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ABSTRACT

Aerobic biodegradation half-lives (half-lives) are key parameters used to evaluate pesticide
persistence in soil. However, half-life estimates for individual pesticides often span several
orders of magnitude, reflecting the impact that various environmental or experimental
parameters have on half-lives in soil. In this work, we collected literature-reported half-lives for
eleven pesticides along with associated metadata describing the environmental or
experimental conditions under which they were derived. We then developed a multivariable
framework to discover relationships between the half-lives and associated metadata. We first
compared data for the herbicide atrazine collected from 95 laboratory and 65 field studies. We
discovered that atrazine application history and soil texture were the parameters that have the
largest influence on the observed half-lives in both types of studies. We then extended the
analysis to include ten additional pesticides with data collected exclusively from laboratory
studies. We found that, when data were available, pesticide application history and biomass
concentrations were always positively associated with half-lives. The relevance of other
parameters varied among the pesticides, but in some cases the variability could be explained by
the physicochemical properties of the pesticides. For example, we found that the relative
significance of the organic carbon content of soil for determining half-lives depends on the
relative solubility of the pesticide. Altogether, our analyses highlight the reciprocal influence of
both environmental parameters and intrinsic physicochemical properties for determining half-
lives in soil.

KEYWORDS: aerobic biodegradation; pesticide; multivariable analysis; partitioning;

bioavailability
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1. INTRODUCTION

Abiotic and biotic degradation are major determinants of the environmental fate of
chemicals. As such, quantitative estimates of abiotic and biotic degradation half-lives or rate
constants are key input parameters for environmental fate models (ECETOC, 2017). However,
environmental fate models are often most sensitive to inaccuracies in degradation rate
constants (Fenner et al., 2007; Horst and Koelmans, 2016) and degradation rate constants are
often the most uncertain parameters included in environmental fate models (Ghafoor, 2013;
Krutz et al., 2008). Much of the uncertainty resides in the fact that degradation depends on
both environmental parameters and intrinsic physicochemical properties of the chemical.
Therefore, degradation rate constants can range widely for a given chemical under varying
environmental conditions (Aronson et al., 2006; Fenner et al., 2007). Whereas much is known
about parameters that are expected to influence degradation half-lives, less is known about the
guantitative effects that changes in those parameters may have (Boethling et al.,, 2009;
Mclachlan et al., 2016).

One of the most well-studied degradation processes is the aerobic biodegradation of
pesticides in soil (Pal et al., 2006). For example, atrazine biodegradation in soil has been studied
for decades and hundreds of half-lives have been reported in the literature (Charnay et al.,
2005; Fenner et al.,, 2007; Miller et al., 2003; Vischetti et al., 1997). Many of those studies
likewise report associated metadata describing the environmental or experimental conditions
under which the half-lives were derived. The sum of these studies confirms that aerobic
biodegradation in soil is a highly variable process, with estimated half-lives ranging between

one day and several years. However, the relative importance of the environmental parameters
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that contribute to this observed variability remain poorly understood (Shaner et al., 2011) and
cannot be fully explained by bivariate correlation analyses (Greskowiak et al., 2017).

An improved understanding of pesticide persistence in soil is predicated on an improved
understanding of the environmental parameters that influence aerobic biodegradation half-
lives (half-lives). If the most important environmental parameters driving the half-life of a
pesticide in soil are well described, then laboratory experiments could be designed to develop a
guantitative understanding of those dependencies, which could in turn be incorporated into
environmental fate models. The primary objectives of this work were to: (i) collect half-lives
and associated metadata describing the environmental conditions under which they were
derived for a set of well-studied pesticides; and (ii) develop a multivariable framework to
evaluate the environmental or experimental parameters that influence the reported half-lives
for those pesticides. Because we collected a significant amount of aerobic biodegradation data
from both laboratory and field studies for atrazine, we first describe and demonstrate our
multivariable approach in detail by comparing the parameters that influence atrazine
biodegradation in laboratory and field systems. We then present the results of our
multivariable approach for ten more pesticides (2,4-D, diuron, metribuzin, acetochlor,
chlorsulfuron, mandipropamid, metamitron, metazachlor, quinmerac, and metsulfuron-methyl),
and discuss the environmental parameters that exhibit a significant influence on the variability
of degradation rate constants among all eleven pesticides.

