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Abstract 

Ecological speciation and adaptive radiation are key processes shaping northern temperate 

freshwater fish diversity. Both often involve parapatric differentiation between stream and lake 

populations and less often, sympatric intralacustrine diversification into habitat- and resource-

associated ecotypes. However, few taxa have been studied, calling for studies of others to 

investigate the generality of these processes. Here, we test for diversification within catchments 

in freshwater sculpins in a network of peri-Alpine lakes and streams. Using 8,047 and 13,182 

restriction site associated (RADseq) SNPs respectively we identify three deeply divergent 

phylogeographic lineages associated with different major European drainages. Within the 

Aare/Rhine catchment, we observe populations from geographically distant lakes to be 

genetically more similar to each other than to populations from nearby streams. This pattern is 

consistent with two distinct colonization waves, rather than by parapatric ecological speciation 

after a single colonization wave. We further find two distinct depth distribution modes in three 

lakes of the Aare catchment, one in very shallow and one in very deep water, and significant 

genome-wide differentiation between these in one lake. Sculpins in the Aare catchment appear 

to represent an early stage adaptive radiation involving the evolution of a lacustrine lineage 

distinct from parapatric stream sculpins, and the repeated onset of depth-related 

intralacustrine differentiation.  

 

Key words: ecological speciation, intralacustrine radiation, postglacial diversification, Cottus 

gobio, character displacement 
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Introduction 

Adaptive radiation, i.e. the diversification of a single taxon into phenotypically, 

ecologically and genetically differentiated populations and ultimately species, is a key process in 

the evolution of biodiversity (Schluter, 2000b; Nosil, 2012). Factors that promote or impede 

adaptive radiation are best studied at early stages of the process where phenotypic and 

genotypic segregation are likely to be incomplete (Yoder et al., 2010). The relevance of adaptive 

radiations for the generation of biodiversity has been highlighted for fishes in insular 

freshwater habitats, like deep lakes in the tropics or temperate zones (Seehausen & Wagner, 

2014). Postglacial diversification amongst the latter may occur between distinct habitats, such 

as lakes and streams as well as within the same macrohabitat, where for example species within 

lakes segregate according to water depth and/or trophic niches (Hendry, 2009; Seehausen & 

Wagner, 2014). Despite the prominent discussion of these processes in speciation research, 

postglacial ecological speciation and adaptive radiation have only been identified in very few 

fish taxa, specifically in several salmonid fishes: e.g. whitefish (Bernatchez, 2004; Hudson et al., 

2007) or arctic charr (Jonsson & Jonsson, 2001) and in the threespine stickleback (McKinnon & 

Rundle, 2002; see Seehausen & Wagner (2014) for a review). Few examples are known in other 

temperate fish taxa (Seehausen & Wagner, 2014). To understand the extent to which lineage 

specific traits facilitate or constrain postglacial diversification, additional taxa in similar and 

unimpacted environments need to be investigated (Seehausen & Wagner, 2014). 

Because of its broad geographic distribution, the European bullhead or freshwater 

sculpin (Cottidae: Cottus gobio Linnaeus, 1758) is a good candidate to test for postglacial 

diversification. It is the most widely distributed of the 16 known and described, predominantly 

allopatric European freshwater Cottus species. It is thought to predominantly occur in streams 

from Scandinavia to Northern Italy, characterized by fast flowing, well-oxygenated water and 

structured benthic habitats where it feeds predominantly on benthic invertebrates (Kottelat & 

Freyhof, 2007; Goto et al., 2015). In other parts of the northern hemisphere other sculpin 
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species are also reported from littoral zones of large cold lakes with some rare accounts of 

profundal lacustrine occurrences (Goto et al., 2015). Albeit, Cottus gobio has occasionally been 

reported from the littoral zones of a lake (Wanzenböck et al., 2000; Kontula & Vainola, 2001), 

profundal populations have not been studied in detail so far (Goto et al., 2015). 

 European sculpins have been the focus of several biogeographic studies because of their 

wide distribution where population structure is thought to be relatively little impacted by 

contemporary human translocations. This is due to their current economical insignificance in 

contrast to other co-occurring freshwater fish such as trout (Hänfling & Brandl, 1998a; b; 

Vonlanthen et al., 2007; Neuenschwander et al., 2008). With one exception (Kontula & Vainola, 

2001), biogeographic studies have involved almost only riverine populations and suggest that 

much of the currently occupied geographic range has been colonized during postglacial range 

expansions after the last glacial maximum ~12,000 years ago (Englbrecht et al., 2000). 

