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 24 

Abstract 25 

Global environmental change and biodiversity loss are closely linked through different 26 

feedback mechanisms. The University of Zurich Research Priority Programme on 27 

"Global Change and Biodiversity" approach is to work with interdisciplinarity and 28 

transdisciplinarity to integrate mechanisms of interactions, feedback and scale and 29 

improve our understanding of the feedbacks between global change and biodiversity 30 

effects. Such work across research disciplines is not without its challenges. Here we share 31 

some of the questions that arose from our research approach over the last five years and 32 

how we addressed these challenges. First, our transdisciplinary approach allows 33 

combining different disciplines into a more holistic perspective towards integrative 34 

research, but demands collaborative work to establish common terminology, concepts, 35 

and metrics. Second, the research theme’s common perspective (biodiversity is desirable, 36 

global change is not) may also induce a confirmation bias from preconceived ideas. 37 

Third, new challenges emerge from scaling mechanisms and feedbacks at different spatial 38 

and temporal scales. Fourth, we investigate how to relate biodiversity, global change, 39 

ecosystem services and functions using interdisciplinary approaches. Fifth, we identify 40 

gaps between existing experiments and data requirements, and propose the definition of 41 

new experimental setups by linking processes and performing experiments at typical 42 

experimental scales as well as at larger scales. We conclude by emphasising the necessity 43 

to integrate theory, experiments, modelling and simulation, high performance computing 44 

and big data to understand feedbacks between biodiversity loss and processes of global 45 

change. 46 



 47 

Introduction 48 

Biodiversity loss is one of the important processes affected by global change drivers, 49 

summarised in the Millennium Ecosystem Assessment as the 'big five': land use change, 50 

climate change, invasions, exploitation, and pollution [1]. Biodiversity loss and global 51 

change are strongly bound together through feedback mechanisms taking place at spatial 52 

and temporal scales that are usually smaller than those currently incorporated in global 53 

earth system models [2]. Each of the 'big five' has been shown to negatively impact on 54 

biodiversity [3]. However, studying these drivers independently is unlikely to provide a 55 

coherent understanding which can be used to predict how global change affects 56 

biodiversity and vice versa. These considerations are at the very core of the University of 57 

Zurich Research Priority Programme on "Global Change and Biodiversity" (URPP 58 

GCB). Within this programme, a multi-disciplinary group, which includes ecologists, 59 

geneticists, remote sensing, physical and human geographers, mathematicians and 60 

philosophers, collaborates to integrate mechanisms of interactions, feedback and scale to 61 

improve the understanding of the feedbacks between global change and biodiversity 62 

effects.  63 

Because of this diversity of research interests, methodology and conceptual approaches, 64 

specific questions on how to address the impact of global change drivers and the 65 

feedbacks with biodiversity were discussed in our group. This led to intense 66 

transdisciplinary questioning of research directions. Here, we consider transdisciplinarity 67 

as our common effort to address scientific problems by differentiating and integrating 68 

knowledge from different scientific and societal sources [4]. Whereas including more 69 



scientific disciplines may provide a more holistic vision, it creates new hurdles to 70 

overcome. Here, we share some of the challenges that arose from our common work over 71 

the last five years, and how we are currently working towards resolving such challenges.  72 

 73 

Terminology between disciplines  74 

Joint research across disciplines requires a shared vocabulary, and shared understanding 75 

of the terminology used in different disciplines. We observed when discussing 76 

terminology that consolidating the equivocity of the vocabulary in a given discipline is 77 

often a research question in itself [5], and unifying the terminology across large 78 

overarching fields seems a major challenge. For example, the biodiversity concept can be 79 

based on species richness, however genetic composition or species traits may be included 80 

to characterize biodiversity in other interpretations within the same discipline. Others 81 

might refer to the varying perceptions and values different people have of biodiversity, 82 

for instance, as 'nature’s contributions to people' [6,7]. This makes comparisons of results 83 

from studies using different terminologies very difficult, sometimes even impossible. 84 