2. MATERIALS AND METHODS

2.1 Chemical selection and data collection
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We collected primary degradation half-lives or first-order rate constants representing aerobic
biodegradation in soil for eleven pesticides from a variety of sources including the Eawag-Soil in
enviPath database, regulatory documents, technical reports, and the scientific literature. The
eleven pesticides and their physicochemical properties are listed in Table 1. Pesticides were
selected based on data availability, but also represent a range of physicochemical properties
including the octanol-water partition coefficient (K,,), organic carbon-water partition
coefficient (K,), and aqueous solubility. For atrazine, we collected degradation rate constants
from laboratory and field studies. For the remaining pesticides, we collected degradation rate
constants only from laboratory studies (due to limited availability of field data). A summary of
the rate constants are provided in Tables $1-S12 of the Supplementary Data (SD).

Associated metadata describing the environmental parameters under which the half-lives were
derived were also collected. There were fourteen environmental parameters that were
reported along with degradation rate constants in at least one of the datasets collected for at
least one of the pesticides. These include temperature (T), pH, organic carbon content (Cyrg),
sand content (sand), silt content (silt), clay content (clay), total nitrogen (n:,;), experimental
moisture content as % of water holding capacity (water), minimum soil sampling depth which
could range from 0 (surface sampling) to some positive value (d,,i), total sampling depth when
soil was collected at varying depths and mixed (dg;rf), bulk density (bulk), cation exchange
capacity (CEC), pesticide application history (pest. cond) defined as application of the pesticide
on the soil within the previous four years (1) or not (0), and the biomass concentration
(biomass). A summary of these reported data for each pesticide are provided in Tables $1-S12

of the SD.
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2.2 Modelling framework

We evaluated the data collected for the eleven pesticides by means of multivariable analyses to
gain insight on the environmental parameters that influence the magnitude of the reported
aerobic biodegradation rate constants. The overall modelling framework that we developed
included three steps: metadata processing; multivariable regression; and confidence analysis. A
schematic of the overall modelling framework is provided in Figure 1.

2.3 Metadata processing

Metadata processing included: (1) evaluation of covariation among each of the environmental
parameters for each pesticide; and (2) imputation to generate complete datasets when the
values for an environmental parameter were not reported in all datasets. We used a Pearson
correlation matrix to assess covariation among the environmental parameters and selected one
representative environmental parameter when significant covariation was observed. We used
imputation to generate complete datasets by establishing quantitative relationships between
each environmental parameter and the biodegradation rate constants (Buuren and Oudshoorn,
2011; Pampaka et al., 2016). We used multiple imputation employed with the MICE package in
the R Statistical Software (R Core Team) using the predicted mean matching imputation method
to generate five plausible values for each missing value, thus generating five complete datasets
for each pesticide; the values are generated using a regression between the dependent variable
(biodegradation rate constants) and the predictor variables (environmental parameters) plus or
minus a random term drawn from the residuals of the regression (Allison, 2000; Hippel, 2007
Schafer, 1997). The random term accounts for uncertainty in the imputation, thus providing

valid variance estimates (Buuren and Oudshoorn, 2011; Dong and Peng, 2013; Stuart et al.,
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2009), and eliminates coefficient inflation that might be expected when using the dependent
variable to impute predictors (Allison, 2000). If the dependent variable is not used to impute
the predictor variables, then the predictor variable will be imputed as though it has no
relationship with the dependent variable. Then, when the imputed data are subsequently
analyzed, the estimated slope of the dependent variable on the predictor will be biased toward
zero, because no dependence was assumed in the imputation (Hippel, 2007; Landerman et al.,
1997).

2.4 Multivariable regression

A generalized additive model (GAM) was used to develop a multivariable relationship between
our set of environmental parameters (predictor variables) and the biodegradation rate
constants (response variable). Based on our expectations on how each of the predictor
variables influence the magnitude of the biodegradation rate constants (Fenner et al., 2007),
we developed a generic multivariable model for aerobic biodegradation in soil of the form:
In(k) = k, +f (T)+g @H)+h (Corg) + bs In(sand) + b; In(silt)

+ b.In(clay) + b, In(nsy:) + by, In(water) + by,In(dpin)
+ by In(dgifr) + bpg In(bulk) + beee In(CEC)

