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Abstract: Sewer and drainage infrastructure are often not as well catalogued as they should be,
considering the immense investment they represent. In this work, we present a fully automatic
framework for localizing sewer inlets from image clouds captured from an unmanned aerial vehicle
(UAV). The framework exploits the high image overlap of UAV imaging surveys with a multiview
approach to improve detection performance. The framework uses a Viola–Jones classifier trained to
detect sewer inlets in aerial images with a ground sampling distance of 3–3.5 cm/pixel. The detections
are then projected into three-dimensional space where they are clustered and reclassified to discard
false positives. The method is evaluated by cross-validating results from an image cloud of 252 UAV
images captured over a 0.57-km2 study area with 228 sewer inlets. Compared to an equivalent
single-view detector, the multiview approach improves both recall and precision, increasing average
precision from 0.65 to 0.73. The source code and case study data are publicly available for reuse.

Keywords: infrastructure mapping; multiview; object detection; unmanned aerial vehicle; urban drainage;
asset management

1. Introduction

1.1. The Need for Urban Drainage Network Infrastructure Data

Urban drainage network infrastructure is foundational to public health and safety in urban areas.
As such, great investments have been made into such infrastructure, especially in developed countries.
In Switzerland, for example, the replacement value of all public sewer and drainage infrastructure is
estimated at 66 billion Swiss francs [1], which corresponds to around 7000 euros per capita. To manage
and maintain this infrastructure in the long term, it is essential to catalog the constituent assets and
geographical layout of the networks. Comprehensive and detailed network layout information also
plays a role when assessing flood risks. According to Hürter and Schmitt [2], the inclusion of sewer
inlets in the model has a clear impact on the simulation results for urban pluvial floods caused by
medium-sized rain events. This finding speaks against the common engineering practice of considering
manholes as the sole interface between surface flows and the drainage network. Going a step further,
Simões et al. [3] looked at the impact of capacity restriction of sewer inlets due to debris during flood
events. Using a stochastic modeling approach, the authors showed that sewer inlet capacity does
indeed have a large impact on flooding occurrence.

Despite these reasons, data pertaining to urban drainage networks are often found lacking,
inaccurate, or hard to access. Again in Switzerland, a report from 2012 states that low data availability
characterizes the whole water management sector [4]. While no international surveys on the topic are
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known of, authors from various European countries mention and address the issue of data scarcity in
urban drainage [5–7]. The main causes for scarcity cited by the authors are a lack of data reporting
standards, poor data management practice, lack of coordination between network operations, privacy
concerns, and legal constraints. Given that these challenges are not specific to Europe, one can assume
that drainage network data scarcity is a general problem in developed urban areas.

1.2. Remote Sensing of Urban Infrastructure

Remote sensing and computer vision offer an automated alternative to expensive and error-prone
manual data collection. Most remote sensing methods for small infrastructure found on or near roads
are based on data collected at street level. For example, mobile laser scanning has been used to map
road inventory such as light poles or manholes [8–10], and street-level imagery has been used to
map manholes, trees, and telecommunications infrastructure [11–13]. In contrast to aerial remote
sensing, data collected at street level is often very high resolution and less affected by obstructions
such as trees. Furthermore, street-level images are captured with considerable overlap and from
multiple perspectives, which can improve detection performance [12,13]. However, precise geographic
localization with street-level images can be challenging due to noise in the position and heading
information of the images [11]. From the authors’ experience, the positional errors can be up to several
meters, which is problematic for small objects like sewer inlets or manholes, which sometimes lie
within meters of each other.

Aerial imaging, on the other hand, is very reliable in that respect: high resolution aerial imagery
can normally be georeferenced and rectified with submeter accuracy. Though the accuracy of the
rectification and georeferencing does depend on the quality of ground control points, this is not usually
an issue in urban areas despite strong height relief. This is the case particularly for unmanned aerial
vehicle (UAV) imagery, thanks to its very high ground sampling distance (GSD) and large image
overlap. While there are no studies of sewer inlet detection in aerial imagery, there have been several
that investigate manhole cover detection. From a remote sensing standpoint, manhole covers are
similar to sewer inlets in terms of size and construction material. Additionally, the two are related in
terms of frequency and location of occurrence. Therefore, it is of value to mention the latest studies
in manhole cover detection. Pasquet et al. [14] combined detections from a geometric circle filter
with detections from a linear support vector machine (SVM) fed with histogram of oriented gradient
(HOG) features. Trained and tested on aerial imagery with a resolution of 4 cm/pixel, the method was
able to detect up to 40% of manholes with a precision of 80%. More recently, Commandre et al. [15]
implemented and customized a deep convolutional neural network to the task of manhole detection in
aerial imagery with a resolution of 5 cm/pixel. Despite the lower resolution, a similar performance is
attained. Additionally, they show that a recall of up to 50% can be attained with a precision of 69%.
As common in most remote sensing applications, both studies perform detection in single images and
do not use multiple views to enhance detection performance.

