levees, etc.) was removed along both
banks of the river, allowing the river to widen using natural processes. This particular stretch was
selected for the present study (Figure 1B). For more information on the restoration see [24,25].

The study reach was located in the lower part of the river (370 m a.s.l.), 12 km upstream of the
confluence to the Rhine River. The 2-km long study area comprised the restored reach, which was
subject to river widening, and channelized areas upstream and downstream of the restored section
(Figure 1B). Channel width in the channelized reaches was about 50 m, while the maximum width in
the restored area was 160 m. The slope of the reach was 0.16%. We selected five sampling sites in the
study area (Figure 1B,C). Two sampling sites were located in the channelized reaches: one upstream
(Site 1) and one downstream of the restored reach (Site 5). Three sampling sites were located along
the main gravel bar in the restored reach: an erosional site (Site 2), a point bar site (Site 3), and a
depositional site (Site 4).
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Figure 1. (A) Location of study area in Switzerland. (B) General view of the study reach, including
channelized areas upstream (Site 1) and downstream (Site 5) of the restored area. (C) Detail picture of
the main restored gravel bar and study sites 2–4. Ch = channelized.

2.2. Flow Regime Classification

Field surveys were conducted six times each in 2014 and 2015, monthly from early March
to late November. Surveys were conducted when water levels were safe for access into the main
channel (wadeable), but after flow pulses of different magnitude to account for hydrological variability
(Figure 2). We used a daily discharge record from a gauging station located 7 km downstream of the
sampling sites, at the municipality of Andelfingen, for flow and temperature data.

Figure 2. Hydrograph of the Thur River in 2014–2015. Black lines represent flow classes of the period
affecting each sampling campaign (Mod. High = Moderately High).
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To study the effects of flow variation affecting each sample collection, each period was defined as
the time elapsed between two sampling dates. As no defined period can be given for the first sampling
date in both years, we used the average flow value from the previous 41 days (average duration of
all periods). For categorization, nine hydrological descriptors were calculated for each period using
the daily discharge data: mean, median, skewness, maximum, minimum, coefficient of variation,
number of days flow was below the first quartile (low-flow events), number of days flow was above the
third quartile (high-flow events), and number of days flow was above the sediment motion threshold
(150 m3/s). The first and third quartiles (20 and 60 m3/s, respectively) were calculated from the 20-year
record [4], while the sediment motion threshold value was taken from a previous study at the same
site [26]. Each sampling period was categorized then into four flow classes according to similarity in
the hydrological descriptors using Ward’s clustering: high, moderately high (Mod. High), intermediate,
and low. We determined the number of classes from an inspection of the cluster dendrogram in a
preliminary analysis to reasonably represent the flow regime in the study area (see Results).

2.3. Physico-Chemistry and Abiotic Hyporheic Measures

We measured local abiotic conditions including physical, chemical, and hyporheic attributes at
each site on each sampling date. Physical attributes were represented by three variables: water depth
(cm), velocity (cm/s), and median grain size of streambed sediments (stream d50; mm). An area of
around 2 × 6 m near the left bank of the river was defined for each study reach. Due to erosion of
the right bank, depths of over 2-m were impossible to sample using both banks. All measurements
were randomly sampled within each plot, minimizing sampling disturbance between sites. Water
depth was measured using a ruler (n = 5), water velocity at 0.6 depth (cm, n = 5) was measured
using a portable velocity meter (MiniAir2, Schiltknecht AG, Gossau, Switzerland), and sediment
size distribution was estimated by measuring the b-axis of 50 randomly-collected stones per site [27].
Further, a 0.5-litre water sample was collected at each site, returned to the laboratory, filtered (cellulose
nitrate 0.45 µm, Sartorius Stedim Biotech) and analyzed for dissolved organic carbon (DOC; mg C/L),
total nitrogen (TN; mg N/L), nitrate-N (NO3-N; mg N/L), and total phosphorus (TP; µg P/L) using
methods in [28]. Electrical conductivity (µS/cm at 20 ◦C) was measured in the field using a portable
meter (WTW model 340, Weilheim, Germany).