Equation 1

+ b, (pest.cond) + byIn(biomass)

where k is the biodegradation rate constant (calculated from half-lives assuming first order

biodegradation) and kol is a model fitting constant. The terms f* (T), g (pH), and h’ (corg)
are initially unspecified functions of T, pH, and c,,4 because we expect that biodegradation
rate constants will vary non-monotonically with these parameters (Fenner et al., 2007). We fit
Equation 1 with the biodegradation rate constants for each pesticide and the imputed

metadata using the gam package in R using nonparametric smoothers for the unspecified

7
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functions for T, pH, and c,,4. The GAM output generates plots of the shapes of the functions
that best describe the contribution of each parameter to the magnitudes of the biodegradation
rate constants. These plots were used to assign functions to the T, pH, and ¢, 4 variables and
to write the final model in a closed parametric form.

2.5 Confidence analysis

The confidence analysis includes: (1) bootstrap resampling of the fully imputed datasets for
each of the pesticides; and (2) stepwise linear regression to select the most significant predictor
variables into multivariable models. We used bootstrap sampling with replacement to generate
10,000 individual datasets for each of the five imputed datasets (for a total of 50,000 datasets)
based on the full population of data collected (or imputed) for each of the eleven pesticides.
Each of the datasets included 60 values drawn from the original population regardless of the
size of the original population. Replacement was applied to represent a truly random
resampling, such that a later sample would not depend on the results of the initial sampling.
We implemented stepwise linear regression in R to identify models that generate the highest
accuracy while incorporating the fewest number of predictor variables. We applied stepwise
linear regression to each of the 50,000 bootstrapped datasets for each pesticide to evaluate
how frequently each of the predictor variables was selected into well-performing models. We
defined well-performing stepwise regression models as those that performed as well as or
better than the GAM model for each pesticide. We used the frequency that each predictor
variable was selected into well-performing models as a metric of how generally important that
predictor variable is in determining the magnitude of the reported biodegradation rate

constants.
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3. RESULTS AND DISCUSSION

3.1 General characteristics of the atrazine datasets

We first demonstrate our multivariable approach in detail by examining the environmental or
experimental parameters that influence atrazine biodegradation in laboratory and field systems.
If laboratory studies adequately reflect aerobic biodegradation of pesticides in the field, then
we would expect that the same environmental parameters would be identified in both
laboratory and field systems. We collected 95 biodegradation half-lives reported from
laboratory studies and 65 biodegradation half-lives reported from field studies. Interestingly,
the mean values of the half-lives are similar for laboratory and field studies (approximately 25
days), though the standard deviation of reported half-lives from laboratory studies is much
larger. Specifically, laboratory studies have reported atrazine half-lives ranging between 1 to
770 days whereas field studies report half-lives between 3.5 and 277 days. It is often reported
that dissipation in the field is more rapid than what is observed in the laboratory (Ismail and
Kalithasan, 2006; Walker, 1987). This has been attributed to changes in soil properties during
handling, changes in the microbial community, or elimination of other loss processes such as
volatilization (Ismail and Kalithasan, 2006; Lay and lInicki, 1975). The wider range of half-lives
noted in the data from laboratory studies could be the result of these or related processes.

We collected associated metadata for each of the 160 atrazine half-lives, which included
at least one value for 13 of the 14 environmental parameters under consideration; only
biomass was unreported. Among the 13 environmental parameters, there were between 1% -
88% missing values in the laboratory studies and 18% - 91% missing values in the field studies.

We compared the distributions of each predictor variable among laboratory and field studies.
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For most of the predictor variables, there was no statistically significant difference in the
distributions between laboratory and field studies (p>0.05, Mann-Whitney). However, we
found that the distributions of T, sand, and d,,;, were significantly different between
laboratory and field studies (p<0.05, Mann-Whitney). Those differences may further explain the
wider range of half-lives reported for the data from laboratory studies.

3.2 Metadata processing

The first step in metadata processing was to evaluate covariation among the predictor variables.
Pearson correlation matrices comparing the metadata show that sand in laboratory and field
studies significantly associates with clay (p=-0.72 in laboratory studies and p=-0.69 in field
studies, p<0.05) and silt (p=-0.86 in laboratory studies and p=-0.87 in field studies, p<0.05).
This is not unexpected based on the composition of soil and this type of association has been
previously reported (Fenner et al., 2007). None of the other predictor variables were found to
co-vary with any other predictor variable for which sufficient data was available. Consequently,
we used sand as the representative predictor for soil texture in our multivariable regression
analysis.