1.3. Unmanned Aerial Vehicles Enable Low-Cost Collection of Aerial Image Clouds

Unmanned aerial vehicles (UAVs) are natural contenders for multiview aerial detection
applications: when UAVs are used for orthoimage creation, aerial images must be captured with
a high overlap and processed because of the low flight height and consequently high perspective
distortion. In practice, it is recommended to have between 60% and 80% overlap in both lateral and
longitudinal directions [16]. To create the orthoimage, the UAV images are undistorted, reprojected
with a digital surface model, and stitched together into a single orthoimage using a mosaicking
approach. If the end goal is object detection, however, the individual images could also be used directly
in a multiview detection framework, as has shown to be successful with ground-level imagery [11,13].
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1.4. Scope and Novelty of the Present Study

In this work, we present a multiview framework for detecting small, static objects in UAV image
clouds. The framework is applied to the detection of sewer inlets in a municipality near Zurich,
Switzerland. The performance of multiview detection is compared to that of an equivalent single-view
approach in which objects are detected in an orthoimage of similar resolution and geographical extent
as the individual UAV images.

This study is (to the best of our knowledge) the first demonstration of multiview detection with
UAV image clouds. From the standpoint of urban water management, while UAVs have been tested
for surface imperviousness observation [17] and elevation model generation [18], this study is also the
first investigation of UAVs for drainage system inventory mapping. Finally, the detection framework
and data presented in this study have been published and free for anyone to reuse or build upon.

2. Methods

2.1. Single-View and Muliview Detection

The single- and multiview detection approaches compared in this work (Figure 1) differ in essence
only in the image medium used for detection: in the first case, objects are detected within a single
georeferenced and orthorectified aerial image whereas in the second, individual aerial images are
used. There are three main advantages expected from using a multiview approach. Firstly, thanks to
the multiple perspectives provided by the individual images, the issue of visual obstruction from
trees and moving vehicles should be mitigated. Secondly, the additional information should increase
detection accuracy (i.e., fewer false alerts). Finally, the individual UAV images are not processed as is
the orthoimage, so a higher image quality and resolution can be expected.

Figure 1. Single-view and multiview detection approaches. The multiview approach uses all available
image information for detection and performs clustering in three-dimensional (3D) space.

The steps necessary for both approaches are detailed in the following sections and can be
summarized follows, as illustrated in Figure 1. In step 1, images are clipped using road network
information to limit the search area. In step 2, sewer inlets are detected in each image using a sliding
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window classifier. In step 3, which only applies to the multiview approach, detections are cast from
each image into three-dimensional (3D) space. Overlapping detections are clustered together in step 4,
and properties are computed for each cluster. In the final step, the clusters are classified and filtered
based on their properties to remove false positives. The detection results are cross-validated in five
folds of training and testing data.

2.2. Image Clipping

Sewer inlets are most often situated on the side of the road, and knowledge of this fact can be
leveraged to dramatically restrict the area that needs to be searched when localizing sewer inlets,
thereby also reducing the number of false positives. In this work, a mask (Figure 2b) was created from
land use data, by adding an inner and outer buffer to road edge lines. Since sewer inlets in Switzerland
are usually situated on the inner edge of the road and have a principal dimension of around 50 cm,
an external buffer of 50 cm and an internal buffer of 100 cm were chosen for the mask. Thus, only image
data from the roadsides are retained (Figure 2c) from the original orthoimage (Figure 2a).

Figure 2. (a) A small part of an unclipped orthoimage. The object in the upper left is part of a car and
the object in the lower middle is a sewer inlet; (b) the clipping mask overlaid on the orthoimage; (c) the
clipped orthoimage.

While image clipping is trivial for the orthoimage, some processing is required to transform the
mask into the projections of the individual (nonrectified) aerial images. First, the mask vertices were
enhanced with elevation values extracted from a digital elevation model. Then, the 3D mask was
back-projected into the 2D space of each image, using the known camera poses, by back-projecting
polygon vertices according to:

v = KRX− KRt, (1)

where v is the point coordinate vector in normalized image space, X is the point coordinate vector in the
world coordinate system, K is the [3 × 3] camera lens distortion matrix, R is the [3 × 3] camera rotation
matrix, and t is the [3 × 1] camera position vector in the world coordinate system. The K, R, and t
camera parameters are determined prior to the detection process using photogrammetry software.

We used the Geospatial Data Abstraction Library (GDAL) and OGR Simple Features Library [19]
for reading, writing, and processing geospatial raster and vector data. Numpy [20] was used for matrix
operations. Pix4Dmapper [21] was used to estimate camera parameters.