Contemporary populations derive from distinct glacial refugia that are linked to the major 

European drainages (Englbrecht et al., 2000; Nolte et al., 2005), but natural watershed crossings 

have occurred in the course of the last glacial retreat (Vonlanthen et al., 2007; Neuenschwander 

et al., 2008). The biogeographic structure of European sculpins is thus largely shaped by 

differentiation between drainages, where recent taxonomic work suggests that separate 

drainages may often contain distinct species (Freyhof et al., 2005). Genetic admixture between 

such species has at least in one case led to the emergence of a hybrid species that occupies an 

environment distinct from either parental species, and distinct from all other species in the 

genus (Nolte et al., 2005).  

Population genetic structure in sculpins within a given drainage is also common and 

thought to reflect low dispersal range, geographic isolation or anthropogenic river 

fragmentation (Hänfling & Weetman, 2006; Junker et al., 2012). The possibility of habitat 

dependent divergence has, however, received only little attention among European sculpins 

(Davey et al., 2005; Goto et al., 2015), despite the fact that sculpins evolved an impressive 
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intralacustrine species radiation in Lake Baikal, where they form a species flock comprising at 

least 33 taxa with diverse adaptations (Kontula et al., 2003; Goto et al., 2015).  

The Alps are one area for which biogeography and molecular data imply relatively 

recent colonization (Slechtová et al., 2004). The evolutionary dynamics of sculpins in this area 

are therefore likely recent (Vonlanthen et al., 2007; Neuenschwander et al., 2008). Despite their 

broad distribution, occurring in both streams (Vonlanthen et al., 2007; Neuenschwander et al., 

2008) and lakes (Alexander et al., 2015), the potential for habitat dependent differentiation has 

not been assessed. The deep, cold and oligotrophic lakes in this region moreover make for 

suitable sculpin habitat, distinct from streams and have been in continuous existence since the 

retreat of the glaciers. Here, we take advantage of a recent fish diversity assessment of peri-

alpine lakes around the European Alps that found sculpins to occur in many of the lakes with 

individuals occupying both shallow and very deep water (Alexander et al., 2015; see also Figure 

5c). Using many thousand genomic markers we first assess the population structure of sculpins 

across Switzerland and subsequently test for a genomic footprint of habitat-dependent 

differentiation between lake dwelling populations and the common stream populations within 

our most densely sampled catchment, the Aare (Figure 1). To do so, we use individual based 

phylogenomic approaches (Huson & Bryant, 2006), assignment statistics (Raj et al., 2014), 

outlier detection analyses (Stucki et al., 2017) as well as population based estimates of genomic 

differentiation between habitats (FST and F’ST). In the biodiversity assessment, we observed a 

bimodal depth distribution of sculpins within three lakes of the Aare catchment, with sculpins 

occupying the profundal and the littoral habitat but not the intermediate depths (Alexander et 

al., 2015). We thus used our genomic data to further test if this depth related ecological 

divergence is associated with genetic differentiation, consistent with the onset of intralacustrine 

differentiation. For each lake we employed outlier detection analyses (Stucki et al., 2017) and 

estimated patterns of genetic differentiation across the genome between profundal and littoral 

individuals. 
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Material and Methods 

Sample collection 

We collected 437 sculpins from 31 sites with different sampling methods: We used 

electrofishing in streams and in lakes as well as gill nets that were randomly distributed across 

all habitats and depths, including the littoral and profundal zones (Table S1; Figure 1). 

Additional fishing effort for the very shallow (<2m) parts of the lake was done using 

electrofishing also at randomly selected places (see Alexander et al., 2015 for details). Lake 

dwelling specimens were collected during a large fish diversity assessment in perialpine lakes - 

“Projet Lac” - where for each specimen the catching depth and exact location were recorded 

(Alexander et al., 2015). Our sampling design further covered distinct drainages draining into 

the North Sea (Aare/Rhine catchment), the Mediterranean Sea (Doubs/Rhone catchment) or the 

Adriatic Mediterranean Sea (Maggia/Po and Poschiavino/Po catchments) see Table S1 & Figure 

1 for details. Fish were euthanized with an overdose of MS222 and a fin clip was taken and 

stored in absolute ethanol for further genetic analyses.  

 

Molecular methods 

Restriction site associated DNA (RAD) markers were generated following Marques et al. 

(2016), using 400 ng genomic DNA per sample, which was digested for 12 hours with four units 

of SbfI-HF (New England Biolabs, Switzerland). Individuals were multiplexed after ligating 

sample-specific P1 adapters (synthesized by Microsynth, Switzerland) with custom 5-8 base 

pair barcodes that had a minimal distance of two bases between any two barcodes. The pooled 

DNA was subsequently sheared on an S220 series Adaptive Focused Acoustic ultra-sonicator 

(Covaris Inc., USA) with the manufacturer’s settings for a mean fragment size of 400bp. Sheared 

fragments between 300–500bp were size-selected on a 1.25% agarose gel. Libraries were PCR 
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amplified in four aliquots with 50 μl reaction volumes each. All replicates were combined prior 

to the final size selection step. Each library was single-end sequenced on one lane of an Illumina 

HiSeq 2000 platform together with 5–20% bacteriophage PhiX genomic DNA (Illumina Inc., 

USA) to increase complexity at the first 10 sequenced base pairs. We generated seven libraries, 

each containing 60-64 individually barcoded specimens.  