The next step in metadata processing was to evaluate the extent of missing data for
each of the remaining predictor variables and to use multiple imputation to fill in missing values
for those parameters for which a sufficient amount of data was available. Whereas multiple
imputation is a widely used technique to fill in missing values for incomplete datasets (Pampaka
et al.,, 2016), there are no guidelines for determining how much data is required to achieve
robust multiple imputation from an incomplete dataset (Dong and Peng, 2013). Therefore, we

used the nearly complete datasets for T, c,g, Sand, dpin, and dg;ry from atrazine laboratory

10
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studies to generate incomplete datasets by randomly deleting 10%, 20%, 30%, ..., 90% of the
values for each variable. We then used multiple imputation to fill in the missing values of each
of the synthetically generated incomplete datasets and evaluated the performance of multiple
imputation by calculating the correlation coefficient between the original dataset and the
imputed dataset. The results of our analysis demonstrate that multiple imputation can be
sufficiently accurate (R®>0.7) when no more than 40% of the data is missing. Therefore,
environmental parameters that had more than 40% missing values were excluded from further
analysis. For atrazine laboratory studies, ns,; (83% missing), bulk (92% missing) and CEC (88%
missing) were excluded and for atrazine field studies, T (83% missing), n¢p: (72% missing),
water (82% missing), bulk (91% missing) and CEC (78% missing) were excluded from the
multivariable analysis.

3.3 Multivariable regression

We fit a truncated form of Equation 1 (with parameters discarded during metadata processing
removed) with the imputed datasets using the gam package in R. The output from the GAM
allows us to examine the shape of the response of the degradation rate constants to each of
the predictor variables, which is plotted in Figure 2 for l[aboratory and field studies. As expected,
the biodegradation rate constants varied non-monotonically with the magnitudes of T in
laboratory studies and with the magnitudes of pH and ¢, in laboratory and field studies (not
enough data to evaluate T in field studies). The biodegradation rate constants from the
laboratory studies reached a maximum value at a T of 25°C, similar to previous findings (Fenner
et al., 2007). Under most ambient conditions, T is expected to have a positive association with

degradation rates, though higher temperatures could change microbial communities and
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negatively influence degradation rates. The non-monotonic relationship with pH was not as
pronounced, but a maximum value was observed at pH 6.5 in both laboratory and field studies.
The relationship with ¢, is not as clear. Our expectation was that degradation rates would be
lower at low ¢,,-4 due to nutrient limitation and reduced microbial activity and at high ¢,4 due
to increased adsorption (Fenner et al., 2007). In other words, we expected to observe an
optimum level of ¢,y at which degradation rates would be highest. Our data show lower
degradation rates at high ¢, for atrazine in laboratory and field studies, but no relationship
was observed at low c,.4. Nevertheless, a non-monotonic relationship is noted between
biodegradation rate constants and ¢4 in both laboratory and field studies.

Based on the shapes of the non-monotonic relationships observed for T, pH, and ¢,
we expressed these unspecified functions as second order polynomials to write the
multivariable model in a closed parametric form. We also factored the temperature term and
used T as the predictor to facilitate comparison to the Arrhenius equation (Fenner et al., 2007).

The linear model suggested by GAM for atrazine laboratory studies becomes:

, 1 1
ln(k) = ko + le ? + sz F + prlpH + prszz + bC1 ln(Cm.g)
+ beoIn(corg)® + bs In(sand) + by, In(water) + byIn(dpin) Equation 2
+ b, ln(ddiff) + b,atr.cond

The linear model suggested by GAM for atrazine field studies becomes:

In(k) = k, + bpu1pH + bz pH? + bey In(Corg) + bealn(Corg)?
+ bs In(sand) + by, In(water) + byIn(dpin) + by In(dgisr) Equation 3
+ bgatr.cond

The linear models have R? values of 0.79 and 0.48 for laboratory and field studies, respectively.

3.4 Confidence analysis

12
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The GAM analysis provides a general multivariable model and enables inspection of the shapes
of the relationships between the biodegradation rate constants and each of the predictor
variables, but it does not provide any information on how important each of the predictor
variables are in determining the magnitudes of the biodegradation rate constants. General
approaches to identify key predictor variables that contribute to the magnitude of a response
variable include stepwise linear regression or subset selection modelling, both of which have
recently been applied to evaluate key variables influencing biodegradation half-lives (Fenner et
al., 2007; Latino et al., 2017). Although these are statistically sound approaches, they produce a
single set of results based on the input data with no assessment of the confidence in those
results.

