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Summary 
 

 

Modern agriculture is facing a trilemma in the context of population growth and social–

economic development: increasing food supply and nutritional quality, reducing resource 

requirements, and minimizing negative environmental consequences. Current research tackling 

challenges in agriculture often focuses on one or two aspects of the trilemma and/or is limited to 

providing a general picture of the challenges. Therefore, there is a need to develop a systematic 

research framework for investigating trade-offs in the trilemma and to develop pathways to 

sustain the increasing food supply while mitigating negative impacts of agricultural production. 

Grid-based large-scale crop models have been developed as a useful tool to address a variety 

of agricultural issues, e.g. simulating crop–water–nutrient relations, projecting crop yields under 

certain agronomic conditions, and quantifying climate change impacts. However, large-scale crop 

models are rarely used to investigate the water–nutrient–food–environment nexus. Meanwhile, 

few studies have addressed the role of global food trade in redistributing agricultural resources 

and environmental impacts in the context of the nexus. Against this background, the present study 

aimed to develop a large-scale crop model and enhance its capabilities in modelling the global 

water–food–environment–trade nexus under several agricultural intensification scenarios. 

Knowledge derived from the study on the nexus is useful in supporting the development of global 

strategies for addressing the agricultural trilemma. 

For this purpose, a grid-based Environmental Policy Integrated Climate was programmed 

under a Python environment: PEPIC. The PEPIC model was first used to investigate uncertainties 

derived from an important resource, i.e. the choice of different potential evapotranspiration (PET) 

estimation methods, on simulating the crop–water relations of maize. The simulations 

demonstrated substantial differences in PET by using different estimation methods, even in the 

same climate zone, leading to large uncertainties in simulating crop–water relations in terms of 

crop water productivity. However, the uncertainties showed varied patterns for different variables, 

i.e. more significant on water-related variables while less on crop yields. Water availability played 

an important role in the uncertainties. This information highlights the significance of considering 

the impacts of different PET methods in crop model application. By using the Penman–Monteith 

estimation method, the PEPIC model provided the best crop yield estimates and relatively 

reasonable simulations of evapotranspiration in different climate zones. Therefore, the Penman–
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Monteith method was recommended for global crop modelling in the situation of a whole set of 

required climate variables being available. It was also used in the following sections of this study. 

The PEPIC model was then applied to assess global nitrogen (N) losses and trade-offs with 

yields from three most produced crops – maize, rice, and wheat – by using state-of-the-art crop-

specific N input datasets. The simulations showed that a large amount of N was lost to the 

environment from the three crops, reaching 44 Tg N yr−1. N losses were particularly high in the 

eastern and southern Asia mainly due to high N inputs there. The N loss intensity, defined as a 

ratio of N losses to yields, was proposed to reflect trade-offs between N losses and yields. It 

presented high variations for different countries, indicating diverse environmental impacts for 

producing the same level of yields. The results also demonstrated that redistributing global N 

input patterns and improving N fertilization schedules could reduce N losses and yield trade-offs. 

Grey water footprint (GWF) is defined as the volume of water that is required to assimilate a 

load of pollutants to a freshwater body based on existing ambient water quality standards. It is an 

indicator of water pollution intensity. N and phosphorus (P) losses from global maize cultivation 

simulated by the PEPIC model were used to investigate the water pollution intensity caused by N 

and P losses. Some major limitations regarding the assessment of GWF were addressed and ways 

towards its improvement were proposed. The results showed that GWF relating to N and P loads 

into water caused by maize production alone had already exceeded the local water availability in 

many parts of the world. Grey water stress, a ratio of GWF to water availability, showed a more 

critical situation at the grid level (on finer spatial resolution) than at the watershed level because 

the former represents the local concentration whereas the latter gives the average situation of the 

whole watershed. 

Agricultural input intensification is an essential option to achieve higher crop production for 

feeding the ever growing and increasingly affluent world population. In order to identify the 

appropriate intensification strategies in terms of priority regions and efficient pathways, PEPIC 

was used to determine N losses and yield trade-offs under five input intensification scenarios 

considering a range of irrigation and N managements in addition to the baseline. Incremental N 

losses and yields in response to increased N inputs and irrigated areas presented high spatial 

variations and negative relationships. Regions where a high level of climatic yield potential has 

already been achieved had only minor yield benefits but had large N loss potentials under the 

intensification scenarios. It was found that avoiding intensification in regions with baseline yields 

higher than 75% of yield potentials, relative increases in N losses can be reduced by 3–193% 

globally, while compromises in relative yield increases range only between 1% and 23%. 

In the final step of the study, the PEPIC model was combined with the Global Trade 

Analysis Project (GTAP) model to investigate impacts of global food trade on resource 
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conservation and N loss reduction of the three major crops under the baseline and an 

intensification scenario regarding enhanced N and irrigation inputs. The results showed that 

substantial natural resources were conserved with values of 85 km3 yr−1, 105 km3 yr−1, and 2333 

Gg N yr−1 for blue water use, total water use, and N inputs, respectively. The resource 

conservation was particularly high for blue water use, accounting for more than half of total blue 

water use of the three crops. Also, a large amount of N losses were avoided through global food 

trade. These achievements, however, also posed significant pressures on the major food exporting 

countries in terms of resource losses and export-associated pollution. The study found both 

resource conservation and N loss reduction would decline under the intensification scenario, 

although crop yields could largely increase in low agricultural inputs and low yields countries. 

Therefore, there are double challenges to international food trade: 1) balancing global benefits and 

environmental impacts on major exporters and 2) balancing the relationship between enhancing 

country-specific food supply and enlarging global food trade benefits. 

In conclusion, the entire analytical framework developed in this study provides an integrated 

approach for investigating the global water–food–environment–trade nexus in the context of 

agricultural intensification. This systematic framework is useful for supporting the development 

of strategies to attenuate the agricultural trilemma. There are high potentials to address 

agricultural challenges through altering N input patterns, improving N fertilization schedules, 

efficient input (N and irrigation) intensification, and global food trade. 
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Zusammenfassung* 
 

 

Die moderne Landwirtschaft befindet sich bezüglich Bevölkerungswachstum und 

sozioökonomischer Entwicklung in einem trilateralen Spannungsfeld folgender Ziele: Erhöhung 

der Lebensmittelversorgung und –qualität, Reduzierung des Ressourcenverbrauchs und 

Minimierung der negativen Auswirkungen auf die Umwelt. Die aktuelle Forschung konzentriert 

sich meist auf einen oder zwei der genannten Aspekte oder beschränkt sich auf ein generelles, 

ganzheitliches Bild des Spannungsfelds. Deshalb bedarf es der Entwicklung systematischer 

Forschungsmethoden, um die Zielkonflikte innerhalb dieses trilateralen Spannungsfeldes zu 

analysieren, den wachsenden Lebensmittelbedarf zu decken und gleichzeitig negative 

Auswirkungen der landwirtschaftlichen Produktion zu vermeiden. 

Grossskalige, pixelbasierte Landwirtschaftsmodelle haben sich als nützlich erwiesen für das 

Simulieren von Beziehungen zwischen Ertrag, Wasser und Nährstoffen, Vorhersage von 

Ernteerträgen und Quantifizierung von Effekten des Klimawandels. Dennoch werden grossskalige 

Landwirtschaftsmodelle bisher kaum eingesetzt in der Erforschung des Zusammenhangs 

zwischen Wasser, Nährstoffen, Lebensmitteln und der Umwelt. Ähnlich wenige Studien befassen 

sich mit der Rolle des globalen Lebensmittelhandels in der Verteilung landwirtschaftlicher 

Ressourcen und Auswirkungen auf die Umwelt. Vor diesem Hintergrund hat die vorliegende 

Arbeit zum Ziel, ein grossskaliges, pixelbasiertes Landwirtschaftsmodell zu entwickeln und 

dessen Funktionalitäten zur Abbildung des globalen Zusammenhangs zwischen Wasser, 

Nahrungsmitteln, Umwelt und Handel unter mehreren Szenarien intensivierter 

landwirtschaftlicher Entwicklungen zu erweitern. Die Analyse dieser Zusammenhänge trägt zur 

Entwicklung von globalen Strategien bei, um das Spannungsfeld, in dem sich die Landwirtschaft 

befindet, zu entschärfen. 

Zu diesem Zweck wurde ein pixelbasiertes „Environmental Policy Integrated Climate“-

Modell (PEPIC) in Python entwickelt. Mit dem PEPIC-Modell wurden die Unsicherheiten des 

Verhältnisses von Ertrag zu Wasserverbrauch von Mais abgeschätzt, die durch die Wahl 

verschiedener Methoden zur Schätzung der potentiellen Evapotranspiration (PET) entstehen. Die 

Simulationen wiesen sogar in klimatisch ähnlichen Gebieten erhebliche Unterschiede in der PET-

Abschätzung auf, was zu grossen Unsicherheiten in dem Ertrag-Wasserverbrauch-Verhältnis führt. 

                                                      
* Translated by Lorenz Ammann from Eawag and Dr. Christian Folberth from IIASA 
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Die Unsicherheiten waren allerdings nicht in allen Variablen gleich gross; sie waren 

beispielsweise erheblich grösser für Variablen die direkt mit Wasser in Verbindung stehen als für 

die Ernteerträge. Auch die Wasserverfügbarkeit spielte eine grosse Rolle für die Unsicherheiten. 

Dies zeigt wie wichtig es ist, die Auswirkungen verschiedener PET-Methoden in 

Landwirtschaftsmodellen zu berücksichtigen. Die Penman-Monteith-Methode (PM) erlaubte – 

eingebettet in PEPIC – die zuverlässigsten Schätzungen der Ernteerträge und realistische 

Schätzungen der Evapotranspirationsraten in verschiedenen Klimazonen. Deshalb wurde die PM-

Methode zur Modellierung von globalen Ernteerträgen empfohlen, für den Fall, dass Daten zu den 

benötigten Klimavariablen zur Verfügung stehen. Die PM-Methode wurde somit auch in den 

folgenden Abschnitten dieser Arbeit verwendet. 

Das PEPIC-Modell wurde verwendet um die globalen Stickstoffverluste (N-Verluste) 

abzuschätzen und einen Kompromiss zwischen N-Verlust und Ernteerträgen für die drei 

Hauptgetreidesorten Mais, Reis und Weizen zu ermitteln. Dafür wurden Daten zu globalen 

Stickstoffgaberaten verwendet, die dem neusten Wissensstand entsprechen. Die Simulationen 

zeigen, dass – alle drei Getreidesorten zusammengenommen – grosse Mengen an Stickstoff (N) in 

die Umwelt gelangen, insgesamt 44 Tg pro Jahr. Die N-Verluste waren besonders hoch in Ost- 

und Südasien, was vor allem auf die hohen N-Einträge in diesen Regionen zurückzuführen ist. 

Das quantitative Verhältnis zwischen N-Verlust und Ernteertrag wurde vorgeschlagen um den 

Kompromiss zwischen diesen beiden Grössen besser abzubilden. Dieses Verhältnis unterschied 

sich stark in verschiedenen Nationen, was darauf hindeutet, dass ähnliche Ernteerträge mit 

grossen Unterschieden in den Auswirkungen auf die Umwelt einhergehen können. Diese 

Resultate zeigen auch, dass eine Umverteilung der globalen N-Gaben und eine Verbesserung der 

Düngungspläne den Zielkonflikt zwischen einem möglichst hohen Ertrag und einem möglichst 

kleinen N-Verlust entschärfen könnten. 

Der Grauwasserfussabdruck (GWF) ist definiert als das Volumen Wasser, das benötigt wird, 

um eine bestimmte Fracht an Schadstoffen zu verdünnen, so dass bestehende 

Wasserqualitätsstandards gerade noch eingehalten werden können. Der GWF ist also ein Indikator 

für die Intensität der Wasserverschmutzung. Abschätzungen der N- und Phosphor-(P)-Verluste 

aus Maisanbauflächen weltweit durch das PEPIC-Modell wurden verwendet, um die Intensität der 

Wasserverschmutzung, verursacht durch N und P, abzuschätzen. Die Verwendung des GWF 

wurde kritisch untersucht und es wurden Verbesserungsvorschläge für die Verwendung des GWF 

angeführt. Die Resultate zeigen, dass in vielen Regionen der Welt der GWF, der allein durch die 

N- und P-Einträge des Maisanbaus verursacht wird, die lokale Wasserverfügbarkeit übersteigt. 

Die Grauwasserbelastung, also das Verhältnis zwischen GWF und Wasserverfügbarkeit, war 
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höher auf der Pixelskala als auf der Ebene von Einzugsgebieten, weil erstere die tatsächliche 

lokale Konzentrationen abbildet, während letztere die Werte über das Einzugsgebiete mittelt. 

Die Intensivierung der Bewässerung und der Nährstoffgabe ist eine wichtige Möglichkeit zur 

Erreichung höherer Ernteerträge, um den steigenden Nahrungsmittelbedarf einer stetig 

wachsenden und zunehmend vermögenderen Weltbevölkerung zu decken. Um die geeignetsten 

Strategien zur Intensivierung zu wählen, wurde das Spannungsfeld zwischen N-Verlusten und 

Ernteerträgen unter fünf verschiedenen Intensivierungsszenarien mit PEPIC untersucht. Die 

Zunahme der N-Verluste und der Erträge mit höherer N-Gabe und zunehmender Bewässerung 

zeigten deutliche räumliche Unterschiede und negative Korrelationen. Regionen in denen die 

klimatisch möglichen Erträge bereits annähernd erreicht wurden, zeichneten sich aus durch 

geringe Zunahmen der Erträge bei hohen zusätzlichen N-Verlusten in allen Szenarien. Es wurde 

gezeigt, dass, falls keine Intensivierung erfolgt in Gebieten in denen die Erträge höher als 75% 

des maximal möglichen Ertrags sind, die relative Zunahme der globalen N-Verluste um 3–193% 

reduziert werden kann, während die relative Zunahme der globalen Erträge um lediglich 1–23% 

reduziert wird. 

Im letzten Teil der vorliegenden Arbeit wurde das PEPIC-Modell mit einem globalen 

Handelsmodell, Global Trade Analysis Project (GTAP), kombiniert um den Einfluss des globalen 

Handels mit Nahrungsmitteln auf die Erhaltung von Ressourcen und Reduzierung von 

Umweltbelastungen abzuschätzen. Dies wurde für die drei Hauptgetreidesorten unter dem 

Basisszenario umgesetzt, sowie den Intensivierungsszenarien, die ausgeglichenere Düngergabe im 

Vergleich zum Basisszenario annehmen. Die Resultate zeigen, dass substantielle Einsparungen 

beim Ressourcenverbrauch erreicht werden können: der Verbrauch blauen Wassers wurde um 85 

km3 yr−1, der totale Wasserverbrauch um 105 km3 yr−1 und die N-Gabe um 2333 Gg N yr−1 

reduziert. Die Einsparungen waren besonders hoch im Falle von blauem Wasser und beliefen sich 

auf mehr als die Hälfte des totalen Verbrauchs an blauem Wasser für die drei Getreidesorten. Der 

globale Handel vermochte auch eine grosse Menge an Umweltverschmutzung zu verhindern. 

Diese Errungenschaften erhöhten jedoch auch den Druck auf die lebensmittelexportierenden 

Länder im Zusammenhang mit Ressourcenverbrauch und exportbedingten N-Verlusten.  Im Falle 

von ausgeglicheneren Szenarien der Inputintensivierung würde der Ressourcenerhalt abnehmen 

und die Umweltverschmutzung würde weniger rasch reduziert werden, obwohl die Erträge in 

Ländern mit geringen Düngergaben und niedrigen Erträgen grösstenteils zunehmen könnten. 

Hierauf basierend gibt es folgende zwei Herausforderungen im internationalen 

Lebensmittelhandel: 1) Ausgleich zwischen dem globalen Nutzen und den Umweltauswirkungen 

der Hauptexporteure und 2) Ausgleich zwischen der Zunahme des länderspezifischen 

Nahrungsmittelangebots und des Nutzens des globalen Lebensmittelhandels. 
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Zusammenfassend lässt sich sagen, dass die analytischen Werkzeuge, die in dieser Studie 

entwickelt wurden, einen ganzheitlichen Ansatz darstellen, mit dem der globale Zusammenhang 

zwischen Wasser, Nahrungsmitteln, Umwelt und Handel im Kontext der landwirtschaftlichen 

Intensivierung beurteilt werden kann. Diese Werkzeuge sind nützlich, um Strategien für die 

Entschärfung des landwirtschaftlichen trilateralen Spannungsfeldes zu entwerfen. Die 

Veränderung der Muster des Stickstoffeintrags, die Verbesserung von Düngungsplänen, effiziente 

Intensivierung der Produktionsmittel (N und Bewässerung) und der globale Nahrungsmittelhandel 

sind vielversprechende Methoden, um die landwirtschaftlichen Herausforderungen zu adressieren. 
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Chapter 1

Introduction

1.1 Background and motivation

1.1.1 Agricultural trilemma in the 21st century

Global food security is facing great challenges due to population growth, a shift to more 

animal-based diets, and expanding areas of biofuel crops (Bodirsky et al., 2015; Tilman et al., 

2011). However, resources required as inputs for agricultural production such as water, fertile 

land, and nutrients are not limitless. Moreover, crop production is causing substantial 

environmental problems, particularly due to nitrogen (N) and phosphorus (P) losses to the 

environment (Erisman et al., 2013; Galloway et al., 2003; Galloway et al., 2008; Sutton et al., 

2013) and excessive water consumption for irrigation (Gleeson et al., 2012; Rodell et al., 2009),

but also due to greenhouse gas (GHG) emissions, soil degradation and biodiversity loss. 

Therefore, modern agriculture is facing a trilemma as it strives to increase the quantity and 

nutritional quality of crop plant production, to limit the consumption of resources such as water 

and nutrients for plant production, and to minimize adverse environmental impacts (Figure 1-1).

Figure 1-1. Description of agricultural trilemma in the 21st century.



Introduction 

2 

In order to meet the food requirements of feeding 9 billion people by 2050 (Godfray et al., 

2010), global food production was expected to be doubled relative to the situation around 2000 

(Bodirsky et al., 2015; Tilman et al., 2011). However, several studies indicated that the trend of 

crop yield improvements had stagnated in some major food-producing regions in the world 

(Iizumi et al., 2014; Ray et al., 2013; Ray et al., 2012). The continuation of the global trend could 

mean that increasing amounts of agricultural inputs are poured into the croplands but the returns 

will diminish. 

On the other hand, agricultural production has already consumed a large amount of resources 

and also caused major impacts on environment and ecosystems (Foley et al., 2005; Foley et al., 

2011). An important example is global water consumption. As the largest water user, agriculture 

consumes about 85% of global freshwater withdrawals (Shiklomanov, 2003). Agricultural water 

consumption has posed significant pressures on water resources (Oki and Kanae, 2006). Indeed, 

water scarcity is already a critical worldwide concern (Fedoroff et al., 2010). Substantial water 

consumption for irrigation in many areas, notably India, Pakistan, China, and the USA, has been 

exacerbating groundwater depletion (Dalin et al., 2017; Gleeson et al., 2012; West et al., 2014). 

Nitrogen is another important resource essential for crop growth. About 120 Tg N yr−1 (Tg = 

1012 g) N fertilizer was applied to global croplands in 2010 (Fowler et al., 2013). Although it 

seems that unlimited amounts of N can be produced using the Haber–Bosch processes (Erisman et 

al., 2008), the energy requirements for it may set an upper limit, as about 2% of global energy use 

has already been consumed for the production of reactive N (Sutton et al., 2013). More seriously, 

the excessive application of N in the farmlands for agricultural production has led to a large 

amount of N losses. It was estimated that about half of total N inputs to croplands were lost to the 

environment in 2000 (Liu et al., 2010) and about 80 Tg N yr−1 was transported to the ocean in 

2010 (Fowler et al., 2013). N losses have already significantly transgressed the safe planetary 

boundary for N (Rockström et al., 2009; Steffen et al., 2015), which is resulting in substantial 

environmental problems, e.g. serious eutrophication and wide-spreading dead zones of marine 

ecosystems (Conley et al., 2009; Diaz and Rosenberg, 2008), biodiversity losses (Clark and 

Tilman, 2008), soil acidification in croplands (Liu et al., 2013), and enlarged global GHG 

emissions from agricultural production (Bouwman et al., 2013a). 

To address the great challenges of the agricultural trilemma in the 21st century, it is 

important to develop an integrated approach to simultaneously consider the interplays among 

agricultural resources, crop yields, and environmental consequences. A better understanding of 

the interactions can help design effective pathways towards sustainable agricultural development 

(Galloway et al., 2008). 



Chapter 1 

3 

1.1.2 Application of large-scale crop models and the challenges 

Agronomic crop models are a useful research tool for understanding the interactions among 

resource uses, food production, and environmental impacts. Models can represent the complex 

processes linking crop growth processes, including evapotranspiration (ET), photosynthesis and 

carbon assimilation, with environmental processes, including carbon cycling, nutrient turnover 

and hydrological processes, and agricultural management schemes. Many crop models have been 

developed and widely applied, e.g. APSIM (Keating et al., 2003), CropSyst (Stockle et al., 2003), 

EPIC (Williams et al., 1984), DSSAT (Jones et al., 2003), STICS (Brisson et al., 2003), and 

WOFOST (Vandiepen et al., 1989). All these models were originally site-based models. In order 

to address the agricultural water–food–environmental nexus with a global perspective, grid-based 

and spatially explicit large-scale crop models are required. 

Since the late 1990s, coupling spatial analytical tools (such as Geographic Information 

System and other computer programing methods) with site-based crop models to improve the 

spatial representation and visualization ability on large scales has drawn growing attention. So far, 

many spatially explicit crop models have been developed, e.g. GEPIC (Liu et al., 2007), LPJmL 

(Müller and Robertson, 2014), pAPSIM and pDSSAT (Elliott et al., 2014), and PEGASUS 

(Deryng et al., 2011). Until now, large-scale crop models have been mainly used to simulate crop 

yields (Müller et al., 2017), to investigate crop–water relations (Liu, 2009), and to quantify the 

impacts of climate change (Deryng et al., 2016; Rosenzweig et al., 2014) including extreme 

events (Schauberger et al., 2017), among others. However, there are still significant challenges to 

using the large-scale crop models to address the global agricultural trilemma. Assessment of 

environmental impacts, e.g. N losses, using crop models was mostly implemented at local or 

regional scales (Molina-Herrera et al., 2016; Qiu et al., 2011). There are only a few applications 

of large-scale crop models for investigating the environmental consequences of global crop 

production (Del Grosso et al., 2009). A comprehensive evaluation of the water–food–

environmental nexus by using large-scale crop models is still absent on a global scale with high 

spatial resolution. 

Agricultural pollutants entering water bodies can deteriorate water quality. It can also 

intensify water scarcity by making the available water not useable due to poor quality. The grey 

water footprint (GWF) measures the water required to dilute these pollutants to meet the ambient 

water quality standards (Hoekstra et al., 2011). It is an indicator of water pollution intensity. 

Large-scale crop models have been used to assess global GWF related to crop production (Wu et 

al., 2012). However, there are some shortcomings in the existing literature on GWF concerning 

the selection of water quality standards (Franke et al., 2013), multiple pollutants (Liu et al., 2012), 
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and geographical scales (Mekonnen and Hoekstra, 2014). A proper assessment of the 

environmental impact measured with GWF is required to address these limitations. 

There are many studies on uncertainties associated with large-scale crop simulations from 

different resources, e.g. soil datasets (Folberth et al., 2016), model parameters (Xiong et al., 2016), 

spatial resolution (Folberth et al., 2012), and model structures (Müller et al., 2017). However, an 

important factor contributing to the uncertainties of large-scale simulations, i.e. the choice of 

different potential ET (PET) estimation methods, has received little attention (Balkovič et al., 

2013). A detailed investigation of the impacts of different PET methods on global crop simulation 

is required, as it is one of the most fundamental processes regulating crop growth (Sau et al., 

2004). 

1.1.3 Strategies for addressing the agricultural trilemma 

Facing the great challenges in agriculture, there have been many studies addressing the 

problems and proposing solutions. They mainly concern three aspects: improving resources use 

efficiency, agricultural intensification, and global virtual water trade. 

Limited available water resources and tremendous N losses require that these resources are 

used in a more efficient way. There are many studies on improving water use efficiency (Brauman 

et al., 2013; Jagermeyr et al., 2016) and N use efficiency (Cui et al., 2014; Zhang, 2017; Zhang et 

al., 2015). However, previous studies often only included one input variable, either water or N, 

but rarely considered their interactions. An important example considering the interactions was 

conducted by the Global Landscapes Initiative group at the University of Minnesota (Mueller et 

al., 2012; West et al., 2014). A yield-response model was developed for different climate zones 

and then used to quantify the attainable yields and the associated multiple resources requirements 

(e.g. water and N) to close yield gaps for each zone (Mueller et al., 2012). They proposed 

reallocating global N inputs for the purpose of reducing N surplus in the excessive application 

regions and improving N use efficiency (Mueller et al., 2017; Mueller et al., 2014). However, 

they only focused on investigating the water–nutrient–food relations, but ignored the environment 

impacts involved. 

Given the major concerns about the future food supply to feed the expected 9 billion people 

by 2050, most previous studies have concentrated on quantifying potential yields, as well as how 

to close yield gaps through genotypes/breeding and plant protection, as well as water and 

nutrients management, i.e. agricultural intensification (Garnett et al., 2013). In the past, a 

doubling of crop production was achieved with a 4- to 5-fold increase in fertilizer application 

(especially N fertilizer by 7- to 8-fold) and a 2-fold increase in the area of irrigated croplands and 

number of agricultural machines (Pretty, 2008). Agricultural intensification will remain the major 
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way to increase food production in the future (Foley et al., 2011) due to the limitation of land 

resources. Whereas, continuing agricultural intensification can have great impacts on the planet’s 

environment and ecosystems (Phelps et al., 2013). For instance, the CO2–C equivalent GHG 

emissions from agriculture were projected to reach ~3 Gt y−1 by 2050 if the current intensification 

trend is unchanged (Tilman et al., 2011). In addition, global cropping systems demonstrated 

different scopes for improving efficiency and also presented diverse nutrient imbalances in the 

course of agricultural development and intensification (Carberry et al., 2013; Vitousek et al., 

2009). It implies that some regions may not be suitable for intensification due to high marginal 

increase in N losses and low marginal increase in yields. Therefore, it is important to identify 

priority regions for implementing efficient agricultural intensification practices. This is 

particularly important for achieving global food security while alleviating environmental impacts 

(Chen et al., 2014; Lu et al., 2015). 

Due to the uneven spatial distribution of global water resources and increasing water scarcity 

in many regions in the world, the concept of “virtual water” has been put forward as a strategy to 

attenuate water stress for food importing countries (Allan, 1993; Allan, 1998). Virtual water refers 

to the amount of water involved in the production of a good or service. Through international or 

interregional food trade, water is exported from exporting countries to importing countries in a 

virtual form, i.e. embodied in the traded commodity. Besides this, it was demonstrated that virtual 

water trade also saved a large amount of global water resources through increasing overall water 

use efficiency (Chapagain et al., 2005; Konar et al., 2013; Yang et al., 2006). In addition to water, 

other agricultural resources, e.g. crop land and N inputs, and environmental impacts, e.g. water 

pollution, are also involved in and affected by international food trade. However, previous studies 

have intensively focused on water but less on other agricultural elements (Dalin and Rodriguez-

Iturbe, 2016; Oita et al., 2016). There are only a few integrated assessments of the impacts of food 

trade on the environment that simultaneously take several agricultural resources and 

environmental impacts into account (Martinez-Melendez and Bennett, 2016). A main constraint 

on the study at the global level is the lack of crop-specific data on resource consumption and 

pollution emission with a high spatial resolution, apart from water. For instance, global 

agricultural N and P inputs and the associated losses were largely evaluated by considering the 

agricultural sector as a whole (Bouwman et al., 2013b). There is a need to conduct crop-specific 

assessments of agricultural resources consumption and related environmental impacts to provide 

detailed information for evaluating the overall impacts of global food trade. 
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1.2 Objectives of the research 

The overall objective of this study was to assess the water–food–environment–trade nexus in 

the context of agricultural input intensification by developing and applying a systematic 

modelling framework. The specific tasks were: 

∗ To develop a grid-based large-scale crop model—Python-based Environmental Policy 

Integrated Climate (PEPIC) and to investigate the impacts of the choice of different PET 

estimation methods on simulating crop–water relations; 

∗ To use the PEPIC model for assessing crop-specific trade-offs between N losses and 

yields from major crop cultivations on a global scale; 

∗ To address agricultural N and P water pollution intensity measured by GWF and propose 

enhanced approaches for the assessment of agricultural GWF; 

∗ To explore pathways towards crop yields improvements with reduced environmental 

pollution in the context of agricultural input intensification; 

∗ To explore the overall impacts of global food trade on resource conservation and 

pollution reduction by combining PEPIC with a global trade model—Global Trade 

Analysis Project (GTAP) in the analysis. 

 

1.3 Contents of the dissertation 

Following this introduction, the dissertation consists of five research chapters (Chapters 2–6) 

and a general conclusion chapter (Chapter 7). 

Chapter 2 introduces the PEPIC model and applies it to investigate the impacts of five PET 

estimation methods, i.e. Baier–Robertson, Hargreaves, Penman, Penman–Monteith and Priestley–

Taylor, on simulating crop yields, crop water use, and crop water productivity of maize globally 

at a spatial resolution of 30 arc minutes. Performance in modelling the crop–water relations by 

using the five PET estimation methods is evaluated. 

Chapter 3 extends the PEPIC model for estimating N losses from the cultivation of three 

major crops, i.e. maize, rice, and wheat, by using state-of-the-art crop-specific N input datasets. 

An indicator—N loss intensity—is put forward to assess the trade-offs between N losses and crop 

yields. Mitigation scenarios in terms of spatial redistribution of N inputs and improved N 

fertilization are proposed to reduce the trade-offs. 