Data analysis 

We filtered the raw sequencing reads from each individual for an intact SbfI restriction 

site, de-multiplexed and barcode-trimmed them using PROCESS_RADTAGS 1.26 (Catchen et al., 

2013). We aligned reads for each individual against a repeat-masked reference assembly of 

Cottus rhenanus, a species that was only recently split from C. gobio (Freyhof et al., 2005). The 

assembly consisted of 88,957 contigs (N50=6,900bp; Smolka et al., 2015). We used end-to-end 

alignment in BOWTIE2 2.2.6 with default parameters (Langmead & Salzberg, 2012). Contigs were 

moreover anchored against the threespine stickleback (Gasterosteus aculeatus) genome 

allowing us to obtain SNP position relative to the latter (Cheng et al., 2013; Dennenmoser et al., 

2017). Raw sequencing reads were also aligned against the PhiX 174 reference genome 

(accession: NC_001422; Sanger et al., 1977), known variation was masked and PhiX-alignments 

were used to create a base quality score recalibration table for each library using 

BASERECALIBRATOR from GATK 3.2-0-g289df4b (McKenna et al., 2010). We subsequently 

recalibrated the base quality scores of sculpin alignments to remove potential library effects 

with the GATK tool PRINTREADS.  

We used the GATK tool UNIFIEDGENOTYPER to call variants and genotypes in a combined 

fashion for all individuals, using the following parameters: minimal phred-scaled base quality 

score threshold of 20, a genotype likelihood model calling both SNPs and insertions/deletions 

(indels). Using VCFTOOLS v0.1.12b (Danecek et al., 2011), genotypes with quality < 28 or depth < 

6 were set to missing. Individuals with more than 50% missing data were subsequently 
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removed from the data set. Variants with quality < 28 or > 50% missing genotypes per sampling 

site, monomorphic sites, SNPs with > 2 alleles, indels and SNPs 10 bp around indels were 

further removed from the dataset. This filtering step was performed using either all specimens 

or separately for each drainage (North Sea, Mediterranean Sea, Adriatic Mediterranean Sea). 

To assess the potential effects of gene flow among populations that can result in 

discordance in the phylogenetic signal (Seehausen, 2004), we reconstructed a network using 

SPLITSTREE4 with a GTR model (Huson & Bryant, 2006). 

Further analyses were done on datasets for which we applied a minor allele frequency 

filter of 5% to increase statistical power and to accommodate the underlying assumptions of the 

respective software packages. To infer population structure and individual assignment to 

genetic groups, we first used a Bayesian framework implemented in the program 

FASTSTRUCTURE (Raj et al., 2014), which was run using either all individuals combined or 

separately for each drainage system to infer potential genetic substructure that may be hidden 

in the overall analysis. For the Aare/Rhine catchment, we removed individuals from Lake 

Geneva (Rhone, Mediterranean drainage), as contemporary natural gene flow between the two 

watersheds is absent (Vonlanthen et al., 2007; Neuenschwander et al., 2008). In each case, we 

ran an admixture model with a ‘simple prior’, i.e. a flat prior over population-specific allele 

frequencies at each locus (Raj et al., 2014). We conducted analyses for different numbers of 

genetic clusters (K), ranging from K = 1 to an initial arbitrary upper limit of K = 20. The 

chooseK.py script of the FASTSTRUCTURE software package was then used to infer the best-

supported K based on model complexity that maximizes marginal likelihood (Raj et al., 2014).  

We also calculated the average levels of pairwise genetic differentiation (FST) among our 

sampled populations using pairwise locus-by-locus AMOVAs in ARLEQUIN 3.5.1.4 (Excoffier & 

Lischer, 2010), where we used a bootstrap approach with 1,000 replicates to infer significances. 

Within the Aare catchment FST estimates between lakes, between streams and between lake and 

streams were subsequently compared using an ANOVA with a Tukey HSD post hoc correction. 
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Because FST estimates can be biased towards lower values in cases where the level of 

heterozygosity within populations is high (Meirmans & Hedrick, 2011), the analysis for the Aare 

catchment was repeated using F’ST (Hedrick, 2005) calculated in R with the package DIVERSITY 

(Keenan et al., 2013). Using ADEGENET 1.4-2 (Jombart et al., 2010), we calculated the expected 

heterozygosity (Hs) within each site and compared Hs between lake and stream populations 

within the Aare/Rhine catchment using a t-test. The single individual from Lake Neuchatel was 

omitted from these analyses (Table S1).  