There are efforts underway to address this challenge, such as the ongoing selection and 85 

definition of essential biodiversity variables, which will assist in harmonizing monitoring 86 

biodiversity at global scale [8]. Another approach is to develop ontologies (e.g.[9]). In 87 

our research programme we address this challenge with a series of "terminology briefs", 88 

where researchers from different disciplines work together towards a common definition 89 

of pivotal terms, such as integration, global change or phenology.  90 

We further address such transdisciplinarity and multidisciplinarity questions directly 91 

within our research programme by combining concepts such as essential biodiversity 92 



variables, earth system processes, ecosystem services and resource frontiers within one 93 

integrative framework (fig. 1). Each of the individual projects within the URPP GCB is 94 

located within and across the concepts encouraging transdisciplinary approaches on a 95 

daily basis [10,11]. 96 

 97 

The positive connotation of biodiversity, the pejorative meaning of global change  98 

Biodiversity is mostly perceived positively and as something to be preserved and 99 

promoted. In contrast, global change is perceived negatively, a threat, which requires 100 

mitigation or adaptation to strengthen resilience, although this framing is contested in the 101 

literature [12]. This juxtaposition is well backed up in the literature and it is not our aim 102 

to question these positive or negative connotations per se. It is interesting, however, to 103 

observe that both the concepts of biodiversity and of global change may suffer from 104 

confirmation bias [13,14], i.e. the tendency to favour information in a way that confirms 105 

pre-existing predispositions towards a particular framing of these terms. Defining a more 106 

careful framing of these two ideas presents a major challenge.   107 

Such confirmation biases have an outcome on how experiments are designed, read and 108 

analysed; the data collected, and how publications are written. Experimental designs 109 

evaluating the effect of global change tend to overestimate the amplitude of the changing 110 

drivers [15], whereas biodiversity research tends to focus on the positive effects of a 111 

larger, more diverse, number of species [14].      112 

A major challenge is therefore to question existing connotations, to be open to all results 113 

that fulfil the standards of scientific research although they may not fit into the normative 114 

framework, and to be aware of conflicts of interest. This means taking into account the 115 



connotations of the concepts of biodiversity and global change [16]. In our research 116 

program, researchers address such a challenge by, for example publishing non positive 117 

[17] or contradicting results [18], or having an in-depth ethical reflection on our research 118 

topic [19]. To challenge existing paradigms further, we need to understand our 119 

motivation for and interests in the research, such as by thinking about how we choose our 120 

research areas, subjects of study and how we formulate our research questions.  121 

 122 

Links to stakeholders 123 

True transdisciplinarity spans not only different research disciplines but integrates 124 

concerned stakeholders into research designs, data collection and policy transfer [20]. 125 

This gives rise to the question of "governance" [10], firstly governance of the research 126 

process, and secondly governance of the process of translating research insights into 127 

policy. A global question here is "who is asking and who is addressing the question". 128 

Stakeholders are rarely consulted at the initial stage of research when scientific questions 129 

are formulated despite the major influence of such questions on the experimental design 130 

and observations [21–24]. At the same time, powerful stakeholders partially dictate 131 

which studies and infrastructures are selected and promoted for funded projects [21], 132 

giving rise to conflicts of interest as a result of political agendas. For example, the 133 

attention given to certain organisms may not reflect their importance in the ecosystems. 134 

Animal, and to a lesser extent plant, biodiversity loss is highlighted, however 135 

microbiomes are much less studied despite their major role in ecosystem functioning.  136 

 137 



One clear challenge for future research is to evaluate what role stakeholders, policies and 138 

politics should play in the design and outcome of research and how to take this into 139 

account. Including practitioners or lay people viewpoints while developing research 140 

questions may result in very different knowledge forms (more qualitative and 141 

multidimensional but less standardized) than the results of a purely scientific approach, as 142 

shown by the involvement of beekeepers in studies about pollination [25]. Integrating the 143 

new type of data collected in citizen science [26] is a way to achieve this local and 144 

holistic overview. But caution is needed: the global picture of global change, as well as of 145 

biodiversity research, may look quite different when applied at a local scale and specific 146 

location. Transdisciplinarity research may provide more insights on how research may 147 

affect policy and practices. The link between research and conservation programs still 148 

needs to be assessed in a more holistic way [27]. Caution is required in the assessment of 149 

"efficiency of conservation", as conservation policies often fail because they are designed 150 

without taking the livelihoods of local populations into consideration and because 151 

different stakeholders have different or conflicting interests in conservation programs 152 