Chapter 4 quantifies the agricultural pollution intensity measured by GWF due to N and P 

losses to water from global maize cultivation. Some major limitations in the literature related to 

the assessment of GWF are addressed and ways towards its improvement are proposed. 
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Chapter 5 compares five agricultural input intensification scenarios regarding irrigated 

cultivation areas and N inputs. Hotspots with high improvements in crop yields and/or high 

increases in N losses under different intensification scenarios are identified. The relationship 

between incremental yields and incremental N losses relative to incremental N inputs is 

determined. A strategy to improving crop yields with reduced N losses is proposed based on the 

determined relationship. 

Chapter 6 combines the PEPIC model with the global trade model GTAP to assess the 

environmental impacts of global food trade in the context of agricultural intensification. 

Conservation in agricultural resources (blue water use, total water use, and N inputs) and 

reduction in environmental pollution (N losses) are estimated for the baseline year 2000 and an 

intensification scenario. 

Chapter 7 draws the conclusions of the entire study regarding pathways to address the 

agricultural trilemma through better understanding the water–food–environment–trade nexus. An 

outlook is also provided pointing out the significance of further studies on enhancing the water–

nutrient–food–environment benefits on a global scale. 

 

1.4 References 

Allan, J., 1993. Fortunately there are substitutes for water otherwise our hydro-political futures would be 
impossible, In: Priorities for water resources allocation and management, ODA, London, pp. 13–26. 

Allan, J.A., 1998. Virtual water: A strategic resource global solutions to regional deficits. Ground Water, 
36(4): 545–546. 

Balkovič, J. et al., 2013. Pan-European crop modelling with EPIC: Implementation, up-scaling and regional 
crop yield validation. Agric. Syst., 120: 61–75. 

Bodirsky, B.L. et al., 2015. Global food demand scenarios for the 21st century. PLoS One, 10(11): 
e0139201. 

Bouwman, A.F. et al., 2013a. Global trends and uncertainties in terrestrial denitrification and N2O 
emissions. Philos. Trans. R. Soc. London, Ser. B, 368(1621): 20130112. 

Bouwman, L. et al., 2013b. Exploring global changes in nitrogen and phosphorus cycles in agriculture 
induced by livestock production over the 1900–2050 period. Proc. Natl. Acad. Sci. U.S.A., 110(52): 
20882–20887. 

Brauman, K.A., Siebert, S. and Foley, J.A., 2013. Improvements in crop water productivity increase water 
sustainability and food security—a global analysis. Environ. Res. Lett., 8(2): 024030. 

Brisson, N. et al., 2003. An overview of the crop model STICS. Eur. J. Agron., 18(3–4): 309–332. 

Carberry, P.S. et al., 2013. Scope for improved eco-efficiency varies among diverse cropping systems. Proc. 
Natl. Acad. Sci. U.S.A., 110(21): 8381–8386. 

Chapagain, A.K., Hoekstra, A.Y. and Savenije, H.H., 2005. Saving water through global trade. Value of 
water research report series no. 17. UNESCO-IHE Institute for Water Education, Delft. 



Introduction 

8 

Chen, X. et al., 2014. Producing more grain with lower environmental costs. Nature, 514(7523): 486–9. 

Clark, C.M. and Tilman, D., 2008. Loss of plant species after chronic low-level nitrogen deposition to 
prairie grasslands. Nature, 451(7179): 712–715. 

Conley, D.J. et al., 2009. Controlling eutrophication: nitrogen and phosphorus. Science, 323(5917): 1014–
1015. 

Cui, Z.L. et al., 2014. Closing the N-use efficiency gap to achieve food and environmental security. Environ. 
Sci. Technol., 48(10): 5780–5787. 

Dalin, C. and Rodriguez-Iturbe, I., 2016. Environmental impacts of food trade via resource use and 
greenhouse gas emissions. Environ. Res. Lett., 11(3): 035012. 

Dalin, C., Wada, Y., Kastner, T. and Puma, M.J., 2017. Groundwater depletion embedded in international 
food trade. Nature, 543(7647): 700–704. 

Del Grosso, S.J. et al., 2009. Global scale DAYCENT model analysis of greenhouse gas emissions and 
mitigation strategies for cropped soils. Global Planet. Change, 67(1–2): 44–50. 

Deryng, D. et al., 2016. Regional disparities in the beneficial effects of rising CO2 concentrations on crop 
water productivity. Nat. Clim. Change, 6(8): 786–790. 

Deryng, D., Sacks, W.J., Barford, C.C. and Ramankutty, N., 2011. Simulating the effects of climate and 
agricultural management practices on global crop yield. Global Biogeochem. Cycles, 25: GB2006. 

Diaz, R.J. and Rosenberg, R., 2008. Spreading dead zones and consequences for marine ecosystems. 
Science, 321(5891): 926–929. 

Elliott, J. et al., 2014. The parallel system for integrating impact models and sectors (pSIMS). Environ. 
Modell. Software, 62: 509–516. 

Erisman, J.W. et al., 2013. Consequences of human modification of the global nitrogen cycle. Philos. Trans. 
R. Soc. London, Ser. B, 368(1621): 20130116. 

Erisman, J.W., Sutton, M.A., Galloway, J., Klimont, Z. and Winiwarter, W., 2008. How a century of 
ammonia synthesis changed the world. Nat. Geosci., 1(10): 636–639. 

Fedoroff, N.V. et al., 2010. Radically rethinking agriculture for the 21st century. Science, 327(5967): 833–
834. 

Folberth, C. et al., 2016. Uncertainty in soil data can outweigh climate impact signals in global crop yield 
simulations. Nat. Commun., 7: 11872. 

Folberth, C., Yang, H., Wang, X.Y. and Abbaspour, K.C., 2012. Impact of input data resolution and extent 
of harvested areas on crop yield estimates in large-scale agricultural modeling for maize in the USA. 
Ecol. Modell., 235: 8–18. 

Foley, J.A. et al., 2005. Global consequences of land use. Science, 309(5734): 570–573. 

Foley, J.A. et al., 2011. Solutions for a cultivated planet. Nature, 478(7369): 337–342. 

Fowler, D. et al., 2013. The global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. London, 
Ser. B, 368(1621): 20130164. 

Franke, N., Hoekstra, A. and Boyacioglu, H., 2013. Grey water footprint accounting: Tier 1 supporting 
guidelines. Value of water research report series No. 17. UNESCO-IHE Institute for Water Education, 
Delft. 

Galloway, J.N. et al., 2003. The nitrogen cascade. Bioscience, 53(4): 341–356. 

Galloway, J.N. et al., 2008. Transformation of the nitrogen cycle: Recent trends, questions, and potential 
solutions. Science, 320(5878): 889–892. 



Chapter 1 

9 

Garnett, T. et al., 2013. Sustainable intensification in agriculture: Premises and Policies. Science, 341(6141): 
33–34. 

Gleeson, T., Wada, Y., Bierkens, M.F.P. and van Beek, L.P.H., 2012. Water balance of global aquifers 
revealed by groundwater footprint. Nature, 488(7410): 197–200. 

Godfray, H.C. et al., 2010. Food security: the challenge of feeding 9 billion people. Science, 327(5967): 
812–8. 

Hoekstra, A.Y., Chapagain, A.K., Aldaya, M.M. and Mekonnen, M.M., 2011. The water footprint 
assessment manual: Setting the global standard. Earthscan, London, UK. 

Iizumi, T. et al., 2014. Historical changes in global yields: major cereal and legume crops from 1982 to 
2006. Global Ecol. Biogeogr., 23(3): 346–357. 

Jagermeyr, J. et al., 2016. Integrated crop water management might sustainably halve the global food gap. 
Environ. Res. Lett., 11(2): 025002. 

Jones, J.W. et al., 2003. The DSSAT cropping system model. Eur. J. Agron., 18(3–4): 235–265. 

Keating, B.A. et al., 2003. An overview of APSIM, a model designed for farming systems simulation. Eur. 
J. Agron., 18(3–4): 267–288. 

Konar, M., Hussein, Z., Hanasaki, N., Mauzerall, D.L. and Rodriguez-Iturbe, I., 2013. Virtual water trade 
flows and savings under climate change. Hydrol. Earth Syst. Sci., 17(8): 3219–3234. 

Liu, C., Kroeze, C., Hoekstra, A.Y. and Gerbens-Leenes, W., 2012. Past and future trends in grey water 
footprints of anthropogenic nitrogen and phosphorus inputs to major world rivers. Ecol. Indic., 18: 42–
49. 

Liu, J., 2009. A GIS-based tool for modelling large-scale crop–water relations. Environ. Modell. Software, 
24(3): 411–422. 

Liu, J., Williams, J.R., Zehnder, A.J.B. and Yang, H., 2007. GEPIC – modelling wheat yield and crop water 
productivity with high resolution on a global scale. Agric. Syst., 94(2): 478–493. 

Liu, J. et al., 2010. A high-resolution assessment on global nitrogen flows in cropland. Proc. Natl. Acad. Sci. 
U.S.A., 107(17): 8035–8040. 

Liu, X. et al., 2013. Enhanced nitrogen deposition over China. Nature, 494(7438): 459–62. 

Lu, Y. et al., 2015. Addressing China’s grand challenge of achieving food security while ensuring 
environmental sustainability. Sci. Adv., 1(1): e1400039. 

Martinez-Melendez, L.A. and Bennett, E.M., 2016. Trade in the US and Mexico helps reduce 
environmental costs of agriculture. Environ. Res. Lett., 11(5): 055004. 

Mekonnen, M.M. and Hoekstra, A.Y., 2014. Water footprint benchmarks for crop production: A first global 
assessment. Ecol. Indic., 46: 214–223. 

Molina-Herrera, S. et al., 2016. A modeling study on mitigation of N2O emissions and NO3 leaching at 
different agricultural sites across Europe using LandscapeDNDC. Sci. Total Environ., 553: 128–140. 

Mueller, N.D. et al., 2012. Closing yield gaps through nutrient and water management. Nature, 490(7419): 
254–257. 

Mueller, N.D. et al., 2017. Declining spatial efficiency of global cropland nitrogen allocation. Global 
Biogeochem. Cycles, 31(2): 245–257. 

Mueller, N.D. et al., 2014. A tradeoff frontier for global nitrogen use and cereal production. Environ. Res. 
Lett., 9(5): 054002. 



Introduction 

10 

Müller, C. et al., 2017. Global gridded crop model evaluation: benchmarking, skills, deficiencies and 
implications. Geosci. Model Dev., 10(4): 1403–1422. 

Müller, C. and Robertson, R.D., 2014. Projecting future crop productivity for global economic modeling. 
Agr. Econ., 45(1): 37–50. 

Oita, A. et al., 2016. Substantial nitrogen pollution embedded in international trade. Nat. Geosci., 9(2): 
111–115. 

Oki, T. and Kanae, S., 2006. Global hydrological cycles and world water resources. Science, 313(5790): 
1068–1072. 

Phelps, J., Carrasco, L.R., Webb, E.L., Koh, L.P. and Pascual, U., 2013. Agricultural intensification 
escalates future conservation costs. Proc. Natl. Acad. Sci. U.S.A., 110(19): 7601–6. 

Pretty, J., 2008. Agricultural sustainability: concepts, principles and evidence. Philos. Trans. R. Soc. 
London, Ser. B, 363(1491): 447–465. 

Qiu, J.J. et al., 2011. GIS-model based estimation of nitrogen leaching from croplands of China. Nutr. 
Cycling Agroecosyst., 90(2): 243–252. 

Ray, D.K., Mueller, N.D., West, P.C. and Foley, J.A., 2013. Yield trends are insufficient to double global 
crop production by 2050. PLoS One, 8(6): e66428. 

Ray, D.K., Ramankutty, N., Mueller, N.D., West, P.C. and Foley, J.A., 2012. Recent patterns of crop yield 
growth and stagnation. Nat. Commun., 3: 1293. 

Rockström, J. et al., 2009. A safe operating space for humanity. Nature, 461(7263): 472–476. 

Rodell, M., Velicogna, I. and Famiglietti, J.S., 2009. Satellite-based estimates of groundwater depletion in 
India. Nature, 460(7258): 999–1002. 

Rosenzweig, C. et al., 2014. Assessing agricultural risks of climate change in the 21st century in a global 
gridded crop model intercomparison. Proc. Natl. Acad. Sci. U.S.A., 111(9): 3268–3273. 

Sau, F., Boote, K.J., Bostick, W.M., Jones, J.W. and Minguez, M.I., 2004. Testing and improving 
evapotranspiration and soil water balance of the DSSAT crop models. Agron. J., 96(5): 1243–1257. 

Schauberger, B. et al., 2017. Consistent negative response of US crops to high temperatures in observations 
and crop models. Nat. Commun., 8: 13931. 

Shiklomanov, I.A., 2003. World water resources at the beginning of the 21st century. Cambridge University 
Press, Cambridge. 

Steffen, W. et al., 2015. Sustainability. Planetary boundaries: guiding human development on a changing 
planet. Science, 347(6223): 1259855. 

Stockle, C.O., Donatelli, M. and Nelson, R., 2003. CropSyst, a cropping systems simulation model. Eur. J. 
Agron., 18(3–4): 289–307. 

Sutton, M.A. et al., 2013. Our Nutrient World: the challenge to produce more food and energy with less 
pollution. Centre for Ecology and Hydrology (CEH). 

Tilman, D., Balzer, C., Hill, J. and Befort, B.L., 2011. Global food demand and the sustainable 
intensification of agriculture. Proc. Natl. Acad. Sci. U.S.A., 108(50): 20260–20264. 

Vandiepen, C.A., Wolf, J., Vankeulen, H. and Rappoldt, C., 1989. WOFOST – a simulation model of crop 
production. Soil Use Manage., 5(1): 16–24. 

Vitousek, P.M. et al., 2009. Nutrient imbalances in agricultural development. Science, 324(5934): 1519–
1520. 



Chapter 1 

11 

West, P.C. et al., 2014. Leverage points for improving global food security and the environment. Science, 
345(6194): 325–328. 

Williams, J.R., Jones, C.A. and Dyke, P.T., 1984. A modeling approach to determining the relationship 
between erosion and soil productivity. T. ASAE, 27(1): 129–144. 

Wu, M., Chiu, Y. and Demissie, Y., 2012. Quantifying the regional water footprint of biofuel production by 
incorporating hydrologic modeling. Water Resour. Res., 48: W10518. 

Xiong, W. et al., 2016. Calibration-induced uncertainty of the EPIC model to estimate climate change 
impact on global maize yield. J. Adv. Model. Earth Syst., 8(3): 1358–1375. 

Yang, H., Wang, L., Abbaspour, K.C. and Zehnder, A.J.B., 2006. Virtual water trade: an assessment of 
water use efficiency in the international food trade. Hydrol. Earth Syst. Sci., 10(3): 443–454. 

Zhang, X., 2017. BIOGEOCHEMISTRY A plan for efficient use of nitrogen fertilizers. Nature, 543(7645): 
322–323. 

Zhang, X. et al., 2015. Managing nitrogen for sustainable development. Nature, 528(7580): 51–59. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

12 

 



13 

 

Chapter 2 
 

Global investigation of impacts of PET methods on simulating 

crop–water relations for maize 

 

 

 

 

 

Based on 

Global investigation of impacts of PET methods on simulating crop–water relations for maize. 

Agricultural and Forest Meteorology, 221: 164–175. (2016) 

 

Authors 

Wenfeng Liua, Hong Yanga,b, Christian Folberthc,d, Xiuying Wange, Qunying Luof, Rainer 

Schuling 

 

aEawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, CH-8600 

Duebendorf, Switzerland 

bFaculty of Sciences, University of Basel, Petersplatz 1, CH-4003 Basel, Switzerland 

cInternational Institute for Applied Systems Analysis (IIASA), Ecosystem Services and Management 

Program, Schlossplatz 1, A-2361 Laxenburg, Austria 

dDepartment of Geography, Ludwig Maximilian University, Munich, Germany 

eBlackland Research and Extension Center, Temple, TX 76502, USA 

fPlant Functional Biology and Climate Change Cluster, University of Technology Sydney, Po Box 123, 

Broadway 2007, NSW, Australia 

gETH Zürich, Institute of Terrestrial Ecosystems, Universitätstr. 16, CH-8092 Zürich, Switzerland 



Impacts of PET methods on simulating crop–water relations 

14 

Abstract 

Crop models are commonly used to investigate crop–water relations over different spatial 

scales. Estimating potential evapotranspiration (PET) is a basis for this investigation. Most crop 

models have built-in PET estimation methods. Using different methods can lead to very different 

PET estimates; but little is known about the sensitivity of large-scale crop model predictions on 

the choice of the PET estimation methods. In the work reported here, we used PEPIC, a grid-

based EPIC (Environmental Policy Integrated Climate) model with a Python environment, to 

investigate the impacts of five different PET methods on estimated crop–water relations for maize 

on a global scale at a resolution of 30 arc min. Results show that the estimated PET varied largely 

among different PET methods for the same climate zones, leading to uncertainties in estimating 

crop–water relations. Uncertainties in water-related variables such as growing season 

evapotranspiration (GSET) and irrigation water requirement were more relevant than uncertainties 

in crop yields. Water availability played an important role in the uncertainties. All PET methods 

showed similar performance with respect to simulations of GSET for rainfed maize cultivation in 

low-rainfall regions, while there were large differences for regions with high rainfall. For irrigated 

agriculture, the estimated irrigation water requirement varied widely among the five PET methods, 

with a factor of 2 between the smallest and the largest estimates. Overall, using the Priestley–

Taylor method led to lowest yield but highest GSET estimates. The Baier–Robertson and 

Hargreaves methods produced rather high GSET estimates for tropical and humid regions. The 

Penman–Monteith method gave the best yield estimates, compared to agricultural statistics. The 

results highlight the importance of considering the uncertainties resulting from the selection of 

PET estimation methods in investigating crop–water relations, particularly in predicting impacts 

of future climate change and in formulating appropriate water management strategies. 
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2.1 Introduction 

Agriculture consumes the largest proportion (85%) of global water withdrawals 

(Shiklomanov, 2003). In the context of climate change and dietary shifts caused by socio-

economic development, agriculture is facing the dual challenges of ameliorating water scarcity 

while increasing crop production (Elliott et al., 2014; Liu et al., 2013). Realistic estimates of 

global crop water use (CWU) and associated crop production are essential for policy makers to 

address these challenges. 

Crop models are increasingly used to project large-scale historical CWU and crop production 

trends into the future (Elliott et al., 2015; Rosenzweig et al., 2013). There are considerable 

uncertainties in such predictions, however, originating in particular from inadequate input data, 

model structure, and parameter estimation methods. There are many studies on how to best 

identify and reduce these uncertainties in the calibration of these models. Folberth et al. (2012b) 

discussed the impacts of grid resolution on simulating maize yields in America. Liu et al. (2013) 

and Rosenzweig et al. (2014) investigated the uncertainties relating to future climate change by 

using different climate data inputs (e.g. General Circulation Models with different climate 

scenarios). Folberth et al. (2012a) explored the influences of potential heat units (PHU) and 

planting dates on the estimation of maize yields in Sub-Saharan Africa and the effects of crop 

management on climate change impact estimates in the same region (Folberth et al., 2014). 

Studies addressing similar issues include Balkovič et al. (2014), Xiong et al. (2014) and Yin et al. 

(2014). However, uncertainties related to the choice of method for the estimation of potential 

evapotranspiration (PET) have not been assessed and compared in large-scale modelling of CWU 

and crop production. 

PET determines the maximum rate of crop soil water use under conditions of unlimited water 

availability. An accurate estimation of PET is essential for crop water modelling, since it directly 

influences the estimation of CWU and irrigation water requirement. It also affects the simulation 

of crop yields, as crops depend on water to take up nutrients, reduce heat stresses through 

transpiration, and maintain crop assimilation, among others. Many methods have been introduced 

to estimate PET (Jensen et al., 1990). We reviewed the PET options in 29 crop models found in 

the literature (Table S2-1). Often, crop models provide several methodological options to simulate 

the PET process. For example, five PET methods are available in the EPIC (Environmental Policy 

Integrated Climate) model (Williams, 1995; Williams et al., 1984), i.e. the Baier–Robertson (BR) 

(Baier and Robertson, 1965), Hargreaves (H) (Hargreaves and Samani, 1985), Penman (P) 

(Penman, 1948), Penman–Monteith (PM) (Monteith, 1965), and Preistly–Taylor (PT) (Priestley 

and Taylor, 1972). The DSSAT (Decision Support System for Agrotechnology Transfer) model 

provides three of these options: PT, P and PM (Jones et al., 2003). Recently, Palosuo et al. (2011) 
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compared eight crop models for their ability to simulate wheat yields at eight different sites in 

Europe, while Bassu et al. (2014) analysed 23 crop models for simulating maize yields at four 

sites across the world. In both studies, the PET methods were explicitly specified. However, they 

did not explore the influences of different PET methods on yield estimates. We also reviewed the 

PET methods used in 20 large-scale crop modelling work (Table S2-2). Surprisingly, many of 

them did not specify the PET methods that were employed. 

Some earlier studies have shown that different PET estimation methods can have impacts on 

model results. For instance, Benson et al. (1992) evaluated how the five PET estimation methods 

in EPIC can influence simulated soil water balances for five locations in America and pointed out 

the importance of selecting an appropriate PET method. Roloff et al. (1998) assessed how EPIC 

prediction of wheat yield in a crop rotation experiment field in Canada depended on the method of 

PET estimation and found that the BR method was the most suitable method. Balkovič et al. 

(2013) compared the performance of the five PET estimation methods in reproducing crop yields 

in Europe with an EPIC-based model and found that BR and H performed best. Sau et al. (2004) 

compared the PT, P and some PM-based methods in simulating soil water balances at some sites 

in Spain using the DSSAT model and concluded that the PM-based methods were the most 

reliable, while P showed the poorest performance, and PT, though still reasonable, tended to 

overestimate evapotranspiration (ET). Anothai et al. (2013) compared the PT and PM methods in 

combination with the DSSAT model for an experimental site in Colorado, USA, and also found 

PM to perform better than PT. These studies show how important a proper choice of the PET 

estimation methods is and that this choice depends on site, especially climate conditions. To be 

able to make an informed choice it is of significance to know from where the uncertainties in 

different PET methods come and for which conditions various methods perform best. However, 

previous works comparing different PET methods were mostly conducted on regional scale and 

focused on either yields or crop soil water use. Such kind of research is rare for large-scale 

simulations. A comprehensive assessment of impacts of different PET estimation methods on 

crop yields and water use in rainfed and irrigated systems on a global scale with specification of 

climate zones has been absent. 

EPIC is one of the most widely used crop models (Balkovič et al., 2013; Folberth et al., 

2012a, 2014; Liu et al., 2007; Tan and Shibasaki, 2003) due to its good performance in a large 

variety of applications throughout the world (Gassman et al., 2005). The five PET estimation 

methods offered in EPIC were developed for applications in different climate regions and for 

different situations of climate data availability. The H method was often used for large-scale 

simulations in cases of limited climate data availability (Folberth et al., 2013; Liu, 2009; Liu et al., 

2013). However, after global gridded climate datasets (e.g. Hempel et al. (2013); Elliott et al. 
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(2015)) have become available recently, it is now possible also to use the other PET estimation 

methods in large-scale simulations with EPIC. 

Here, we used PEPIC, a grid-based EPIC model with a Python environment, to compare how 

the choice of the PET estimation methods would influence global scale simulations of maize 

growth and to identify error sources for different climate zones. In addition to PET, we analysed 

growing season evapotranspiration (GSET), yields, CWU, crop water productivity (CWP), and 

total maize production, which are all related to PET. To our best knowledge, this is the first study 

exploring the influences of PET estimation methods on simulating crop growth and water 

consumption on a global scale. 

 

2.2 Simulation framework 

2.2.1 Methodologies 

The EPIC model and PET methods 

The EPIC model was initially introduced by Williams et al. (1984) to evaluate the impacts of 

soil erosion on soil productivity. Since its first release, it has been continuously improved and 

expanded by integrating some major components from other models, such as CREAMS (Knisel, 

1980), GLEAMS (Leonard et al., 1987), Century (Parton et al., 1994), and ALMANAC (Kiniry et 

al., 1992). EPIC can be used to simulate a large number of complex soil, water, climate, crop 

development and agricultural management processes (Williams et al., 1984). EPIC simulates crop 

growth at a daily step based on the concept of energy–biomass conversion. Daily potential 

biomass increase is the product of intercepted solar radiation and a crop-specific biomass–energy 

ratio. The potential increase in biomass is reduced each day in response to the dominating  plant 

stress (water, nutrient, temperature, aeration, and salinity) to obtain the actual biomass. The crop 

yield is estimated by the product of the harvest index and actual biomass accumulation (Williams, 

1995). 

In EPIC, PET can be calculated using one of the following five functions: 

𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵 = 0.288 ∗ 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 − 0.144 ∗ 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 + 0.139 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 − 4.931   (2-1) 

𝑃𝑃𝑃𝑃𝑃𝑃𝐻𝐻 = 0.0032 ∗ (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (2.501− 0.0022 ∗ 𝑃𝑃)⁄ ) ∗ (𝑃𝑃 + 17.8) ∗ (𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚)0.6  

           (2-2) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = (𝑅𝑅𝑅𝑅 ∗ 𝛿𝛿 (2.501− 0.0022 ∗ 𝑃𝑃)⁄ + 𝛾𝛾 ∗ (2.7 + 1.63 ∗ 𝑈𝑈) ∗ 𝑃𝑃𝑅𝑅(1 − 𝑅𝑅𝑅𝑅))/(𝛿𝛿 + 𝛾𝛾) 

           (2-3) 
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𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = (𝑅𝑅𝑅𝑅 ∗ 𝛿𝛿 + 86.66 ∗ 𝑅𝑅𝐴𝐴 ∗ 𝑃𝑃𝑅𝑅(1 − 𝑅𝑅𝑅𝑅) ∗ 𝑈𝑈/350)/((2.501− 0.0022 ∗ 𝑃𝑃) ∗ (𝛿𝛿 + 𝛾𝛾)) 

           (2-4) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 1.28 ∗ (𝑅𝑅𝑅𝑅 ∗ (1.0 − 𝑅𝑅𝐴𝐴) (2.501− 0.0022 ∗ 𝑃𝑃)⁄ ) ∗ (𝛿𝛿 (𝛿𝛿 + 𝛾𝛾)⁄ )  (2-5) 

where 𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵 , 𝑃𝑃𝑃𝑃𝑃𝑃𝐻𝐻 , 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 , 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 , and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  are the PET [mm d−1] estimates obtained by 

using the BR, H, P, PM and PT methods, respectively; 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 are the daily maximum and 

minimum temperatures [°C]; 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is the clear day solar radiation at the surface [MJ m−2 d−1] and 

can be calculated based on day of the year and latitude; 𝑃𝑃 is the daily mean air temperature [°C]; 

𝑅𝑅𝑅𝑅  is the net radiation [MJ m−2 d−1]; 𝛿𝛿  is the slope of the saturation vapour pressure curve 

[kPa °C−1]; 𝛾𝛾 is the psychrometer constant [kPa °C−1]; 𝑈𝑈 is the daily mean wind speed [m s−1]; 𝑃𝑃𝑅𝑅 

is the saturation vapour pressure at mean air temperature [kPa]; 𝑅𝑅𝑅𝑅 is the daily mean relative 

humidity; 𝑅𝑅𝐴𝐴 is the air density [Kg m−3]; and 𝑅𝑅𝐴𝐴 is the soil albedo. 

With P, PT, H and BR, potential plant transpiration (PPT) is estimated by using an approach 

similar to Ritchie (1972) as following : 

�𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝐿𝐿𝑅𝑅𝐿𝐿 3⁄     0 ≤ 𝐿𝐿𝑅𝑅𝐿𝐿 ≤ 3 
𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑃𝑃𝑃𝑃                              𝐿𝐿𝑅𝑅𝐿𝐿 > 3        (2-6) 

where 𝐿𝐿𝑅𝑅𝐿𝐿 is the leaf area index. With PM, PPT is calculated as: 

𝑃𝑃𝑃𝑃𝑃𝑃 =
𝐵𝐵𝑅𝑅∗𝛿𝛿+86.66∗𝐴𝐴𝐴𝐴∗𝐸𝐸𝐸𝐸(1−𝑅𝑅𝑅𝑅)

𝐸𝐸𝑅𝑅
(2.501−0.0022∗𝑃𝑃)∗�𝛿𝛿+𝛾𝛾(1+𝐶𝐶𝐵𝐵 𝐴𝐴𝐵𝐵⁄ )�

       (2-7) 

where 𝑅𝑅𝑅𝑅 is the aerodynamic resistance for heat and vapour transfer [s m−1]; 𝐶𝐶𝑅𝑅 is the canopy 

resistance for vapour transfer [s m−1], which can be calculated as: 

𝐶𝐶𝑅𝑅 = 𝑝𝑝1 (𝐿𝐿𝑅𝑅𝐿𝐿 ∗ 𝑔𝑔0 ∗ (1.4 − 0.00121 ∗ 𝐶𝐶𝐶𝐶2))⁄        (2-8) 

where 𝑝𝑝1 is a parameter used in EPIC to adjust PPT estimation ranging between 1.0 and 2.0 and a 

default value of 1 was used in this study; 𝑔𝑔0 is the leaf conductance [m s−1] and 𝐶𝐶𝐶𝐶2 is the carbon 

dioxide concentration [ppm]. 

Potential soil evaporation (PSE) is calculated as: 

𝑃𝑃𝑃𝑃𝑃𝑃 = max {(𝑃𝑃𝑃𝑃𝑃𝑃 − 𝐿𝐿) ∗ 𝑃𝑃𝐶𝐶𝐿𝐿, 0}       (2-9) 

where 𝐿𝐿 is the rainfall interception [mm d−1]; 𝑃𝑃𝐶𝐶𝐿𝐿 is a soil cover index varying between 0 and 1, 

which can be calculated as: 

𝑃𝑃𝐶𝐶𝐿𝐿 = exp {−max�0.4 ∗ 𝑃𝑃𝑅𝑅𝐿𝐿𝑅𝑅, 0.1 ∗ (𝐶𝐶𝐶𝐶 + 0.1)�}     (2-10) 

where 𝑃𝑃𝑅𝑅𝐿𝐿𝑅𝑅 is the sum of the 𝐿𝐿𝑅𝑅𝐿𝐿 and 𝐶𝐶𝐶𝐶 is the weight of all above ground plant material [t ha−1]. 