We used SAMβADA 0.5.1 (Stucki et al., 2017) to test for alleles that show a significant 

association with lake or stream habitat within the Aare/Rhine catchment. SAMβADA uses logistic 

regression models to identify statistical associations between the presence of an allele and a 

given response variable. The significance of the resulting univariate models was assessed using 

the implemented log-likelihood ratios (G-scores) providing p values based on χ2-tests (Stucki et 

al., 2017). We then tested whether genes associated with outliers were enriched for gene 

ontology (GO) terms using the STRING v10.5 database (Szklarczyk et al., 2015) with a 

Bonferroni-corrected alpha level of 0.05. We further highlight loci with alleles that show 

significant differentiation between lake and stream habitats as suggested by SAMβADA along the 

genome for the three geographically close lake-stream contrasts, i.e. Aare-KM vs. Lake Thun, 

Aare-RU vs. Lake Lucern, Aare-RU vs. Lake Zurich. 

 

Lastly, we performed a Principal Component (PC) analysis to test for putative habitat 

dependent population structure, i.e. between all lakes and all streams within the Aare/Rhine 

catchment using the package SNPRELATE (Zheng et al., 2012). We performed PCAs using either 

all polymorphic SNPs within the Aare/Rhine catchment that were included in the 

FASTSTRUCTURE analysis or only those identified as outliers by SAMβADA. In either case, the 

scores of the two leading PCs were further tested for a difference between lake and stream 

dwelling individuals using one-way ANOVAs in R. 
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Given the bimodal depth distribution of sculpins observed in the field within lakes 

Lucern, Thun and Walen (Figure 6c), we tested for intralacustrine genetic differentiation 

between littoral and profundal dwelling specimens: We first estimated differentiation based on 

SNP sites that were polymorphic within each lake using a discriminant analysis of principal 

components (DAPC; Jombart et al. 2010). For each lake, DAPC was based on the 10 leading PC 

axes, where the discriminant function separated individuals that were caught within the 

shallower (0-50m depth) distribution mode (Figure 6c) and specimens that were caught at a 

deeper depth. The scores of each PC were further compared between shallow and profundal 

individuals using one-way ANOVAs in R. We then estimated pairwise FST estimates between 

shallow and profundal individuals with pairwise locus-by-locus AMOVAs in ARLEQUIN. 

Significance was assessed with 1,000 bootstrap replicates. Lastly, we tested for depth-

associated alleles within each lake with SAMβADA using the recorded individual catch depth as 

response variable for each allele. 

 

Results 

Sequencing resulted in 583 million raw reads of which 356 million mapped uniquely to 

the sculpin reference assembly (average mapped reads per individual: 816,100; 95% 

confidence interval: 23,690-2,495,300 reads). Due to an excess of missing data, we subsequently 

removed 82 individuals from our data set. This resulted in a filtered data set of 8,047 or 13,182 

polymorphic SNPs respectively for 355 individuals (Table S1), when applying either a minor 

allele frequency filter of 5% or not. 
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Biogeography  

The combined phylogenetic and population genetic analyses suggest the existence of 

three major lineages related to the three main drainages that we studied. SPLITSTREE resolved 

three deeply divergent clades: (1) an Aare/Rhine clade including Lake Geneva, (2) a Doubs 

clade and (3) an Adriatic clade, which was further subdivided into individuals from the Ticino 

and the Poschiavino river catchments (Figure 2). FASTSTRUCTURE identified further genetic 

substructure, with the best supported number of genetic clusters K=7 for the overall data set 

(Figure 3a). Individuals from the Doubs and the Adriatic drainages each fell into distinct 

clusters. River dwelling populations from the Aare/Rhine catchment fell into three genetic 

clusters, each related to one stream with restricted admixture between them. The exception is 

the Aare-RU population, which showed mostly admixture or shared ancestry with lake 

populations (see also Figure 5). Conversely, lake dwelling individuals from the Aare/Rhine 

catchment were predominantly assigned to only two genetic clusters, both distinct from the 

three clusters of Aare/Rhine stream fish: one comprising sculpins from Lake Lucerne and the 

other comprising individuals from most other lakes sampled within the Aare/Rhine catchment. 

Admixture between distinct genetic clusters was apparent in lakes Constance and Geneva. 

When we ran FASTSTRUCTURE separately for each drainage, the Adriatic Mediterranean 

Sea drainage became further subdivided into two genetic clusters, reflecting different river 

catchments, i.e. the Ticino and the Poschiavino. The Doubs population also became subdivided 

into three genetic clusters, associated with the upper, middle and lower reaches of the River 

Doubs (Figure 3a). The Aare/Rhine catchment became subdivided into a total of ten genetic 

clusters. K=10 remained the best number of clusters even if the four individuals from Lake 

Geneva were included (results not shown). These additional clusters reflect geographic 

structure, the propensity for ongoing gene flow, as well as lake versus stream population 

structure. For example, the genetic cluster comprising most lake populations in the overall 

analysis (see above) became subdivided into two clusters comprising either specimens from the 
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geographically close-by and interconnected lakes Zurich and Walen or Brienz and Thun 

respectively (Figure 1; 3a). Further genetic substructure likewise became apparent amongst 

sites from the Thur and Sense stream catchments.  