2.3. Object Detection in Images

To detect objects in the images, a sliding window approach is used in conjunction with a cascaded
boosted image classifier of the type presented by Viola and Jones [22]. The sliding window approach
is a simple way of performing object detection for objects that do not fill the whole image frame.
Conceptually, it consists in incrementally sliding a window across the image, classifying the content of
the window at each step. The size of the window can be varied according to the range of expected
object sized, but in the present work the window size was kept constant since all images are taken
from a similar distance to the ground. The method proposed by Viola and Jones is characterized
by (i) the concept of integral images, a preprocessing step that accelerates feature computation;
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(ii) a learning algorithm (Adaboost) that gives weight to discriminative image features among a large
pool of candidates; and (iii) a structured decision cascade that discards negative images early in the
detection process. The implementation is extremely efficient at detection time despite the sliding
window approach because at each window location, features are computed stage by stage. Since the
vast majority of proposals are discarded after the first stages, only a fraction of all features need
to be computed. This aspect is relevant when many images must be processed, as is the case with
multiview detection with hundreds of images. Certain developments have been made since the
original implementation by Viola and Jones [22], some of which were found useful for the present
work: instead of the originally used features based on Haar basis functions [23], an extended feature
set with rotated Haar-like features [24] was used to improve the detection of rotated objects. Also,
Gentle Adaboost [25] was used to train the classifier, which is reportedly of greater numerical stability,
more resistant to over-fitting and less sensitive to outliers. The same classifier was used for both
multiview and single-view approaches.

A feature of sliding window classifiers is that the window slides over the image with a step that is
much smaller than the width of the window. Therefore, as the window passes over an object, multiple
neighboring detections of the object are documented (Figure 3a–c). Often, these are aggregated directly
after detection but in the present study they are aggregated in step 4, after they have been projected
into 3D space along with detections from the other images.

Figure 3. (a–c) Results of the moving window classification for 3 of 10 unmanned aerial vehicle (UAV)
images in which the sewer inlet was detected. The points represent individual detections as the moving
window moved across the original image, with the orientation of the detections reflecting the images’
orientation. The outline of the sliding window (square with dotted border) is to scale.

OpenCV [26] and specifically the CascadeClassifier class was used as the framework for training
and executing the classifier. This class allows the use of different feature sets and boosting methods.
The main settings used for training the boosted classifier are listed in Table 1. The number of stages
corresponds to the number of successive “strong” classifiers by which an image sample must pass in
order to be classified as an object. If any one of the strong classifiers rejects the sample, it is immediately
discarded and not evaluated by the following classifiers. This architecture makes it acceptable for each
stage to have a moderate false alarm rate, but requires a high hit rate, since the overall performance
is estimated as the performance of each stage to the power of the number of stages. Each strong
classifier is composed of a number of weak classifiers, which in this study are decision trees of unit
depth computed with Extended Haar-like features. The boosting algorithm serves to prioritize training
samples from one stage to the next, to help the algorithm identify the most discriminating features for
classification. Apart from the feature and boosting type, which were chosen for the reasons explained
previously, the other settings were chosen by trial and error as an acceptable compromise between
performance and training time.
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Table 1. Settings used for the storm drain classifier used in this study. Explanations for the settings can
be found in the OpenCV user manual [26].

Number of stages 15
Minimum hit rate for each stage 99%

Maximum false alarm rate for each stage 40%
Maximum number of weak classifiers per stage 20

Weak classifier type Decision tree
Maximum depth 1

Feature type Extended Haar-like features [24]
Boosting type Gentle AdaBoost [27]

2.4. Projection of Proposals into Three-Dimensional Space

Objects detected in individual UAV images are projected back into world coordinates by casting
a ray from the camera projection center into 3D space, i.e.:

X = (KR)−1(v + KRt) (2)

and intersecting the ray with a digital mesh model of the terrain surface. Because UAV images are
captured with a high overlap, each sewer inlet can be detected in multiple images, which leads to
clusters of points around the actual sewer inlet locations (Figure 4a). This is accentuated by the fact that
in each image, sewer inlets are detected multiple times due to the sliding window. Intersections are
computed with the Visualization Toolkit (VTK) Library [28] that internally implements OBBTree [29],
a data structure for efficiently detecting interference between geometries.

Figure 4. (a) The combined detections from all ten images in which the sewer inlet was detected,
forming an obvious cluster around the object; (b) Cluster centers identified from the combined
detections; (c) Cluster centers with associated confidence scores, as computed by the cluster classifier.