When 𝑃𝑃𝑃𝑃𝑃𝑃 < 𝐿𝐿, both actual plant transpiration (APT) and soil evaporation (ASE) are set to 0. 

Otherwise, they are estimated as: 

𝑅𝑅𝑃𝑃𝑃𝑃 = min {(𝑃𝑃𝑃𝑃𝑃𝑃 − 𝐿𝐿),𝑃𝑃𝑃𝑃𝑃𝑃}        (2-11) 
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𝑅𝑅𝑃𝑃𝑃𝑃 = min {𝑃𝑃𝑃𝑃𝑃𝑃,𝑃𝑃𝑃𝑃𝑃𝑃 ∗ (𝑃𝑃𝑃𝑃𝑃𝑃 − 𝐿𝐿) (𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑃𝑃𝑃𝑃)}⁄      (2-12) 

Actual evapotranspiration (AET) is the sum of APT and ASE. The climate variables required 

as input for each PET method are listed in Table 2-1. 

The PEPIC model 

PEPIC runs the EPIC (the latest version v0810) model within a Python-based framework. 

The whole study domain is firstly categorized into a number of subareas depending on the study 

purposes (e.g. administrative boundaries, climate regions, watersheds). Input data (e.g. elevation, 

slope, climate, soil, and management practice information) need to be specified for each grid cell, 

which has a spatial resolution of 30 arc min. After simulation is complete for all grids cells, 

PEPIC extracts the results and presents the spatial distribution of desired variables for a given 

time period. In this study, we simulated crop growth processes separately for irrigated and rainfed 

maize cultivation. To get combined outputs for each grid cell, values from irrigated and rainfed 

cultivation were aggregated using area-weighted averaging as described by Liu et al. (2007). 

Table 2-1. Description of potential evapotranspiration (PET) methods and associated climate variables. 

Method Abbr. Solar radiation 
(RN) 

Temperature 
(T, Tmin, Tmax) 

Relative 
humidity (RH) 

Wind 
speed (U) 

Reference 

Baier–Robertson BR  Yes   Baier and Robertson 
(1965) 

Hargreaves H  Yes   Hargreaves and 
Samani (1985) 

Penman P Yes Yes Yes Yes Penman (1948) 

Penman–
Monteith 

PM Yes Yes Yes Yes Monteith (1965) 

Priestley–Taylor PT Yes Yes   Priestley and Taylor 
(1972) 

2.2.2 Data description 

The input data for the PEPIC model include latitude, longitude, elevation, slope, climate, soil 

properties, nitrogen and phosphorus fertilizer as well as irrigation application rates, cropland use 

areas for irrigated and rainfed cultivation, planting dates, harvesting dates, and PHU. 

Climate data required to run PEPIC include solar radiation, maximum and minimum air 

temperature, precipitation, relative humidity, wind speed, and CO2 concentration. In this study, 

the Global Annual Mean CO2 Dataset provided by Goddard Institute for Space Studies (GISS) of 

National Aeronautics and Space Administration (NASA) was used. The other climate variables 

were obtained from the Global Gridded Crop Model Intercomparison (GGCMI) Project (Elliott et 

al., 2015). This dataset is based on WFDEI (Weedon et al., 2014) ERA-Interim historical re-

analysis data that have been bias corrected on a monthly scale against the Climate Research Unit 

(CRU) data (Mitchell and Jones, 2005). It spans the time period of 1979–2012, which is also the 

simulation period in this study. Soil properties of layer depth, pH, bulk density, organic carbon 



Impacts of PET methods on simulating crop–water relations 

20 

content, % sand, and % silt, etc. were extracted from the ISRIC–WISE (Batjes, 2006). This soil 

dataset was spatially linked to the FAO Digital Soil Map (FAO, 1995). 

The fertilizer application rates of N and P around 2000 were derived from the FertiStat (FAO, 

2007). This dataset is only available at the country level. Application rates were assumed to be the 

same for the different grid cells within a given country in this study. Because of the available data 

on irrigation rates were not sufficiently complete, an automatic irrigation schedule with a 

maximum total volume  of 1,000 mm for the whole growing season was employed to guarantee 

enough water for crop growth. Besides, the minimum and maximum single application volumes 

were set to 1 and 500 mm. This kind of irrigation strategy is commonly assumed in large scale 

crop modelling (Rosenzweig et al., 2014). Harvested maize areas for irrigated and rainfed 

cultivation were obtained from the MIRCA2000 dataset (Portmann et al., 2010), which provides 

the irrigated and rainfed areas for 26 crops within the period of 1998–2002. 

The required data on planting dates and harvesting dates were obtained from the Center for 

Sustainability and the Global Environment (SAGE) (Sacks et al., 2010). The SAGE dataset 

includes the beginning, medium, end of planting/harvesting dates for 19 crops. Medium values 

were used in our study. PHU was calculated by using the PHU Calculator of the Blackland 

Research Center based on the input data of planting dates, harvesting dates and temperature. 

Besides the grid-based analyses, also an updated version of the Köppen–Geiger classification 

of climate zones (Peel et al., 2007) was used to compare the results. The Köppen–Geiger 

classification divides the whole world into five major categories (Table 2-2), i.e. A (tropical), B 

(arid), C (temperate), D (cold) and E (polar) based on global temperature and precipitation 

information. Details about the Köppen–Geiger classification can be found at http://www.hydrol-

earth-syst-sci.net/11/1633/2007/hess-11-1633-2007-supplement.zip. The Köppen–Geiger 

classification has been widely used as a basis for regionalisation of climatic variables such as in 

GGCMI (Elliott et al., 2015). Table 2-2 shows the climate zones and the irrigated and rainfed 

maize areas in each zone. 

 

http://www.hydrol-earth-syst-sci.net/11/1633/2007/hess-11-1633-2007-supplement.zip
http://www.hydrol-earth-syst-sci.net/11/1633/2007/hess-11-1633-2007-supplement.zip
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Table 2-2. Definition of the Köppen–Geiger climate zones and harvest areas in irrigated and rainfed systems of maize. 

Zone Definition Irrigated 
 

Rainfed 
 

Combined 
 

Percent of irrigated 
and rainfed area 

Harvest area 
(ha) 

Percent in the 
total irrigated 
area (%) 

Harvest area 
(ha) 

Percent in the 
total rainfed area 
(%) 

Harvest area 
(ha) 

Percent in the 
total mixed area 
(%) 

Irrigated 
(%) 

Rainfed 
(%) 

Af Tropical rainforest 123,627 0.43 3,820,347 3.23 3,943,974 2.68 3.13 96.87 
Am Tropical monsoon 253,565 0.87 3,881,438 3.28 4,135,003 2.81 6.13 93.87 
Aw Tropical Savannah 1,326,765 4.56 24,270,654 20.53 25,597,419 17.38 5.18 94.82 
BWh Arid desert hot 1,387,463 4.77 328,925 0.28 1,721,057 1.17 80.62 19.11 
BWk Arid desert cold 910,677 3.13 44,427 0.04 956,655 0.65 95.19 4.64 
BSh Arid steppe hot 1,075,022 3.70 4,072,646 3.44 5,147,970 3.49 20.88 79.11 
BSk Arid Steppe cold 1,722,430 5.92 624,599 0.53 2,347,029 1.59 73.39 26.61 
Csa Temperate dry and hot summer 182,738 0.63 69,399 0.06 252,212 0.17 72.45 27.52 
Csb Temperate day and warm summer 78,896 0.27 21,706 0.02 100,602 0.07 78.42 21.58 
Cwa Temperate dry winter and hot summer 304,081 1.05 2,215,906 1.87 2,519,987 1.71 12.07 87.93 
Cwb Temperate dry winter and warm summer 42,648 0.15 1,300,172 1.10 1,342,820 0.91 3.18 96.82 
Cwc Temperate dry winter and cold summer 6 0.00 1,116 0.00 1,122 0.00 0.53 99.47 
Cfa Temperate no dry season hot summer 7,458,669 25.65 22,468,226 19.00 29,927,094 20.32 24.92 75.08 
Cfb Temperate no dry season warm summer 1,879,087 6.46 9,527,090 8.06 11,406,177 7.74 16.47 83.53 
Cfc Temperate no dry season cold summer 3,855 0.01 3,179 0.00 7,034 0.00 54.81 45.19 
Dsa Cold dry and hot summer 1,447 0.00 1,483 0.00 2,930 0.00 49.39 50.61 
Dsb Cold dry and warm summer 2,878 0.01 956 0.00 3,834 0.00 75.07 24.93 
Dsc Cold dry and cold summer 0 0.00 30 0.00 30 0.00 0.00 100.00 
Dwa Cold dry winter and hot summer 987,116 3.39 1,214,479 1.03 2,201,595 1.49 44.84 55.16 
Dwb Cold dry winter and warm summer 804,639 2.77 866,153 0.73 1,670,792 1.13 48.16 51.84 
Dwc Cold dry winter and cold summer 93,082 0.32 164,158 0.14 257,240 0.17 36.18 63.82 
Dwd Cold dry winter and very cold summer 0 0.00 7 0.00 7 0.00 0.00 100.00 
Dfa Cold no dry season hot summer 8,954,943 30.79 27,410,705 23.19 36,365,648 24.69 24.62 75.38 
Dfb Cold no dry season warm summer 1,425,208 4.90 15,598,072 13.19 17,023,280 11.56 8.37 91.63 
Dfc Cold no dry season cold summer 44,914 0.15 281,278 0.24 326,192 0.22 13.77 86.23 
ET Polar tundra 19,102 0.07 37,535 0.03 56,637 0.04 33.73 66.27 
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2.2.3 Description of estimated variables 

GSET is the accumulated AET from planting date to harvesting date. Irrigation is 

automatically triggered when water stress factor (ratio between daily plant water use and daily 

potential water use) is lower than 0.9. Irrigation rate is determined by the minimum of the 

maximum single application volume and the volume required to fill the soil moisture to field 

capacity. Irrigation water requirement in this study is defined as the total applied irrigation rates 

during the whole growing season for irrigated maize cultivation. CWU was calculated by 

multiplying GSET with crop harvest areas at the grid cell level and then summing over all grid 

cells. For irrigated cultivation, CWU was separated into blue and green CWU, where green CWU 

refers to the CWU derived from soil moisture and precipitation, while blue CWU is the CWU 

originating from irrigation. We adopted the methods introduced in Liu et al. (2009) to separate 

blue and green CWU. Crop water productivity (CWP) is defined as the ratio between maize yield 

and GSET (Liu et al., 2007). For consistency with MIRCA2000 data and fertilizer inputs, results 

in this study were averaged between 1998 and 2002. 

 

2.3 Results 

2.3.1 Estimation of potential evapotranspiration (PET) 

The five PET estimation methods compared here produced quite different annual PET 

distributions (Figure 2-1a). Only H and BR gave similar results. With H more grid cells fell into 

the high range (>2000 mm) than with BR, while with BR more cells fell into the low range 

(<1000 mm). Major differences were found among PM, P and PT methods. The PM method 

produced a large fraction of low values (<1000 mm) and the smallest fraction of high values 

(>1600 mm), whereas estimates obtained with P and PT were dominated by high values (>1600 

mm). With PT more than half of all grid cells had annual PET values >2000 mm. The largest 

differences were found for the tropical and arid regions, southwestern part of America, Mexico, 

and southeastern part of China. 

Large differences in estimated annual PET were also evident at the level of the Köppen–

Geiger climate zones (Figure 2-1b). The lowest annual PET values were obtained with the PM 

method for the Af, Am, Aw, Cwa, Cwb, Cfa, Cfb and Cfc zones. For other zones, BR estimated 

the lowest annual PET values. In contrast, PT estimates were the highest in all Köppen–Geiger 

zones except in the arid regions Bwh, BWk and BSh, where P gave the highest values. As for the 

grid cells, the H method produced a similar pattern to that of BR, but with higher values. Different 

climate variables used in different PET estimation methods contribute to the variations in PET 
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estimations in a given climate zone. For example, the P and PM methods consider relative 

humidity and wind speed in PET estimation, which are not considered in the other PET methods. 

 

Figure 2-1. Spatial patterns of annual potential evapotranspiration (PET) estimates obtained using 
different PET methods at the (a) grid and (b) Köppen–Geiger levels. 

2.3.2 Estimation of growing season evapotranspiration (GSET) 

Irrigated maize cultivation 

Generally, the differences in GSET estimates (Figure 2-2) obtained with the different PET 

estimation methods were smaller than those shown in PET values (Figure 2-1). This is because 

GSET is also related to other crop growth factors, especially the development of LAI. The PT 

method produced higher GSET values than the other PET methods, as shown with more grid cells 
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falling into the range of >600 mm and few grid cells falling into the range of <300 mm GSET 

(Figure 2-2a). In contrast, the BR and H methods gave relatively low GSET values, with more 

grid cells falling into the range of <400 mm and less grid cells into the range of >700 mm than 

with the other methods. The PM and P produced comparable spatial patterns and frequency 

distributions of grid cells. Also at the Köppen–Geiger level, the variation of GSET estimates was 

not as significant as in PET estimates (Figures 2-1b and 2-2b). The PT method resulted in the 

highest GSET for all regions, with the exception of Bwh, Bwk, Bsh and BSk, where the PM 

method led to the highest values. On the other hand, PM produced low values in many other 

regions, especially in the Af, Am, Aw, Cwa, Cwb, Cfa, Cfb and Cfc regions. BR and H showed 

again similar performance with low GSET estimates especially for arid and cold regions and high 

GSET estimates for the Af, Am, Aw, Cwa, Cwb, and Cfc regions (Figure 2-2b). 

Rainfed maize cultivation 

The differences among GSET estimates obtained with the five PET estimation methods were 

relatively small also for rainfed maize cultivation (Figure 2-3). Rather large differences only 

occurred between PM and PT estimates (Figure 2-3a). PM resulted in low GSET values (<300 

mm) for the majority of grid cells (>50%), while PT produced much higher values (>500 mm) for 

most grid cells. Furthermore, PT, H and BR methods led to high GSET values for tropical regions, 

in contrast to P and PM. At the Köppen-Geiger level, similar GSET values were obtained with all 

the five PET estimation methods except for the Af, Am, Aw, Cwa, Cwb, Cfa, Cfb and Cfc regions 

(Figure 2-3b). In the latter eight regions, PT, H and BR estimates of PET produced higher GSET 

values than the other two methods, while PM estimates produced the lowest GSET values. 

2.3.3 Estimation of maize yields 

The performance of different PET methods was evaluated against the reported yields for 

individual countries. Country-specific reported yield data were downloaded from FAO (Food and 

Agriculture Organization of the United Nations) database (http://faostat3.fao.org/home/E). For 

consistency with the estimated yields, FAO reported yields were also averaged for 1998 and 2002. 

Generally, the PEPIC model performed well in estimating yields for all the countries by using the 

five PET methods (Figure S2-1). However, biases can be found for minor maize producers. In 

order to show the overall trends more clearly, Figure 2-4 presents the respective results only for 

the 21 major maize producing countries, i.e. the countries with cropland area used for maize 

cultivation larger than 0.8% of the global total maize cultivation areas. These 21 countries account 

for more than 80% of the global areas used for maize production. The slopes of the regression 

lines between estimated and reported maize yields were 0.90, 0.87, 0.83, 0.90, and 0.74 for the 

simulations based on PET estimation with the BR, H, P, PM, and PT methods, respectively. The 

slopes for P and PT were significantly different from 1 at the 95% statistical level. The intercepts 

http://faostat3.fao.org/home/E
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of the regression lines were 1.00, 0.94, 0.88, 0.76, and 0.99 (all significantly different from 0 at 

the 95% statistical level), respectively, and the R2 values ranged between 0.82 and 0.90, 

demonstrating that PEPIC performed relatively well in estimating maize yields for the major 

maize-producing countries. 

 

Figure 2-2. Spatial patterns of growing season evapotranspiration (GSET) estimates obtained using 
different PET estimation methods for irrigated maize cultivation at the (a) grid and (b) Köppen–Geiger 
levels.  
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Figure 2-3. Spatial patterns of growing season evapotranspiration (GSET) estimates obtained using 
different PET estimation methods for rainfed maize cultivation at the (a) grid and (b) Köppen–Geiger 
levels. 
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Figure 2-4. Comparisons between reported and estimated yields using different PET estimation methods 
for major maize-producing countries. Colours represent continents, and the areas of the circles represent 
the areas of land used for maize production in the respective countries relative to the total area used for 
maize cultivation worldwide. 

The best performance (large slope and R2, low intercept) of the five PET estimation methods 

was found for PM, but BR and H performed almost as well, while the poorest performance was 

found for PT (Figure 2-4). Using PT, PEPIC tended to underestimate high yields (e.g. >6 t ha−1) 

more than using the other PET estimation methods. The differences in yield estimates related to 

the choice of the PET estimation method mainly resulted from differences in yield simulations for 

rainfed maize cultivation, while there was little variation related to the PET estimation methods 

for irrigated maize cultivation (Figures 2-5 and S2-2). Also in rainfed maize cultivation there 

were only small differences relating to PET estimation for regions of Af, Am, Aw, Cwa, Cwb, 

and Cfc, whereas differences were more notable for regions of such as Csa, Csb, Dwa, Dfa, and 

Dfb (Figure 2-5b). 

2.3.4 Estimation of irrigation water requirement and crop water productivity 

(CWP) 

The highest irrigation water requirement occurred in the regions of BWh, BWk, BSh and 

BSk, Csa, and Csb (Figure 2-6). For regions with generally high irrigation demand, the BR and H 
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methods of PET estimation generally predicted the lowest demand. On the other hand, the PT 

method with few exceptions tended to predict the highest irrigation water requirement. 

 

Figure 2-5. Simulated maize yields at the Köppen–Geiger level for (a) irrigated and (b) rainfed 
cultivation. 

 

 

Figure 2-6. Simulated irrigation water requirement at the Köppen–Geiger level. 

In most cases BR estimation of PET resulted in the highest CWP values for irrigated maize 

cultivation (Figure 2-7a). Only in the tropical areas (Af, Am, Aw) and in the Cwa, Cwb, Cfa, Cfb 

and Cfc regions the highest values were produced using the PM method. On the other hand, PT 

method produced the lowest values except for the arid areas (BWh, BWk, BSk and BSk) and for 

Csa and Dsb, where PM led to the lowest CWP estimates. The patterns for rainfed maize were 

similar to the irrigated system (Figure 2-7b). 

2.3.5 Global aggregated CWU, production and CWP 

Using PT to estimate PET produced the highest total CWU in both irrigated (158.80 × 109 m3) 

and rainfed (537.86 × 109 m3) maize cultivation, while PM produced the lowest total CWU 
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(442.90 × 109 m3) for rainfed cultivation and BR the lowest total CWU (129.68 × 109 m3) for 

irrigated cultivation (Table 2-3). When separating the total CWU for irrigated cultivation into blue 

and green CWU, the PM method produced the lowest green CWU (88.29 × 109 m3), while BR 

resulted in the lowest blue CWU (35.68 × 109 m3). Also for rainfed and irrigated cultivation 

combined , the PM-based CWU estimates were the lowest. 

 

Figure 2-7. Simulated (a) irrigated and (b) rainfed maize crop water productivity (CWP) at the Köppen–
Geiger level. 

In accordance with the results for the yields, the estimates of total rainfed maize production 

were quite sensitive to the choice of the PET estimation methods, while there was little sensitivity 

for irrigated maize production (Table 2-3). PT gave the lowest (512.47 × 106 t) and BR the 

highest (610.63 × 106 t) estimates for rainfed maize production. For irrigated maize, H-based 

simulation estimated the highest and PM-based simulations the lowest production, but the 

difference between them was only 2.8 × 106 t. The estimates of global total maize production for 

both systems combined decreased with the choice of PET estimation methods in the order BR, H, 

PM, P, PT. The difference of 99.15 × 106 t between maximum and minimum productions was 

almost equivalent to China’s total maize production in 2000 (106× 106 t). 

The estimated global average CWP varied between 1.17 and 1.44 kg m−3 for irrigated maize 

cultivation and between 0.95 and 1.29 kg m−3 for rainfed maize cultivation (Table 2-3). While the 

lower bounds of these range resulted from PET estimates based on the PT method in both cases, 

the upper value resulted for irrigated production from using the BR method and for rainfed 

production from using the PM method. 
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2.4 Discussion 

2.4.1 Comparison of CWU and CWP with other studies 

The green CWU of maize was two times the blue CWU for irrigated maize cultivation in the 

study of Mekonnen and Hoekstra (2011). Our study obtained similar results with much higher 

green CWU than blue CWU for irrigated maize (Table 2-3). Total volumes of  blue CWU in 

global irrigated maize production reported in the literatures varied between 51 × 109 and 72.4 × 

109 m3 (Fader et al., 2011; Mekonnen and Hoekstra, 2011; Siebert and Döll, 2010). Our estimates 

of  blue CWU by using P, PM and PT for estimating PET were within this range, while the 

estimates based on BR and H methods were lower. The total CWU for maize production was 

previously reported to range between 548.39 × 109 and 657.7 × 109 m3 (Chapagain and Hoekstra, 

2004; Fader et al., 2011; Mekonnen and Hoekstra, 2011; Siebert and Döll, 2010). The estimates 

obtained  in this study were all within this range, except for the PT method, which tended to 

overestimate CWU. Ranging between 1.00 and 1.30 the CWP values estimated in this study were 

of the same magnitude as the value estimated by Chapagain and Hoekstra (2004), but higher than 

the values estimated by Mekonnen and Hoekstra (2011) and Siebert and Döll (2010). 

Table 2-3. Comparison of global aggregated crop water use (CWU, in 109 m3), crop production (in 106 t), 
and crop water productivity (CWP, in kg m−3) for maize based on different PET methods in the EPIC 
model and comparison with literatures. 

Variable This study 
 

Chapagain 
and Hoekstra 
(2004) 

Fader 
et al. 
(2011) 

Mekonnen 
and Hoekstra 
(2011) 

Siebert 
and Döll 
(2010) 

BR H P PM PT PM PT PM PM 
Irrigated blue CWU 35.68 40.98 55.81 53.19 60.35  66.38 51 72.4 
Irrigated green CWU 94.01 94.86 92.70 88.29 98.45   104  
Rainfed CWU 498.29 512.33 486.32 442.90 537.86   493  
Total CWU 627.97 648.17 634.83 584.37 696.67 548.39 592.67 648 657.7 
Irrigated production 186.57 187.04 185.16 184.25 185.56     
Rainfed production 610.63 588.23 545.47 573.73 512.47     
Mixed production 797.21 775.29 730.66 757.99 698.06     
Irrigated CWP 1.44 1.38 1.25 1.30 1.17   1.125  
Rainfed CWP 1.23 1.15 1.12 1.29 0.95   0.924  
Combined CWP 1.27 1.20 1.15 1.30 1.00 1.1  0.973 0.919 

2.4.2 Influences of water availability on GSET and yield estimates 

For irrigated maize cultivation, the variation of GEST estimates was considerable with PET 

estimation methods in all climate regions. However, the variation of GSET estimates presented 

different patterns at the Köppen–Geiger level for rainfed maize cultivation, with high variation in 

some regions (e.g. Af, Am, Aw, Cwa, Cwb, Cfa, Cfb, and Cfc), but quite low variation in the 

other regions (Figure 2-3b). This is mainly due to the influence of the spatial pattern of annual 

precipitation. We found that the average annual precipitation in the aforementioned eight climate 
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regions was greater than 800 mm, especially in the tropical areas (Figure S2-3). High annual 

precipitation leads to less limit on GSET in these regions. However, the GSET estimates were 

strongly constrained by water availability in the rainfall limited regions, leading to low variation. 

This finding is consistent with Wang and Dickinson (2012). It suggests the important role of 

water availability on the variation of GSET estimation with different PET methods. 

The yield estimates showed little variation with PET estimation methods for irrigated maize 

cultivation (Figure 2-5a). This is mainly attributable to the fact that irrigation was set 

automatically to a level that is sufficient for crop needs in PEPIC independent of PET estimation 

methods. The major differences of yield estimates were found in the limited water availability 

regions for rainfed maize cultivation (Figure 2-5b), especially for the regions of Dfa and Dfb, 

which had high fractions of total rainfed cropland areas (Table 2-2). This is because the effects of 

PET methods on yields will only show up when water availability is limited. Consequently, the 

global total maize production varied largely for rainfed maize cultivation (Table 2-3). 

2.4.3 Assessment of the performance of different PET methods 

In this study, the PT method produced the highest annual PET estimates, and consequently 

also the highest GSET estimates for both irrigated and rainfed maize cultivation and the lowest 

maize yield estimates for rainfed maize. Also the PT method tends to underestimate yields for 

high-yield countries (compared with the reported yields) (Figures 2-4 and S2-1). The main reason 

for underestimating yields may be related to its overestimation of water stress (Figure S2-4) 

stemmed from overestimation of PET. 

The BR method was developed in Canada (Baier and Robertson, 1965). It was designed to 

estimate PET in cold regions, where it is generally low. In this study, we found that annual PET 

estimates obtained with the BR method were low for cold regions, but high for tropical regions 

(Figure 2-1). Consequently, GSET estimates obtained with the BR method for cold regions were 

also lower than estimates using the other methods for irrigated maize production (Figure 2-2b). 

On the other hand, the BR-based GSET estimates were quite high for the Af, Am, Aw, Cwa and 

Cwb regions (Figures 2-2b and 2-3b), which suggests that BR may be less suitable for these areas 

because it was initially developed and tested for cold regions. As for production, BR led to the 

highest estimate of total maize production for rainfed cultivation (Table 2-3). We attribute this to 

the lowest crop water stress estimated with BR (Figure S2-4). Given that BR led to the largest 

overestimation of yields (Figure 2-5b), crop water stress probably tended to be underestimated 

with this method for rainfed cultivation. 

The H method was developed for semi-arid and arid regions (Hargreaves and Allen, 2003). It 

led to low annual PET estimates for arid regions in our study compared with the other PET 



Impacts of PET methods on simulating crop–water relations 

32 

methods, whereas the estimated annual PET was relatively high for tropical regions (Figure 2-1). 

As a consequence, the GSET estimates were also small for arid regions, but quite high for Af, Am, 

Aw, Cwa and Cfb regions, where annual precipitation for both irrigated and rainfed maize 

cultivation is sufficiently high (Figures 2-2 and 2-3). This implies that H tends to overestimate 

GSET in humid regions. The higher GSET estimates for humid regions were consistent with 

findings by other studies Yoder et al. (2005), Trajkovic, (2007), and Saghravani et al. (2009). 

Trajkovic (2007) proposed an exponential index of 0.424 in Eq. 2 instead of 0.6 for humid regions. 

Moreover, using H led to the highest maize production estimates for irrigated cultivation (Table 

2-3), which implies that H is likely to overestimate crop yields under sufficient water supplying 

conditions. 

The P method was once recommended as the reference PET method by FAO (Doorenbos, 

1977). However, it was replaced by PM, because it overestimated PET for a wide range of 

environmental conditions (Allen et al., 1998). Sau et al. (2004) even recommended to delete the P 

option from the DSSAT model because of its poor performance compared with other options in 

DSSAT. We also found that the estimates of annual PET and GSET obtained with the P method 

were higher than those obtained with PM method (Figures 2-1–2-3). Considering the better 

agreement between estimated and reported yields with PM- than P-based PET estimates and that 

both require the same climate input data, we suggest to use PM instead of P in simulating maize 

growth on a global scale. Besides, the estimation of PPT with PM considers LAI and CO2 in 

calculating canopy resistance coefficient for the whole crop growing period. This is one of major 

differences of PM from the other PET methods and could be part of the reason that PM performed 

more reliably for yield estimation. Therefore, if input data are not the major limitation, we 

recommend PM to be used for global crop simulation. 

 

2.5 Conclusions 

Large-scale crop models are major tools used to investigate the global water–food relations, 

the impacts of climate change on food production and irrigation demand, and to assess water 

management strategies for alleviating water scarcity and enhancing food security. This study 

demonstrates that different PET methods can lead to large uncertainties in the estimation of crop–

water relations, which could impair sound decision making for policy makers. 

The differences in annual PET estimates obtained with different PET methods were 

significant. Their impacts on predictions of water related variables (e.g. GSET, irrigation water 

requirement, and CWU) were more substantial than on yields. At the same time, also water 

availability played an important role for predictions of GSET and yields. Overall, PT tended to 
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estimate high GSET and to underestimate yields. H and BR tended to estimate high GSET for 

rainfall sufficient regions. In rainfall-limited regions, all the PET methods performed consistently, 

except the overestimation of maize yield with BR due to its lower estimation of water stress. 

Globally, PM was more reliable in yield estimation than the other PET methods and has more 

reasonable implementation in estimating PPT by considering the effects of LAI and CO2 on 

canopy resistance coefficient, thus should be considered with priority. However, PM requires 

more climate variables than H, BR, and PT. In contrast, H and BR only require temperature. 

However, BR tended to overestimate maize yield for rainfed cultivation, where H performed 

reasonably well for most regions except for high-rainfall regions. If obtaining whole set of climate 

data is a major challenge, H is a valid alternative option for all other regions except for high-

rainfall regions. 
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Supplementary Information for 

Global investigation of impacts of PET methods on simulating crop–water relations for maize 

 

Figure S2-1 shows the comparison between FAO reported country maize yields (averaged over 

1998–2002) and estimated yields for all the maize-producing countries (a total of 141) (also 

averaged over 1998–2002). The slopes of the regression line are 0.68, 0.68, 0.65, 0.69, and 0.60 

for BR, H, P, PM, and PT, respectively. The intercepts are 1.60, 1.60, 1.57, 1.47, and 1.67, 

respectively. The R2 varied between 0.54 and 0.62. It is clear that there are some overestimations 

for the low yield countries and underestimations for the high yield countries. Generally, these 

unmatched countries are the minor producers of maize in terms of global total maize harvest areas. 