Hyporheic measures included particulate organic matter and median grain size of sediments used
in sediment respiration experiments (see below), and vertical hydraulic gradient (VHG). Sediment used
in respiration experiments was stored in plastic bags and kept frozen (−20 ◦C) until analysis. In the
laboratory, coarse (CPOM) and fine organic matter (FPOM) was sieved (2 mm) from the sediments,
dried at 60 ◦C, weighed, burned at 450 ◦C for 4 h, and reweighed to determine ash-free dry mass
(AFDM). These sediments then were separated using a sieve column for quantifying grain size fractions
>8 mm, 8–4 mm, 4–2 mm, 2–1 mm, 1–63 µm, and <63 µm. Median grain size (Hypo-d50, mm) was
calculated using Gradistat v8 [29]. Vertical hydraulic gradient was measured in situ to characterize
groundwater–streamwater exchange direction and magnitude. Minipiezometers were driven to a
depth of ca. 50 cm into the streambed [30]. Positive values above stream-water surface levels indicated
upwelling conditions, while negative values indicated downwelling conditions.

2.4. Sediment Respiration and Primary Production

Hyporheic sediment respiration (SR; mg O2 kg−1 sed h−1), a proxy for hyporheic organic matter
processing, was measured in-situ following methods in [31]. Change in O2 concentration (mg/L)
was measured overtime in sealed Plexiglas tubes (n = 3) half-filled with hyporheic sediments (5 to
20 cm depth, sieved <8 mm as standard protocol) and then filled with stream water. Surface sediments
(first 5 cm of sediments) were excluded to avoid effects on respiration by autotrophs (after [32]).
Sediment sampling locations were selected randomly within the study plot. A portable oxygen meter
(Hach HQ40d connected to a LD0101 oxygen probe) was used to measure oxygen concentration and
temperature in each tube before and after incubation. Hyporheic sediment respiration was calculated
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based on the consumption of O2 in the tube and the weight of sediment (R, mg O2 kg−1 sed h−1) and
then normalized by a reference temperature (20 ◦C) to account for seasonal variation [33].

Periphyton biomass (AFDM, g/m2) and chlorophyll concentration (Chl-a, mg/m2) were measured
as a proxy for primary production from five random cobbles collected from the streambed, stored in
plastic bags, and kept frozen at −20 ◦C until processed. Periphyton was scrubbed from the surface
of each stone using a metal brush, the slurry collected, volume measured, and divided into two
sub-samples. Both sub-samples were filtered using Whatman GF/F filters. One filter was dried at
60 ◦C, weighed, combusted at 450 ◦C and reweighed for periphyton biomass estimation as AFDM.
Surface area of each stone was calculated by wrapping the stone with aluminum foil and using a
weight-to-area relationship [34]. The second filter was extracted for 7 min in 90% ethanol at 70 ◦C, and
chlorophyll concentration measured by high performance liquid chromatography [35].

2.5. Macroinvertebrate Density and Taxa Richness

Benthic macroinvertebrates were randomly collected (n = 3, at each site and date) using a Hess
sampler (250-um mesh, 0.04 m2 area) and preserved with 70% ethanol. Due to the characteristics
of the river and the size of our study plots at a site, local habitats within each plot were relatively
homogeneous. In the laboratory, collected individuals were hand-picked and identified to family level
(Ephemeroptera, Plecoptera, Trichoptera, Diptera, Coleoptera, Gastropoda, Crustacea, Isopoda, and
Odonata) or subclass level (Oligochaeta) and their abundances counted using a stereomicroscope
(10× magnification). Macroinvertebrate density (individuals/m2) and taxa richness were calculated
from the dataset.