Bootstrap techniques add another dimension to statistical estimation strategies by
assessing the robustness of a particular estimator (Stine, 1989). By combining stepwise linear
regression with bootstrap techniques, we developed an approach that allows for a ranking of
predictor variables based on the frequency in which they are selected as significant parameters
in well-performing models. We used bootstrap resampling to generate 10,000 datasets for each
of the five imputed laboratory and field datasets. This generated a total of 50,000 datasets for
laboratory and field studies, each made up of 60 rate constants selected at random from the
original populations. We then used stepwise linear regression to build multivariable models
that had the highest accuracy (R%) while incorporating the fewest number of predictor variables.
To be consistent with the results of our GAM analysis, we extracted the subset of models that
explained at least 80% of the variability in the rate constant data (R°>0.8) for the laboratory

studies and 50% of the variability in the rate constant data from the field studies (R°>0.5) as
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well-performing models among the 50,000 models generated by stepwise linear regression. A
total of 11,250 models had R* values greater than 0.8 for atrazine laboratory studies and 19,260
models had R? greater than 0.5 for atrazine field studies. Each of the stepwise linear regression
models include a subset of predictor variables that are each assigned a p-value that describes
how much they contribute to the performance of the multivariable model. For example, sand
was selected more than 10,000 times as a significant variable (p<0.01) among the 11,250 well-
performing models, which translates to a 92% selection frequency.

Based on our integrated bootstrap and stepwise linear regression approach, the key
environmental variables influencing biodegradation rate constants for atrazine in laboratory
and field studies are presented in Table 2, where the environmental parameters are ranked
from highest influence to lowest influence. The median, minimum, and maximum values of the
coefficients of the parametrized models are also provided. Importantly, the data show that the
environmental parameters that are relevant for atrazine biodegradation are similar in
laboratory and field studies, demonstrating that the differences in rate constants measured in
laboratory and field studies are likely due to the differences in the ranges of environmental
parameters explored and not the result of experimental artifacts. atz.cond and sand were
selected most frequently as significant environmental variables for both laboratory and field
studies, indicating that they are the most important parameters in well-performing models
under both laboratory and field conditions. Based on our finding that the ranking of each
parameter under laboratory and field conditions are similar, it is reasonable to suggest that T

could also be a key environmental parameter for atrazine degradation under field conditions,
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but the lack of documentation of temperature data in field studies excluded it as a model input
parameter.

Interestingly, the coefficients for most parameters selected into well-performing models
range over positive and negative values, reflecting some sensitivity of the results to the
population of data sampled during bootstrapping. However, the coefficients for atz. cond and
sand were always positive for laboratory studies and atz.cond was always positive in field
studies. The changing behavior of the coefficients for sand between laboratory and field
studies is notable, but sand is a surrogate parameter for soil texture and we interpret this
result as an indication that soil texture is generally important for the aerobic biodegradation of
atrazine in soil. Further, median values can adequately reflect the central tendency of the
coefficients for the other parameters. In that respect, the positive values of the median
coefficients for atz.cond and water in laboratory and field studies suggest a general positive
association with these environmental parameters. Likewise, the negative values of the median
coefficients for d ;¢ in laboratory and field studies suggest a general negative association with
total sampling depth.

The results presented in Table 2 could be applied to guide the selection of appropriate
degradation rate constants to be used for environmental fate modelling. For example, we
found that atz.cond, sand, and T were key environmental variables for predicting atrazine
biodegradation rate constants. In other words, the variability among the reported half-lives for
atrazine was best explained by the variability among the values of these three environmental
variables. The relationships between the reported half-lives and these three environmental

variables presented in Figure 2 also match our theoretical expectations (Fenner et al., 2007;
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Schwarzenbach et al., 2016). Based on these findings, one could use knowledge of one or more
of these parameters for a particular study area to select an appropriate atrazine degradation
rate constant for modelling atrazine fate in that study area.