 

Genetic differentiation along the lake-stream axis 

Within the Aare/Rhine catchment, we found different lines of evidence for genetic 

differentiation between lake and stream populations: First, both SPLITSTREE and 

FASTSTRUCTURE find that most lake populations cluster closely together despite being 

geographically distant (e.g. lakes Thun and Zurich, Figure 1), whereas geographically proximate 

stream populations were genetically distinct from the lake populations, e.g. the population of 

the Upper Aare River versus that from Lake Thun (Figures 2 & 3a). Secondly, both pairwise FST 

and F’ST estimates were significantly lower within the Aare catchment for comparisons between 

geographically distant lake populations than between lake and stream populations (TukeyHSD; 

FST: p<0.001; F’ST: p<0.001) or between stream populations (FST: p<0.001 & Figure 3b; F’ST: 

p<0.001 & Figure S1).  

SAMβADA identified 781 out of 14,927 (i.e. 5.2%) SNP alleles that differ significantly 

between lake and stream dwelling individuals within the Aare/Rhine catchment. Of these, 328 

alleles overlapped with 237 genes of which 194 (82%) were annotated in the STRING database. 

However, we did not find enrichment for gene ontology categories among these. Significant 

differences in allele frequencies between lake and stream dwelling individuals occurred across 

the genome. Although we used individuals from across lakes and streams in SAMβADA, the level 

of genetic differentiation was consistently higher for SAMβADA outlier loci identified than the 

rest of the genome for all three pairwise comparisons (Aare-KM vs. Lake Thun: F1,1970= 29.4, p < 

0.001; Aare-Ru vs. Lake Lucern: F1,2349= 15.7, p < 0.001;  Aare-Ru vs. Lake Zurich: F1,2251= 9.7, p = 

0.002; Figure 4). Lastly, heterozygosity was overall significantly higher in lakes than in streams 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

within the Aare/Rhine catchment (t1,15=3.10, p=0.014; average Hs lakes: 0.17±0.04 SD, average 

Hs streams: 0.11±0.03 SD). 

The PC analyses of polymorphic SNPs within the Aare/Rhine catchment further 

highlight the genetic distinctiveness of all lake populations on the one hand and stream 

populations on the other within this catchment (Figure 5). The latter being further enhanced 

when using SAMβADA outliers (Figure 5). The residuals differed significantly between habitats 

for both datasets (all SNPs: PC1 – F1,217 = 167.3, p < 0.001; PC2 – F1,217 = 42.62, p < 0.001; outlier 

SNPs: PC1 – F1,217 = 459.4, p < 0.001; PC2 – F1,217 = 24.2, p < 0.001).  Consistent with our 

FASTSTRUCTURE analysis (Figure 3) we find all lake-dwelling populations to be more closely 

related to each other than to the stream dwelling clusters, with the exception of the stream 

dwelling Aare-RU population that clusters with the lake cluster (Figure 5). 

Contrary to the Aare/Rhine catchment, we did not find habitat-associated patterns of 

differentiation in our only lake-stream pair belonging to the Adriatic Mediterranean Sea 

watershed, i.e. the Poschiavino River/Lake Poschiavo system (Figures 2a & 3a).  

 

Intralacustrine differentiation  

The DAPC analysis highlights genomic differentiation between littoral and profundal 

dwelling individuals (Figure 6a). Differentiation between individuals from both habitats was 

however most strongly captured by different PC axes (Thun: PC4 – F1,37=7.1, p=0.011; Lucern: 

PC2 – F1,23=7.1, p=0.014; Walen: PC1 – F1,19=4.9, p=0.040; Figure 6b & S2) accounting for 5.3, 3.6 

and 8.6% of the total variation respectively (Figure S3). Depth associated differentiation based 

on global FST occurred within Lake Walen, showing a subtle, yet significant level of genetic 

differentiation (FST = 0.004, p = 0.025). Average genomic differentiation between littoral and 

profundal dwelling sculpins was not observed in lakes Lucern and Thun (Lucern: FST = 0.001, p 

= 0.129; Thun: FST = 0.002, p = 0.130). However our sample size for Lake Thun profundal 
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sculpins was very limited with just 5 fish. Nonetheless, all intralacustrine comparisons between 

littoral and profundal showed loci with much increased genetic differentiation, i.e. 11.5%, 

15.7% and 17.7% of all loci with an FST > 0.05 for Lakes Lucern, Thun and Walen respectively, 

where loci were distributed across the genome (Figure 7). Although SAMβADA did not detect any 

water depth associated alleles within any lake (results not shown), we identified in all three 

lakes four common loci that had an FST > 0.05 between littoral and profundal dwelling 

individuals in all three lakes (Figure 7). Only one of these, a locus on chromosome 3 overlapped 

with a gene, i.e. catenin (cadherin-associated protein), delta 2b - ctnnd2b whose function in fish 

has not been determined (Hsu et al., 2012). 