2.6. Statistical Analysis

Two-way analysis of variance (ANOVA) was used to test if measured variables differed and
interacted among sites (1–5) and flow classes (high, moderately high, intermediate, low) [36]. For better
interpretation of the results, sites were re-grouped as restored (Sites 2–4) and non-restored sites
(Sites 1 and 5), and the coefficient of variation (CV, defined as the standard deviation/mean) was
used to examine the temporal variation of each variable within an area. Variation partitioning
was used to determine the relative importance of sites and flow classes on the variation in
ecosystem structure and function (various measures), except for macroinvertebrate community
composition. The main ecosystem variables were explained individually by linear regression
using the ‘varpart’ function [37] in the ‘vegan’ package of R software [38]. An ANOVA-like
permutation test using the function ‘anova.rda’ then was used to evaluate the different partitions of
each variable. A non-metric multidimensional scaling (NMDS) based on Bray–Curtis distance and
calculated on log10(x + 1) transformed macroinvertebrate densities was used to examine changes in
macroinvertebrate community composition followed by an analysis of similarity (ANOSIM), to test for
among-group differences. All analyses were carried out using the R statistical computing software [38].

3. Results

3.1. Flow Classes

Ward’s cluster classification resulted in 4 flow classes. The high (n = 4) class showed the highest
values of almost every flow indicator except for minimum discharge and low-flow events, followed
by moderately high (n = 4), intermediate (n = 2), and low (n = 2) (Table 1). Periods were classified
mainly by seasonality, but differences between 2014 (wet) and 2015 (dry) also contributed to classify
intermediate and low classes (Figure 2). Maximum water temperature was 26.6 ◦C in July 2015 and
minimum was 0.8 ◦C in December 2014.
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Table 1. Summarized characteristics of hydrological indicators of each flow class (average ± standard
error). Note that mean, median, and maximum discharge were not used for classification to
avoid multicollinearity.

Flow Classes

Indicator High Mod. High Intermediate Low

n 4 4 2 2
Mean (m3/s) 76.4 ± 7.2 41.2 ± 3.9 32.7 ± 0.6 14.1 ± 0.2
Median (m3/s) 49.7 ± 7.8 32.4 ± 3.0 31.0 ± 0.4 12.8 ± 0.5
Skewness 1.6 ± 0.1 1.3 ± 0.0 1.1 ± 0.0 1.1 ± 0.0
Max (m3/s) 281.0 ± 15.5 175.8 ± 24.2 49.9 ± 1.7 35.5 ± 6.2
Min (m3/s) 23.5 ± 3.8 15.1 ± 2.0 23.7 ± 2.2 6.8 ± 0.5
Days < first q 1.8 ± 0.9 7.5 ± 3.0 0.0 ± 0.0 41.5 ± 8.1
Days > third q 15.5 ± 2.8 8.0 ± 2.3 0.0 ± 0.0 0.0 ± 0.0
CV 0.9 ± 0.0 0.8 ± 0.1 0.2 ± 0.0 0.4 ± 0.1
Days disrupt 3.8 ± 1.0 1.0 ± 0.5 0.0 ± 0.0 0.0 ± 0.0

Note: Days < first q = numbers of days discharge below first quartile; Days > third q = numbers of days discharge
above third quartile; CV = coefficient of variation; Days disrupt = numbers of days discharge above sediment
motion threshold.

3.2. Abiotic Factors

All collected data are summarized in Table 2. Statistical differences among sites were found in
stream-d50, FPOM, CPOM, Hypo-d50, and VHG (Table 3). Their variability also was explained by flow
class either directly or interactively with site, indicating that substrate size and hyporheic measures
were influenced by de-channelization together with flow. Chemical variables (DOC, TN, and TP)
were not explained by site but by flow class, indicating spatial homogeneity at the reach scale and
intra-annual variation associated with flow.

3.3. Ecosystem Function

Sediment respiration (SR) ranged from 0.10 to 1.39 (mg O2 kg−1 sed h−1) and differed among
sites, flow classes and their interactions (all p < 0.01, Table 3), indicating that the spatial patterns of SR
differed according to flow class. For instance, SR was lowest and spatially homogeneous for flow class
high, while SR became higher and spatially heterogeneous in the other flow classes (Figure 3). SR at
non-restored sites showed less variation among flow classes than restored sites (CV = 40% and 71%,
respectively). Among restored sites, the temporal variability of SR was highest at the point bar (Site 3).
Variation partitioning revealed a stronger influence of flow class (34%) than of site (11%) (Figure 4).
Variation in periphyton AFDM and Chl-a was explained only by flow class (p < 0.01; >60% according
to variance partitioning) (Figure 4, Table 3). Primary production was highest in flow class low (up to
22 g/m2 AFDM, >500 mg/m2 Chl-a) and extremely low (near 0) in the other flow classes.