2.5. Clustering Proposals

We use the Density-Based Spatial Clustering for Applications with Noise (DBSCAN)
algorithm [30] for identifying clusters (Figure 4b). The algorithm identifies clusters based on
a minimum density threshold set by the user, where the density threshold is roughly defined by
a minimum number of points within a given area. DBSCAN is well-suited to the sewer inlet detection
problem because it scales well with large numbers of points and clusters. Additionally, the points are
clustered in 3D space, which is useful if elevation needs to be accounted for. However, the algorithm is
sensitive to the density threshold set by the user. In this work, the threshold was adjusted with a simple
grid search, based on the typical sewer inlet area of around 0.25 m2 and the expected image overlap.
Different clustering parameters were used for single-view detection. The clustering is performed with
the scikit-learn Python package [31].

2.6. Removal of False Positives Based on Cluster Properties

The clusters of individual detections are characterized and classified in order to remove false
positives. For each cluster, the following properties are computed:
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• Detection count: the number of detections that are part of the cluster.
• Image count: the number of images contributing detections to the cluster.
• Maximum, average, and summed detection scores: each of the detections comes with a score

from last stage of the Viola–Jones classifier. For the ensemble of detections belonging to a cluster,
the maximum score is found, and the arithmetic average and the sum of the scores are computed.

• Surface area: the surface area of the bounding box containing the detections is computed in map
units. This property informs on how spread out the detections are.

• Density: the density is computed as the number of detections divided by the surface area.
• Histogram of detections per image: a vector x, with each element xi containing the number of

UAV images contributing i detections to the cluster, with i varying from 1 to 49. The vector is
generally quite sparse.

• Average and maximum detections per image: for images contributing detections to the cluster,
the average and maximum number of detections is computed.

These properties are used as features to predict whether the object candidate actually
corresponded to a sewer inlet. This is a typical two-class classification problem for which we tested
three established classification algorithms: Linear SVM, Logistic Regression (LR), and Artificial Neural
Network (ANN). With SVM, a hyperplane is fitted in between the two classes of data such that the
margin between the data and hyperplane are maximized. SVM are not well suited to nonseparable
classes of data and by default do not provide confidence scores for predictions. However, it is possible
to estimate confidence scores using Platt scaling [32], with n-fold cross-validation to avoid overfitting
the scaling parameters. With LR, a logistic curve is fitted to the data by maximizing the likelihood of
observing the data. In contrast to SVM, LR does not assume that the classes are separable and the
predictions provided by LR have a direct probabilistic interpretation. In this work, the ANN used is
a multilayer perceptron (MLP) with a single hidden layer with 100 neurons. The MLP is trained by
adjusting the connection weights between neurons to minimize prediction error. ANN are valuable
when the boundary between classes is non-linear. As with LR, the output of ANN is given in terms of
confidence scores. Thanks to these classification methods, each cluster can be assigned a confidence
scores0F, as illustrated in Figure 4c. For the details of these methods, we refer to standard textbooks
such as [33,34]. Since multiview clusters have fundamentally different properties due to the additional
information they contain, the cluster classifier must be trained for single-view and multiview clusters
separately. In all cases, classification was performed with the scikit-learn Python package [31].

2.7. Assessing Detection Performance

Both the multiview and the single-view detection methods that were implemented provide point
detections and not bounding boxes, as is otherwise often the case for object detection. It was therefore
not possible to use, for example, the intersection-over-union ratio to evaluate whether an object was
matched. Instead, since the representative object size is assumed to be of around 50 cm, an object was
considered matched to a cluster if the centers of the two are situated within 50 cm of each other.

The cluster classification step described in the previous section assigns to each cluster a confidence
score based on the cluster’s properties. By increasing the confidence threshold for accepting a cluster
as an object, the classification is made more conservative (fewer false positives but also fewer true
positives). To measure this tradeoff, we use the well-known precision and recall metrics:

Precision =
true positives

true positives + f alse positives
(3)

Recall =
true positives

true positives + true negatives
(4)

Both precision and recall can take values between 0 and 1, where a low precision means many false
positives and a low recall means many objects were missed. Precision and recall are often computed
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for a range of confidence intervals between 0 and 1, and plotted against each other in a precision-recall
curve. The shape of the precision-recall curve can be summarized by the average precision (AP),
which corresponds to the area below the curve:

AP = ∑
n
(Recalln − Recalln−1) ∗ Precisionn (5)

where n designates the n-th probability threshold for which precision and recall are computed.
Perfect classification yields an AP of 1, and the chance level is an AP of 0.5, given a balanced number
of positive and negative samples. Object detection problems, however, are not balanced since there are
practically infinite negative samples, therefore the actual chance level is much closer to zero.