 

Discussion 

Secondary contact and habitat-associated differentiation 

Strong genetic differentiation amongst European sculpin taxa commonly predates the last 

glaciation period, with distinct lineages restricted to particular drainage systems (Englbrecht et 

al., 2000; Hänfling et al., 2002). Consistent with postglacial colonization from distinct glacial 

refugia (Hänfling & Brandl, 1998a; b; Englbrecht et al., 2000; Hänfling & Weetman, 2006) we 

found three deeply divergent allopatric sculpin lineages, likely belonging to the so-called 

danubian lineage of C. gobio (Englbrecht et al., 2000) that are yet limited to distinct drainages 

(Figure 2&3). Unexpectedly we found two less divergent lineages to coexist in one of these 

drainages, i.e. the Aare/Rhine catchment, where individuals are associated with different 

environments, i.e. lake and streams, depending on their respective lineage (Figures 2,3 & 5). 

 

The postglacial colonization of the peri-alpine region implies that any subsequent 

diversification within a drainage system is younger than allopatric differentiation for sculpins 

across Europe. We find considerable genetic substructure within and among stream dwelling 
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sculpins in each of our studied drainages. Previous studies have attributed population genetic 

structure within streams to low dispersal rates of sculpins and hence geographic isolation 

combined with more recent anthropogenic river fragmentation (Hänfling & Weetman, 2006; 

Junker et al., 2012). Headwater stream populations in particular have been suggested to often 

harbour gene pools that are distinct from downstream populations, potentially also due to local 

adaptation (Junker et al., 2012). In line with this, we find several of our headwater populations 

to be genetically most distinct within a particular river (i.e. Sense, Thur and Doubs; Figure 1, 3a; 

Table S2).  

Much more surprisingly, we find genetic differentiation between lake and stream 

dwelling populations within the Aare catchment. Although sculpins are known to occur in either 

environment (Kontula & Vainola, 2001; Kottelat & Freyhof, 2007; Goto et al., 2015), such a lake-

stream differentiation within a drainage was unknown for Cottus gobio (Hänfling & Brandl, 

1998a; b; Vonlanthen et al., 2007; Neuenschwander et al., 2008; Seehausen & Wagner, 2014; 

Goto et al., 2015). Habitat dependent ecotype formation along a lake-stream axis is well known 

in some other freshwater fishes where it occurs with some regularity (Seehausen & Wagner, 

2014). This is likely because lake and stream environments often require adaptation to different 

physical (flow, light, temperature) and biotic conditions (predation regimes, parasite 

communities, food resources; Seehausen & Wagner, 2014). However, our results differ 

importantly from classical stickleback and salmonid examples of lake-stream divergence, where 

distinct ecotypes have evolved repeatedly in parapatry from the same founding lineage. In these 

cases, geographically close populations of different ecotypes are usually more closely related 

than geographically distant populations of the same ecotype (Lucek et al., 2013; Seehausen & 

Wagner, 2014; Theis et al., 2014). In contrast, we find that within the Aare catchment 

geographically distant populations of lake dwelling sculpins cluster together while there are 

more distantly related to populations living in nearby streams (Figure 2&3). Parapatric 

populations from stream and lake show substantial genetic differentiation across the genome 

(Figure 4) with very limited evidence for gene flow (Figures 2,3 & 5).  
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This pattern is consistent with the colonization of the Aare catchment by two distinct 

lineages – one that now occurs mainly in streams and one that occurs predominantly in lakes. It 

is currently difficult to place these lineages in a detailed phylogeographic context because 

previous European phylogeographic studies did not provide the resolution to determine 

potential refugial areas around the Alps (Slechtová et al., 2004; Vonlanthen et al., 2007; 

Neuenschwander et al., 2008). However, tributaries of Lake Constance are known to harbour 

the so-called danubian lineage of C. gobio that is distinct from those in the lower Rhine 

(Englbrecht et al., 2000; Freyhof et al., 2005). Our Lake Constance fish were distinct from those 

of the Aare lakes and cluster with geographically nearby stream populations as well as with fish 

from Lake Geneva (Figure 2&3), suggesting that they all belong to the same lineage. This would 

be the lineage described earlier from Lake Constance, potentially deriving from a Danubian 

refugium (Englbrecht et al., 2000). The watershed crossing from the Aare/Rhine catchment into 

Lake Geneva was dated to 10-20 kyrs ago (Vonlanthen et al., 2007; Neuenschwander et al., 

2008) further suggests that the colonization of northern Switzerland by the now geographically 

widely distributed and predominantly stream dwelling clade likely predates the colonization of 

the Aare catchment by the lineage that is now confined to lakes.  