3.4. Ecosystem Structure

Macroinvertebrate density and taxa richness were significantly different among sites and flow
classes (p < 0.01) (Figure 3). Taxa richness also was explained by their interaction (p = 0.02). Densities
ranged from <100 to over 25,000 ind m−2. Erosional and point bar areas (Sites 2 and 3) had lower
density and taxa richness than the other sites, while non-restored sites (Sites 1 and 5) had slightly higher
densities and richness than restored sites (Figure 3). Density CV was higher in restored sites (176%)
than in non-restored sites (124%), whereas richness CVs were the same for both (38%). The variation in
macroinvertebrate density and richness was explained best by flow class (55 and 15%, respectively)
and site (8% and 5%, respectively) (Figure 4).



Water 2018, 10, 439 7 of 13

Table 2. Physico-chemical and hyporheic zone characterization of the study sites and flow classes (average ± standard error).

Vel Depth Stream d50 DOC TN NO3-N TP Cond FPOM CPOM Hypo-d50 VHG

Site m/s cm cm mg C/L mg N/L mg N/L µg P/L µS/cm 20 ◦C g/kg sed g/kg sed cm cm/cm

1 0.35 ± 0.1 37.8 ± 3.7 3.4 ± 0.3 2.3 ± 0.1 2.4 ± 0.1 2.2 ± 0.1 37.5 ± 3.5 422.3 ± 13.3 4.0 ± 0.1 0.18 ± 0.02 4.8 ± 0.1 0.12 ± 0.06
2 0.55 ± 0.1 25.0 ± 2.2 4.2 ± 0.5 2.3 ± 0.1 2.4 ± 0.1 2.2 ± 0.1 37.9 ± 3.8 423.8 ± 13.3 4.5 ± 0.2 0.10 ± 0.02 3.8 ± 0.2 −0.06 ± 0.03
3 0.21 ± 0.1 27.5 ± 3.1 3.1 ± 0.3 2.3 ± 0.1 2.4 ± 0.1 2.2 ± 0.1 38.3 ± 3.8 425.4 ± 13.1 4.0 ± 0.1 0.24 ± 0.05 3.2 ± 0.2 0.08 ± 0.03
4 0.27 ± 0.1 27.2 ± 2.7 1.9 ± 0.3 2.3 ± 0.1 2.4 ± 0.1 2.2 ± 0.1 37.5 ± 3.8 423.4 ± 13.4 4.2 ± 0.1 0.16 ± 0.03 3.0 ± 0.2 0.04 ± 0.03
5 0.23 ± 0.1 18.3 ± 1.3 3.5 ± 0.3 2.2 ± 0.1 2.4 ± 0.1 2.2 ± 0.1 39.6 ± 3.8 423.9 ± 13.0 4.1 ± 0.1 0.15 ± 0.02 4.4 ± 0.2 0.22 ± 0.03

Flow class

High 0.39 ± 0.1 27.1 ± 2.3 2.7 ± 0.2 1.9 ± 0.1 2.2 ± 0.1 2.1 ± 0.1 38.4 ± 1.8 421.8 ± 8.3 3.9 ± 0.1 0.14 ± 0.02 3.9 ± 0.2 0.11 ± 0.02
Mod. high n.a. 31.2 ± 2.6 2.9 ± 0.2 2.4 ± 0.1 2.3 ± 0.1 2.2 ± 0.1 45.1 ± 2.3 421.1 ± 8.7 4.4 ± 0.1 0.15 ± 0.02 3.8 ± 0.2 0.04 ± 0.03
Intermediate n.a. n.a. n.a. 2.6 ± 0.1 2.8 ± 0.2 2.5 ± 0.1 43.9 ± 2.8 421.0 ± 22.3 3.9 ± 0.1 0.10 ± 0.02 4.0 ± 0.2 n.a.
Low 0.22 ± 0.1 21.3 ± 1.7 4.2 ± 0.3 2.3 ± 0.1 2.5 ± 0.1 2.3 ± 0.1 18.2 ± 0.7 435.8 ± 12.4 4.6 ± 0.1 0.31 ± 0.05 3.6 ± 0.3 0.08 ± 0.04