Our results can also be interpreted to help guide the requirements of regulatory tests to
focus on investigating ranges of the most important environmental variables. For example,
instead of using only soil samples from sites that have not had atrazine application in the past
four years as required by current regulatory guidelines, additional soil samples with a more
recent history of atrazine application could be selected for testing. In that respect, laboratory
test guidelines should also recommend testing soil samples that cover a range of soil textures.
More robust data from laboratory experiments that explore these notable dependencies may
lead to an improved quantitative understanding that could be incorporated into environmental
fate models.

3.5 Application of multivariable analysis to other pesticides

We next applied the multivariable framework described for atrazine to 2,4-D, diuron,
metribuzin, acetochlor, chlorsulfuron, mandipropamid, metamitron, metazachlor, quinmerac,
and metsulfuron-methyl. Due to the limited availability of field data for these pesticides, we
applied our multivariable workflow only to data collected from laboratory studies. As described
for atrazine, we used one parameter to describe soil texture (sand for most and clay for
acetochlor) due to covariation and a threshold of 40% missing data for multiple imputation. A
statistical summary of the data available for each pesticide, the results of the GAM analysis, and

the range of the magnitudes of the coefficients for parameters selected into well-performing
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models are provided in the SD. A summary of the frequencies in which each parameter was
selected into well-performing models is provided in Table 3.

We first aimed to determine whether any of the observations made for atrazine could
be extrapolated to the other pesticides. None of the other pesticides contained sufficient data
describing pest.cond to include that parameter in our multivariable models. Nevertheless,
there was sufficient data on pest. cond available for 2,4-D to perform a bivariate analysis with
degradation rate constants. A significant positive relationship was discovered (p<0.01, Pearson)
providing additional evidence that pesticide application history is an important variable for
determining degradation rate constants. Our multivariable analysis also revealed that biomass
was frequently selected in well-performing models as an important parameter describing the
aerobic biodegradation of mandipropamid, though there was insufficient data to include
biomass in other multivariable models. However, there was sufficient data on biomass
available for 2,4-D, acetachlor, quinmerac, and metsulfuron-methyl to perform a bivariate
analysis with degradation rate constants. A positive association was discovered between
reported rate constants and biomass for all four additional pesticides, suggesting that biomass
concentration is also a generally important variable for determining degradation rate constants.

No other parameters were found to be generally important for aerobic biodegradation
of pesticides in soil. Notably, the dependencies on pH were inconsistent and not particularly
strong for most pesticides (Figures S1-S10), which included seven neutral and four negatively
charged pesticides (Table 1). The expected relationship between pH and half-lives is complex,
with pesticide speciation influencing bioavailability and interactions with mostly negatively

charged soil particles (Chaplain et al., 2011; Schwarzenbach et al., 2016) and pH also affecting
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microbial community composition and activity (Muller et al., 2003). Because all of the pesticides
are neutral or negatively charged in the pH range of the soils reported, we expect that the pH
dependencies that are observed among these pesticides are related to microbial community
composition and activity. These data reflect that pH is an environmental parameter whose
influence on half-lives is difficult to predict.

We next examined the data in Table 3 to determine whether the frequency at which any
parameter was selected into well-performing models associated with any of the
physicochemical properties of the test pesticides (Table 1). We found that the frequency that
dgirr was selected into well-performing models has a positive and significant relationship with
the Ko of the pesticide (p<0.05) (Figure 3a). Further, the coefficient for dg;sf is always positive
for diuron, the pesticide for which dg;fr is most frequently selected into well-performing
models, but spans positive and negative values for the remaining pesticides (Table S$13). This
finding demonstrates that pesticides that adsorb more strongly to soil have a greater
degradation potential in deeper soils. We attribute this finding to bioavailability; as soils are
pooled over greater depths, c,4 Of the soil mixture decreases making the pesticide more
bioavailable and decreases the observed half-life of the pesticide. We further confirmed this by
noting a consistent negative but not significant association between reported dg;rr and c,rg
values among all of our pesticide datasets.