To assess whether the performance of the multiview localization is statistically different from that
of the single-view localization, we perform a paired difference t-test on the AP of the cross-validation
folds. Student’s t-test is a statistical test commonly used to verify whether two sets of data are
significantly different. It assumes that both sets of data follow a normal distribution of unknown
standard deviations. The pairing eliminates confounding effects due to differences between folds,
thereby increasing the statistical power of the test. First, we must compute the difference ∆APi between
the multiview and single-view AP of each fold:

∆APi = APmulti−view
i − APsingle−view

i (6)

where i stands for the fold index, taking values between 1 and the number of folds n. Under these
conditions, the test value t is then computed as:

t =
XD − µ0

sD√
n

(7)

where XD and sD are the mean and standard deviation of the differences ∆APi, n is the number of
folds, and µ0 is equal to zero under the null hypothesis that the multi- and single-view deliver the
same performance.

2.8. Analyzing Sensitivity to Clustering Parameters

The clustering algorithm used in this work, DBSCAN [30], is known to be sensitive to the
two parameters that define minimum cluster core density. To elucidate the influence of these
parameters, we conducted a sensitivity analysis by varying the two parameters: (i) ε is the maximum
cluster core size and should be chosen according to object size and localization accuracy, and (ii) N
is the minimum number of points that should be found within the cluster core. N depends on how
the sliding window iterates over the images and on the number UAV images in which each object
is visible. These two parameters ε and N were varied on a grid between values of 0.15–0.25 m and
1–15 samples, respectively1F. These ranges were selected based on a preliminary sensitivity analysis
that was broader and coarser than the one presented in the results.

For each combination of parameter values, both the single-view and multiview detections
were clustered and classified using the three classifiers (SVM, LR and ANN). The quality of the
resulting clusters is measured by means of the average precision (AP), and differentiated by the cluster
classification algorithm used.

2.9. Analyzing Hard Negatives

Hard negatives, which are detection errors committed with high confidence by the classifier,
offer insight into the shortcomings of the method and potential paths for improvement. However,
such an analysis remains fundamentally qualitative since the actual underlying causes of detection
errors can only be presumed based on visual inspection of the images. In the present analysis,
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the 15 highest-scoring false positives and 15 lowest-scoring false negatives are extracted and their
causes for misclassification are hypothesized. The causes are then ranked according to frequency
of occurrence.

3. Study Area and Data Sets

3.1. Data Collection and Preprocessing

The UAV used to collect data in this study is a fully autonomous electric fixed-wing UAV, the eBee
(1st generation) produced by senseFly SA (Cheseaux-sur-Lausanne, Switzerland). With a foam body,
a wingspan just under one meter, and a rear-facing propeller, it is safe and well-suited to urban or
suburban areas. The UAV carries a 16 MP Canon IXUS 125 HS compact digital camera that is controlled
by the UAV autopilot. At typical cruise heights of 100 to 300 m, GSD of the images is between 3 and
10 cm/pixel. The UAV was flown over a residential area near Zurich, Switzerland, in conformity to
the Swiss regulations for special category aircraft [35]. These regulations allow autonomous flight
without a special license or permit under the following conditions: manual, line-of-sight flight override
must be possible at all times; flight must be specified distances away from certain protected nature
areas, military facilities, gatherings of people, airports, landing strips, and heliports; for airplanes
heavier than 500 grams, a liability insurance of at least 1 million Swiss francs is needed; privacy and
data protection laws must be respected. In total, 252 images were taken at a flight height of 90 m,
giving a GSD of 3–3.5 cm/pixel (due to variations in perspective and topography). In the study area,
228 sewer inlets were identified manually in the UAV images (Table 2).

Table 2. Characteristics of the study area, UAV flight, and images.

Location Zurich, CH
Date of data collection 30 January 2014

Weather Overcast
Surface area 0.57 km2

Flight height 90 m above ground
Lateral image overlap 70%
Frontal image overlap 60%

Number of UAV images 252
UAV Flight duration 2 × 30 min

Image GSD 3–3.5 cm/pixel
Orthoimage GSD 3.5 cm/pixel
Image resolution 4608 × 3456 pixels

Number of sewer inlets 228
Ground control points 10

The UAV images were processed with Pix4Dmapper [21] to estimate internal and external camera
parameters and generate an orthoimage (Figure 5) as well as a digital surface model (DSM) for the
case study. The orthoimage is created by making a mosaic from projections of the UAV images,
during which resolution is slightly reduced. While minimal loss of image quality is experienced for flat
horizontal surfaces (like roads), objects with sharp or complex edges (like buildings) can suffer from
distortions and artefacts. These issues are generally of no concern for sewer inlet detection, unless
such an object is situated over or right next to a sewer inlet. Ten ground control points were used to
georeference the project (placement shown in Figure 5, registration error documented in Table A1).
The processing time for estimating camera parameters was 7 min, and the subsequent processing time
for generating the orthoimage and DSM was 3 h (using an Intel i7-4790K CPU @ 4 GHz, with 16 GB
RAM and a 12 GB NVIDIA GeForce GTX TITAN X graphics card).
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Figure 5. Study area near Zurich, Switzerland used as a case study for this work. The orthoimage
shown was generated from UAV images. Taken during winter, the image reflects a situation with little
vegetation to obstruct sewer inlet visibility.