The possibility that the lake-dwelling populations in the Aare catchment represent a 

distinct genetic lineage is highlighted by i) by the low level of genetic differentiation of 

populations between even geographically distant lakes, which is significantly lower than that 

between geographically adjacent lake and stream populations or that among stream 

populations (Figure 3b, S1). ii) the clustering of lake populations in our PC analyses (Figure 5). 

iii) loci associated with lake-stream divergence are widespread across the genome rather than 

being confined to few outliers regions (Figure 4) which is consistent with allopatric genomic 

divergence (Feder et al., 2012; Seehausen et al., 2014). iv) the discordance in our phylogenetic 

network is consistent with gene flow among lake dwelling populations of the Aare catchment 

that has historically exceeded gene flow between lake and stream populations even if they were 

geographically adjacent (Figure 2). The potential for contemporary gene flow among lake 
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populations is naturally limited given the low dispersal rates of sculpins and the numerous 

anthropogenic migration barriers in Switzerland that prevent upstream migration in particular 

(Junker et al., 2012). Downstream migration may be more likely, especially if lacustrine sculpins 

have pelagic larval stages that passively drift downstream, as has been observed in Lake 

Hallstätt (Austria; Wanzenböck et al., 2000). Given the wide geographical distribution of the 

lacustrine lineage within the Aare catchment, and its complete geographical range overlap with 

the predominantly stream lineage, we observe surprisingly little genetic admixture suggesting 

reproductive isolation (Figure 3). However, fine-scaled parapatric gradients would need to be 

sampled to assess the degree of admixture. 

 

The large geographical overlap between our genetically differentiated lake and stream 

sculpins is consistent with a scenario of postglacial secondary contact and niche (i.e. lake and 

stream) differentiation, potentially due to lineage interactions. Such character displacement, i.e. 

the shift of a species or lineage away from the ancestral state in regions of sympatry with a 

competing species of similar ancestral state is an important cause of ecological diversification 

(Schluter, 2000a; Stuart & Losos, 2013). It is possible that the first colonizing lineage did not 

populate lakes, but alternatively, it may have been displaced from that habitat by the second 

wave of colonization (Schluter, 2000a; Stuart & Losos, 2013).  Our data indicates such a 

displacement given that we found the otherwise stream-dwelling lineage to occur in Lakes 

Geneva and Constance (Fig. 2 & 3), albeit in only low abundance (Alexander et al., 2015). Both 

are isolated from the range of the Aare lake lineage by formidable dispersal barriers that 

formed early after the retreat of the glacial ice sheet and would have prevented a subsequent 

colonization: Lake Constance is isolated by the Rhine Falls at Schaffhausen (Figure 1) and Lake 

Geneva lost its connectivity to the Aare catchment and drains southwards into the Rhone 

(Vonlanthen et al., 2007; Neuenschwander et al., 2008). Further testing is, however, required to 
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distinguish between our hypothesis of character displacement and alternative scenarios such as 

competitive exclusion (Schluter, 2000a). 

 

The onset of intralacustrine radiation 

Intralacustrine radiations into different habitat and/or trophic niches are common 

among some salmonid and coregonid fish, and also occur in stickleback in one small part of the 

world, yet they have rarely been reported for other fish taxa in the northern temperate zone 

(Hendry et al., 2009; Seehausen & Wagner, 2014). We found genetic evidence for intralacustrine 

differentiation between littoral and profundal sculpins in Lake Walen, coinciding with a bimodal 

depth distribution that cannot be explained by a sampling bias (Alexander et al., 2015). Despite 

similar bimodal depth and genetic distributions in Lakes Thun and Lucern (Figure 6), genome-

wide differentiation was non-significant in these lakes. Nonetheless, several loci showed 

substantial genetic differentiation especially so in Lake Thun (Figure 7), suggesting that our 

small sample sizes of the deep-water sculpins may have constrained our ability to detect 

genome-wide differentiation. Larger sample sizes are required to confirm or reject the genomic 

distinctiveness of deep-water sculpins in these lakes in the future, but these fish are difficult to 

catch at depths of 150 to 250 meters. We cannot rule out that the segregation into littoral and 

profundal sculpins could be accounted for by plasticity (Edelaar & Bolnick, 2012). However, 

given the abundance of loci within each lake that show differentiation, the observed depth-

related differentiation is likely to have an at least partly heritable basis.  