[10,28]. 153 

In our program, we work directly with institutions that link our research with 154 

stakeholders. We host the project office of the Future Earth global research project 155 

bioDISCOVERY [29], which manages a framework to support biodiversity and 156 

ecosystem services for policy and decision making. We lead a project to develop 157 

remotely-sensed Essential Biodiversity Variables (rs-enabled EBVs) observing and 158 

monitoring key characteristics of global biodiversity (http://www.globdiversity.net/) [30]. 159 

We lead an outreach project, "Biodiversity means life" (http://biodiversitymeanslife.ch/), 160 



with the aim of creating an active dialogue between scientists and the general public on 161 

the topic of biodiversity.   162 

 163 

Scaling and feedbacks: from where to where? 164 

Scaling processes and biodiversity in space and time may be one of the most obvious 165 

challenge for biodiversity and global change research. One technical and scientific 166 

challenge is to scale up processes and feedbacks based on ecosystem functions to the 167 

level of ecosystems [31]. Research on modifications of biophysical processes induced by 168 

biodiversity change at smaller or larger scales are needed, particularly for the prediction 169 

of the dynamics in the long-term [32,33]. 170 

In our program, we propose a number of strategies to study such issues of scaling. The 171 

genetic diversity, the genetic evolution and the dynamics of model organisms, which are 172 

widespread globally, could potentially be monitored, for example Arabidopsis sp. or oak 173 

(Quercus sp.) for the plant kingdom [34,35]. Local to regional scale biodiversity scoping 174 

studies support assessment of scaling processes [36]. Investigating one model species 175 

would help our understanding of the cascade of constraints that a plant experiences in 176 

different ecosystems with their associated drivers. This would help us to disentangle the 177 

major drivers of change at different scales of study. 178 

Another approach would be to scale up from manipulative experimental plots to 179 

landscape scales. Biodiversity-ecosystem functioning relationships have been established 180 

primarily through experimental research at the plot scale. Similar patterns found in plot 181 

experiments may be observed at landscape scale [37], although it may be less obvious to 182 

detect, because of confounding factors.  183 



 184 

Time scales are a challenge as they add new dimensions to the above questions. It is 185 

actively studied whether the supply of genetic and epigenetic variation might not be in 186 

line with the ecological demand for adaptation as set by the rapid rate of global change 187 

[35,38]. In addition to the existing need to predict evolution over decades, changes in 188 

plant phenology triggered by global change highlights the need to scale evolutionary 189 

processes to seasons [39]. Furthermore, socio-spatial processes of resource extraction 190 

often alter landscapes within very short time scales to dramatic effects, in particular in so-191 

called resource frontiers [40].The interlocking of different time scales highlights the need 192 

for current predictive assumptions to be redefined: non-linearity and non-steady states 193 

should be increasingly considered when modelling across scales.    194 

 195 

Integrating new types of data in transdisciplinary studies 196 

Following the exploration of several scales by disciplines like remote sensing, 197 

transdisciplinary projects need to integrate new types of data, providing unprecedented 198 

coverage of biodiversity indicators [41]. Such data may partly solve the spatial 199 

representativeness and abundance issues of traditional field-based assessments [42]. 200 

However, remote sensing data does have limitations that need to be considered when 201 

interpreting results. For example, biodiversity and processes occurring below-ground 202 

cannot be measured directly, and the assessment of biodiversity in aquatic systems using 203 

remote sensing or other novel approaches such as eDNA [35,43], are only beginning to 204 

be fully exploited. The challenge is to reconcile biodiversity considerations at the level of 205 

an ecosystem, such as a forest, grassland or freshwater body [44], to mechanisms taking 206 



place at a much smaller scale, such as microbial processes. The unequal access to 207 

structured data by all scientists and the heterogeneous spatial distribution of such data, 208 

make it a biased source of information to be used with caution [45]. In our program, we 209 

try to tackle this point by physically working on a given set of predefined research sites, 210 

giving us the chance to connect our data and information consistently, even by using own 211 

research practises as part of our scientific approach [46] 212 

 213 

Relating species traits to ecosystem function and ecosystem services  214 

One overarching challenge is the link between ecosystem services, i.e. the services 215 