3.2. Training and Testing Data

The same case study area was used both for training and testing the detection methods. Because of
the limited number of objects contained within the area, we cross-validate the results with five folds of train
(80%) and test (20%) data. In each fold, the objects labeled for training were used to extract positive training
images from the UAV images (resulting in multiple images/views per object). Negative training images
were extracted from locations taken from the highest scoring hard negatives from previous detection runs.
The positive and negative sample images were then transformed to greyscale and augmented with random
rotations and reflections (positive samples were augmented by a factor 3 and negative samples by a factor
2). The final images were of 32× 32 pixel resolution, some of which are shown in Figure 6. To train the
Viola–Jones classifier, 2661 positive and 3936 negative samples were used.

Figure 6. Examples of positive (left) and negative (right) training images used to train the Viola–Jones
classifier. Despite the small resolution (32 × 32 pixels), sewer inlets are easily identifiable to the trained
human eye—given adequate image quality.
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For training the cluster classifier, the clusters were first divided into three categories: (i) clusters
that match to objects labeled for training (training positives); (ii) clusters that match to objects labeled
for testing (testing positives); and (iii) clusters that do not match to an object (false positives). Of the
false positives, 80% were randomly selected to be used for classifier training, along with the training
positives. The remaining 20% were combined with the testing positives to form a test set.

4. Results

4.1. Multiview Significantlys Outperforms Single-View Detection

In Figure 7, the precision-recall curves of the best multiview detector (red) are compared with
those of the best single-view detector (black). Both detectors use ANN for cluster classification, but are
optimal with different clustering parameters, as illustrated in Figure 8. The comparison is made for
each fold of test data (Figure 7a–e), as well as for all test data combined (Figure 7f). The results show
that in terms of average precision, the multiview approach precision is improved consistently across
all folds of data. Using the paired t-test described in Section 2.7, we obtain a t score of 7.2 standard
errors, corresponding to a p-value of 0.002 for a two-tailed test, which is significant at p < 0.01. Overall,
average precision for the combined test data is increased from 0.652 to 0.730 (Figure 7f), which is
a relative increase of about 12%.

Figure 7. Precision-recall curves for the best-performing multiview and single-view detectors.
(a–e) Precision-recall curves for individual folds of test data; (f) Precision-recall curves for all folds
combined. In terms of average precision, the multiview approach is consistently better than the
single-view approach. When the folds are combined, the multiview approach outperforms single-view
for the whole reach of the curve.
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4.2. Sensitivity to Clustering Algorithm Parameters

The results of the clustering parameter sensitivity analysis (Figure 8) show that overall, multiview
detection performs better than single-view detection regardless of the cluster classification algorithm.
Additionally, multiview detection is less sensitive to clustering parameters than single-view detection,
as can be seen in the broad color gradient of the single-view results. While SVM, LR, and ANN all
perform comparably, ANN was able to produce detections with the highest average precision for
both approaches.

For single-view detection (Figure 8), optimal clustering parameter values are situated around
N = 2 and ε = 16. The low value of N is expected, since there is only one image in which objects can be
detected. For multiview detection, performance is best for N values above N = 3, after which there is
no clear dependency on clustering parameters except for the ANN, for which performance begins to
degrade at N = 11.

Figure 8. Average precision of detection for different cluster classifiers, as a function of clustering
parameters. Multiview outperforms single-view for any given combination of clustering parameters.
The optimal clustering parameter configurations are highlighted with a black outline. Grey areas
indicate where clustering parameters were too exclusive for classification to succeed.

4.3. Analysis of Nature of Hard Negatives

In Figure 9, the 15 highest-scoring locations falsely classified as sewer inlets are shown. In this
sample, the main reasons for false detection are apparently (i) geometric patterns on the ground with
high contrast (7 cases); (ii) manholes or round sewer inlets (4 cases). For the remaining four cases,
no clear reason can be identified.
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Figure 9. Examples of locations falsely classified as sewer inlets. Each subplot shows all views available
for a given location. The apparent main causes for false classification are: (a,b,d,f,h,k,o) patterns on
ground with high contrast and/or strong geometric patterns; (e,i,l,m) manholes or possibly round
sewer inlets. (c,g,j,n) were falsely classified as sewer inlets for unknown reasons.

In Figure 10, the 15 sewer inlets with the lowest detection scores are shown. The following reasons
may have caused them to not detected: (i) insufficient image quality or obstruction (6 cases); (ii) too
few images in which the sewer inlet is visible (5 cases); (iii) they are visually different from typical
inlets used for training (5 cases); (iv) the object surroundings are complex or unusual (2 cases); or (v)
the image pose or DSM is imprecise (1 case).