 

 

Figure S2-1. Comparisons between reported and estimated yields using different PET estimation 
methods for all maize-producing countries. Colours represent continents, and the areas of the circles 
represent the areas of land used for maize production in the respective countries relative to the total area 
used for maize cultivation worldwide. 
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Figure S2-2. Spatial patterns of yield estimates obtained using different PET estimation methods at the 
grid level for irrigated (a) and rainfed (b) maize cultivation. 
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Figure S2-3. Global annual precipitation in different Köppen–Geiger climate zones. 

 

 

 

 

 

 

 

 

Figure S2-4. Estimated days of water deficit (water stress) at the Köppen–Geiger level. 
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Table S2-1. PET methods comparison between different crop models. 

Model PET options Reference Comments 
APES H, P, PM, PT Donatelli et al. (2010) Only PM, PT, H mentioned in the model 

reference 
APSIM PT, PM Keating et al. (2003) PM or PT are only used for calculating soil 

evaporation, while transpiration is calculated 
by using a transpiration efficiency approach 
based on dry matter growth. 

AquaCrop PM Steduto et al. (2009)  
CropWat PM Smith (1992)  
CropSyst PT, PM Stockle et al. (2003) Potential biomass accumulation is based on 

potential transpiration and crop intercepted 
solar radiation. 

Daisy PM Hansen et al. (2012)  
DayCent PM Stehfest et al. (2007)  
DSSAT P, PT, PM Jones et al. (2003)  
EPIC BR, H, P, PT, PM Williams et al. (1989)  
Expert-N P, PM, Haude, 

Ritchie 
Stenger et al. (1999)  

FASSET Makkink Berntsen et al. (2003)  
GLAM PT Challinor et al. (2004)  
H08 Bulk formula Hanasaki et al. (2008)  
HERMES PM, Haude, TW Kersebaum (2007) Only Haude and TW mentioned in reference 
HYBRID-
maize 

PM Yang et al. (2004) Not specified in the literature 

InfoCrop PT, PM Aggarwal et al. (2006)  
IXIM PT, PM Lizaso et al. (2011) Only PT mentioned in the model reference 
LINPAC PM Jing et al. (2012)  
LPJmL PT, PM Bondeau et al. (2007)  
MAIZSIM P Kim et al. (2012)  

MCWLA PM Tao et al. (2009)  
MONICA PM Nendel et al. (2011)  
MSB PT Muchow et al. (1990) Not specified in the reference 
PEGASUS PT Deryng et al. (2011)  
PlantSys 1.0 P, PM Jongschaap (2007) Only PM mentioned in the model reference 
SALUS PT Basso et al. (2010)  
SARRAH PM Baron et al. (2005)  
STICS P, PT, SW Brisson et al. (2003)  
WOFOST P Vandiepen et al. (1989)  

PET methods: BR: Barier–Robertson (Baier and Robertson, 1965); H: Hargreaves (Hargreaves and Samani, 1985); 
Haude (Haude ,1955); Makkink (Makkink, 1957); Ritchie (Ritchie, 1972); P: Penman (Penman, 1948); PM: Penman–
Monteith (Monteith, 1965); PT: Priestley–Taylor (Priestley and Taylor, 1972); SW: Shuttleworth and Wallace 
(Shuttleworth and Wallace, 1985); TW: Turc–Wendling (Wendling et al., 1991) 
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Table S2-2. PET methods used in some large-scale crop modelling works. 

Model PET method Reference Study area 
CLM-Crop no information Drewniak et al. (2013) Global 
EPIC-IIASA no information Balkovič et al. (2014) Global 
EPIC-IIASA H Balkovič et al. (2013) Europe 
DayCent PM Stehfest et al. (2007) Global 
GEPIC H Folberth et al. (2012) Sub-Saharan Africa 
GEPIC H Liu et al. (2007) Global 
GIS-based EPIC no information Tan and Shibasaki (2003) Global 
GLAM PT Osborne et al. (2007) Global 
Grid-Parallel-APSIM no information Zhao et al. (2013) Australia 
iGAEZ PM Tatsumi et al. (2011) Global 
LPJ-GUESS no information Lindeskog et al. (2013) Africa 
LPJmL no information Bondeau et al. (2007) Global 
LPJmL no information Gerten et al. (2011) Global 
MCWLA PM Tao and Zhang (2013) China 
ORCHIDEE-STICS no information Valade et al. (2014) Brazil, Australia and La 

Réunion Island 
pAPSIM no information Elliott et al. (2014) Africa 
pDSSAT no information Elliott et al. (2014) Africa 
PEGASUS PT Deryng et al., (2014); Deryng et al., 

(2011) 
Global 

WOFOST P Boogaard et al. (2013) European Union 
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Abstract 

Agricultural application of reactive nitrogen (N) for fertilization is a cause of massive 

negative environmental problems on a global scale. However, spatially explicit and crop-specific 

information on global N losses into the environment and knowledge of trade-offs between N 

losses and crop yields are largely lacking. We use a crop growth model, Python-based 

Environmental Policy Integrated Climate (PEPIC), to determine global N losses from three major 

food crops: maize, rice, and wheat. Simulated total N losses into the environment (including water 

and atmosphere) are 44 Tg N yr−1. Two thirds of these, or 29 Tg N yr−1, are losses to water alone. 

Rice accounts for the highest N losses, followed by wheat and maize. The N loss intensity (NLI), 

defined as N losses per unit of yield, is used to address trade-offs between N losses and crop 

yields. The NLI presents high variation among different countries, indicating diverse N losses to 

produce the same amount of yields. Simulations of mitigation scenarios indicate that 

redistributing global N inputs and improving N management could significantly abate N losses 

and at the same time even increase yields without any additional total N inputs. 

 

Keywords 

N losses; Global assessment; NLI; Trade-offs; Major crops; PEPIC 

 

Graphical Abstract 

 

Highlights 

We simulate N losses of major cereal crops by using a global crop model. 

N losses are focused on several main producers, where more attentions should be paid. 

NLI is a useful indicator for assessing trade-offs between N losses and yields. 

Mitigation scenarios show that N losses can be reduced without compromising yields. 
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3.1 Introduction 

Anthropogenic activities are the major driver of changes in the global nitrogen (N) cycle 

(Fowler et al., 2013). Terrestrial N flows resulting from anthropogenic activities have increased 

to > 3.3-fold of those resulting from natural processes by 2010 (Fowler et al., 2013; Galloway et 

al., 2014). As a consequence, the global N cycle is now 3.5 times above what is considered as a 

safe threshold (Rockstrom et al., 2009). Agriculture is the largest consumer (63%) of annual 

terrestrial reactive N (Sutton et al., 2013). Global industrial N fertilizer application increased 9-

fold from 1960 to 2010 (Ladha et al., 2016; Sutton et al., 2013), with N fertilizer inputs to 

croplands reaching 120 Tg N yr−1 (Tg = 1012 g) at the end of that period (Fowler et al., 2013). 

This unprecedented increase in N flows was made possible by the development of industrial 

fixation of atmospheric N (Haber–Bosch process) and the associated mineral N fertilizer use 

(Galloway et al., 2008). The drivers of this development are the need to supply food for an 

increasing global population, dietary shift towards more meat and dairy products consumption, 

and growing biofuel demand (Foley et al., 2011). On the downside, this development is associated 

with increasing agricultural N losses into the environment, causing stratospheric ozone depletion, 

eutrophication and acidification of water and soil, as well as losses in the diversity of ecosystems 

(Babbin and Ward, 2013; Clark and Tilman, 2008; Conley et al., 2009; Davidson, 2009; Diaz and 

Rosenberg, 2008; Erisman et al., 2013; Foley et al., 2005; Foley et al., 2011; Guo et al., 2010; Liu 

et al., 2013b; Sutton et al., 2013). Many studies have found that N use efficiency (NUE, defined 

as the ratio of crop harvested N to total N inputs) is low in major food producing regions. On 

global average, it is only about 0.42 in 2010 (Zhang et al., 2015). Without emission reductions, 

global N losses are expected to further increase and reach levels higher than 150% of the 2010 

values by 2050 (Bodirsky et al., 2014). 

To control N emissions, it is important to quantify and identify the main pathways and major 

contribution regions of N emissions. Previous studies of N losses performed at a global scale were 

mainly based on mass balance methods. On this basis, Liu et al. (2010) found that about half of 

global total N inputs into croplands were lost to the environment. Bouwman et al. (2013) 

estimated that around 93 Tg N yr−1 was lost from arable lands and 45 Tg N yr−1 from grasslands. 

Lassaletta et al. (2014) investigated the relationship between crop yields and N inputs based on 

FAO (Food and Agriculture Organization of the United Nations) data from 124 countries and 

concluded that about 53% of N added to croplands was lost to the environment. Zhang et al. 

(2015) built a global N budget database and the total N losses to the environment were estimated 

at about 100 Tg N yr−1 in 2010. However, all of these studies require crop yields as data inputs to 

quantify harvested N. Consequently, interactions between N dynamics and crop growth cannot be 

represented, which are essential to explore the trade-offs of N losses and yield benefits for future 



Global assessment of nitrogen losses and trade-offs with yields 

48 

N management. Mass balance method applies the same empirical equations to calculate N fluxes 

over a large scale without explicitly considering the spatial variability (e.g. site-, climate- and 

management-specific differences). Besides, most of these global N balance assessment studies 

focus on total N fluxes aggregated from different crops (and grasses) with much less attention on 

crop-specific disparity, which is important to guide N fertilization management, especially from 

the major cereal crop cultivations. Therefore, it is critical to explicitly investigate crop-specific N 

losses and the related trade-offs with yields in order to provide suggestions for controlling N 

emissions. 

While biophysical crop growth models nowadays have the ability to account for site- and 

crop-specific interactions between plant growth and N turnover, only few studies so far have 

made use of this ability in assessing agricultural N losses on a large scale. Examples are the 

studies of van der Velde et al. (2009) who used the Environmental Policy Integrated Climate 

(EPIC) model (Williams, 1995; Williams et al., 1984) to estimate N losses through leaching for 

rapeseed cultivation in Europe; and the study of Del Grosso et al. (2009) who used the 

DAYCENT model to study global N losses from maize, soybean, and wheat cultures. In addition, 

the spatial resolution in the simulations by Del Grosso et al. (2009) is quite coarse (1.9 arcdeg), 

and no crop-specific information on N fertilizer use and N leaching is given. Another example is 

the study of Qiu et al. (2011) who applied the GIS-based DNDC (Denitrification–Decomposition) 

model to simulate N leaching from croplands at the county level in China, but did not give site- 

and crop-specific information on N losses. None of these studies include rice. Three major cereal 

crops, i.e. maize, rice, and wheat, together consume about 60% of global N fertilizer application 

(Ladha et al., 2005) and provide about 57% of the dietary calories produced by agriculture 

(Tilman et al., 2011). In order to identify the hotspots of N losses from crop cultivations, it is 

important to conduct a high spatial resolution assessment of N losses by focusing on these three 

major crops. 

The concept of NUE is generally used in N management. Achieving high NUE is one of the 

major targets for modern agriculture (Conant et al., 2013; Cui et al., 2014; Lassaletta et al., 2014; 

Zhang et al., 2015). However, this concept cannot be directly used for N loss assessment due to 

soil N imbalance, either N accumulation or N depletion (Liu et al., 2010). For example,  Liu et al. 

(2010) estimated NUE based on the ratio of crop harvested N to total N inputs to be 0.59 on 

global average, however the ratio of total N losses to total N inputs was 0.49 other than 0.41 

based on their estimations. This imbalance stemmed from the difference between total N losses 

and total N inputs minus total crop harvested N. The former considers the soil N imbalance and 

the latter does not. Taking into consideration the soil N balance is important for understanding the 

global N budget and for N management. In low input countries, typically African countries, soil N 
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depletion is prevalent (Sanchez, 2002). In high N input countries, such as China, soil N 

accumulation may be significant (Zhou et al., 2016). 

Here, we use PEPIC, a grid-based EPIC model developed in a Python environment, to 

determine global N losses from the cultivations of the three major crops at a high spatial 

resolution of 30´ (about 50 km at the equator). The EPIC model adopts the Century model (Parton 

et al., 1994), which is widely used to simulate soil carbon and N dynamics (Bhattacharyya et al., 

2010; Cong et al., 2014), to model carbon and N turnover (Izaurralde et al., 2006). Coupled with 

spatial analysis tools, EPIC has been widely applied to estimate impacts of agronomic practices 

and climate change on crop yields (Balkovič et al., 2014; Folberth et al., 2014; Liu et al.,2013a; 

among others). Due to its integration with Python, PEPIC can be easily applied at different spatial 

scales. It has been successfully applied to simulate global maize growth (Liu et al., 2016). In 

addition, its performance on simulating growth of the other two crops is also quite robust (Figure 

S3-1). Given that N leaching to water is a major source of water pollution, we also consider the 

losses to water alone, in addition to total losses to the environment which includes water and 

atmosphere. To address the trade-offs between N losses and yields, we propose a concept as N 

loss intensity (NLI) which measures N losses per unit of yield. Finally, in order to demonstrate the 

feasibility of reducing N losses while still maintaining or increasing global production of the three 

target crops, the trade-offs between N losses and crop yields under three proposed N fertilization 

scenarios are also investigated. 

 

3.2 Methods 

3.2.1 Model and input data 

The EPIC model (Williams, 1995; Williams et al., 1984) simulates crop growth and soil 

nutrient dynamics. In this study, the PEPIC model was used for the global simulation at a 

resolution of 30´ (Liu et al., 2016). Default parameters of the EPIC model were used for global 

application, as it is difficult to adjust model parameters at specific regions on such a large scale. 

Additionally, the estimated N losses were compared with previous studies. 

Soil N inputs considered in EPIC include fertilizer (Nfer) and manure (Nman) application, crop 

residue decomposition (Ndec), and rainfall deposition (Ndep). Soil N outputs are N up taking by 

crops (Nup), N losses into the atmosphere via volatilization of ammonia (Nav) and denitrification 

of nitrate (Nad) and exports of dissolved or particle-bound N into water with soil erosion (Nws), 

surface runoff (Nwr) and leaching (Nwl). To close the soil N cycle, change of soil N stock (∆N) is 

also considered. Soil N budget is expressed as following: 
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𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑅𝑅𝑑𝑑𝑓𝑓𝑑𝑑 + 𝑅𝑅𝑑𝑑𝑓𝑓𝑑𝑑 = 𝑅𝑅𝑢𝑢𝑑𝑑 + 𝑅𝑅𝑚𝑚𝑎𝑎 + 𝑅𝑅𝑚𝑚𝑑𝑑 + 𝑅𝑅𝑤𝑤𝑤𝑤 + 𝑅𝑅𝑤𝑤𝑓𝑓 + 𝑅𝑅𝑤𝑤𝑤𝑤 + ∆𝑅𝑅  (3-1) 

In this study, we focused on N losses into the total and aquatic (water) environment: 

𝑅𝑅𝑡𝑡 = 𝑅𝑅𝑚𝑚𝑎𝑎 +𝑅𝑅𝑚𝑚𝑑𝑑 +𝑅𝑅𝑤𝑤𝑤𝑤 + 𝑅𝑅𝑤𝑤𝑓𝑓 + 𝑅𝑅𝑤𝑤𝑤𝑤       (3-2) 

𝑅𝑅𝑤𝑤 = 𝑅𝑅𝑤𝑤𝑤𝑤 + 𝑅𝑅𝑤𝑤𝑓𝑓 + 𝑅𝑅𝑤𝑤𝑤𝑤        (3-3) 

where Nt and Nw are N losses into the total and the aquatic (water) environment, respectively. All 

these fluxes are calculated in units of kg N ha−1. In EPIC, Nad is a function of soil temperature and 

water content, while Nav is calculated based on soil temperature and wind speed. Nwr and Nwl are 

calculated by the products of nitrate-N concentration and soil surface runoff and seepage water. 

Nws is calculated by considering soil erosion, organic N concentration in the top soil layer, and 

enrichment ratio of N in sediment. It should be noted that, while Nw is N export from agricultural 

fields with water flows, this export may not end up entirely in water bodies. Also, a portion of N 

losses to water bodies can flow to the sea, imposing the environmental impacts on coastal waters 

instead of the areas where they are initially generated. However, quantifying N losses reaching the 

coastal waters requires hydrological models to simulate the transport of nutrient in the water 

channels, which is beyond the scope of this study. One of the main purposes of this study is to 

explore the possible N losses from the farmlands and identify the global hotspots of losses. We do 

not trace further the fate of the N that is lost to water bodies. More details about N routines in 

EPIC can be found in Williams (1995) and Izaurralde et al. (2006). 

Crop-specific N inputs with application of mineral fertilizers and manure (Nfer + Nman, Nin 

hereafter) were obtained from EarthStat (http://www.earthstat.org). Mineral N, phosphorus, and 

potassium fertilizer inputs are based on Mueller et al. (2012), while N, phosphorus, and potassium 

inputs from manure are based on West et al. (2014), which considers 36% of manure being 

volatilized before reaching croplands. These data are currently the most up-to-date crop-specific 

datasets on global agricultural N inputs. N deposition from precipitation was estimated by EPIC 

based on annual precipitation and N concentration in rainfall. The sources of other input datasets 

can be found in SI. As both land-use (1998–2002) and fertilizer data relate to the years around 

2000, this also holds for the model outputs (averaging between 1998 and 2002). Simulation 

results are presented at four levels, i.e. grid, country, continent, and globe. Average Nin, Nt, Nw, 

and crop yields at country, continent, and global levels were calculated as area-weighted averages 

of each variable at the corresponding levels. Total Nin, total Nt, total Nw, and crop production were 

calculated by multiplying average values of Nin, Nt, Nw, and yields by corresponding cropland 

areas calculated by using Eqs. (3-4) – (3-7): 

𝑃𝑃𝑅𝑅𝑚𝑚𝑚𝑚 = 𝑅𝑅𝑚𝑚𝑚𝑚 ∗ 𝑅𝑅𝑚𝑚          (3-4) 

𝑃𝑃𝑅𝑅𝑡𝑡 = 𝑅𝑅𝑡𝑡 ∗ 𝑅𝑅𝑚𝑚           (3-5) 

http://www.earthstat.org/
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𝑃𝑃𝑅𝑅𝑤𝑤 = 𝑅𝑅𝑤𝑤 ∗ 𝑅𝑅𝑚𝑚          (3-6) 

𝑃𝑃 = 𝑌𝑌 ∗ 𝑅𝑅𝑚𝑚           (3-7) 

where A is cropland areas at the country, continental, and global levels; TNin [Gg N yr−1], TNt 

[Gg N yr−1], and TNw [Gg N yr−1] are total Nin, Nt, and Nw at each spatial level, respectively; P 

[Tg yr−1] is the crop production and Y [t ha−1] is the yield. 

In order to reflect the trade-offs between N losses and yields, we used the NLI defined as: 

𝑅𝑅𝐿𝐿𝐿𝐿 = 𝑅𝑅𝑡𝑡/𝑌𝑌          (3-8) 

The NLI quantifies the N losses associated with the production of a unit mass (1 t) of yield. 

Lower values of NLI mean less N losses for producing the same amount of food. 

3.2.2 Crop management parameters 

The model was separately applied to rainfed and irrigated cultivations. For irrigated crops, 

we assumed that drip irrigation was applied when water stress exceeded 10% on a given day up to 

a maximum annual supply of 1000 mm. This is a common practice in crop modelling when there 

is no information on the actual irrigation schedules and the amounts of water applied over time in 

different regions (Balkovič et al., 2014; Folberth et al., 2012; Liu and Yang, 2010; Liu et al., 2016; 

Rosenzweig et al., 2014). After simulation of both rainfed and irrigated cultivations, aggregated 

outputs from both cultivation systems were calculated for each grid cell by using area-weight 

averaging (Liu et al., 2007). Based on Del Grosso et al. (2009), we assumed that 25% of the crop 

residues are left on field. Furthermore, we assumed that phosphorus and potassium fertilizers 

were applied immediately before planting (Balkovič et al., 2014), as we found no global-scale 

dataset on fertilization schedules. Tillage was implemented before planting. Previous studies 

proposed various schedules for N application. For example, Folberth et al. (2014) applied 1/3 of N 

inputs before planting, and the rest one month after germination in sub-Saharan Africa. Stehfest et 

al. (2007) applied equal amounts of N four times globally. Other studies, not aiming at N loss 

assessment, used an automatic application schedule (Balkovič et al., 2013; Folberth et al., 2012; 

Liu et al., 2007). In this study, we tested three different N fertilization schedules: FixN1, FixN2, 

and FixN3 (Table 3-1). While Nt predictions were quite similar for all three schedules (Figure 3-

5), we found that the predicted country-specific yields agreed best with the FAO reported yields 

for wheat simulation when we used the FixN3 schedule and that there were only minor 

differences to reported yields for maize and rice with this schedule (SI and Figure S3-1). 

Therefore, we selected FixN3 as the baseline for the analysis of the three N mitigation scenarios: 

FixN3E, AutoN, and AutoNE as defined in Table 3-1. Briefly, FixN3E distributes world N inputs 

evenly using the FixN3 schedule. AutoN stands for automatic N fertilization with current value of 

N inputs, which means N application is dependent on crop demands before reaching the current 
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application rates. AutoN can be also used as baseline of efficient N fertilization, as the needed 

amount of N is applied at the time when it is needed. AutoNE stands for automatic N fertilization, 

but puts limits on the maximum application amounts evenly with global average Nin of maize, rice, 

and wheat. It should be noted that in all different N fertilization schedules and scenarios, we did 

not consider different types of N fertilizers due to unavailable data. This simplification has been 

widely used in large-scale crop modelling (Balkovič et al., 2014; Folberth et al., 2014; 

Rosenzweig et al., 2014; van der Velde et al., 2009). 

Table 3-1. Description of different nitrogen (N) fertilization schedules and scenarios. 

 

Application time Application rates 
 1st 2nd 3rd  

Schedules     
FixN1 3 days before 

planting 
  Applying N inputs once 

FixN2 3 days before 
planting 

35 days after 
planting 

 One-second of N inputs for each time 

FixN3 3 days before 
planting 

35 days after 
planting 

65 days after 
planting 

One-third of N inputs for each time 

Scenarios     
FixN3E 3 days before 

planting 
35 days after 
planting 

65 days after 
planting 

One-third of 122, 134, 100 kg N ha−1 for maize, rice, 
and wheat for each timea 

AutoN Dynamic   Applying N when crop needs with a cap set at the 
current level of N inputs 

AutoNE Dynamic   Applying N when crop needs with a maximum amount 
of 122, 134, 100 kg N ha−1 for maize, rice, and wheata 

a Global average N inputs for maize, rice, and wheat are 122, 134, and 100 kg N ha−1, respectively. 

3.2.3 Uncertainty analysis 

We applied the Latin Hypercube Sampling (LHS) method to explore model uncertainties 

derived from model parameters (Mckay et al., 1979). LHS first divides the parameters into 

indicated number of segments. Then the parameter segments are randomized, and finally a 

random sample is chosen in each segment. It is more efficient than Monte Carlo (Mckay et al., 

1979) and also used in the SWAT-CUP software (Abbaspour, 2011) to calibrate SWAT (Soil and 

Water Assessment Tool) model parameters (Abbaspour et al., 2007; Schuol et al., 2008; Yang et 

al., 2008). Parameters associated with N, phosphorus, and carbon routines in EPIC and their 

possible ranges for uncertainty analysis were carefully selected based on Della Peruta et al. (2014) 

and Wang et al. (2012) (Table S3-2). In this study, we considered 100 parameter segments for 

each crop based on the LHS method. 
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3.3 Results 

3.3.1 Nitrogen loss assessment 

The simulations identified some regions with particularly high N losses (Figure 3-1), to 

which more attentions should be paid. As Figure S3-2 suggests, the high losses in these regions 

are mainly related to high N inputs, and also Figure 3-2 shows a clear trend that N losses increase 

with increasing N inputs. For maize cultivation, the model predicted particularly high levels of Nt 

in the eastern parts of China, South Korea, Japan, Indonesia, western Europe, the northeastern 

parts of the USA, and southern Mexico (Figure 3-1a). Predicted Nw show similar spatial patterns 

as Nt (Figure 3-1b). The USA and China are two major maize producers and also produced quite 

high Nt, especially in China (Figure 3-2a). Consequently, these two countries together accounted 

for 52% of global TNt for maize (Table 3-2). On the other hand, Nt is also relatively high for some 

countries with low Nin (e.g. <50 kg N ha−1), especially in Africa. In some cases, the simulations 

indicate that the ratio of Nt to Nin was even higher than 1. Such high ratios in combination with 

low total N inputs suggest that soil N depletion should be considered a major factor. The 

relationship between Nw and Nin is not as clear as that between Nt and Nin, as shown in Figure 3-2 

the linear relationship and coefficient of determination (R2). We found that the total volume of 

growing season precipitation (GSP) and irrigation water also affects N losses, with low volume of 

GSP and irrigation tending to have low values of N losses at the country level (Figure S3-3). 

These effects can also be observed in different climate regions. For example, Nt of maize is 

highest where the total volume of GSP and irrigation water is higher than 600 mm in temperate 

regions, although Nin is not highest in these regions (Figure S3-4). The global TNt and TNw were 

calculated to be 12,414 and 6,777 Gg N yr−1 (Gg = 109 g) (Table 3-2). Asia and North America 

produced the highest total N losses. Together they accounted for 71% and 74% of the global TNt 

and TNw, respectively. While predicted total environmental N losses were similar in Asia and 

North America, with North America having much higher maize yields (Table 3-2). 

For rice cultivation, high levels of Nt and Nw were found in China, South Korea, Japan, 

Vietnam, Bangladesh, and Indonesia (Figures 3-1c and 3-1d). India and China have the largest 

rice cultivation areas. Together the two countries accounted for two thirds of global total N losses, 

both to the total environment as well as to water alone (Table 3-2). As Figure 3-2 shows, the 

higher N losses in China are related to correspondingly higher inputs of N fertilizers compared to 

India. The total volume of GSP and irrigation water for rice cultivation is much higher than that 

for maize and wheat cultivation, particularly for wheat (Figure S3-3). This difference may 

partially explain the higher N losses for rice in addition to its high N inputs than the other two 

crops. At the same time, high levels of total GSP and irrigation are associated with high levels of 

N losses from rice cultivation in various climate regions (Figure S3-4). The predicted global TNt 
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and TNw are 17,129 and 13,531 Gg N yr−1 from rice cultivation (Table 3-2). Asia on the whole 

produced about 92% of the global rice harvests in 2000, and also played an overwhelming role in 

contributing to total N losses. It alone accounted for 96% of the global total N released from rice 

fields into the total environment and for 97% of the global N released form rice fields into water.

Figure 3-1. Global maps of nitrogen losses into the environment (Nt) and water (Nw) for maize (a, b), rice 

(c, d), and wheat (e, f).

For wheat cultivation, high level of N losses were predicted for large parts of southeastern 

China, northern India, South Korea, Japan, Thailand, southeastern USA, and central Europe 

(Figures 3-1e and 3-1f). India and China are also the largest wheat producers and together 

contributed 44% and 55% of global TNt and TNw for wheat, respectively (Figures 3-2e and 3-2f). 

In contrast, the USA and Russia, another two major wheat producers, produced much less N 

losses, but also applied much less N inputs, especially Russia. The global TNt and TNw were 

14,253 and 8,584 Gg N yr−1 (Table 3-2). Asia produced 45% of global wheat harvests, but 

contributed 60% and 69% of global TNt and TNw, respectively. Following Asia, Europe presented 
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the second highest total N losses, accounting for 20% and 18% of global TNt and TNw,

respectively.

Figure 3-2. Nitrogen inputs (Nin) and nitrogen losses into the environment (Nt) and water (Nw) for maize 

(a, b), rice (c, d), and wheat (e, f) at country level. Countries with the smallest areas (for a total of 1% of 

global total cropland areas of each crop) are discarded; different shapes represent different continents; 

sizes represent cropland areas for each country; colours present ratio of N losses (Nt and Nw) to Nin;

dashed blue vertical line represents the world average Nin for each crop; dashed green line represents 

linear regression between Nt and Nin (a, c, e) and between Nw and Nin (b, d, f); equation represents the 

linear relationship; R
2

is the coefficient of determination of equation.

3.3.2 Intensity of nitrogen losses in relation to yields

Generally, yields increase with N inputs as long as N is limiting crop plant growth, but with 

increasing N inputs also N losses increase (Figures 3-2 and 3-3). In order to demonstrate the 

complex relationship among Nin, yields, and Nt more clearly, we use the concept of NLI. The NLI 

presents quite high variation, indicating some countries perform better, in terms of low N losses, 



Global assessment of nitrogen losses and trade-offs with yields 

56 

to produce the same amount of yields, while the other countries do not (Figure 3-3). For maize 

cultivation, NLI is around 8–30 kg N t−1 (Figure 3-3a). High N inputs can be associated with high 

NLI, as in the case of China, as well as with low NLI, as in the case of the USA, where N is 

obviously more efficiently used to produce high yield and thus less N is wasted. Vice versa, also 

low N inputs can be associated with quite high NLI due to low yields and relatively high N loses 

compared to N inputs. For example, the variation of NLI in Africa is between 6 and 45 kg N t−1 

despite very small N inputs. For rice cultivation, predicted NLI were around 10–40 kg N t−1 

(Figure 3-3b). China has NLI about 30 kg N t−1, while India around 20 kg N t−1. For wheat 

cultivation, NLI is higher compared with the other two crops, around 10–50 kg N t−1 (Figure 3-3c). 

Among the major wheat producers, India has the highest NLI, followed by China, the USA, and 

Russia. 

Table 3-2. Total nitrogen losses and crop production globally, continentally, and in the top 10 producing 

countries for maize, rice, and wheat in 2000. TNin, TNt, and TNw are total nitrogen inputs (only including 

mineral fertilizer and manure), total nitrogen losses into the environment, and total nitrogen losses into 

water (in Gg N yr−1), respectively; P is crop production (in Tg yr−1).  