Conclusions 

 Taken together, our results provide a case for postglacial habitat dependent divergence 

in sculpins along the lake-stream axis at a catchment scale. The observed pattern could reflect 

character displacement in the early-arrived lineage upon arrival of the second lineage. In the 

absence of such habitat contrasts, secondary contact among distinct sculpin lineages usually 
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leads to strong tension zones within streams (Nolte et al., 2005; 2009). We further find some 

evidence for depth related early stage lacustrine radiations between sculpins inhabiting the 

littoral and profundal habitats within the lake lineage. Both findings were surprising given that 

population structure in Cottus has often been deemed to be driven by low dispersal range, 

geographic isolation or anthropogenic river fragmentation (Hänfling & Weetman, 2006; Junker 

et al., 2012). This highlights the necessity of sampling a broad geographic and habitat range as 

well as using a large number of genomic markers to detect intraspecific variation in the 

appropriate context (Bickford et al., 2007). This is particularly important for biodiversity 

assessment and conservation, as single taxonomic units may comprise ecologically and 

genetically distinct subunits or incipient species that require diversity-aware management. 
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Figure captions 

Figure 1 

Map of Switzerland with the sampled locations indicated (see Table S1 for details) and the 

respective drainages highlighted by colour, i.e. North Sea (Aare/Rhine catchment), 

Mediterranean Sea (Doubs/Rhone catchment), Adriatic Mediterranean Sea (Maggia/Po and 

Poschiavino/Po catchments) . Green triangles indicate lake sites and blue circles stream sites. 

Grey triangles indicate sites that were surveyed but not included in the final genetic data set 

following quality filtering. The asterisk indicates the Rhine fall, which separates the Lake 

Constance catchment from the lower Rhine. Black arrows indicate the water flow of the 

respective rivers.  

 

Figure 2: 

Individual based phylogenetic relationship established from a SPLITSTREE analysis. 

 

Figure 3: 

Summary of the population structure across populations. a) Individual based assignment using 

FASTSTRUCTURE comprising either all individuals combined (top; K=7) or ran separately for 

each drainage (K=10, 3, 2 respectively). Shown are in each case the individual based 

assignments for the best-supported number of genetic clusters (i.e. K; see main text for details). 
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The population from Lake Geneva was excluded from the Aare/Rhine specific analysis. b) 

Boxplot summarizing pairwise AMOVA based FST among lake and stream dwelling populations 

from the Aare catchment (see Table S2 for details). Significances are based on an ANOVA with a 

post hoc TukeyHSD correction. 

 

Figure 4: 

Genomic differentiation across the genome between lake and stream sculpins. a) Lake Zurich 

versus Aare at Ruppoldingen (Ru), b) Lake Lucern versus Aare at Ruppoldingen (Ru), c) Lake 

Thun versus Aare at Kiesen (Km). SNP positions are in relation to the stickleback genome (see 

main text for details). Common outlier loci between lake and stream dwelling populations 

identified by SAMβADA within the Aare/Rhine catchment are highlighted in red. Boxplots 

summarizing FST for outlier (red) and non-outlier (grey) loci respectively. P-values are based on 

one-way ANOVAs.  

Figure 5: 

SNP based principal components analyses for individuals from the Aare/Rhine catchment using 

either a) all loci or b) outlier loci as identified by SAMβADA. Colours represent individuals from 

lakes (green) or streams (blue). Individuals from the Aare-Ru stream site are highlighted in 

orange. The 95% confidence ellipsoids for different geographic groups are highlighted. 

 

Figure 6: 

Genetic structure and distribution of individuals within lakes Thun, Lucern and Walen: a) 

Density distributions of individuals along the main discriminant axis (DF1) based on a DAPC 

analysis using the 10 leading PC axes (see main text for details). Density distributions are given 

for littoral (blue) and profundal (red) individuals. b) Principal component (PC) plots for each 
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lake. For Thun, PC1 was plotted against PC4, which showed the strongest differentiation 

between habitats (see Figure S2 & S3). c) Frequency distribution of sculpins caught at a given 

depth for each lake. d) Representative images for individuals from littoral (top) and profundal 

(bottom) habitats for each lake. 

 

Figure 7: 

Genomic differentiation between profundal and littoral individuals within lakes Thun, Lucern 

and Walen. SNP positions are in relation to the stickleback genome (see main text for details). 

Red dots indicate SNPs with FST > 0.05 in all three comparisons.  

Figure S1: 

Boxplot summarizing pairwise F’STs among lake and stream dwelling populations from the Aare 

catchment (see Table S3 for details). Significances are based on an ANOVA with a post hoc 

TukeyHSD correction. 

 

Figure S2: 

Boxplots summarizing PC scores for littoral (blue) and profundal (red) dwelling individuals for 

lakes Thun, Lucern and Walen. P-values are based on one-way ANOVAs (see main text for 

details). 

Figure S3: 

Scree plots for the principal component (PC) analyses used for the DAPC analysis, showing the 

explained variance for each PC axis.  
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