We also discovered that the frequency that c,.4 was selected into well-performing
models has a positive and significant association with solubility among low to medium solubility
pesticides (p<0.05) (Figure 3b). Remarkably, for the two pairs of pesticides with nearly identical

solubility, the frequency in which ¢,,, was selected into well-performing models was identical,
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providing some additional validation to this observation. Whereas ¢4 is included in our
multivariable analysis as a second order polynomial making it difficult to interpret the
magnitudes of model coefficients, inspection of the shapes of the relationships between ¢4
and biodegradation rate constants for each of the pesticides from the GAM output can be
informative. The major differences are noted in the low and high organic carbon ranges for
relatively low and medium solubility pesticides. The degradation rate constants for the
relatively soluble metribuzin, 2,4-D, and metazachlor exhibit a strong positive association with
Corg in the low organic carbon range. However, the degradation rate constants for the less
soluble atrazine, diuron, and acetochlor exhibit no association with c,.4 in the low organic
carbon range. In this low ¢, 4 range, the primary influence of ¢, 4 is expected to be positive, as
more organic carbon provides more nutrients to support microbial activity (Fenner et al., 2007);
this positive influence, however, is only observed for the more soluble pesticides in this analysis,
reflecting an apparent interdependency between our expectation and the solubility of the
pesticide. The behavior in the high organic carbon range is somewhat different. For the
relatively soluble metribuzin, continued increases in ¢,  result in continued increases in
biodegradation rate constants. The degradation rate constants for the mid-soluble pesticides
such as 2,4-D, acetachlor, and quinmerac exhibit no changes with ¢,.4 in the high organic
carbon range. Finally, the degradation rate constants for the least soluble pesticides such as
atrazine, diuron, and mandipropamid decrease with increasing c,,4 in the high organic carbon
range. In the high organic carbon range, the primary influence is expected to be negative as
more organic carbon content results in greater extents of adsorption (Lucia and Silveira, 2005;

Nam and Kim, 2002); we see this expectation manifest only for the less soluble pesticides while
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the more soluble pesticides are unaffected by increasing organic carbon content (Jardine et al.,
1989). Together these data demonstrate that a complex relationship exists between the
aerobic biodegradation of pesticides in soil and c,.4 that depends on the intrinsic
physicochemical properties and partitioning behavior of the pesticide. Because adsorption and
bioavailability play an apparent role in these observations, we expected that a relationship
would also emerge between the frequency that ¢,,, was selected into well-performing models
and the K, values of the pesticides. We did note a similar (but negative) association between
the frequency that c,,, was selected into well-performing models and the K, values of the
pesticides, but our data suggest that solubility is the better predictor of relationships between
Corg and half-lives, likely due to reasons of uncertainty in K, estimates (Table 1) and the limited
number of data available (n=8, Figure 3). Nevertheless, these notable findings provide an
important quantitative link between observed half-lives of pesticides in soil and our theoretical
understanding of partitioning behavior and bioavailability.
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FIGURE CAPTIONS

Figure 1. A schematic of the overall modelling framework. Degradation data and associated metadata are
collected from laboratory studies (all pesticides) or field studies (atrazine only). Pearson correlations are
utilized to test for covariance among the metadata parameters (predictor variables). Multiple imputation
is used to fill-in missing data values for predictor variables with less than 40% missing data and generate
five complete datasets. GAM parameterizes a multivariable linear model and provides shape functions
that describe the relationship between the magnitudes of degradation rate constants and each of the
predictor variables. Bootstrap resampling generates 10,000 datasets from each of the five fully imputed
datasets. Stepwise linear regression constructs multivariable linear models that contain the fewest
number of predictor variables while meeting defined performance criteria. The predictor variables are
ranked by the frequency in which they are selected into well-performing models, providing a level of
confidence for identifying the environmental parameters that influence the magnitude of the reported
aerobic biodegradation rate constants.

Figure 2. Shape functions describing the relationships between biodegradation rate constants and each
of the predictor variables included in GAM models for atrazine in laboratory studies (left) and field studies
(right). The vertical axes indicate the contribution of each variable to the value of In(k). Points represent
experimental values and partial residuals, solid lines represent the model fit, and dotted lines represent
confidence intervals of 1 standard error.

Figure 3. Relationships between (a) the percentage of well-performing models that select dg;¢r as a
predictor variable and the K, of the pesticides and (b) the percentage of well-performing models that
select ¢,y as a predictor variable and the solubility of the pesticide.



Table 1. The eleven pesticides and their physicochemical properties.