Figure 10. Examples of sewer inlets missed by the multiview classifier. Each subplot shows all views available
for a given sewer inlet. The apparent main causes for nondetection are: (k–o) too few images in which
the sewer inlet is visible; (a,c,d,e,g,) insufficient image quality or obstruction by vegetation; (f,o) the object
surroundings are complex or unusual; (b,e,h,i,j) they are visually different from typical inlets (compare to
example training data in Figure 6); (f) the image poses are imprecisely determined or imprecise DSM.
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5. Discussion

5.1. Comparison to Previous Work

As stated earlier, there are no studies to our knowledge investigating sewer inlet identification in
aerial images, let alone in UAV image clouds. If compared to recent work on manhole cover detection
in aerial imagery, which is a similar problem, our results are 15–20 percentage points better in terms of
precision. At 40% recall, Pasquet et al. [14] report 80% precision (we achieve 95% precision) and at
50% recall, Commandre et al. [15] report 69% precision (we achieve 90% precision). Besides the use
of a multiview approach, there are two other aspects of our study that could give an edge, namely
the slightly higher image resolution used and the preliminary image-clipping step. The differences
between the two detection subjects must also be stated: sewer inlets are smaller than manholes,
but they also have visual patterns with higher contrast than manholes.

5.2. Advantages of Multiview Detection

While the performance increase thanks to multiview detection is significant, it is not exceptionally
large as compared to single-view detection (Figure 7). One could have expected the multiview approach
to greatly improve detection performance, especially for difficult-to-detect objects (e.g., partially hidden
by nearby obstacles) since the multiview approach provides information from many angles of view as
compared to the single-view approach. However, this phenomenon, which would translate to higher
performance on the right side of the precision-recall curve, is not marked. One possible explanation is
that since the images were taken vertically (configured to 0◦ from nadir), the difference in perspective
was not sufficient to make a strong difference for detection. Another explanation is that there were
simply not many objects hidden from view in such a way (e.g., vegetation is not a major issue because
of the winter season of the flights).

5.3. Sensitivity to Clustering Parameters

The sensitivity analysis (Figure 8) reveals another advantage of multiview detection, which is
that it is less sensitive to clustering parameters than single-view detection. Thus, when applying the
method to new locations, there is a greater chance that the clustering parameters identified in this
study function well, despite inevitable differences in the data.

For both approaches, there is some noise in the performance level, particularly for the ANN cluster
classifiers. This noise can be explained by the stochastic and iterative nature of classifier optimization
algorithms, which due to high class overlap sometimes fail to reach the global optimum. In practice,
the noise may be a disadvantage if one desires to identify optimal parameter values.

5.4. Role of Digital Surface Model Accuracy

While not investigated in this work, the accuracy of the DSM used to project detections into 3D
space can affect detection results. Indeed, if the surface model is inaccurate in the proximity of a sewer
inlet, then the projected detections (as in Figure 3) will be erroneous and cause the resulting cluster of
points (as in Figure 4) to be more dispersed and possibly shifted. Due to the fact that road surfaces
are relatively flat and can be well-described with UAV photogrammetry [18], DSM accuracy is not
expected to be a major factor of error in the present study. Indeed, in the analysis of hard negatives,
only one of 15 sewer inlets appeared to suffer from localization issues (Figure 10f).

5.5. Improvement Potential and Directions for Future Work

The results presented in this work could possibly be improved upon if certain changes were
made to the data collection and methodology. The analysis of hard negatives revealed that some of
the main reasons for error, namely high contrast patterns on the ground and unusual sewer inlet
shapes, could be solved by increasing the amount and diversity of training data. Other causes of



Remote Sens. 2018, 10, 706 15 of 18

error, namely differentiating manholes from round sewer inlets and low image quality, could be
solved by increasing image quality (e.g., by flying lower or using a better camera). The problem of
obstruction by vegetation could be mitigated by increasing the tilt angle at which images are taken.
In terms of the method, improvements could be made by applying deep convolutional neural networks
(DCNN) instead of Viola–Jones. DCNNs, such as Faster R-CNN [36] (a combined region proposal
and convolutional neural network), are currently state-of-the-art for most object detection challenges,
although they are computationally expensive and require much training data. It is also questionable
whether current DCNNs are well suited to small objects like sewer inlets, which have little internal
structure [37]. Another change that could be made to the methodology can be illustrated by the failure
cases in Figure 10k–o. In these examples, which are probably at the edges of the study area, only one
to four images are able to see the sewer inlets. However, the current cluster properties do not account
for the visibility of a sewer inlet—thereby penalizing objects in areas where images are less frequent
or where obstructions block the view. Finally, sewer inlets, like most public infrastructure objects,
have typical distributions (e.g., one manhole every 20 m and rarely two manholes next to each other).
While these patterns are regional, they are often known a priori and could be taken into account in the
cluster classification process.