Maize Rice Wheat 

Regions TNin TNt TNw P Regions TNin TNt TNw P Regions TNin TNt TNw P 

Global 17816 12414 6777 780 Global 20332 17129 13531 677 Global 20859 14253 8583 517 

Africa 1001 852 322 54 Africa 204 245 136 17 Africa 559 298 120 15 

Asia 6363 4364 2728 190 Asia 19492 16432 13107 624 Asia 12899 8560 5893 232 

Europe 2223 1629 721 115 Europe 37 26 11 3 Europe 3598 2893 1542 130 

N. America 7013 4386 2267 347 N. America 299 153 91 12 N. America 2704 1714 658 95 

Oceania 7 5 3 0 Oceania 2 2 0 0 Oceania 618 304 69 20 

S. America 1209 1179 737 74 S. America 298 271 186 21 S. America 483 484 301 25 

USA 5649 3286 1540 289 India 5126 3660 2729 188 China 6002 3197 2057 118 

China 5048 3184 2002 128 China 8744 7533 6345 178 India 3594 3100 2636 36 

Brazil 851 817 527 44 Indonesia 1271 1270 980 61 USA 2054 1324 576 65 

Mexico 958 731 450 40 Thailand 713 491 296 46 Russia 408 643 134 39 

India 381 318 175 19 Bangladesh 1209 1224 1007 45 Australia 610 298 64 20 

Russia 57 174 27 9 Vietnam 831 715 557 30 Canada 580 340 48 29 

Nigeria 88 92 39 8 Myanmar 152 353 289 16 Kazakhstan 41 261 7 16 

Argentina 146 164 79 19 Philippines 267 91 31 10 Turkey 771 517 285 20 

Ukraine 91 174 17 8 Pakistan 199 225 171 14 Pakistan 1190 600 502 6 

France 694 379 246 27 Brazil 140 121 77 11 Argentina 348 251 117 19 

3.3.3 Mitigation scenarios 

Based on the FixN3E mitigation scenario, which evenly distributes the globally available N 

fertilizers, the global production of maize, rice, and wheat could increase by 29, 62, and 45 Tg 

yr−1 without any additional N inputs (Table 3-3). At the same time, it would lead to significant 

decreases in total Nt and Nw, especially for rice and wheat cultivations according to our 
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simulations. Maize yields and environmental N losses are predicted to decline in some European 

countries and the USA, while only Nt but not yield would decrease in China (Figure 3-4a). Large 

increases in maize yields but also in N losses would be expected in South America and Africa 

(Table 3-3). Some countries such as Brazil would be expected to show a substantial increase in 

yield with only a negligible increase Nt compared to a large increase in Nin (from 75 to 122 kg N 

ha−1). For rice, a major decrease in N losses would be expected for China, while yield could be 

maintained at today’s level (Figure 3-4b). For wheat, China would see a large decrease in Nt with 

a small decrease in yield, while India would only experience a decrease in Nt (Figure 3-4c). In the 

contrary, Russia shows a high potential to increase yield (about 1 t ha−1) with a minor increase in 

Nt. 

In the AutoN mitigation scenario, crop yields would not increase significantly (at least for 

maize and rice), but as much less N inputs would be needed (Figures 3-4d–3-4f), it would result 

in a significant reduction in global N losses with more efficient N fertilization (Table 3-3). For 

maize and rice cultivation, China shows a dominant decrease in Nt (Figures 3-4d and 3-4e). For 

wheat, China and India would see large decreases in Nt, while many countries in Europe would 

decrease Nt and simultaneously increase wheat yields (Figure 3-4f). 

Compared with the FixN3E scenario, the impacts on yields are similar for maize and rice 

cultivations by adopting the AutoNE mitigation scenario with more efficient N management 

(Figures 3-4g and 3-4h). Further decreases of Nt in China and the USA from maize cultivation 

and in China from rice cultivation are predicted. As for wheat, the influence is more positive with 

more countries moving into a condition where increasing yields and decreasing average Nt happen 

simultaneously, especially in Europe (Figure 3-4i). Besides, the increases of Nt are less significant 

in the rising N losses countries under the FixN3E scenario; while the decreases of Nt in China and 

India would be further enhanced. 

3.3.4 Uncertainties 

Generally, the range of uncertainty for Nt derived from parameters is relatively small for 

maize, rice, and wheat either globally, continentally, or for the top 10 producing countries (Figure 

3-5). The results calculated by using model default parameters are very close to the median values 

for all the three crops, which, in another way and to some degree, reflect the reasonable 

estimations of N losses by using the constructed simulation framework in this study. Furthermore, 

differences in N losses between simulations comparing the three fertilization schedules, i.e. FixN1, 

FixN2, and FixN3, were also small (Figure 3-5). 
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Figure 3-3. Intensity of nitrogen losses (NLI) into the environment in relation to yields against nitrogen 

inputs (Nin) at country level. Countries with the smallest areas (for a total of 1% of global total cropland 

areas of each crop) are discarded; shapes represent different continents; sizes represent cropland areas 

for each country; colours present crop yields; FAO reported yields are used for China for rice cultivation 

and for India and Pakistan for wheat cultivation because of their underestimated yields, more details see 

SI; dashed vertical line represents the world average Nin for each crop. 

 

3.4 Discussion 

3.4.1 Comparisons with other studies 

We compared our results with previous studies, which investigated large-scale N losses from 

the whole agricultural sector, to check the reliability of our simulations. The ratio of Nt to Nin 

ranged between 0.76 and 0.85 in such studies (Bouwman et al., 2009; Bouwman et al., 2013; Liu 

et al., 2010; Mekonnen and Hoekstra, 2015; Sutton et al., 2013) (Table 3-4). The ratio found in 
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our study is just slightly below this range. No legume crops were considered in this study as other 

studies did; this might contribute to the slight difference. Generally, even though much less soil N 

excess over crop plant demand can be expected to occur in legume crops compared to the major 

cereal crops investigating here, some N losses do also occur from legume crop cultivations. On 

the other hand, the ratio of Nw to Nin is 0.49 in our study, which is within the range of 0.22–0.55 

as reported by these previous studies. The reported variation of Nw/Nt is quite high (0.26–0.70), 

implying the large uncertainties to separate Nw and N losses into atmosphere from Nt. Our 

estimation is also within this range. These comparisons thus indicate that our simulations 

produced plausible results. 

 

Figure 3-4. Differences of yields and nitrogen losses into the environment (Nt) between different 

mitigation scenarios and base scenario for maize (a, d, g), rice (b, e, h), and wheat (c, f, i). Countries with 

smallest areas (for a total of 1% of global total cropland areas of each crop) are discarded; sizes 

represent cropland areas for each country; colours represent different continents. 

It should be noted that the difference between 1 and Nt/Nin in Table 3-4 cannot be directly 

compared with the previously reported NUE, e.g. in Lassaletta et al. (2014) and Zhang et al. 

(2015). This is because Nin in this table only includes Nfer and Nman, while NUE was generally 
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estimated by considering the whole N inputs (including Nfer, Nman, Ndep, Ndec, etc.). Another reason 

is that Nt estimated in this study also takes into account the changes of soil N stock, whereas the 

calculation of NUE only focuses on crop Nup. 

Table 3-3. Differences of total nitrogen inputs (TNin, in Gg N yr−1), total nitrogen losses into the 

environment (TNt, in Gg N yr−1) and into water (TNw, in Gg N yr−1), and crop production (P, in Tg yr−1) 

between mitigation scenarios and base scenario. 

Region Scenario Maize Rice Wheat 

  TNin TNt TNw P TNin TNt TNw P TNin TNt TNw P 

Global FixN3E 0 −411 −627 29 0 −1586 −1892 62 0 −1723 −2158 45 

 AutoN −1625 −1898 −1418 7 −2045 −2011 −1708 3 −4008 −4432 −4015 42 

 AutoNE −1134 −2182 −1801 46 −1026 −2505 −2397 64 −2471 −5351 −5148 95 

Africa FixN3E 1675 959 679 19 628 353 299 11 199 28 −2 4 

 AutoN −152 −100 −62 1 −24 −12 −2 0 −113 −78 −63 0 

 AutoNE 1269 555 357 20 558 290 253 11 161 −38 −46 5 

Asia FixN3E −1120 −992 −989 6 −957 −2080 −2290 42 −2521 −2177 −2158 4 

 AutoN −1210 −1123 −966 1 −2020 −1986 −1709 3 −3795 −3096 −2950 7 

 AutoNE −1473 −1431 −1247 8 −1895 −2886 −2721 42 −4822 −4357 −4091 17 

Europe FixN3E 448 167 69 −1 36 18 13 1 804 139 −32 12 

 AutoN −88 −213 −139 2 0 −3 −1 0 −26 −780 −674 23 

 AutoNE 195 −234 −238 2 31 9 7 1 764 −694 −704 36 

N. America FixN3E −1901 −913 −629 −21 −42 −33 −27 0 628 108 −14 9 

 AutoN −148 −385 −205 1 −1 −1 6 0 −70 −374 −273 9 

 AutoNE −1955 −1263 −796 −12 −48 −43 −32 0 558 −274 −269 18 

Oceania FixN3E 4 0 −1 0 16 7 4 0 534 134 41 7 

 AutoN 0 −1 0 0 0 0 0 0 −2 −57 −25 2 

 AutoNE 3 −1 −1 0 14 5 3 0 513 31 −11 10 

S. America FixN3E 893 369 244 25 319 149 109 8 356 44 8 8 

 AutoN −26 −77 −45 2 1 −9 −1 0 −1 −46 −30 1 

 AutoNE 827 191  27 314 119 93 8 355 −19 −26 10 

3.4.2 Environmental impacts associated with high nitrogen losses 

Nitrogen losses are associated with significant environmental impacts, especially in the high 

emissions regions (Erisman et al., 2013). Our study identified four hotspots of N losses: China, 

India, eastern parts of the USA, and Central Europe (Figure 3-1). Considerable environmental 

consequences have already been detected in these regions. Because of much higher N inputs than 

crop demands, China has experienced significant N deposition enhancement (Liu et al., 2013b), 

which has led to substantial soil acidification in major croplands (Guo et al., 2010). It was 

reported that N imbalance also resulted in significant nitrate accumulation in Chinese croplands, 

even at soil depth bellow 4 m (Zhou et al., 2016). Downstream, large amounts of N have been 

discharged into coastal water bodies and caused severe eutrophication (Tong et al., 2015). Eastern 

parts of the USA and India experienced similar N deposition patterns as China (Erisman et al., 
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2013). Furthermore, Diaz and Rosenberg (2008) identified 415 eutrophic and hypoxic coastal 

water systems around the world mostly located in the northern Gulf of Mexico, Chesapeake Bay, 

and Baltic and North Seas. The eutrophic conditions in these regions were mainly due to N losses 

in the Mississippi river basin and respective catchment in the eastern parts of the USA and central 

Europe. These regions were detected in our study as high N loss regions. 

3.4.3 Assessment of nitrogen loss conditions 

Generally, our results show three patterns of N loss conditions: a) high N inputs associated 

with high N losses due to N overuse, thus decreasing Nin is required; b) low N inputs associated 

with low yields due to insufficient availability of N inputs, thus increasing Nin is needed but 

appropriate fertilization management should be considered when intensifying these croplands; c) 

high yields associated with low NLI, indicating that the right amount of N inputs is applied. We 

will focus on several major crop producers to discuss these patterns below. 

China showed the largest overuse of N for all the three crops, especially for rice cultivation 

(Figure 3-4). Decreasing its N inputs for the three crops to the respective world averages would 

not affect yields, except for a small decrease in wheat yield. This action in China alone would 

avoid about 7.5 Tg N yr−1 of environmental N losses from the three crops. This finding is 

consistent with Mueller et al. (2012), who also found that China has a particularly high potential 

to reduce Nin. Similar as China, also India shows a high potential to decrease N inputs for wheat 

cultivation and thus to reduce environmental N losses. 

Many countries in Africa and South America, on the other hand, should increase N inputs to 

increase yields. In our simulations, food production in Africa increased by between 30 and 65% 

when N inputs were increased to the world average (Table 3-3). But also N losses increased. 

Therefore, appropriate N fertilization is needed when increasing N inputs. For example, yield was 

predicted to increase by 1.0 t ha−1 and Nt by 21 kg N ha−1 in the FixN3E scenario for maize 

production in Brazil, while yield increased by 1.2 t ha−1 and Nt by only 11 kg N ha−1 in the 

AutoNE scenario (Figures 3-4a and 3-4g). Similarly in Russia for wheat cultivation, an increase 

of yield rising from 1.1 to 1.2 t ha−1 is obtained with increase of Nt declining from 27 to 16 kg N 

ha−1 when N fertilization scenario changes from FixN3E to AutoNE (Figures 3-4c and 3-4i). 

In the USA, maize cultivation belongs to the third pattern of N loss conditions (Figure 3-4). 

The current average N application rate in the USA in maize cultivation is 178 kg N ha−1. In the 

AutoN scenario, we identified a value of 174 kg N ha−1, which is only slightly lower than the 

actual value. In addition, Nt differs only slightly between FixN3 and AutoN. This suggests that in 

average the N input amounts applied in the USA in maize cultivation are just matching the 

demand of the crop. This may also partially explain why we found much better performance for 
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the USA in maize cultivation than for China in terms of NLI (Figure 3-3). Although the USA and 

China are the major N loss contributors of maize cultivation, with appropriate N fertilization and 

higher yields, the NLI obtained for the USA was only 46% of that for China. 

 

Figure 3-5. Uncertainties of nitrogen losses into the environment (Nt) globally, continentally, and for the 

top 10 producing countries of maize (a), rice (b), and wheat (c). Lines from top to bottom are 95th, 75th, 

50th, 25th, and 5th percentiles, respectively. Red cycles represent results with default parameters by using 

FixN3 fertilization schedule; green pluses represent results with default parameters by using FixN2 

fertilization schedule; blue crosses represent results with default parameters by using FixN1 fertilization 

schedule. 

3.4.4 Current progress 

Due to limitations in available input data, our results relate to the situation around the year 

2000. How this situation has developed since the year 2000 can be inferred from the trend in 
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global total N fertilizer consumption. Generally, global total N consumption increased by 25% 

from 2002 to 2013 (Figure S3-5), implying an increase in total N losses. In particular, total N 

fertilizer consumption in India increased by > 60% in this period. Considering that N losses were 

already high in 2000 according to our simulation, the need to reduce N pollution appears to be 

even more urgent today. During the same period, the total N fertilizer consumption in China has 

only increased by 10%. This is mainly related to China’s effort to find ways to improve its 

nutrient management. For example, an integrated soil–crop system management was introduced 

in China to produce more grains with less fertilizer use at lower environmental costs (Chen et al., 

2014; Chen et al., 2011; Ju et al., 2009). The success achieved in China may be extended to other 

N overuse countries and countries planning to increase N fertilizer inputs (Zhang et al., 2013). 

Total N consumption in Brazil and Russia, which showed high potential to improve yields by 

increasing N inputs in our study, almost doubled in this period. Similar increasing trends were 

also observed in some other insufficient-N countries, e.g. Nigeria, Paraguay, Ukraine, etc. In 

Kenya, for example, maize yield almost tripled from 0.8 ton ha−1 in 2005 to 2.2 ton ha−1 in 2007, 

after farmers were subsidized to buy 100 kg fertilizer per farm in 2005 (Sanchez, 2010). With the 

development of better N management under the pressure to give more attentions to environmental 

protection, N inputs decreased in many western European countries (Figure S3-5), and N losses 

were considerably reduced without compromising yields (Sutton et al., 2011; Velthof et al., 2014). 

However, their potential to reduce Nin without yield losses is not fully exhausted yet. For example, 

Van Grinsven et al. (2013) performed a cost–benefit assessment and concluded that N application 

could be further lowered on average by around 50 kg N ha−1 in northwestern Europe. 

Table 3-4. Comparison of estimated global total nitrogen losses into the environment (TNt, in Tg N yr−1) 

and water (TNw, in Tg N yr−1), and ratio of total nitrogen losses to total nitrogen inputs (TNin, in Tg N 

yr−1) with results from previous studies. 

 (Bouwman et 
al., 2009) 

(Bouwman et 
al., 2013) 

(Liu et al., 
2010) 

(Mekonnen and 
Hoekstra, 2015) 

(Sutton et 
al., 2013) 

Current 
study 

Time period 2000 2000 2000 2002–2010 2000–2010 2000 
TNin (Tg N yr−1)a 184 175 85 134 177 59 

TNt (Tg N yr−1) 157 138 67 109 135 44 

TNw (Tg N yr−1) 41 57 47 53 95 29 

TNt/TNin 0.85 0.79 0.79 0.81 0.76 0.74 
TNw/TNin 0.22 0.33 0.55 0.40 0.54 0.49 
TNw/TNt 0.26 0.41 0.70 0.49 0.70 0.66 

aOnly nitrogen inputs from fertilizer and manure are considered here. 

3.4.5 Limitations 

Because of the unavailability of data on fertilizer application timing, assumptions have been 

made for the fertilizer application schedules in the model simulation. As we do not know how 

well these assumptions match reality, there will be some errors in the results, although the overall 
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differences of Nt among the three N fertilization schedules are small. We only considered 

uncertainties derived from the possible ranges of model parameters. The impacts of cross- and 

spatial-corrections of these model parameters could also be important (Kros et al., 2012). Besides, 

uncertainties in other management practices (e.g. planting and harvesting dates, residue 

management, tillage, etc.), N inputs, and soil inputs were not addressed. These factors may also 

play important roles in N fluxes (Molina-Herrera et al., 2016). Estimating these uncertainties is 

out of the scope in this study, but should be the subject of future studies. 

 

3.5 Conclusions 

In this study, we applied a spatially explicit crop model, PEPIC, to quantify N losses and to 

explore the trade-offs with yields from three major cereal crop cultivations, i.e. maize, rice, and 

wheat, on a global scale with high spatial resolution. Without requiring yields as input data, this 

method can be used to determine the N losses and yields relations under different N mitigation 

scenarios, which is the major advantage of large-scale crop modelling for assessing N losses 

compared to empirical mass balances. 

Global total N losses were 44 Tg N yr−1 for the three crops, with rice contributing the most. 

These losses were concentrated in a few regions, for example in China and the USA for maize 

cultivation, and China and India for rice and wheat cultivations. This concentration of N losses 

calls for more attention to N management in these countries. With the simultaneous consideration 

of N losses and yields, we were able to assess trade-offs between them using an N loss index: NLI. 

The NLI showed high variations among different countries, indicating diverse performance in 

terms of N losses associated with the production of the same amount of yield. This variation 

suggests that there is still considerable potential to improve the efficiency of N use in cereal 

production in many countries without compromising yields. The analysis of mitigation scenarios 

also shows that N losses can be significantly reduced and yields at the same time increased by 

transferring N from currently high application countries to countries with low application. 

Furthermore, there is also still much potential to increase yields by using more efficient N 

fertilization schemes in low N application countries. The findings of this study are useful for 

policy makers to guide better N management and reduce N emissions. 
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Supplementary information for 

Global assessment of nitrogen losses and trade-offs with yields from major crop cultivations 

 

Simulation framework 

The EPIC (Environmental Policy Integrated Climate) model was initially developed to 

simulate impacts of soil erosion on soil productivity (Williams et al., 1984). It can be used to 

simulate a variety of complex soil–water–climate–management processes, e.g. crop growth, soil 

temperature, hydrology, nutrient, management, erosion, tillage, etc. (Williams, 1995). EPIC 

simulates crop growth at a daily step. Potential biomass increase is estimated by the product of 

intercepted solar radiation and biomass–energy ratio. Actual biomass is then calculated by 

multiplying potential biomass increase with a dominant crop stress. Finally, crop yield is obtained 

by the product of accumulated biomass and a harvest index (Williams et al., 1984). 

EPIC simulates the coupled carbon and nitrogen (N) routines in soil organic matters by 

adopting the Century model (Parton et al., 1994). Soil organic matters are divided into three 

compartments: microbial, slow, and passive. These three compartments differ in size, function, 

and turnover times (Izaurralde et al., 2006). Organic residues added to soil, e.g. roots and crop 

residues, are split into metabolic and structural litter compartments based on their lignin and N 

contents. More details about the N routine in EPIC can be found in Izaurralde et al. (2006). 

EPIC is a site-based biophysical model, which is not convenient for a global simulation. 

Whereas, the Python configuration of EPIC, or PEPIC performed the simulation within a spatial 

domain (Liu et al., 2016). PEPIC spatially runs the EPIC model at each grid cell (at a spatial 

resolution of 30 arc minutes in this study) for the whole world, with the ability to prepare the 

input data for each grid cell before simulation, to extract results, and to show the spatial patterns 

of desired variables after the completion of simulation for all grid cells. In this study, we 

considered both irrigated and rainfed cultivations. First, we run the model for irrigated and rainfed 

cultivations separately. Then, we used crop harvest areas of irrigated and rainfed cultivations to 

get the area-weighted average for that grid following the methods in Liu et al. (2007). We applied 

the same method to aggregate crop yields and N losses at the national, continental, and global 

levels. 

 

Validation of simulated yields 

Generally, the PEPIC model performed well in representing FAO reported yields (Figure S3-

1). The simulated yields show acceptable agreements with FAO reported yields for maize and rice 
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by applying the FixN1, FixN2, FixN3 schedules. Additionally, the differences of simulated yields 

for maize and rice cultivation by using the three fixed N fertilization schedules are quite small. 

However, we found the rice yield of China was underestimated, which may be because we used 

the same crop growth parameters (e.g. harvest index) for the whole world, while China applied 

high-yield rice cultivar. This underestimation in China for rice simulation was also found in 

Xiong et al. (2014). While differences for wheat simulation can be found by using the FixN1, 

FixN2, FixN3 schedules, using the FixN3 fertilization schedule demonstrated the best estimation 

among these three schedules. Besides, there are some underestimations for high-yield countries 

and for India and Pakistan. Regarding the underestimation for high-yield countries, we found that 

it was improved if we applied automatic fertilization (Figure S3-1). The underestimation of wheat 

yields for high-yield countries was also found by Balkovic et al. (2014) when they applied N with 

an automatic fertilization schedule. As for the underestimation of India and Pakistan, we found 

this is mainly because the growing season period provided by Sacks et al. (2010) in the border 

regions between India and Pakistan is much shorter than other regions in the two counties. The 

estimated yields in these regions was lower than other regions in these two countries. 

Given the importance of China in rice production and India and Pakistan in wheat production, 

we used FAO reported yields for China’s rice yield and India and Pakistan’s wheat yields when 

we calculated the nitrogen loss intensity in Figure 3-3. 
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Figure S3-1. Comparison between reported and estimated yields under the FixN1, FixN2, FixN3, and 

AutoN nitrogen fertilization schedules. Countries with the smallest areas (for a total of 1% of global total 

cropland areas of each crop) are discarded; colours represent different continents; sizes represent 

cropland areas for each country; dashed blue line is the 1:1 line; dashed red line is the regression line; 

functions represent linear relationship between reported and estimated yields; R2 is the coefficient of 

determination of the regression line. 
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Figure S3-2. Global maps of nitrogen inputs (Nin) for maize (a), rice (b), and wheat (c).
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Figure S3-3. Nitrogen inputs (Nin) and nitrogen losses into the environment (Nt) and waters  (Nw) for 

maize (a, b), rice (c, d), and wheat (e, f) at country level. Countries with the smallest areas (for a total of 

1% of global total cropland areas of each crop) are discarded; shapes represent different continents; 

sizes represent cropland areas for each country; colours present total growing season precipitation (GSP) 

and irrigation water; dashed vertical lines represent the world average Nin for each crop. 
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Figure S3-4. Nitrogen inputs (Nin), nitrogen losses into the environment (Nt), and yield for maize (a, b, c), 

rice (d, e, f), and wheat (g, h, i) in four climate regions with different levels of total growing season 

precipitation (GSP) and irrigation water.
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Figure S3-5. Total nitrogen fertilizer consumption (N) of the whole agricultural sector globally and for 

major crop producing countries between 2002 and 2013. Data downloaded from FAOSTAT 

(http://faostat3.fao.org/home/E); dashed red lines are the linear trend lines; Slope (in Gg N yr−1) is the 

slope of trend line; R2 is the coefficient of determination of the trend line. 
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Table S3-1. Description of input datasets and their sources. 

Data set Description Source Comments 
Elevation Digital Elevation Model USGS/NASA  
Slope Hill slope; derived from 

DEM 
USGS/NASA  

Soil Most important soil 
properties for top and sub 
soil 

World Inventory of Soil 
Emission Potentials (WISE) 
(Batjes, 2006) 

layer depth, pH, bulk density, organic 
carbon content, % sand, and % silt, 
etc.  

Climate ERA-Interim corrected by 
Climate Research Unit 
(CRU) data 

WFDEI (Weedon et al., 2014) solar radiation, air temperature, 
precipitation, relative humidity, as 
well wind speed 

Land use Rain-fed and irrigated 
areas in each grid cell 
around 2000 

MIRCA, Frankfurt University 
(Portmann et al., 2010) 

Land use data for 26 crops between 
1998 and 2002 

Fertilizer Nitrogen, phosphorus, and 
potassium fertilizer and 
manure around 2000 

EarthStat This dataset is based on literatures 
(Mueller et al., 2012; West et al., 
2014) 

Planting 
dates 

Julian day of crop planting SAGE, University of 
Wisconsin (Sacks et al., 2010) 

This dataset provides the earliest, 
medium and latest value of planting 
dates. The medium value was used. 

Harvesting 
dates 

Julian day of crop 
harvesting 

SAGE, University of 
Wisconsin (Sacks et al., 2010) 

This dataset provides the earliest, 
medium and latest value of 
harvesting dates. The medium value 
was used. 

Reported 
yield 

Country-specific reported 
yields between 1998 and 
2002 

FAOSTAT 
(http://faostat3.fao.org/ho
me/E) 

Average between 1998 and 2002 was 
used for model validation. 
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Table S3-2. Parameter description for uncertainty analysis and their boundaries. 

Parameter Description Unit Lower 
limit 

Upper 
limit 

Default 
value 

PRM04 Denitrification rate constant - 0.01 2 0.05 
PRM08 Soluble P runoff coefficient - 10 20 10 
PRM14 Nitrate leaching ratio - 0.1 1 0.5 
PRM20 Microbial decay rate coefficient: Adjusts the equation 

relating microbial activity to soil water, temperature and 
oxygen. 

- 0.5 1.5 1 

PRM24 Maximum depth for biological soil mixing m 0.1 0.5 0.3 
PRM25 Biological mixing efficiency: the fraction of soil material 

which is mixed annually. 
- 0.1 0.5 0.5 

PRM30 Minimum water content required to trigger denitrification, 
expressed as fraction of water content at field capacity 

 mm 0.9 1.1 1.01 

PRM34 If >1, it makes soluble P runoff concentration a non-linear 
function of organic P concentration in the top soil layer 

  1 1.5 1 

PRM43 Ratio of soluble C concentration in runoff to percolate   1 20 4 
PRM45 Coefficient allocating slow to passive humus - 0.001 0.05 0.05 
PRM47 Slow humus transformation rate d−1  0.00041 0.00068 0.000548 
PRM51 Coefficient adjusting microbial activity function in top soil 

layer 
- 0.1 1 1 

PRM57 Volatilization and nitrification partitioning coefficient - 0.05 0.5 0.15 
PRM62 Exponential coefficient regulates upward N movement by 

evaporation 
- 0.2 2 0.5 

PRM63 Upper limit of N concentration in percolating water ppm 100 10000 9000 
PRM64 Upper limit of nitrification-volatilization as a fraction of 

NH3 present 
  0 1 0.1 

PRM77 Coefficient regulating p flux between labile and active pool - 0.0001 0.001 0.0001 
PRM78 Coefficient regulating p flux between active and stable pool - 0.0001 0.001 0.0001 
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Abstract 

The grey water footprint refers to the volume of water that is required to assimilate polluted 

water. It reflects the intensity of water pollution caused by water use for human activities. This 

study aims to address some major shortcomings associated with grey water footprint accounting 

in the literature and discuss several ways towards its improvement. Global maize production is 

used for illustration. The study specifically tackles three issues: the appropriate water quality 

standards for grey water footprint assessment; grey water footprint for multiple pollutants; and the 

influence of spatial resolution of the assessment on the level of grey water stress. A biophysical 

crop model is applied to quantify nitrogen and phosphorus losses to water in maize production on 

a global scale with a 0.5-degree spatial resolution. The study shows that the grey water footprint 

calculation is highly sensitive to the water standards applied. The results also suggest that the grey 

water footprint relating to nitrogen and phosphorus pollution caused by maize production alone 

has already exceeded their local water availability in many parts of the world. Grey water stress 

shows a more critical situation at the grid level than at the watershed level for maize cultivation 

because the former represents the local concentration whereas the latter gives the average 

situation of the whole watershed. This study highlights the need for standardizing the setting of 

water quality standards for a consistent grey water footprint assessment taking into consideration 

the diverse aquatic ecosystems and ambient water quality requirements across regions, as well as 

the presence of multiple pollutants in water bodies. 

 

Keywords 

Nitrogen and phosphorus losses; Water quality standards; Grey water stress; Global assessment; 

PEPIC 

 

Highlights 

Using drinking water standards for N underestimates the GWF accounting. 

Taking more pollutants into account is recommended to embrace the possible GWF range. 

The spatial resolution of GWF assessments influences the level of GWS. 
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4.1 Introduction 

Nitrogen (N) and phosphorus (P) are key elements to life and are essential for crop and 

livestock production. During the period 1960–2010, the application of N and P fertilizers in 

agriculture for food production increased nine-fold and three-fold, respectively (Sutton et al., 

2013). The use of fertilizers has, on the one hand, improved agricultural productivity, enabling the 

feeding of a growing world population while coping with the dietary shift towards an increased 

consumption of meat and dairy products. On the other hand, the use of fertilizers has dramatically 

increased the amount of N and P entering the terrestrial biosphere (Bennett et al., 2001; Vitousek 

et al., 2009). Nutrient losses from croplands into water bodies have caused major environmental 

problems, such as water quality degradation, groundwater contamination, biodiversity loss, fish 

deaths, and eutrophication (Galloway and Cowling, 2002; Obersteiner et al., 2013; Vitousek et al., 

1997). 