Note: Vel = velocity; Stream-d50 = streambed median sediment size; DOC = dissolved organic carbon ; TN = total nitrogen; NO3-N = Nitrate-N; TP = total phosphorus; Cond = electrical
conductivity; FPOM = Fine particulate organic matter; CPOM = Coarse particulate organic matter; Hypo-d50 = hyporheic median sediment size; VHG = vertical hydraulic gradient; n.a. =
not available.
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Table 3. Two way ANOVA results of the effects of site and flow class on all measured variables.
Bold numbers indicate statistical significance (α = 0.05).

Site Flow Class Site * Flow Class

Abiotic factors

Physical
Velocity 0.07 0.04 0.36
Depth 0.71 0.71 0.5
Stream-d50 <0.01 <0.01 0.43

Chemical

DOC 0.99 <0.01 0.99
TN 0.99 <0.01 1
NO3-N 0.99 0.08 1
TP 0.98 <0.01 0.99
Cond 0.99 0.86 1

Hyporheic

FPOM 0.01 <0.01 0.91
CPOM 0.01 <0.01 <0.01
Hypo-d50 <0.01 0.55 <0.01
VHG <0.01 0.06 0.03

Ecosystem function

SR <0.01 <0.01 <0.01
Periphyton
biomass 0.93 <0.01 0.49

Chl-a 0.39 <0.01 0.82

Ecosystem structure

Density <0.01 <0.01 0.32
Richness <0.01 <0.01 0.02

Note: Stream-d50 = streambed median sediment size; DOC = dissolved organic carbon; TN = total nitrogen;
NO3-N = nitrate-N; TP = total phosphorus; Cond = electrical conductivity; FPOM = fine particle organic matter;
CPOM = coarse particle organic matter; Hypo-d50 = hyporheic median sediment size; VHG = vertical hydraulic
gradient; SR = sediment respiration; Chl-a = periphyton chlorophyll; Density = macroinvertebrate density; and
Richness = macroinvertebrate taxonomic richness. * represents the interaction between site and flow class.

Figure 3. Ecosystem structure and function measures by site and flow class (average ± standard error).
Black bars (Sites 1 and 5) represent non-restored sites, while grey bars (Sites 2–4) represent restored
sites. SR = sediment respiration; Macroinv = macroinvertebrate; Mod. High = moderately high.
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Figure 4. Partitioning variation of ecosystem structure and function measures (percentage of variation
explained by flow class and site). All proportions of explained variance were significant (p < 0.05).
SR = sediment respiration; Chl-a = periphyton chlorophyll; Density = macroinvertebrate density; and
Richness = macroinvertebrate taxonomic richness.

NMDS analysis (stress = 0.21; Figure 5) showed a difference in macroinvertebrate composition
among flow classes (ANOSIM by groups, R = 0.37, p = 0.001). Assemblages shifted in composition
from class high to mod to intermediate along both NMDS axes, and a clearly different grouping was
evident for class low (Figure 5). Restored and non-restored site assemblages were not statistically
different in each flow class (ANOSIM, R = 0, p = 0.5), although the difference between restored and
non-restored sites were distinctive owing to their position along axis-1 (Figure 5). The differences
between restored and non-restored site communities were constant despite flow type.