5.6. Inherent Limitations of Aerial Sewer Inlet Mapping

Despite the many possibilities for improvement, there are two main limitations that are intrinsic
to the approach of automated aerial sewer inlet localization. First, there is an unavoidable risk that
a portion of the objects are not visible in aerial images because they are momentarily covered by
vehicles or debris. This risk can be partially mitigated by performing multiple flights, at different
times of day and different seasons in the year. Second, there is a large variety in the form and
situation of sewer inlets, with some being integrated into the curbstone. To accommodate for this
variety, one must not only increase the variety within the training data, but also adapt how images are
captured, e.g., by further increasing camera tilt. Therefore, depending on the completeness required
of the data and the relevance of the aforementioned limitations, it may be necessary to adjust the
detection method or to manually verify the detection results.

5.7. Practical Considerations for Urban Water Management

As stated in the introduction, we understand the scarcity of urban drainage infrastructure to be
widespread. Even when urban drainage asset managers hold a catalog of assets, it is common that
this catalog is incomplete or outdated when it comes to sewer inlets. Based on our experience with
establishing the case study ground truth for the present study, for which no reliable ground truth was
originally available, having a pool of proposals greatly improves the speed and accuracy of manual
object localization. In this context, the primary application of the UAV-sourced data would be to
suggest likely sewer inlet locations, and therefore the classifier confidence threshold should be selected
to favor data completeness (i.e., recall) over precision. The proposals can then be manually validated to
update the inventory. In practice, this can be done in the form of a dedicated field survey or integrated
into the routine tasks of municipal workers (e.g., street sweeping or sewer inlet cleaning). In cases
where street-level imagery is available, objects can also be validated remotely.

Thanks to the flexibility of UAV-based data collection, such an inventory update would probably
benefit from multiple data collection campaigns, e.g., in winter (low vegetation cover), under different
lighting conditions, and to randomize the visibility of obstructions such as parked cars). In the context
of operational urban water management, regular UAV flights would also be of value for detecting
blockages and scheduling maintenance. Based on the results of [38], such an application would reduce
the risk of urban pluvial flooding.
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5.8. Reusability and Generality of the Multiview Methodology

Although the methodology described in this work is presented in the context of urban drainage
infrastructure mapping, using sewer inlets as a case study and a UAV as a platform for image capture,
it is in fact of general applicability. Still within the context of infrastructure mapping, one could
apply the methodology to manhole covers, rainwater tanks, or power transformers. In the realm of
environmental research, it is applicable to the detection of plant species or animal nests. Even in the
context of medical science and dermatology, with only slight adaptation it could be turned into a tool
for identifying birth marks and moles.

6. Conclusions

This work demonstrates that the use of a multiview framework significantly improves the detection
performance for sewer inlets from UAV imagery. With a cross-validated case study with 228 sewer inlets,
we show that the use of additional image information increases average precision from 0.652 to 0.730 as
compared to an equivalently trained single-view detector. The gain is attributed not only to the additional
perspectives made available, but also to the ability to exploit the full resolution of the raw UAV images.
The multiview approach is further able to identify 60% of the sewer inlets with a precision of 80% and
localize them in three dimensions. Both precision and recall are substantially better than the latest reported
results for the comparable problem of manhole cover detection. For urban water practitioners seeking to
create or update their inventory, the value added by multiview detection is more than the incremental
improvement that is usually gained by tuning the image classification method. Thus, this sewer inlet
detection solution can be used to address the frequently mentioned scarcity of urban drainage infrastructure
data. The methodology, for which the code has been released, can easily be adapted for reuse within other
infrastructure or environmental mapping projects.

Supplementary Materials: The data used in this paper is available online at https://zenodo.org/record/1197592,
and the code is available online at https://github.com/Eawag-SWW/raycast.
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Appendix

Table A1. Coregistration error of orthoimage and DSM estimated at ground control points.

GCP Name Error X (m) Error Y (m) Error Z (m)

E 0.006 −0.025 −0.029
F 0.023 0.016 −0.007
H −0.017 0.033 −0.003
G 0.010 0.027 0.013
D 0.014 −0.000 −0.024
J −0.019 0.013 0.000
C 0.001 0.004 −0.064
A −0.008 −0.009 −0.006
I −0.011 −0.024 0.002
B 0.004 −0.022 0.059

Mean (m) 0.000332 0.001385 −0.005928
Sigma (m) 0.013205 0.019985 0.029818

RMS Error (m) 0.013209 0.020033 0.030401

https://zenodo.org/record/1197592
https://github.com/Eawag-SWW/raycast
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