The need to account for the impacts of agricultural production in terms of water quantity and 

quality led to the development of water footprint indicators in the early 2000s (Hoekstra, 2003). 

The water footprint (WF) is a multidimensional indicator of consumptive water use, which 

accounts for green (rain) water, blue (surface and underground) water resources, and grey 

(polluted) water. The grey water footprint (GWF) was introduced by Hoekstra and Chapagain 

(2008) as a measure of the intensity of water pollution caused by water use for human activities. It 

is defined as the volume of water that is required to assimilate a load of pollutants to a freshwater 

body, based on natural background concentrations and existing ambient water quality standards 

(Hoekstra et al., 2011). The idea of measuring water pollution in terms of the amount of water 

needed to dilute pollutants can be traced back to Falkenmark and Lindh (1974), who pointed out 

that the amount of water required to dilute pollutants to acceptable levels is about 10–50 times the 

wastewater flow. The GWF indicator assumes that the gap between a water quality standard and 

the natural background concentration in a given water body can be used to dilute the pollution 

loads to meet the water quality standard. It expresses water pollution in terms of a water volume 

needed to dilute contaminated water to a given quality standard, so that it can be compared with 

water consumption. 

A growing number of studies have provided GWF assessments at various geographical levels. 

Global GWF assessments have mainly been provided by the Water Footprint Network, e.g., 

Chapagain et al. (2006), Hoekstra and Mekonnen (2012), and Liu et al. (2012) (Table 4-1). Other 

GWF studies have been conducted at the national and regional levels (e.g., Cazcarro et al., 2016; 

Mekonnen et al., 2016); the river basin level (e.g., Miguel Ayala et al., 2016; Vanham and 

Bidoglio, 2014; Zhi et al., 2015); the city level (e.g., Manzardo et al., 2016a; Wang et al., 2013); 

and with a focus on specific products or crops (e.g., Ene et al., 2013; Lamastra et al., 2014; 
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Suttayakul et al., 2016). GWF assessments have overwhelmingly been focused on N-related loads 

to freshwater. Only a few considered multiple pollutants, such as N, P, COD (chemical oxygen 

demand), and NH4 (ammonium) (Dabrowski et al., 2009; Lu et al., 2016; Pellicer-Martinez and 

Martinez-Paz, 2016). Most GWF assessments used the drinking water standards (e.g., Bulsink et 

al., 2010; Chapagain et al., 2006; Mekonnen and Hoekstra, 2011, 2010), with a few exceptions 

that have used ambient water quality standards (e.g., Pellegrini et al., 2016; Pellicer-Martinez and 

Martinez-Paz, 2016; Zhuo et al., 2016) (Table 4-1). 

It has been shown that agriculture, mainly cereal production, accounts for 75% of the global 

GWF related to anthropogenic N loads, with the highest contribution from Asia (Mekonnen and 

Hoekstra, 2015). In the period 1996–2005, GWF accounted for 15% of the global annual total 

water footprint (green, blue, and grey), and for 19% of global agricultural and industrial virtual 

water flows (Hoekstra and Mekonnen, 2012). It has also been shown that about two-thirds of 

world’s major rivers, especially in tropical and sub-tropical areas, have a pollutant load that 

exceeds the basin’s assimilation capacity (Liu et al., 2012). A number of studies have shown that 

large GWF can exacerbate water scarcity conditions (Liu et al., 2012; Mekonnen et al., 2016; 

Zhuo et al., 2016). Others have pointed out that the international trade of agricultural products has 

resulted in a globalization of agricultural pollution, which has substantially increased over the past 

few decades (Galloway et al., 2008; Mekonnen et al., 2016; O'Bannon et al., 2014). 

The GWF indicator has been developed to describe water quality conditions and inform 

policies related to water pollution. However, the concept has a number of limitations that are 

mainly related to three aspects. First, there are significant disparities in the water standards for 

natural nutrient and maximum allowable concentration values used in the GWF assessment. The 

volume of GWF and associated values are highly sensitive to the standards chosen. This point has 

not been paid sufficient attention in the GWF studies and confusion often occurs. Second, GWF is 

generally assessed for individual pollutants, while in reality they mostly co-exist. There has been 

no study that specifically discussed the influences of the integration of GWF of multiple 

pollutants on GWF by comparing with individual pollutants. Third, the GWF studies have been 

conducted at different geographical levels, e.g., grid and river basin levels. However, the effects 

of different spatial resolutions on the GWF assessment have not been addressed. These 

shortcomings need to be addressed to enhance the usefulness of GWF assessment as a tool for 

informing sound water management and policy. 

The grey water stress (GWS), which is defined as the ratio of GWF to the actual runoff with 

the same spatiotemporal scale, indicates the status of the assimilative capacity of the 

corresponding water body under the pressure of GWF, i.e. the water stress caused by GWF. The 

concept suggests that if the pressure of GWF is higher than the assimilation capacity, then the 



Chapter 4 

83 

GWF is environmentally unsustainable (Hoekstra et al., 2011; Mekonnen et al., 2016). It should 

be noted that Hoekstra et al. (2011) called this indicator the water pollution level (WPL), which 

was adopted by several studies (e.g., Liu et al., 2012; Mekonnen and Hoekstra, 2015). However, 

the concept of GWS is considered to be more explicitly in line with the concept of GWF. 

Therefore, this terminology is used in this study. 

Table 4-1. Literature review of standards used for grey water footprint assessment. 

Study area 
Nitrogen Phosphorus 

References Cmax 
(mg N L−1) 

Cnat 
(mg N L−1) 

Cmax 
(mg P L−1) 

Cnat 
(mg P L−1) 

ArgentinaR 10 (USA)* -- -- -- (Rodriguez et al., 2015) 
BrazilG+W -- - 0.1 (Brazil) 0 (Miguel Ayala et al., 2016) 
BrazilR 10 (Brazil)* 0.8 -- -- (Scarpare et al., 2016) 
ChinaR 12 (China)* -- -- -- (Duan et al., 2016) 
ChinaW 1 (China)# 0   (Liu et al., 2016a) 
ChinaR 10 (USA)* -- -- -- (Huang et al., 2012) 
ChinaR 10 (China)* 0 -- -- (Lu et al., 2016) 
ChinaR 1 (China)# -- 0.2 (China) -- (Wang et al., 2013) 
ChinaR 1 (China)# 0 0.2 (China) 0 (Wu et al., 2016) 
ChinaR 10 (USA)* -- -- -- (Xu et al., 2015) 
ChinaW 10 (China)* 0 -- -- (Zeng et al., 2013) 
ChinaG+R 1 (China)# 0.2 0.2 (China) 0.02 (Zhuo et al., 2016) 
EnglandR 12.86 (England and 

Wales)# 
6.38 0.25 (England and 

Wales) 
0.01 (Zhang et al., 2014) 

EuropeG+R 3.1 (Liu et al., 2012) 1.5 0.95 (Liu et al., 
2012) 

0.52 (Mekonnen et al., 2016) 

EuropeR 10 (USA)* -- -- -- (Thaler et al., 2012) 
EuropeW 10 (USA)* 0 -- -- (Vanham and Bidoglio, 2014) 
FranceG+R 10 (USA)* -- -- -- (Ercin et al., 2013) 
GlobalR 10 (USA)* 0 -- -- (Chapagain et al., 2006) 
GlobalR 11.3 (EU)* -- -- -- (Chapagain and Hoekstra, 2011) 
GlobalG+R 10 (USA)* 0 -- -- (Hoekstra and Mekonnen, 2012) 
GlobalW 3.1 (Estimated) 1.5 0.95 (Estimated) 0.52 (Liu et al., 2012) 
GlobalG+W 2.9 (Canada)# 0.4 -- -- (Mekonnen and Hoekstra, 2015) 
GlobalG+R 10 (USA)* 0 -- -- (Mekonnen and Hoekstra, 2010) 
GlobalG+R 10 (USA)* 0 -- -- (Mekonnen and Hoekstra, 2011) 
GlobalG+R 10 (USA)* 0 -- -- (Mekonnen and Hoekstra, 2014) 
IndonesiaR 10 (USA)* -- -- -- (Bulsink et al., 2010) 
ItalyG+R 10 (USA)* 0 -- -- (Aldaya and Hoekstra, 2010) 
ItalyR 15 (Italy)# 0 -- -- (Pellegrini et al., 2016) 
KenyaG+W 10 (USA)* 0   (Mekonnen et al., 2012) 
Latin America and 
the CaribbeanG+R 

10 (USA)* -- -- -- (Mekonnen et al., 2015) 

New ZealandR 11.3 (New Zealand)* 0–1.3   (Deurer et al., 2011) 
New ZealandR 11.3 (New Zealand)* 0 -- -- (Herath et al., 2013) 
MoroccoR 10 (USA)* -- -- -- (Schyns and Hoekstra, 2014) 
RomaniaR 10 (USA)* -- -- -- (Ene et al., 2013) 
South AfricaR 4 (South Africa)# 0.62 0.13 (South Africa) 0.06 (Dabrowski et al., 2009) 
South KoreaR 40 (South Korea)# -- 4 (South Korea) -- (Yoo et al., 2014) 
SpainR 11.3 (EU)* -- -- -- (Cazcarro et al., 2016) 
SpainR 11.3 (EU)* -- -- -- (Chapagain and Orr, 2009) 
SpainW 11.3 (EU)* -- -- -- (Chico et al., 2013) 
SpainR 5.6 (Spain)# -- 0.13 (Spain) -- (Pellicer-Martinez and 

Martinez-Paz, 2016) 
Taiwan, ChinaR 10 (Taiwan)* 0 -- -- (Su et al., 2015) 
TunisiaR 10 (USA)* 0 -- -- (Chouchane et al., 2015) 
USAR 10 (USA)* 0 -- -- (Manzardo et al., 2016b) 

R: Regional level; W: Watershed level; G+R: Grid and regional levels; G+W: Grid and watershed levels; *: Nitrogen 
standard for drinking water; #: Nitrogen standard for surface water; --: no information. 
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To address the above limitations in GWF accounting, a global assessment of the GWF for 

one of the most important cereal crops in the world, i.e. maize, is conducted for illustration. 

Globally, maize produces the highest crop production and ranks third on N and P consumption as 

well as the resulted water pollution, following wheat and rice (West et al., 2014). Considering its 

wide spatial coverage (Portmann et al., 2010) and relatively less diverse production conditions 

compared to wheat and rice, maize is selected as an illustration here. A large-scale crop model 

PEPIC (Liu et al., 2016b), i.e. Environmental Policy Integrated Climate (EPIC) under the Python 

environment (www.python.org), is applied to quantify the losses of N and P from fertilizer 

application on a global scale with a 0.5-degree spatial resolution. Total losses of N and P from 

maize croplands into water bodies are considered in the GWF assessment, as they are the major 

nutrients applied to crops as agrochemical fertilizers. Water quality standards are clarified and the 

implications of the disparities are addressed. The GWS is assessed at the grid and river basin 

levels to highlight the impacts of different geographical scales on the assessment. Given the 

importance and increasing emphasis of water management at the basin/watershed level, it is 

useful to provide the assessment of GWS at this level. 

 

4.2 Methodology and data 

4.2.1 Model description and input data 

In this study, the EPIC model (Williams et al., 1984) was used to quantify the N and P losses 

from maize production. EPIC is a field-scale crop model, which was initially developed to 

simulate the impacts of soil erosion on soil productivity. It was then extended to simulate the 

complex processes in the soil–water–climate–management systems (Williams, 1995). PEPIC is a 

simulation framework, which is able to prepare spatial input data for EPIC, run the EPIC model, 

extract outputs of the simulation, and finally map the results of desired variables (Liu et al., 

2016b). It has been successfully used to investigate the crop–water relations of maize and assess 

global N losses from major crops (Liu et al., 2016b, 2016c). 

The inputs to the PEPIC model include climate, soil, digital elevation model (DEM), slope, 

and crop management information, e.g., planting and harvesting dates, irrigation, and fertilizer. 

The fertilizer inputs (including N and P) were downloaded from EarthStat 

(http://www.earthstat.org/). This dataset was based on Mueller et al. (2012) and West et al. (2014). 

Information about the other inputs can be found in (Liu et al., 2016b). 

The inputs of N considered in this study include chemical fertilizer, manure, precipitation 

deposition, and crop residue decomposition; while the P inputs include chemical fertilizer, manure, 

and crop residue decomposition. On the downside, the N outputs include crop uptake, N lost to 
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atmosphere through denitrification and volatilization, and N lost to water bodies through surface 

runoff, leaching, and bounded with sediments. As for P, the outputting pathway is crop uptake, 

and losses go into water bodies through surface runoff, leaching, and with sediments. More details 

of the nutrient dynamics of the EPIC model can be found in Williams (1995) and the calculation 

of N losses can be found in Liu et al. (2016c). For the calculation of GWF related to N and P, the 

study focused on the total losses of N and P into the water bodies. 

4.2.2 Grey water footprint and grey water stress 

By definition (Hoekstra et al., 2011), GWF is calculated as: 

𝐺𝐺𝐺𝐺𝐺𝐺𝑅𝑅 =  100 ∗ 𝐿𝐿𝑅𝑅 (𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 _𝑅𝑅 − 𝐶𝐶𝑚𝑚𝑚𝑚𝑡𝑡_𝑅𝑅)⁄       (4-1) 

𝐺𝐺𝐺𝐺𝐺𝐺𝑃𝑃 =  100 ∗ 𝐿𝐿𝑃𝑃 (𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 _𝑃𝑃 − 𝐶𝐶𝑚𝑚𝑚𝑚𝑡𝑡_𝑃𝑃)⁄        (4-2) 

where GWFN [mm] and GWFP [mm] are the grey water footprint derived from N and P loads in 

water bodies, respectively; LN [kg N ha−1] and LP [kg P ha−1] are the N and P concentrations, 

which can be estimated at different levels, e.g., grid and basin levels, as the ratios of total N [kg N] 

and P [kg P] loads to the whole areas of the corresponding level; Cmax_N [mg N L−1] and Cmax_P 

[mg P L−1] are the ambient water quality standards for N and P; Cnat_N [mg N L−1] and Cnat_P [mg P 

L−1] are the natural background concentrations of N and P in the receiving water body; 100 is for 

unit transformation. 

In the literature, for multiple pollutants, the GWF was calculated and presented separately for 

each pollutant, e.g., N, P, COD, and pesticides in some studies (e.g., Dabrowski et al., 2009; Liu 

et al., 2016a, 2012). For an individual grid cell or a given water body, e.g., river basin, the GWF 

under the condition of multiple pollutants (hereby referred to as integrated GWF) should be 

assessed by choosing the highest GWF deriving from single pollutants (Eq. 3). A summation of 

GWF of individual pollutants would overestimate the total GWF because the volume of water 

required for diluting one pollutant can simultaneously dilute other pollutants. The highest GWF of 

a single pollutant can thus represent the integrated GWF for that grid cell or corresponding water 

body. The integrated grey water footprint is calculated as: 

𝐺𝐺𝐺𝐺𝐺𝐺𝐼𝐼 = 𝑚𝑚𝑚𝑚𝑚𝑚(𝐺𝐺𝐺𝐺𝐺𝐺𝑅𝑅,𝐺𝐺𝐺𝐺𝐺𝐺𝑃𝑃)        (4-3) 

where GWFI [mm] is the integrated grey water footprint from considering the N and P loads. The 

total GWF is calculated as the product of GWF and the whole area. The GWS is calculated as: 

𝐺𝐺𝐺𝐺𝑃𝑃 = 𝐺𝐺𝐺𝐺𝐺𝐺 𝑅𝑅⁄          (4-4) 

where R is the runoff with the same spatiotemporal scale as GWF [mm]. Runoff data are 

produced by the Distributed Biosphere Hydrological (DBH) model forced by the Princeton global 

meteorological data (Liu et al., 2016d; Tang et al., 2008). For the management of a water body, 
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assessing the consumption of assimilative capacity caused by pollutants is important (Zhi et al., 

2015). With this concept, GWS < 1 means that the water body still has excess assimilative 

capacity to accommodate more pollutants; GWS = 1 means all the assimilative capacity is used up; 

and GWS > 1 means that the pollution level has exceeded the assimilative capacity and that the 

water pollution is thus unsustainable. The higher the GWS, the poorer the water quality. In this 

study, GWS related to N (GWSN), P (GWSP), and their integration (GWSI) are considered. 

4.2.3 Water quality standards review 

Water standards are the key information required to calculate the GWF and GWS. In 

different countries, these standards can vary quite substantially. An extensive literature review 

was conducted on the water standards used for GWF assessments related to N and P (Table 4-1). 

It reveals some confusion in water quality standards. From the definition of Hoekstra et al. (2011), 

the ambient environmental water quality standards should be applied in the GWF calculation. 

However, in the GWF literature to date, the USA and the EU N standards for drinking water, 

respectively 10 mg N L−1 and 11.3 mg N L−1, are the most commonly used water quality standards. 

Among the 40 reviewed studies (which explicitly used the N-related water quality standards) in 

Table 4-1, 30 (75%) of them used the N drinking water quality standards. So far, no study has 

specifically addressed this issue. Some local standards have also been used for regional GWF 

assessments. It is noted that studies even adopted different standards in the same region/country. 

For example, in China, three standards for nitrogen were used, i.e. 1 (e.g., Wu et al., 2016), 10 

(e.g., Lu et al., 2016), and 12 (Duan et al., 2016) mg N L−1 in the literature. Obviously, these 

different standards introduced significant disparities in GWF accounting. The confusion is partly 

related to the fact that for many countries, the information on ambient water quality standards are 

not available, either because they do not exist (e.g., for most African countries and less developed 

countries) or because of the lack of access to the data sources (e.g., for most of other countries). 

For P, a few papers addressed the GWF with standards varying from 0.1 to 4 mg P L−1 (Table 4-1). 

Several national N and P standards for drinking water and ambient surface water were 

reviewed (Table 4-2). They show that the allowed N concentrations for surface water are 

generally lower than that for drinking water. This means that the estimated GWF tends to be 

underestimated by adopting drinking water standards, which was the case for many previous 

studies (as shown in Table 4-1). As P is not directly toxic for humans, drinking water standards 

have not been set for this pollutant. Some points to note are that in some cases the national N and 

P standards are not unique values but region specific. For example, the USA was divided into 13 

eco-regions and there is one standard for each eco-region (https://www.epa.gov/nutrient-policy-

data/ecoregional-criteria). This situation also holds for the Netherlands (Table 4-2). The way to 

determine surface water N standards also varies. For example, the N surface standard in Canada 
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(3 mg N L−1) was derived from toxicity tests of aquatic species exposed to environments with 

different levels of nitrate (http://ceqg-rcqe.ccme.ca/download/en/197?redir=1465564929). In the 

USA, however, it was determined by the 25th of measured nitrate concentrations from surface 

water (https://www.epa.gov/nutrient-policy-data/ecoregional-criteria). 

Table 4-2. National water standards for nitrogen (N) and phosphorus (P). 

 N (mg N L−1) 
TP (mg P L−1)  Drinking water Surface water 

Canada 10 (NO3-N)R1 3 (NO3-N)R2 0.02R3 
China 10 (NO3-N)R4 1 (TN, lakes)R5 0.05 (lakes)R5 

0.2 (rivers)R5 
EU 11.3 (NO3-N)R6 5.6 (NO3-N)R7 0.07–0.15R8 
Germany 11.3 (NO3-N)R9 3 (TN)R10 

2.5 (NO3-N)R10 
0.15R11 

Switzerland 5.6 (NO3-N)R12 7 (TN)R13 
5.6 (NO3-N)R13 

0.07R13 

The Netherlands 11.3 (NO3-N)R14 0.12–18.05 (TN)*, R15 0.01–2.5*, R15 
USA 10 (NO3-N)R16 0.1–1.27 (TN, lakes)R17 

0.12–2.18 (TN, rivers)R17 
0.008–0.038 (lakes)R17 
0.01–0.076 (rivers)R17 

TN: total nitrogen; TP: total phosphorus. *: the ranges are quite high because they incorporate specific goals from more 
than 500 water bodies. 

R1: http://www.hc-sc.gc.ca/ewh-semt/pubs/water-eau/sum_guide-res_recom/index-eng.php; 
R2: http://ceqg-rcqe.ccme.ca/download/en/197?redir=1465564929; 
R3: http://ceqg-rcqe.ccme.ca/download/en/205?redir=1465564939; 
R4: http://www.moh.gov.cn/zwgkzt/pgw/201212/33644.shtml; 
R5: http://kjs.mep.gov.cn/hjbhbz/bzwb/shjbh/shjzlbz/200206/t20020601_66497.shtml; 
R6: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:1998:330:0032:0054:EN:PDF; 
R7: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31991L0676&from=en; 
R8: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:264:0020:0031:EN:PDF; 
R9: http://www.gesetze-im-internet.de/bundesrecht/trinkwv_2001/gesamt.pdf; 
R10: http://www.vsr-gewaesserschutz.de/33.html; 
R11: http://www.vsr-gewaesserschutz.de/20.html; 
R12: https://www.admin.ch/opc/en/classified-compilation/19983281/index.html#app4; 
R13: http://www.modul-stufen-konzept.ch/download/ChemieD_Juni2010.pdf; 
R14: http://wetten.overheid.nl/BWBR0027061/2016-01-01/0/#BijlageIII; 
R15: http://www.helpdeskwater.nl/onderwerpen/wetgeving-beleid/kaderrichtlijn-water/2016-2021/; 
R16: https://www.epa.gov/wqc/national-recommended-water-quality-criteria-human-health-criteria-table; 
R17: https://www.epa.gov/nutrient-policy-data/ecoregional-criteria. 

After careful assessment and discussions with experts in ecosystem sciences, the N standard 

adopted in this study for surface water is 3 mg N L−1. This standard is also recommended by 

Franke et al. (2013). For comparison, the most commonly used N standard for drinking water (10 

mg N L−1) was also used for GWF calculation related to N. For P, the standard used here is 0.15 

mg P L−1. This standard is recommended by Germany and the EU (Table 4-2). Many previous 

studies assumed the natural pollutant concentration to be 0 due to a lack of data (e.g., Chapagain 

et al., 2006; Liu et al., 2016a; Zeng et al., 2013). However, the natural concentrations of N and P 

are generally higher than 0, thus such an assumption leads to an underestimation of GWF. In this 

study, the natural concentration was set to be 0.4 mg N L−1 and 0.01 mg P L−1 for N and P, 

respectively. The natural concentration for N of 0.4 mg N L−1 is recommended by Hoekstra et al. 

(2011) and Franke et al. (2013), and is also used by Mekonnen and Hoekstra (2015). As for the 

natural concentration of P, 0.01 mg P L−1, is recommended by Franke et al. (2013). The natural 

http://www.hc-sc.gc.ca/ewh-semt/pubs/water-eau/sum_guide-res_recom/index-eng.php
http://ceqg-rcqe.ccme.ca/download/en/197?redir=1465564929
http://ceqg-rcqe.ccme.ca/download/en/205?redir=1465564939
http://www.moh.gov.cn/zwgkzt/pgw/201212/33644.shtml
http://kjs.mep.gov.cn/hjbhbz/bzwb/shjbh/shjzlbz/200206/t20020601_66497.shtml
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:1998:330:0032:0054:EN:PDF
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31991L0676&from=en
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:264:0020:0031:EN:PDF
http://www.gesetze-im-internet.de/bundesrecht/trinkwv_2001/gesamt.pdf
http://www.vsr-gewaesserschutz.de/33.html
http://www.vsr-gewaesserschutz.de/20.html
https://www.admin.ch/opc/en/classified-compilation/19983281/index.html%23app4
http://www.modul-stufen-konzept.ch/download/ChemieD_Juni2010.pdf
http://wetten.overheid.nl/BWBR0027061/2016-01-01/0/%23BijlageIII
http://www.helpdeskwater.nl/onderwerpen/wetgeving-beleid/kaderrichtlijn-water/2016-2021/
https://www.epa.gov/wqc/national-recommended-water-quality-criteria-human-health-criteria-table
https://www.epa.gov/nutrient-policy-data/ecoregional-criteria
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concentration was also considered to be 0 for illustrating the impacts of using different natural 

concentrations. 

 

4.3 Results 

4.3.1 Grey water footprint assessment 

Global GWF for maize cultivation using 3 mg N L−1 and 0.15 mg P L−1 as standards with the 

natural concentrations of 0.4 mg N L−1 and 0.01 mg P L−1 is presented in Figure 4-1. It can be 

seen that GWFP is much higher than GWFN in many regions. The GWFN and GWFP also present 

different spatial patterns. The North China Plain, northeastern parts of China, and north central 

parts of the USA are the major regions with a high level of GWFN (> 500 mm) (Figure 4-1a). 

While for GWFP, not only the above mentioned regions, but also southwest parts of China, 

southern Mexico, and southern Brazil, as well as some parts of central Europe show a high level 

of GWFP (Figure 4-1b). GWFI presents quite a similar pattern to GWFP (Figure 4-1c), implying 

that GWFI is more related to GWFP for maize cultivation. 

The global total GWFN for maize is 706 km3 using the drinking water standard (10 mg N L−1) 

and increases to 2607 km3 using the ambient water standard (3 mg N L−1) (Table 4-3). The 

conversion of GWF between different standards is straightforward. For example, the GWFN with 

the ambient water quality standard can be obtained by multiplying 3.69, i.e. the ratio of (10−0.4) 

to (3−0.4), by the GWFN calculated using the drinking water quality standard. The global GWFP 

is about 2.7 times that of GWFN. Although globally N loads are generally higher than P loads, the 

higher GWFP is mainly due to the much lower value of maximum allowable concentration for P 

than for N. The GWFI is only a little higher than GWFP (4%). This indicates that GWF relating to 

maize production is mainly determined by P. Asia and North America contribute the largest 

proportion of global GWF both for N and P, while South America also contributes a high 

proportion of global GWFP. At the country level, China and the USA account for the highest 

proportion of GWFN, while the USA, China, and Brazil contribute the most GWFP. For the top ten 

watersheds, the Mississippi plays the dominant role in contributing to GWFN, while the 

Mississippi and La Plata show similar roles for GWFP. Disparities of GWF at continental, country, 

and river basin levels are noticeable. For example, the GWFP (P0.15_0.01, with 0.15 mg P L−1 

and 0.01 mg P L−1 as standard and natural concentration) is about 2.2 times that of GWFN 

(N3_0.4, with 3 mg N L−1 and 0.4 mg N L−1 as standard and natural concentration) in Asia, 

however it decreases to 1.4 times in China and only accounts for 55% of the GWFN of the Haihe 

river basin. 
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Figure 4-1. Grey water footprint (GWF) related to nitrogen (GWFN), phosphorus (GWFP), and their 
integration (GWFI) in maize production by using 3 mg N L−1 and 0.15 mg P L−1 as the standards, and 0.4 
mg N L−1 and 0.01 mg P L−1 as natural concentrations for nitrogen and phosphorus. 

4.3.2 Grey water stress assessment 

At the grid level, the GWS shows quite similar patterns to GWF (Figures 4-1–4-2). In the 

high GWF regions, GWS is generally higher than 1. For example, the GWSN is higher than 1 in 

the northeastern parts of China and northeastern parts of the USA (Figure 4-2a). The high GWS in 

these regions implies that the assimilative capacity of the local water resource has been fully 

consumed and that a process of water environmental degradation is on-going. In contrast, the 

GWS presents an optimistic view at the watershed level, as the average values computed for a 
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watershed may hide the extreme values of GWS at a grid level. Most river basins present GWS 

lower than 0.3, except GWFN and GWSI in the Haihe river basin of China. 

Table 4-3. The aggregated grey water footprint related to nitrogen (GWFN), phosphorus (GWFP), and 
their integration (GWFI) in maize production at different geographical levels (km3). 

 N10_0.4a N3_0.4b P0.15_0.01c GWFI
d 

Continental level 

Africa 33.5 123.7 563.2 586.9 

Asia 284.1 1049.1 2297.2 2459.0 

Europe 75.1 277.2 666.9 681.0 

N. America 236.1 871.9 2056.5 2102.7 

Oceania 0.3 1.0 6.6 6.6 

S. America 76.8 283.6 1395.1 1397.5 

Global 706.0 2606.7 6985.5 7233.7 

Top 10 maize-producing countriese 

USA 160.4 592.4 1233.4 1275.3 

China 208.5 769.9 1097.3 1252.2 

Brazil 54.9 202.6 1088.2 1089.2 

Mexico 46.9 173.3 547.4 548.5 

India 18.2 67.2 365.7 365.7 

Russia 2.8 10.4 64.0 64.1 

Nigeria 4.1 15.0 116.5 116.6 

Argentina 8.2 30.4 125.6 125.6 

Ukraine 1.8 6.6 35.5 35.5 

France 25.6 94.5 123.3 131.8 

Top 10 maize-producing watershedse 

Mississippi 132.6 489.8 988.0 1023.9 

La Plata 44.6 164.5 843.2 843.2 

Danube 11.5 42.3 144.0 144.7 

Amur 37.1 137.0 113.4 158.4 

Haihe 35.2 129.8 71.4 136.1 

Yangtze 37.7 139.3 368.3 368.6 

St Lawrence 21.4 79.1 148.1 149.7 

China Coast 47.3 174.7 281.4 287.6 

Ganges–Bramaputra 12.0 44.3 248.0 248.0 

Yellow 22.8 84.3 63.6 91.4 

a GWFN with 10 mg N L−1 and 0.4 mg N L−1 as standard and natural concentration. 
b GWFN with 3 mg N L−1 and 0.4 mg N L−1 as standard and natural concentration. 
c GWFP with 0.15 mg P L−1 and 0.01 mg P L−1 as standard and natural concentration. 
d GWFI with 3 mg N L−1 and 0.15 mg P L−1 as the standards, and 0.4 mg N L−1 and 0.01 mg P L−1 as natural 

concentrations for nitrogen and phosphorus. 
e The top 10 maize-producing countries and top 10 maize-producing watersheds are based on the maize cultivated areas. 