Charge Log Koo Solubility’  Half-life®

Compound pK.? atpH=7 K,.° (mL/g) (mg/L) (days)
Atrazine 2.7 neutral 2.6 39-155 35 72
2,4-D 2.8 negative 2.8 20-100 677 12.4
Diuron 13 neutral 2.7 480 42 302
Metribuzin 2.5 neutral 1.7 60 1050 14.5
Acetochlor 15 neutral 3.0 139 223 11.5
Chlorsulfuron 2.5 negative 2.0 45-110 28000 66.9
Mandipropamid 15 neutral 3.6 405-1294 2 65.7
Metamitron 2.8 neutral 0.8 23-133 1800 24.9
Metazachlor 2.3 neutral 2.1 80 430 19.9
Quinmerac 3.5 negative 2.9 19-185 223 35.4
Metsulfuron-methyl 35 negative 2.2 4-345 9500 27.3

®Data are estimated values from MarvinSketch 17.2.20 by chemaxon (http://www.chemaxon.com);

®Data are experimental values reported in the United States Environmental Protection Agency’s EPISuite software;
“Data are from Open Chemistry Database, National Institutes of Health, National Centre for Biotechnology
Information. We used the midpoint of the given range for association testing;

“Data are average values of the collected datasets in this study.




Table 2. Summary of the frequencies in which each parameter was selected into well-performing models for
atrazine laboratory and field data.

Atrazine Laboratory Studies Atrazine Field Studies
Coefficients Coefficients
(median, (median,
Environmental Selection minimum, Selection minimum,
Variables® Frequencyb maximum)* Frequency maximum)
2.3 1.4
atz.cond 99% 1.2 99% 0.5
3.8 2.5
1.2 -0.7
sand 92% 0.3 57% -2.0
4.1 0.5
-36
/T 76% -340 NA NA
430
130
1/7 45% -4500 NA NA
2900
-0.2
dpmin 45% -0.4 0% NA
0.3
4.1 2.4
pH 34% -6.3 9% -14
19 11
-0.3 -0.2
pH’ 29% -1.4 11% -0.9
0.4 1.0
0.6 0.06
Corg 23% -0.6 21% 0.7
1.3 0.9
0.2 0.03
Corg” 12% 0.5 30% 0.1
1.0 0.2
0.3
water 20% -0.4 NA NA
0.8
-0.3 -0.4
dagr 7% -0.9 7% -1.9
0.6 0.9

*'Environemntal or experimental parameters included in multivariable analysis;

|°Frequency at which each environmental or experimental parameter was selected into well-performing models at
a significance level of <0.01;

‘Range of coefficients among well-performing models; NA indicates the parameter was not included in
multivariable analysis due to missing values.



Table 3. Summary of the frequencies in which each parameter was selected into well-performing models for ten additional pesticides.

Met-
Metri- Aceto- Chlor- Mandi- Meta- Metaza- Quin- sulfuron-
2,4-D Diuron buzin chlor sulfuron  propamid  mitron chlor merac methyl

Observations, n 74 53 36 49 51 23 28 49 27 14
R’ of GAM 0.27 0.74 0.65 0.23 0.78 0.78 0.66 0.72 0.82 0.88
% models > R> of GAM® 82% 42% 70% 60% 62% 88% 99% 59% 84% 35%
pest.cond NA® NA NA NA NA NA NA NA NA NA
sand” 9% NA 13% 24% NA 55% 33% 55% 53% 52%
/T 10% 18% 36% 15% 99% 41% 66% 98% 96% 0%
1T 10% 29% 49% 14% 97% 34% 41% 98% 87% 0%
dmin NA 0% 26% NA NA NA NA 0% NA NA
pH 15% 3% 24% 13% 41% 76% 31% 15% 29% 51%
pH2 19% 5% 16% 21% 73% 77% 36% 9% 47% 71%
Corg 74% 23% 66% 40% 19% 46% 14% 39% 41% NA
Corg 88% 28% 20% 2% 24% 56% 12% 72% 73% NA
water 36% NA NA 58% 9% 7% 69% 31% NA 48%
daigt NA 99% 14% 16% NA NA NA 43% NA NA
CEC NA NA NA NA NA 4% NA NA NA NA
bulk NA NA NA NA NA 0% NA NA NA NA
biomass NA NA NA NA NA 2% NA NA NA NA

°% models > R* of GAM refers to the percentage of models that had an R’ greater than the GAM model following confidence analysis; only these models were

considered for further analysis.
|°Frequency at which each environmental or experimental parameter was selected into well-performing models at a significance level of <0.01; NA indicates the

parameter was not included in multivariable analysis due to missing values.
‘clay used as soil texture parameter based on data availability and covariation.
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