Figure 5. Community composition in NMDS ordination space based on macroinvertebrate densities.
Symbols represent samples for different flow classes in restored or non-restored sites.
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4. Discussion

We investigated the effect of channel protection removal (river widening) on ecosystem structure
and function after 12 years in the Thur River, Switzerland. Our results showed that (i) spatial
and temporal variation in sediment respiration and macroinvertebrate taxonomic richness were
driven by interactions between flow and restoration; (ii) riverbed measures including substrate size,
organic matter content, and groundwater–surface water interchange were changed due to restoration,
but (iii) water chemistry, hydraulic conditions, and primary production were not affected by restoration.

These findings are important because river restoration often focuses on abiotic conditions with
little attention on biotic assemblages or ecosystem function [39–41]. Our study revealed that abiotic
measures, except channel morphology, changed only marginally but ecosystem structure and function
showed complex responses in relation to flow-restoration interactions that are usually absent in
channelized rivers due to more stable conditions in sediment and flow regimes. These results highlight
designing restoration projects using a more holistic perspective including biotic and functional
measures [42] at multiple temporal (intra- and inter-annual) and spatial (habitat, reach) scales, which
will help assess results of a project beyond the before/after design.

We found a more abundant and richer macroinvertebrate assemblage, on average, in non-restored
than restored sites. These results are in line with previous studies showing marginal changes in
macroinvertebrate assemblages in restored reaches despite enhanced habitat heterogeneity [43,44].
The greater disturbance in restored sites, in terms or sediment movement and deposition, may be
one explanation for the differences in our study. Other potential explanations for this response
by macroinvertebrates include irrelevant spatial scales of management actions, time limitations for
assemblages to show a response, or ignoring other stressors in the same river [45]. Further, spatial
differences in community composition should be considered. For instance, the community was
dominated by snails (Hydrobiidae, Valvatidae, and Planorbidae), Odonata (Gomphidae, Corduliidae),
and isopods (Ashellidae) in flow class low, while these groups were absent in the other flow classes
(results not shown). Nevertheless, the reduction in abundance and richness does not necessarily lead
us to conclude that the restoration had an overall negative impact because the aim of the project was
successfully achieved by re-generating flow–sediment interactions.

Measures of ecosystem function revealed various responses to restoration. Here, restoration
resulted in the enhancement of spatio-temporal dynamics in sediment respiration due to the interaction
between flow and sediment dynamics. Sediment movement in the restored sites was affected differently
by the different classes of flow events, whereas this effect on sediment movement was not evident in
the non-restored sites, likely because the non-restored sites were more stable and lack the interaction
between flow and sediment movement of the streambed. Importantly, this interaction may indicate
re-establishment of organic matter processing at the reach scale [46]. Periphyton biomass (AFDM
and Chl-a) showed no difference due to restoration but differed among flow classes, likely reflecting
greater susceptibility to physical disturbance by scouring and sheer stress [26,47]. The fact that this
response occurred in restored and non-restored sites suggests a remarkably low resistance of surface
biofilms to spates [26], despite spatial differences in river morphology and bed heterogeneity.

Hyporheic sediment respiration (SR) also showed different responses to flow classes among sites.
SR was less variable over time in non-restored relative to restored sites. The lack of natural disturbance
in rivers may have general consequences that could lead to a regime shift in habitats [48], such as
an increase in (in)organic matter and less organic carbon transported downstream [49]. Restoration
clearly increased the heterogeneity in ecosystem function of hyporheic sediments in the Thur River.

Exchange between the water column and channel bed and river banks (vertical and lateral
linkages) can affect water quality because these are biogeochemically active areas where organic matter
decomposition and nitrogen removal occurs [50,51]. Our results showed that water chemistry was
not influenced by the restoration, and is in agreement with previous studies [52,53]. Water chemistry
was best explained by intra-annual flow variability, indicating that river water chemistry responds
mainly to large-scale processes such as snowmelt water intrusion or major precipitation events [54]
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as well as large-scale patterns in river morphology such as meandering [55]. Here, the length of the
restored stretch (ca. 500 m) may have been too short to detect or cause changes in water chemistry.
Overall, the results demonstrate a positive response of rivers to channel widening actions by facilitating
sediment flow relations in restored sections.
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