To demonstrate the disparities of GWS due to different water quality standards and natural 

concentrations, different pollutants, and the integration of different pollutants, the fractions of grid 

number with GWS > 1 in the total grid number for maize cultivation under different conditions 
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were compared (Figure 4-3). The fraction for GWSN using the ambient water quality standard (3 

mg N L−1) is much higher (about 5 times) than that using the drinking water quality standard (10 

mg N L−1), although the difference in water quality standards is only 3.3 times. Different natural 

concentrations also contribute to the disparities for both GWSN and GWSP. The fractions derived 

from P loads are much higher than those derived from N loads. For example, the fraction is about 

2.5% for GWSN with 3 mg N L−1 and 0.4 mg N L−1 as standard and natural concentration, while it 

increases to 5.1% for GWSP with 0.15 mg P L−1 and 0.4 mg P L−1 as standard and natural 

concentration. When considering the integration of N and P, about 5.8% of total maize cultivation 

grids show GWS > 1. 

 

4.4 Discussion 

The key point addressed in this study is that there are multi-dimensional disparities of GWF 

assessments that prevent the indicator from providing a consistent value for water quality and 

being a tool for sound policy supporting in the water sector. It is here argued that improving the 

robustness of GWF assessments is necessary to gain a more comprehensive understanding of the 

impacts of human activities on water quality. To the best of our knowledge, this study is the first 

attempt to comprehensively address the main shortcomings of GWF accounting and to propose 

ways of improving it. 

First, the influence of water quality standards and natural concentration levels on GWF 

assessment was addressed. The GWF is generally estimated using water quality standards for the 

receiving freshwater bodies, which can be formulated at the national (e.g., for Switzerland) or 

regional level (e.g., the EU Water Framework Directive). However, as these standards do not 

exist for all pollutants and for all countries, it is difficult to make consistent analyses in some 

circumstances. The choice of whether to use environmental or drinking water quality standards in 

GWF assessments is also a matter of great importance (Table 4-3). It is highly recommended that 

the standards used are verified when performing a comparison with results from different studies. 

Ambient water quality standards also vary considerably from one substance to another and from 

one country or region to another. This point needs to be addressed, as the choice of inputs and 

parameter values determines the major disparities in GWF assessments, as also highlighted by 

Mekonnen and Hoekstra (2015). 
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Figure 4-2. Grey water stress (GWS) related to nitrogen (GWSN), phosphorus (GWSP), and their 
integration (GWSI) in maize production at grid and watershed levels by using 3 mg N L−1 and 0.15 mg P 
L−1 as standards, and 0.4 mg N L−1 and 0.01 mg P L−1 as natural concentrations for nitrogen and 
phosphorus. 

It should be highlighted here that for N, ambient water standards are consistently higher than 

drinking water standards (Table 4-2). A number of water scientists from the Swiss Federal 

Institute for Aquatic Science and Technology (Eawag) have been consulted and a review of the 

relevant literature for the explanation of these differences has been conducted. It has emerged that 

fish, shellfish, and smaller organisms that live in water are more sensitive to N than humans are. 

Their small bodies make them less tolerant to the concentration of the pollutants. Therefore, the 

use of drinking water standards underestimates GWF (Table 4-2). The P pollution in freshwater 

bodies is not directly toxic to humans and animals. This is the main reason that there is generally 

no drinking water standard for P. It has, however, an indirect toxicity as it causes proliferation of 
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toxic algal blooms and results in the depletion of oxygen, which kills fish (Carpenter et al., 1998).

Nitrate loads into water, in contrast, pose a direct threat for the health of humans and other 

mammals. High concentration of nitrate has been linked to cancers and methemoglobinemia in 

infants, as well as to toxic effects on livestock (e.g., abortions in cattle).

Figure 4-3. Fraction of grid number with grey water stress (GWS) higher than 1 in total grid number of 

maize cultivation. For X axis, N10_0.4 refers to GWS related to N (GWSN) with 10 mg N L
−1

and 0.4 mg 

N L
−1

as standard and natural concentration; N3_0.4 refers to GWSN with 3 mg N L
−1

and 0.4 mg N L
−1

as standard and natural concentration; N3_0 refers to GWSN with 10 mg N L
−1

and 0 mg N L
−1

as 

standard and natural concentration; P0.15_0.01 refers to GWS related to P (GWSP) with 0.15 mg P L
−1

and 0.01 mg P L
−1

as standard and natural concentration; P0.15_0 refers to GWSP with 0.15 mg P L
−1

and 0 mg P L
−1

as standard and natural concentration; Integration is integrated GWS (GWSI) with 3 mg 

N L
−1

and 0.15 mg P L
−1

as the standards, and 0.4 mg N L
−1

and 0.01 mg P L
−1

as natural concentrations 

for N and P.

The assumptions on natural concentration also largely influence the results of GWF analyses. 

As shown by Liu et al. (2012), changes in natural concentration levels can result in large 

disparities in GWS assessment. It is also noteworthy to say that it is not easy to account for 

natural concentration in a receiving body. Some studies have assumed the natural concentration to 

be zero. In reality, this cannot be the case, as nutrients are transported through river systems and 

interact with sediments. As different ecosystems respond differently to nutrient loads, to produce 

meaningful results, GWF assessments should be based on basin-specific values for both 

maximum allowable concentration and natural concentration for different nutrients. Experimental 

studies are needed to support more robust GWF assessments.

The second point raised in the present study is that the co-existence of multiple pollutants in 

water bodies (e.g. N and P, pesticides, herbicides, heavy metals, and other harmful chemical 

compounds) needs to be considered in GWF assessments. The majority of GWF assessments only 

considers anthropogenic N loads to water (e.g., Hoekstra and Mekonnen, 2012; Mekonnen and 

Hoekstra, 2015; O'Bannon et al., 2014) (Table 4-1), while neglecting the existence of other 

pollutants. In this study, an integrated GWF by considering the highest GWF of individual 

pollutants was explicitly illustrated using N and P losses in global maize cultivation as example. 
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The result demonstrates that it is important to consider P-related loads into water, as the dilution 

of this input is much more water intensive than the dilution of N-loads. This is because 

eutrophication in water bodies is more likely caused by P (Schindler et al., 2008). Therefore, the 

P-related water quality standards are far more stringent than those for N. It can also be argued 

that, as the pollutant that has the highest GWF is often unknown or cannot be determined in the 

water body, an aggregated water quality indicator, which takes all possible pollutants into account 

with a weighting factor, may be more appropriate for GWF accounting. But how to determine 

such an indicator deserves further investigation. 

Third, this study addressed the disparities arising from the use of different spatial scales. The 

analysis has shown that the good condition of GWS at the basin level hides the potential negative 

impacts at the grid level. This is because the grid level assessment provides information on local 

concentration of pollution, whereas the basin level assessment gives the average concentration in 

the whole basin which can smooth out the high concentration in many local areas. Hence, the 

river basin level GWF may provide wrong information on the criticality of water pollution 

situation, impairing sound policy making for water resource management. Though watersheds 

hold the complete hydrological processes, it seems that water pollution intensity should be 

assessed by treating sources of pollution which are located in different parts of a basin. When the 

water pollution happens in the upstream of a basin, the situation may be different from if it 

happens in the down steam. For example, the GWS of N at Mississippi is only 0.04–0.08 when 

taking it as a whole area (Figure 4-2). However, a large number of grids in its northeastern parts 

present GSW larger than 1. It is difficult to use the downstream water resources to deal with the 

upstream water pollution. Therefore, assessing the GWF and GWS at the grid level should have a 

higher priority. The grid level was also recommended by Mekonnen and Hoekstra (2014), where 

they compared the green and blue water footprint at the grid, provincial, and country levels. For 

this reason, the current study focused on the grid level for evaluating the disparities of GWS as 

shown in Figure 4-3. 

Finally, it should be mentioned that this study did not consider accumulation and degradation 

of the lost N and P in the receiving water bodies. Also, the effects of different forms of lost N and 

P on the aquatic ecosystem were not considered. This is because it is difficult to determine exact 

loads of individual forms in which the lost N and P present in water bodies due to the complex 

chemical and biological processes involved. For this reason, studies in grey water footprint so far 

have used a certain element as a proxy for N and P loads, e.g., total losses to water regardless 

forms and fates of the pollutant (such as in this study and many other studies, including Hoekstra 

and Mekonnen (2012) and Mekonnen and Hoekstra (2015). Only few have used dissolved 

inorganic N and P, dissolved organic N and P, and total N and P (Liu et al., 2012). It is clear that 
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using different forms of a certain pollution element will lead to different results of GWF. 

However, a detailed analysis of the fate of the lost N and P and the involved chemical and 

biological processes is beyond the scope of this study, but deserves further investigation in the 

future. 

 

4.5 Conclusions 

This study has discussed some major limitations of GWF assessment in the literature and 

proposed several ways towards its improvement. It provides a first exploration on how the GWF 

assessment can be enhanced from a methodological point of view, with an illustration for N and P 

loads into water relating to global maize cultivation. The insights provided can be used to 

investigate GWF from multiple crops and pollutants and water quality parameters. The approach 

taken in this study can also be used to provide a scientifically sound frame of reference for 

evaluating the trade-offs of importing rather than producing different crops in different locations 

from both a water quality and water quantity perspective. Finally, improving the scientific 

soundness of GWF assessments can better inform national and local governments about the 

pressure on water systems from agrochemical pollutants and serve as a tool for setting water 

pollution reduction targets based on the consumption of assimilation capacity of water bodies. 
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Abstract 

Increasing demand for food is driving the worldwide trend of agricultural intensification 

using increasing fertilizer and irrigation inputs. However, there is no comprehensive knowledge 

about the interrelations between potential yield gains and environmental trade-offs that would 

enable the identification of global priority regions for further input-driven intensification. Here we 

explore ways of enhancing global crop yields, while avoiding significant nitrogen losses into the 

environment by employing a range of nitrogen and irrigation management scenarios in a global 

crop model. The simulated responses of yields and nitrogen losses to increased nitrogen inputs 

and irrigation show high spatial variations due to differences in current global agricultural inputs 

and agro-climatic conditions. Yields and nitrogen losses are negatively responded to nitrogen 

input additions. We find that avoiding further intensification in regions where ≥75% of the 

climatic yield potential is already achieved is key to maintaining good nitrogen use efficiencies. 

Depending on the intensification level, the relative increase in nitrogen losses can thus be reduced 

by 3–193%, while compromises in yield increase range only between 1 and 23%. This study 

highlights the importance of considering yield and environmental trade-offs in agricultural input 

intensification. 
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5.1 Introduction 

With a continuously growing global population, shifts to more animal-based diets (Bodirsky 

et al., 2015), and possibly increasing competition in agricultural land use between food and 

biofuel crops (Lotze-Campen et al., 2014), modern agriculture is facing a trilemma, i.e. meeting 

the increasing food demand, minimizing the need for additional inputs, and limiting negative 

environmental impacts (Godfray et al., 2010). To feed an expected additional two billion people 

by 2050, global food production needs to be doubled (Tilman et al., 2011). A major challenge 

faced by scientists, farmers, and policy makers is to find ways to achieve this goal while keeping 

the environmental costs at a tolerable level (Foley et al., 2005; Godfray and Garnett, 2014; Lu et 

al., 2015; Sayer and Cassman, 2013). 

There are in principle two different strategies to increasing agricultural food production: 

expansion of croplands and intensification (Matson et al., 1997). For the first option, however, 

suitable land resources are very limited and their conversion to cropland is increasingly 

constrained by other land-use purposes. In many places, croplands are actually shrinking due to 

encroachment by urban development (Deng et al., 2011; Lambin and Meyfroidt, 2011). The 

option of cropland expansion is only feasible in underdeveloped areas and often at high 

environmental costs such as greenhouse gas emissions and biodiversity loss from forest clearing 

(Foley et al., 2011). For the majority of countries and regions, intensification of crop production 

on existing croplands is the only way to meet the increasing demand of recent decades. 

Since the Green Revolution in the 1960s, crop yields have been continuously increased, in 

particular through the breeding of more productive crop varieties (Bodirsky and Muller, 2014) 

and the intensification of land management with increasing fertilizer inputs and irrigation (Tilman 

et al., 2001). However, input intensification has also put substantial pressure on environmental 

systems. The relative increases in yield were far below that in agricultural inputs in many places 

(Sutton et al., 2013). The mismatch between inputs and outputs not only decreased resource use 

efficiency (Conant et al., 2013; Lassaletta et al., 2014; Zhang et al., 2015), but also generated 

serious environmental problems (Clark and Tilman, 2008; Liu et al., 2010; Liu et al., 2017; Liu et 

al., 2013; Schlesinger, 2009; Steffen et al., 2015). In particular, increasing inputs of mineral 

nitrogen (N) fertilizers have led to high N losses to the environment, causing severe 

eutrophication and drinking water quality problems. Hence, there is an ever more pressing need to 

develop pathways towards input intensification without further compromising environmental 

health and quality (Garnett et al., 2013; Godfray and Garnett, 2014; Pretty, 2008; Tilman et al., 

2011). 
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Given that the yields of major crops have recently stopped increasing or even decreased in 

many regions of the world with high inputs (Iizumi et al., 2014; Ray et al., 2013; Ray et al., 2012; 

Wei et al., 2015), it seems that the benefits of additional inputs, including fertilizers and irrigation, 

have been exhausted in these regions, suggesting that not all regions are suitable for further input 

intensification. However, the scope for improved efficiency varies among different cropping 

systems (Carberry et al., 2013). Therefore, it is essential to identify regions where high yield 

returns can be obtained at low environmental costs and to explore how input intensification can be 

achieved in these regions most efficiently. Mauser et al. (2015) found that global food demand 

can be satisfied by crop production on the existing croplands, without further land clearing, and 

concluded that agricultural intensification is key to increasing global food production. Other 

studies arrived at similar conclusions (Brauman et al., 2013; Chen et al., 2014; Chen et al., 2011; 

Johnston et al., 2011; Mueller et al., 2014). However, previous studies have been limited in 

various aspects, including: a) small spatial scale, e.g. studying only a few fields in one region 

(Chen et al., 2014; Chen et al., 2011); b) focusing on one type of input only, either N (Chen et al., 

2014) or irrigation (Brauman et al., 2013); c) no explicit consideration of environmental impacts 

(Johnston et al., 2011; Mauser et al., 2015); and d) ignoring interactions between agricultural 

inputs and environmental responses (Mueller et al., 2014). 

Here we comprehensively address the agricultural trilemma by using the global agronomic 

model PEPIC (Liu et al., 2016b), Python-based Environmental Policy Integrated Climate (EPIC), 

to explore the benefits of further global agricultural input intensification in terms of increased 

crop yields (Y) and comparing them to expected associated N losses into the environment (Nl). 

We used food production units (FPU) as a spatial unit. The FPU consists of river basins and 

economic regions as introduced by Cai and Rosegrant (2002) and modified by Kummu et al. 

(2010). Focusing on N inputs (Nin) and irrigation water (Iw), we considered five input 

intensification scenarios—N25, N25+I10, N50, N50+I30, and Max—with a Baseline scenario of 

no additional intensification. N25 and N25+I10 represent low-level increases of N inputs only or 

of N and irrigation inputs in combination, while N50 and N50+I30 represent high-level increases 

of these inputs, respectively. In the Max scenario, Nin and irrigation were applied automatically by 

the PEPIC model without limitation. Three major cereal crops (maize, rice, and wheat) were 

included in the analysis. As well as looking into the increase in yield (ΔY) of the target crops and 

associated N losses (ΔNl), and additional inputs requirements (ΔNin and ΔIw) between the 

intensification and the Baseline scenarios, we explored the relationships between ΔY and ΔNl in 

response to increased N inputs (ΔNin). We also assessed the incremental N use efficiency ΔY/ΔNin 

and incremental environmental costs of Nl per unit of additional Nin, i.e. ΔNl/ΔNin. 

 



Chapter 5 

105 

5.2 Methods 

5.2.1 Simulation model and input data 

The PEPIC model (Liu et al., 2016b) was used to simulate crop growth at a daily time step 

and the associated nutrient dynamics on a global scale at a spatial resolution of 30 arc minutes 

(about 50 km at the equator). PEPIC has been used for investigating global crop–water relations 

of maize (Liu et al., 2016b) and assessing global Nl from the three major crops (Liu et al., 2016a). 

In addition, it also performed quite well in comparison to 13 other global crop models in the 

Agricultural Model Intercomparison and Improvement Project (AgMIP) (Müller et al., 2017; 

Porwollik et al., 2016). Inputs for PEPIC include longitude, latitude, elevation, slope, soil 

properties (e.g. layer depth, pH, bulk density, organic carbon content), climate data (precipitation, 

temperature, solar radiation, relative humidity, wind speed), and crop management information. 

As for management data, planting date, harvesting date, fertilizer, and irrigation are required. 

Planting and harvesting dates were obtained from the Center for Sustainability and the Global 

Environment (SAGE) (Sacks et al., 2010). Crop-specific fertilizer and manure application data 

(including N and phosphorus) were downloaded from EarthStat (http://www.earthstat.org/), which 

were based on Mueller et al. (2012) and West et al. (2014). Information on other input data is 

provided in Liu et al. (2016a; 2016b). 

5.2.2 Management practices and intensification scenarios 

In this study, we considered five intensification scenarios, i.e. N25, N25+I10, N50, N50+I30, 

and Max, in addition to the Baseline scenario (Table 5-1). A sufficient amount of phosphorus (P) 

was applied automatically in each scenario to eliminate the effects of P deficit on plant growth 

following Folberth et al. (2014). The Nin in the Baseline (Nin-base) were determined by the 

minimum value of actual N inputs (Nin-a) and automatic N inputs (Nin-auto). Here, Nin-base was based 

on the EarthStat dataset and Nin-auto was estimated by PEPIC with an automatic N fertilization 

without N limitation at a trigger value of 10% N stress (Balkovič et al., 2014) with the current 

irrigation land condition. This setting excluded the impacts of over N application on Nl in some 

regions (Liu et al., 2016a), since this study focused on the effects of input additions. Irrigation 

was applied automatically without water limitation at a trigger value of 10% water stress 

(Rosenzweig et al., 2014). Increased Nin and conversion of rainfed to irrigated cropland relative to 

the Baseline were considered as intensification scenarios in this study. For Nin, we first used 

PEPIC to determine the maximum Nin (Nin-max) by using the automatic fertilization schedule 

without limitation under the fully irrigated condition. This combination of fertilizer and irrigation 

was applied in the Max scenario. Then, the difference between Nin-max and Nin-base, i.e. ΔNin-max, 

was calculated for each grid cell. Scenarios N25 and N25+I10 represented the lowest levels of 
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intensification. In N25, N inputs were increased by 25% of ΔNin-max relative to the Baseline, while 

in N25+I10 10% of the rainfed cropland was converted to irrigated land in addition to a 25% of 

ΔNin-max increase in Nin. Scenarios N50 and N50+I30 represent corresponding high-level 

intensification scenarios. In N50, N inputs were increased by 50% of ΔNin-max relative to the 

Baseline, while in N50+I30 30% of the rainfed land was converted to irrigated land in addition to 

a 50% of ΔNin-max increase in Nin. These levels of intensification were based on Mueller et al. 

(2012), who found that jointly increasing Nin by 30% and irrigated lands by 25% would reach 

productivity levels that represent 75% of the attainable yields of the year 2000. Although global 

constant percentage values of ΔNin-max and rainfed land were used here to increase Nin and Iw, the 

actual increases in Nin and Iw were quite different due to the large differences in Nin and rainfed 

land area under the Baseline condition (Figures S5-1 and S5-2) and the input requirements under 

the Max scenario. 

Table 5-1. Description of intensification scenarios in terms of increasing nitrogen (N) inputs and 
irrigation (I) areas. 

Scenario N inputs Irrigation areas 
Baseline Nin-base Air 
N25 Nin-base + 0.25×ΔNin-max Air 
N25+I10 Nin-base + 0.25×ΔNin-max Air + 0.10×Arf 
N50 Nin-base + 0.50×ΔNin-max Air 
N50+I30 Nin-base + 0.50×ΔNin-max Air + 0.30×Arf 
Max Nin-max Full irrigation 

Nin-base: min(Nin-a, Nin-auto); Nin-a: actual N inputs based on EarthStat dataset; Nin-auto: optimal N inputs based on PEPIC 
simulation with current irrigation land condition; Nin-max: optimal N inputs based on PEPIC simulation considering 
current croplands with full irrigation; ΔNin-max: Nin-max − Nin-base; Air and Arf: current areas for irrigation and rainfed 
cultivation based on MIRCA2000 dataset. 

5.2.3 Definition of target variables and data analysis 

Four model outputs were considered in the analysis, i.e. Iw [mm], Nin [kg N per ha], Y [t per 

ha], and Nl [kg N per ha]. Nl includes N losses into the aquatic and atmospheric environments, 

more information on the calculation of Nl can be found in Liu et al. (2016a). In this study, crop 

growth was simulated separately under rainfed and irrigated conditions. The combined outputs of 

each variable were calculated using the area-weighted average of irrigated and rainfed outputs 

(Liu et al., 2007) based on the MIRCA2000 dataset of crop-specific fractions of irrigated and 

rainfed land for each crop in each grid cell (Portmann et al., 2010). The combined results were 

aggregated to FPU (Cai and Rosegrant, 2002; Kummu et al., 2010), continental, and global levels. 

Subsequently, the differences of each variable between the intensification scenarios and the 

Baseline were calculated, i.e. differences of Iw (ΔIw), differences of Nin (ΔNin), differences of Y 

(ΔY), and differences of Nl (ΔNl). For FPUs with ΔY < 1% of Baseline Y, outputs under the 

intensification scenarios were treated as the same values of the Baseline to exclude possible errors 

due to minor responses. After this treatment, ΔIw, ΔNin, ΔY, and ΔNl were re-evaluated. The ratios 
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of ΔY to ΔNin (ΔY/ΔNin) and ΔNl to ΔNin (ΔNl/ΔNin) were calculated to explore the responses of 

Y and Nl to Nin additions under different intensification scenarios. 

The FPUs with different degrees of yield gap closure, i.e. 70%, 75%, 80%, 85%, 90%, and 

95% of Ymax achieved with each management scenario were also identified. To reveal the 

importance of regions with high ΔY/ΔNin and low ΔNl/ΔNin, the responses of ΔY to ΔNl were 

investigated by intensifying the FPUs with an order of ascending ΔNl/ΔNin and descending 

ΔY/ΔNin. 

 

5.3 Results 

5.3.1 Yield benefits 

The simulated responses of crop yields Y to increased Nin and Iw showed high spatial 

variations, with very large effects in some regions, but only minor ones in other areas (Figure 5-1 

and S5-3). These benefits also showed different spatial patterns among the three crops, but were 

rather similar among the different scenarios for each crop. Areas with high ΔY for maize and rice 

were found to be concentrated mainly in the southern parts of Africa and South America, where 

the Baseline Y was quite low and differences in Nin between the Max and Baseline scenarios were 

very high. In addition to these regions, parts of eastern Europe and the Middle East also showed 

large ΔY for wheat. For other regions, particularly China and India, only small ΔY were predicted 

for the three crops. Globally, the average ΔY in the five scenarios ranged between 20 and 53% for 

maize, 10 and 20% for rice, and 27 and 72% for wheat (Tables 5-2 and S5-1). Yields responded 

mainly to increased N inputs and less to intensified irrigation. Increased N inputs were found to 

substantially increase irrigation water use efficiency (defined as yield per unit of applied Iw), 

while the effects of Iw additions on N use efficiency (defined as yield per unit of applied Nin) were 

quite small (Tables S5-2 and S5-3). Meanwhile, to achieve high Y benefits, significant increases 

in the input of these resources were required (Tables S5-4 and S5-5). 

5.3.2 Nitrogen losses into the environment 

The simulations predicted that Y benefits from Nin and Iw intensification would result in 

substantial ΔNl around the world, with increases varying between 20 and 236% for maize, 14 and 

96% for rice, and from 28 to 278% for wheat among the five scenarios (Table 5-2). ΔNl was 

particularly high in Africa, Oceania, and South America for maize and rice, and in Africa, Europe, 

Oceania, and South America for wheat (Table S5-6). The overall geographical distribution 

patterns were very similar to those for the respective ΔY (Figures 5-2 and S5-4), but there were 

also major differences. Large ΔNl were predicted in Southeast Asia for all three crops and in the 
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eastern parts of the USA for wheat, while Y are not expected to increase significantly in these 

regions. While increasing N inputs always increased N losses, increased irrigation reduced N 

losses in some regions relative to the Baseline scenario, because the plants that grow better under 

irrigation took up more N.

Figure 5-1. Yield (Y) in Baseline (a, b, c) and changes in Y (ΔY) [t per ha] between N25 (d, e, f) and 
Baseline, as well as between N50+I30 (g, h, i) and Baseline. Information for scenarios N25+I10, N50, 

and Max are presented in Figure S5-3.

5.3.3 Relationship between yield increases and nitrogen losses

The incremental N use efficiency, expressed in terms of the ratio ΔY/ΔNin, and the 

incremental environmental costs of increased Nl, expressed as the ratio ΔNl/ΔNin, demonstrated 

opposite spatial distribution patterns at the FPU level (Figures S5-5 and S5-6). China and India 

showed quite high incremental N loss-to-input ratios. For maize cultivation, the eastern parts of 

the USA also had a high ΔNl/ΔNin ratio. The ΔY/ΔNin ratio showed clear negative linear 

relationships to the ΔNl/ΔNin ratio for all three crops in all five intensification scenarios (Figure 5-

3). The positions of individual FPU along the relationships between incremental Y and N loss was 

closely related to the magnitude of additional N input. In contrast, the intensification of irrigation 

had little effect, as these relationships showed little difference between the scenarios without and 

with irrigation, i.e. between N25 and N25+I10 and between N50 and N50+I30, respectively. The 

negative slopes of these relationships indicate that there is a win–win situation if further input 
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intensification concentrates on regions where additional inputs have the highest incremental N use 

efficiency, as these are also the regions with the smallest additional N losses.

Table 5-2. Global average irrigation water (Iw) [mm], nitrogen inputs (Nin) [kg N per ha], yields (Y) [t per 

ha], and total nitrogen losses (Nl) [kg N per ha] under Baseline and different intensification scenarios. 

All croplands are intensified.

maize rice wheat

Iw Nin Y Nl Iw Nin Y Nl Iw Nin Y Nl

Baseline 50.2 110.4 6.3 75.3 41.3 115.0 4.5 102.0 44.7 79.0 2.7 51.5

N25 50.2 148.3 7.6 90.1 41.3 138.2 5.0 116.4 44.8 123.1 3.4 66.5

N25+I10 62.0 156.6 7.7 95.6 42.2 138.2 5.0 115.7 55.6 123.6 3.5 66.1

N50 50.2 183.9 8.1 110.8 41.3 163.1 5.2 135.5 44.8 162.5 3.6 90.8

N50+I30 87.0 202.0 8.5 121.8 44.0 163.2 5.2 134.9 78.4 166.5 3.9 89.4

Max 173.0 356.3 9.7 253.3 50.1 235.1 5.4 199.6 156.9 296.0 4.6 194.6

Figure 5-2. Nitrogen losses (Nl) in Baseline (a, b, c) and changes in Nl (ΔNl) [kg N per ha] between N25 

(d, e, f) and Baseline, as well as between N50+I30 (g, h, i) and Baseline. Information for scenarios 

N25+I10, N50, and Max are presented in Figure S5-4.

In most FPUs with a high ΔNl/ΔNin ratio (> 0.7) and a low ΔY/ΔNin ratio, mainly in China, 

India, western Europe, and eastern USA (Figures S5-3 and S5-4), Y has already obtained a high 

level (e.g. 75%) of what could be achieved in the Max scenario, Ymax, before intensification under 

each scenario (Figure 5-3). This means that significant Nl can be avoided by stopping further 

increases of Nin and Iw applications in such FPUs. This condition was found to be especially 



Achieving high crop yields with low nitrogen losses

110

common in rice cultivation, where about 84% of the cropland presently under rice cultivation 

produced 75% of Ymax in the Baseline scenario (Table S5-7). For wheat and maize, the respective 

percentages were 43% and 36%. The regions showing low yield gap were mainly located in east 

Asia, central Europe and the eastern USA for maize, eastern and southeastern Asia for rice, and 

China and India for wheat (Figure 5-4). In the N50+I30 scenario, only small fraction of croplands 

did not achieve 75% of the Ymax.

Figure 5-3. Relationships between ΔY/ΔNin [kg grain per kg N] and ΔNl/ΔNin [-] under different 

intensification scenarios at the food production unit (FPU) level. ΔY: differences in yields (Y) between 
intensification scenarios and Baseline; ΔNin: differences in nitrogen inputs (Nin) between intensification 

scenarios and Baseline; ΔNl: differences in total nitrogen losses (Nl) between intensification scenarios 

and Baseline. The FPUs with the smallest areas (for a total of 1% of global total cropland areas of each 

crop) are not shown. Sizes represent cropland areas for each FPU. Green circles represent the FPUs 

with 75% of maximum Y (Ymax) achieved before the corresponding scenario with an intensification order 

of Baseline, N25, N25+I10, N50, N50+I30, and Max; red circles represent the FPUs without 75% of Ymax

achieved. Equations represent the linear relationship between ΔY/ΔNin and ΔNl/ΔNin (points with 

negative ΔNl/ΔNin are not included for regression analysis); the R
2

is the coefficient of determination of 

equation.

5.3.4 Frontier lines for intensifying croplands on a global scale

Based on the negative relationship between ΔY/ΔNin and ΔNl/ΔNin, we constructed frontier 

lines of cumulative ΔY against cumulative ΔNl, ordering the FPU by ascending ΔNl/ΔNin and 

descending ΔY/ΔNin (Figure 5-5). Starting with FPU high in ΔY and low in ΔNl, these lines 

decrease in slope as ΔY decreases, while ΔNl increases. This is particularly notable for scenarios 

N50, N50+I30, and Max. Furthermore, the frontier lines show a large difference between the Max 



Chapter 5

111

and the other scenarios, indicating the high environmental costs versus small benefits of further 

intensifying crop production when the level of intensification is already high. Avoiding 

intensification in the FPUs with ΔNl/ΔNin > 0.7 can significantly reduce the ΔNl, especially for 

the Max scenario (Figure 5-5a, c, e).