provided by the ecosystem to human society, and ecosystem functions, i.e. the physical, 216 

chemical and biological processes taking place in the ecosystems [47]. The temptation to 217 

associate specific functions with measured values of a given service is great, leading to a 218 

potential quantification of ecosystem services and thus to their exchangeability or even 219 

tradability that is highly problematic [48]. This may provide a means to justify 220 

conservation policies, but may also give a partial number-based evaluation of complex 221 

services like cultural ecosystem services [49]. It is also important to remember that not all 222 

concerns about biodiversity have a functional motivation or rationale, biodiversity is 223 

often also associated with intrinsic values or relational values (preferences, principles, or 224 

virtues that people associate with relationships) [50]. One way forward may be to then 225 

translate traits into functions and predict functions based on traits [51,52].  226 

In our project, remote sensing is one of the key discipline we use to link functions and 227 

services at large scales by deriving functions from traits [36]. Increasingly, remote 228 

sensing is used to link in-situ observations to mechanisms and functions to ecosystem 229 



services [41]. The association between remote sensing and genomics may lead to 230 

comprehensive phenotyping and the definition of genetically based phenomes as high-231 

throughput sequencing of RNA (RNA-seq) provides monitoring information for diverse 232 

physiological traits such as drought stress, nutrient level and phenology [53]. Combining 233 

the spectral analysis of plant canopy reflectance and biogeochemical measurements, such 234 

as organic compounds or isotope patterns, may also contribute to linking global services 235 

and specific functions of a given ecosystem [54]. In aquatic systems, remote sensing 236 

could be used in combination with other monitoring tools such as environmental DNA to 237 

identify long-term shifts in community structure due to global change [55].  238 

 239 

Defining the next generation of experiments 240 

Most of the challenges described above require the acquisition of new data, structured in 241 

a different way to that which already exists: global coverage or at least global 242 

representativeness, but capturing processes at local scale, more related to traits and 243 

functions, more related to models. We need therefore to define the next generation of 244 

experiments, which can be used to extrapolate across temporal and spatial scales with 245 

increasing complexity and diversity (Fig. 2). Improved measurements may allow the 246 

collection of higher dimensional data across organisational levels, expression states, 247 

environmental conditions, and developmental timing [56].  248 

In many parts of the different disciplines we are involved with, "proof of concept", i.e. 249 

the case study highlighting a concept, has often been preferred to research on the effect 250 

size, i.e. a more complete overview, including data contradicting the proposed theory. It 251 



appears also that most existing experimental setups are subject to bias, such as the island 252 

effect in global change impact studies [57] or artificial ecosystem mimicking [14].  253 

Defining new experimental setups, linking processes and large scale, biogeochemical and 254 

–physical function and remote sensing information and ground measurement, which can 255 

be directly extrapolated by models, is a new frontier in our research field. To integrate 256 

part of these aspects, Schmid et al. [58] have recently proposed guidelines for 257 

biodiversity experiments.    258 

 259 

Along with these new sets of data we need to collect, our transdisciplinary group of 260 

researchers requires more comprehensive modelling at every level of the questions 261 

linking biodiversity and global change, from processes to ecosystem services predictions 262 

[59,60]. The transition from a modelling sand-box to nature could help to define the right 263 

type of data one needs, particularly with the aim to coordinate global change drivers and 264 

feedbacks and biodiversity evolution. Genetic evolution, phenology or trait distribution 265 

prediction in particular may help provide a new outlook on the links between global 266 

change feedbacks and biodiversity.  267 

 268 

Concluding remarks 269 

Here we present seven challenges related to global change and biodiversity that we 270 

experienced as a group of researchers coming from as diverse disciplines as ecology, 271 

philosophy, geography and mathematics. We are trying to overcome hurdles like 272 

terminology, confirmation bias, link to stakeholders, scaling, ecosystem services cascade 273 

or new experimental setup with a series of measures, directly implemented in our 274 



research program. Opportunity costs of working in a transdisciplinary fashion are not 275 

evident momentarily, but will pay off in the near future. Still, the key to successful 276 

transdisciplinary work involves willingness and the ability to work across disciplinary 277 

boundaries, and the capability to understand the limitations of current approaches, 278 

expanding them beyond current capabilities. 279 

 280 
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