Figure 5-4. Distribution of the scenario with 75% of maximum yields (Ymax) achieved. Scenario 

definition refers to Table 5-1; Ymax is estimated by the PEPIC model under the Max scenario; None 

means FPU cannot achieve 75% of Ymax under the scenarios of Baseline, N25, N25+I10, N50, and 

N50+I30.

An important strategy for limiting the increase in Nl with little compromise on Y increase is

to avoid further intensification in FPUs, where high levels of Ymax have been achieved, which we 

here define as a threshold of 75% (Figure 5-5b, d, f). With this restriction, simulated incremental 

N losses were reduced from 15–178 [kg N per ha] to 13–33 [kg N per ha] (this reduction 

representing 3–193% of the Baseline Nl) for maize; from 14–98 [kg N per ha] to 5–10 [kg N per 

ha] (the reduction representing 9–86% of the Baseline Nl) for rice; and from 15–143 [kg N per ha] 

to 13–44 [kg N per ha] (the reduction representing 4–192% of the Baseline Nl) for wheat, 

depending on the scenario. Expected ΔY were reduced by only 0.0–1.5 [t per ha] (corresponding 
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to 1–23% of the Baseline Y) for maize; 0.2–0.5 [t per ha] (corresponding to 4–12% of the 

Baseline Y) for rice; and 0.0–0.5 [t per ha] (corresponding to 1–19% of the Baseline Y) for wheat 

(Table 5-3), and the frontier lines lay very close together for the different scenarios. Furthermore, 

the results also show that much less N and water resources are required to achieve the same 

increase in yield with a strategy in which further intensification is limited to cropland where the 

yield gap is still comparatively large than with indiscriminate further intensification. In addition to 

restricting intensification to FPU with yield levels of <75% Ymax, we performed the analogous 

analysis setting the restriction level at 70%, 80%, 85%, 90%, and 95% of Ymax (Figure S5-7). 

Similar trends for ΔY and ΔNl were found for these levels as with the level of 75% Ymax. 

However, the trade-offs between Y achievements and Nl increases were different using the 

different target levels. 

 

5.4 Discussion 

The high spatial variations of the responses of Y and Nl to increased Nin and Iw inputs of the 

three crops were mainly due to differences in these inputs in the Baseline scenario chosen to 

represent the current situation of N fertilization and irrigation intensity, and thus to differences in 

what the scenarios actually are. Regions with a high level of N inputs generally respond with low 

incremental N use efficiency ΔY/ΔNin but high incremental N loss costs ΔNl/ΔNin to further 

intensification (Figure S5-8). This is in agreement with previous studies. When Nin is already high, 

the yield benefits of additional Nin are quite low (Lassaletta et al., 2014), while the potential of N 

losses tends to be high (Bodirsky and Muller, 2014). Compared to N inputs, most regions showed 

low ΔY in response to more irrigation in all three crops maybe due to the low-level increases in 

irrigated croplands (Figure S5-9). The different responses of Y to Iw are mainly due to different 

fractions of irrigated lands to total cultivated lands and the differences in irrigation requirements 

under Baseline management by considering all croplands as irrigated cultivation (Figure S5-10). 

A low irrigation requirement indicates that rainfall is generally sufficient for crop growth, and so 

there are low benefits from increased irrigation. This explanation generally holds for maize 

cultivation in south-eastern China and central Africa, for rice cultivation in south-eastern China 

and central parts of South America, and for wheat cultivation in southern India and central Africa. 

On the other hand, there is only limited opportunity to further increasing Y by taking additional 

land under irrigation where a large fraction of the cropland is already under irrigation. This 

condition especially holds for rice cultivation (Figure S5-10d). On land where yields are already 

close to what can be achieved for the maximum N and irrigation water inputs, further increasing 

their intensity can produce only minor benefits, while the environmental costs and the 
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consumption of resources become ever more significant. Such regions need to be identified and 

excluded from further intensification and sufficient data should be provided to take this action.

Figure 5-5. Percentage increases in global average yields (Y) and nitrogen losses (Nl) in different 

intensification scenarios without (w/o) considering 75% of maximum Y (Ymax) achieved (left panel) and 

with (w/) considering 75% of Ymax achieved (right panel). Considering 75% of Ymax achieved means the 

intensification scenario for the food production unit (FPU) with 75% of Ymax achieved uses the first 

scenario among Baseline, N25, N25+I10, N50, and N50+I30, which achieved 75% of Ymax. Points in 

each curve are derived by intensifying FPUs with an ascending order of ΔNl/ΔNin and a descending 

order of ΔY/ΔNin on the basis of Figure 5-3. Crosses in subplots a, c, and e present the maximum 

increases of Y and Nl by stopping intensifying the FPUs with ΔNl/ΔNin > 0.7. For better visualization, 

every 10 points between the first and last points are plotted for each curve.

Based on our simulations, it was not possible to double the production of the three crops on 

the current cropland area even if there was no limit on N fertilizer application and irrigation, 

especially in rice production (Table 5-2). Similar findings were reported by Mueller et al. (2014),

who estimated production potentials close to 100% of maximum attainable Y through nutrients

and irrigation management. Therefore, other measures should be considered to further increase 

yields, such as breeding more productive varieties (Khush, 2001), change of cropping intensities 

(Challinor et al., 2015), and better allocation on a global scale of crops to cultivated land (Mauser 
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et al., 2015) among others. Combining these measures with better N and irrigation management 

can be expected to further increase Ymax and strengthen the responses of Y to Nin and Iw in 

currently high Y regions. Hence, a comprehensive assessment including these options should be 

the focus of further research. 

Table 5-3. Global average irrigation water (Iw) [mm], nitrogen inputs (Nin) [kg N per ha], yields (Y) [t per 
ha], and total nitrogen losses (Nl) [kg N per ha] under different intensification scenarios. Only croplands 
without achieving 75% of maximum Y are intensified. 

 maize rice wheat 

 Iw Nin Y Nl Iw Nin Y Nl Iw Nin Y Nl 

N25 50.2 145.2 7.5 88.1 41.3 125.2 4.8 107.3 44.8 120.2 3.4 64.5 

N25+I10 57.1 146.7 7.6 89.1 41.7 125.2 4.8 107.3 52.8 120.3 3.4 64.1 

N50 51.5 164.2 7.8 98.6 41.3 130.8 4.9 111.1 45.8 136.3 3.5 73.2 

N50+I30 64.6 165.8 8.0 98.5 41.6 130.8 4.9 111.1 63.4 138.6 3.7 71.8 

Max 80.9 179.9 8.2 108.2 42.3 131.8 4.9 111.8 97.0 175.5 4.1 95.7 

Intensifying all croplands to a high level would require a considerable increase in Nin and Iw 

inputs (Figures S5-1 and S5-2 and Tables S5-4 and S5-5). However, inputs cannot be increased 

without limit and they are associated with significant environmental impacts. While there is 

sufficient N in the atmosphere for practically unlimited industrial production of mineral N 

fertilizer, the energy required for it is likely to set an upper limit. Already about 2% of the world’s 

energy use is used for the production of reactive N (Sutton et al., 2013). Moreover, there is still a 

long way to go for many developing countries, mainly in Africa and South America, to afford 

enough nutrients for their croplands. In comparison to N, freshwater is a much more limited 

resource and its spatiotemporal distribution is already very uneven for natural reasons (Oki and 

Kanae, 2006). That is why we set lower levels of irrigated land expansion. While we found that 

by expanding the irrigated areas maize and wheat yields could be increased substantially in the 

western USA and western and central Asia (Figure S5-9), the available water resources set a 

rather low upper limit to this option (Elliott et al., 2014). An estimated four billion people suffer 

from severe water scarcity for at least one month per year (Mekonnen and Hoekstra, 2016). 

Further expansion of irrigation agriculture hence bears the risk of worsening this problem. 

Therefore, it will be vital to increase the efficiency of irrigation (Jagermeyr et al., 2015; 

Jagermeyr et al., 2016) and fertilizer (Zhang et al., 2015) applications. As shown here, one 

strategy to achieve this is to avoid further intensification in regions where yields are already very 

high and to concentrate intensification efforts instead on regions with currently low yields and 

inefficient use of these resources. 

Mueller et al. (2012) have already explored trade-offs between excess N (differences 

between N inputs and crop taking up N) and crop production using frontier lines. The difference 

between the study here and their study is that we also used frontier lines to explore the benefits of 



Chapter 5 

115 

avoiding further intensification in regions where yields are already close to their potential 

maximum levels, i.e. 70–95% of Ymax (Figures 5-5 and S5-7). The frontier lines reveal consistent 

trends, but differences also exist. In particular, the separation of frontier lines for the six scenarios 

was more pronounced when targeting for a high yield level than for a low yield level, highlighting 

the environmental costs of achieving a high level of Y by input intensification. On the other hand, 

the ΔNl may be reduced if setting a low target level. But then the increases in Y will also be less. 

Thus, it is important to find a level at which these effects are in a desirable balance. In the end, 

setting such a target level is a political decision. 

We also recognize some limitations of the approach taken. Firstly, the results were based on 

simulations with just one crop model. Thus, model-related uncertainties cannot be considered. 

Such uncertainties could be high in the simulation of crop growth and associated nutrient 

dynamics (Bassu et al., 2014; Li et al., 2015). Performing the same analysis with different models 

would give explicit information on the potential influence of modelling uncertainties on the 

results (Martre et al., 2015). Secondly, we did not consider the impacts of climate change and 

adaptation strategies, which are also important factors affecting future food security, although 

their uncertainties are also high (Pugh et al., 2016; Ray et al., 2015; Rosenzweig et al., 2014). 

Thirdly, as the purpose of this study is to investigate the yield potentials of input intensification, 

associated environmental trade-offs, and their regional differences, we only considered several 

levels of intensification (low, high, and maximum) in order to reduce the computation time. A full 

range of N and irrigation intensification scenarios would help to identify the optimal 

intensification level. Coping with these factors was beyond the scope of this study and will be 

subject to future research. 
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Supplementary information for

Achieving high crop yields with low nitrogen losses in global agricultural input intensification

Figure S5-1. Changes of nitrogen inputs (ΔNin) [kg N per ha] between N25 (a, d, g), N50 (b, e, h), Max 

(c, f, i) and Baseline.
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Figure S5-2. Changes in irrigation water (ΔIw) [mm] between N25+I10 (a, d, g), N50+I30 (b, e, h), Max 

(c, f, i) and Baseline.
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Figure S5-3. Changes in yields (ΔY) [t per ha] between N25+I10 (a, d, g), N50 (b, e, h), Max (c, f, i) and 

Baseline.
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Figure S5-4. Changes in nitrogen losses (ΔNl) [kg N per ha] between N25+I10 (a, d, g), N50 (b, e, h), 

Max (c, f, i) and Baseline.
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Figure S5-5. Spatial distribution of ΔY/ΔNin [kg grain per kg N] in the intensification scenarios N25 (a, d, 

g), N50+I30 (b, e, h), and Max (c, f, i). ΔY: differences in yields (Y) between intensified scenarios and 
Baseline; ΔNin: differences in nitrogen inputs (Nin) between intensified scenarios and Baseline.



Achieving high crop yields with low nitrogen losses

124

Figure S5-6. Spatial distribution of ΔNl/ΔNin [-] in the intensification N25 (a, d, g), N50+I30 (b, e, h), 

and Max (c, f, i). ΔNl: differences in total nitrogen losses (Nl) between intensification scenarios and 

Baseline; ΔNin: differences in nitrogen inputs (Nin) between intensification scenarios and Baseline.
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Figure S5-7. Percentage changes in global average yields (Y) and nitrogen losses (Nl) in different 

intensified scenarios considering 70%, 80%, 85%, 90% and 95% of maximum Y (Ymax) achieved. 

Considering each level of Ymax achieved means the intensification scenario for the food production unit 

(FPU) with corresponding level of Ymax achieved uses the first scenario among Baseline, N25, N25+I10, 

N50, and N50+I30, which has achieved the corresponding level of Ymax. Points in each curve are derived 

by intensifying FPUs with an ascending order of ΔNl/ΔNin and a descending order of ΔY/ΔNin on the 

basis of Figure 5-3. For better visualization, every 10 points between the first and last points are plotted 

for each curve.
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Figure S5-8. Spatial distribution of nitrogen inputs in Baseline (Nin-base) [kg N per ha].
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Figure S5-9. Changes of yields (ΔY) [t per ha] due to irrigated land expansions considering the ΔY 
between N25+I10 and N25 (a, c, e) as well as between N50+I30 and N50 (b, d, f).
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Figure S5-10. Irrigation water (Iw) [mm] for maize (a), rice (c), and wheat (e); and fraction of irrigated 

land to total cultivated land (Iw fraction) [%] for maize (b), rice (d), and wheat (f). The Iw was estimated 

by PEPIC considering all the croplands as irrigated land with nitrogen fertilization in Baseline.
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Table S5-1. Average yields [t per ha] under different conditions. Description of each scenario refers to 
Table 5-1. 

Crop Continent Baseline N25 N25+I10 N50 N50+I30 Max 

maize Africa 3.9 7.2 7.3 8.8 9.3 11.2 
 Asia 6.3 6.7 6.7 6.9 7.0 7.3 
 Europe 6.0 6.7 6.8 6.8 7.4 8.8 
 N. America 8.2 8.7 8.9 8.9 9.6 11.2 
 Oceania 4.6 8.2 8.3 10.1 10.4 11.5 
 S. America 5.5 8.5 8.5 9.9 10.1 11.2 
rice Africa 2.9 4.9 4.9 6.1 6.2 7.1 
 Asia 4.5 4.9 4.9 5.1 5.1 5.2 
 Europe 4.8 6.3 6.3 6.9 6.9 7.0 
 N. America 6.5 6.9 6.9 7.0 7.1 7.2 
 Oceania 2.6 5.6 5.6 7.6 7.7 8.4 
 S. America 4.6 6.2 6.2 7.0 7.1 7.5 
wheat Africa 2.0 3.0 3.1 3.3 3.9 5.8 
 Asia 2.3 2.6 2.7 2.8 2.9 3.4 
 Europe 3.5 5.0 5.0 5.4 5.6 6.3 
 N. America 3.1 3.7 3.7 3.8 4.1 5.0 
 Oceania 1.9 2.9 3.1 3.1 4.0 6.6 
 S. America 3.1 4.7 4.7 5.0 5.0 5.3 
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Table S5-2. Average irrigation water use efficiency [kg grain per mm irrigation water] under different 
conditions. Description of each scenario refers to Table 5-1. 

Crop Continent Baseline N25 N25+I10 N50 N50+I30 Max 

maize Global 126.5 150.7 124.0 161.4 97.8 56.1 
 Africa 88.7 163.8 120.8 198.2 99.1 53.6 
 Asia 102.4 109.6 105.7 112.2 95.9 73.0 
 Europe 145.5 160.9 118.6 163.1 80.6 42.3 
 N. America 128.9 136.0 109.2 140.3 81.9 46.4 
 Oceania 16.1 28.6 28.0 35.0 32.9 29.9 
 S. America 834.7 1295.1 549.5 1506.8 302.8 116.3 
rice Global 108.6 119.6 117.2 125.4 118.3 107.6 
 Africa 27.2 46.2 44.0 57.0 49.8 42.5 
 Asia 130.1 139.9 137.8 145.0 138.6 129.1 
 Europe 17.5 22.7 22.7 25.0 25.0 25.1 
 N. America 31.4 33.1 33.0 33.9 33.5 32.9 
 Oceania 4.7 10.2 10.2 13.9 13.8 14.4 
 S. America 121.1 164.0 150.8 183.7 145.5 102.6 
wheat Global 59.9 76.0 62.2 80.6 49.4 29.3 
 Africa 24.0 35.8 30.9 39.5 28.8 22.0 
 Asia 30.3 34.7 32.4 36.5 30.2 23.1 
 Europe 780.7 1107.1 274.9 1194.6 122.9 44.4 
 N. America 187.2 221.0 116.7 230.6 65.6 29.0 
 Oceania 938.1 1413.9 108.9 1478.7 49.0 24.7 
 S. America 572.8 873.1 466.3 924.4 258.1 100.3 
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Table S5-3. Average nitrogen use efficiency [kg grain per kg nitrogen] under different conditions. 
Description of each scenario refers to Table 5-1. 

Crop Continent Baseline N25 N25+I10 N50 N50+I30 Max 

maize Global 57.5 51.0 49.0 44.0 42.1 27.2 
 Africa 93.7 58.8 59.4 45.1 46.8 26.3 
 Asia 52.8 48.7 48.8 43.9 44.4 32.3 
 Europe 63.4 52.4 52.0 44.7 44.5 28.6 
 N. America 50.3 47.8 42.7 44.5 37.8 26.1 
 Oceania 62.0 55.1 55.3 46.4 46.4 25.3 
 S. America 80.9 55.9 56.1 41.6 42.4 23.6 
rice Global 39.1 35.9 35.9 31.9 32.0 23.1 
 Africa 100.8 56.2 56.4 41.5 42.3 23.2 
 Asia 37.8 34.8 34.8 31.2 31.2 23.1 
 Europe 72.4 60.2 60.2 48.7 48.7 27.6 
 N. America 42.0 39.1 39.1 35.8 35.9 22.2 
 Oceania 164.0 72.8 72.8 55.0 55.0 26.8 
 S. America 71.1 50.9 51.1 39.0 39.4 22.3 
wheat Global 34.0 27.6 28.0 22.2 23.3 15.5 
 Africa 34.1 24.6 25.7 19.6 22.6 16.5 
 Asia 27.2 25.2 25.4 22.5 23.1 17.1 
 Europe 43.3 30.2 30.5 22.1 22.9 13.6 
 N. America 39.7 29.9 30.5 24.0 25.2 16.5 
 Oceania 36.5 22.9 24.3 17.7 21.6 16.1 
 S. America 53.9 34.4 34.5 23.1 23.4 13.1 
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Table S5-4. Average irrigation water [mm] under different conditions. Description of each scenario 
refers to Table 5-1. 

Crop Continent Baseline N25 N25+I10 N50 N50+I30 Max 

maize Africa 44.1 44.2 60.7 44.2 93.7 209.1 
 Asia 61.3 61.3 63.8 61.3 73.0 100.7 
 Europe 41.4 41.5 57.7 41.5 91.6 209.2 
 N. America 63.7 63.8 81.4 63.8 116.8 240.5 
 Oceania 287.9 288.3 296.9 289.0 317.5 383.9 
 S. America 6.5 6.6 15.5 6.6 33.5 96.3 
rice Africa 106.4 106.4 112.3 106.4 124.4 166.5 
 Asia 34.9 34.9 35.5 34.9 36.6 40.5 
 Europe 276.2 276.4 276.6 276.5 276.9 278.1 
 N. America 207.2 207.2 208.3 207.3 210.5 219.5 
 Oceania 545.1 545.9 549.8 545.9 557.1 584.2 
 S. America 37.9 37.9 41.3 37.9 48.5 73.3 
wheat Africa 83.1 83.1 100.8 83.2 137.1 263.8 
 Asia 75.9 76.0 82.2 76.0 97.2 146.6 
 Europe 4.5 4.5 18.2 4.5 45.7 141.9 
 N. America 16.5 16.5 32.0 16.5 62.9 171.2 
 Oceania 2.1 2.1 28.7 2.1 82.1 268.9 
 S. America 5.4 5.4 10.1 5.4 19.6 52.7 
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Table S5-5. Average nitrogen inputs [kg N per ha] under different conditions. Description of each 
scenario refers to Table 5-1. 

Crop Continent Baseline N25 N25+I10 N50 N50+I30 Max 

maize Africa 41.8 123.1 123.5 194.1 198.5 426.6 
 Asia 118.9 137.9 138.0 156.9 157.7 227.7 
 Europe 95.0 127.3 131.5 151.2 165.8 309.5 
 N. America 163.2 181.6 207.9 201.2 252.8 426.9 
 Oceania 74.6 149.6 150.1 218.0 225.0 453.0 
 S. America 67.5 151.9 152.2 237.3 239.3 474.2 
rice Africa 28.7 87.5 87.5 146.1 146.4 304.4 
 Asia 120.3 140.5 140.5 162.6 162.7 226.4 
 Europe 66.6 104.0 104.0 141.8 141.9 252.9 
 N. America 155.0 175.6 175.6 196.5 196.6 325.2 
 Oceania 15.6 76.6 76.9 138.0 139.7 315.4 
 S. America 64.5 122.1 122.1 178.7 178.9 336.6 
wheat Africa 58.5 120.9 121.5 167.0 174.9 351.7 
 Asia 84.7 104.5 105.1 123.4 127.0 197.6 
 Europe 80.6 164.1 164.2 243.0 245.2 463.2 
 N. America 77.7 122.0 122.4 158.9 163.8 300.8 
 Oceania 53.0 128.0 128.6 173.4 186.0 410.6 
 S. America 57.1 136.2 136.2 215.1 215.4 402.1 
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Table S5-6. Average nitrogen losses [kg N per ha] under different conditions. Description of each 
scenario refers to Table 5-1. 

Crop Continent Baseline N25 N25+I10 N50 N50+I30 Max 

maize Africa 33.5 56.0 55.6 89.8 88.6 276.2 
 Asia 76.2 86.1 86.0 100.0 98.3 161.0 
 Europe 68.6 79.7 82.1 95.8 102.4 220.7 
 N. America 104.1 114.4 133.2 127.8 165.9 315.9 
 Oceania 49.1 66.1 65.9 96.0 98.4 286.0 
 S. America 64.5 96.6 96.3 141.0 139.5 342.1 
rice Africa 40.8 62.8 62.5 96.3 95.2 228.2 
 Asia 106.3 119.8 119.2 137.6 137.0 194.6 
 Europe 50.7 60.3 60.2 80.9 80.9 181.8 
 N. America 94.4 108.3 108.1 125.3 125.0 247.6 
 Oceania 17.3 27.5 27.4 46.0 46.1 203.9 
 S. America 61.6 87.7 87.5 125.2 124.3 268.0 
wheat Africa 33.2 51.9 50.1 77.3 71.3 191.3 
 Asia 57.2 63.6 63.6 73.3 73.4 126.8 
 Europe 52.3 82.3 81.7 133.4 131.4 326.7 
 N. America 44.6 60.4 59.8 81.2 80.5 191.2 
 Oceania 24.8 51.5 49.2 87.9 77.5 223.7 
 S. America 55.6 76.1 75.4 135.2 133.2 312.0 

 

 

 

 

Table S5-7. Fraction [%] of croplands with 75% of maximum yields achieved to the total croplands 
under different conditions. Description of each scenario refers to Table 5-1. 

Scenario maize rice wheat 

Baseline 43.9 83.8 36.0 
N25 66.2 92.0 61.6 
N25+I10 71.9 92.0 68.0 
N50 78.9 99.4 74.9 
N50+I30 93.9 99.4 80.7 
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Abstract 

Global food trade entails virtual flows of agricultural resources and environmental pollution 

across country boundaries. Existing studies largely focus on water resources but lack a 

comprehensive evaluation of environmental impacts associated with food trade. Here, we 

performed a global-scale assessment of the impacts of international food trade on blue water use, 

total water use, and nitrogen (N) inputs in agriculture and on N losses from agriculture to water 

and the total environment for the three major crops (maize, rice, and wheat). Blue water use refers 

to the blue water footprint of crop production, and total water use to the sum of the blue and green 

water footprint. Besides the baseline simulations around the year 2000, we explored the impacts 

of an agricultural intensification scenario, in which particularly countries with low N and 

irrigation inputs under the baseline in crop production enhance crop yields by increasing those 

inputs. For these purposes, we combined a crop model with the Global Trade Analysis Project 

(GTAP) model. For the first time we found that food exports generally occurred from regions 

with lower resource use intensities to regions with higher ones. This resulted that food trade 

globally conserved a large amount of agricultural resources as well as reduced substantial N 

losses. The trade-related conservation in blue water use reached 85 km3 yr−1 accounting for more 

than half of total blue water use for producing the three crops. Food exported from the USA 

contributed the largest proportion of global resource conservation and N loss reduction, but also 

emitted substantial export-associated N losses in its own territory. Under the intensification 

scenario, the converging resource use and N loss intensities across countries result in a more level 

playing field; crop trade volume will generally decrease, and global resource conservation and 

pollution reduction associated with international trade will reduce accordingly. The study 

provides useful information to understand the implications on international crop trade and 

resources use and pollution patterns of agricultural intensification in the world’s least developed 

regions. 
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6.1 Introduction 

Global food trade is associated with virtual flows of water resources between trading 

countries. Water resources are to a greater or lesser extent bound to the place where they occur, 

but the possibility to use them for producing export products makes them global (Hoekstra, 2017). 

It has been estimated that around the year 2000 the volume of virtual water flowing throughout 

the world as a result of international food trade amounted to one-fifth of total water consumption 

for agricultural production (Hoekstra and Mekonnen, 2012). With the expansion of international 

trade, virtual water trade has been increasing during the past few decades (Antonelli et al., 2017; 

Dalin et al., 2012; Kastner et al., 2014). The influence of international food trade on water 

resources utilization across trade partners has been intensively studied (Hoekstra and Hung, 2005; 

Porkka et al., 2017; Zhao et al., 2015). 

In addition to water, other agricultural resources as well as environmental quality are 

influenced by international food trade. In particular, impacts on nutrients such as nitrogen (N) 

(Lassaletta et al., 2016; Oita et al., 2016) and phosphorus (Nesme et al., 2016), land (Fader et al., 

2011), water pollution (O'Bannon et al., 2014; Wan et al., 2016), CO2 emissions (Feng et al., 2013; 

Peters et al., 2011), aerosols (Lin et al., 2016; Lin et al., 2014), and fine particulate matter (PM2.5) 

(Zhang et al., 2017) have been studied. For instance, it was estimated that about a quarter of 

global N emissions were driven by demand for international trade in 2010 (Oita et al., 2016). 

International food trade could serve to conserve global resources and alleviate environmental 

degradation if food were to be exported from regions with lower resource uses and pollution 

intensities to regions with higher resource uses and pollution intensities. Whereas the impacts of 

food trade on water conservation have been widely studied (Chapagain et al., 2006; Konar et al., 

2016; Yang et al., 2006), the effects of food trade on conserving other resources and reducing 

environmental pollution are still largely unclear (Dalin and Rodriguez-Iturbe, 2016). Furthermore, 

investigations of trade impacts on resource uses and pollution have mainly been conducted by 

considering one metric at a time, e.g. either water or N (Dalin et al., 2017; Oita et al., 2016). Only 

a few studies so far have attempted to investigate such impacts through considering multiple 

aspects in some regions. For example, Martinez-Melendez and Bennett (2016) explored the 

benefits of food trade between the USA and Mexico taking impacts on land, water, and N 

fertilizer resources, as well as on nitrous oxide (N2O) emissions into consideration and concluded 

that the trade between the two countries reduced the environmental costs of agriculture. Zhao et al. 

(2016) included water, chemical oxygen demand (COD), and ammoniacal nitrogen (NH3-N) to 

explore the burden shifting of water quantity and quality stress from Shanghai, the largest 

megacity in China, to its domestic trading partners. A comprehensive and integrated assessment 

of environmental impacts of food trade through a multi-metric research is still absent on a global 
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scale. Such assessment is essential for improving our understanding of the impacts through 

providing a more general picture (MacDonald et al., 2012; Yang et al., 2013). 

Here, for the first time we performed a comprehensive global-scale investigation of trade 

effects on agricultural resources and N emissions to the environment, comparing the baseline 

situation around the year 2000 to a scenario of agricultural intensification. Using the grid-based 

crop model PEPIC, i.e. Python-based Environmental Policy Integrated Climate (Liu et al., 2016a), 

we simulated agricultural blue water use (BWU), total water use (TWU) and N inputs (Nin), as 

well as N losses from agriculture to water (Nw) and the total environment (Nt) for the three major 

crops—maize, rice, and wheat. BWU refers to the evapotranspiration (ET) of irrigation water 

from the crop field, also referred to as blue water consumption or blue water footprint. TWU 

refers to total ET, i.e. the sum of ET of irrigation water (blue water) and rainwater (green water). 

To investigate the impacts of trade on these aspects, we first estimated resource use intensities and 

N loss intensities, calculated as a ratio of resource uses and N losses to crop yields. Gross virtual 

resource flows between countries and export-associated N losses were then calculated by 

multiplying international food trade volumes with respective resource use intensities and N loss 

intensities in the exporting countries. Finally, resource conservation through international food 

trade was obtained by multiplying exported food volumes with the difference between resource 

use intensities in food importing countries and exporting countries. In the case of reduction in N 

losses through international food trade, N loss intensities were used instead of resource use 

intensities. 

In addition to these baseline calculations, we also considered an agricultural intensification 

scenario, N25I10, in which we assume an increase of N inputs by 25% of the differences between 

maximum N inputs and baseline N inputs (here baseline N over-application was eliminated) and a 

conversion of 10% of rainfed croplands into irrigated cultivation. Under the N25I10 scenario, the 

increases in N- input and irrigation area were therefore larger in the regions with low N-input and 

a high rainfed fraction in the baseline than in regions with high N-input and a high irrigated 

fraction in the baseline. Therefore, global spatial patterns of irrigation and N inputs were more 

balanced in the N25I10 scenario than in the baseline. The purpose of this scenario analysis was to 

illustrate possible impacts of agricultural intensification, which is advocated for achieving larger 

crop yields and production enhancement in low-input regions (Mueller et al., 2012), on global 

resource conservation and environmental impacts. The trends demonstrated in this scenario reflect 

a general situation under any other agricultural intensification. The Global Trade Analysis Project 

(GTAP) (Hertel, 1997) was used to estimate bilateral food trade under the N25I10 scenario, by 

inputting GTAP with relative changes of yields between N25I10 and baseline. Then, resource 
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conservation and reduction in N losses due to food trade were evaluated for the N25I10 scenario, 

similar to the baseline. 

 

6.2 Methods 

6.2.1 The PEPIC model 

The crop model PEPIC (Liu et al., 2016a) was used to simulate crop yields, crop water 

consumption, and N dynamics at a spatial resolution of 30 arc minutes for the baseline and 

N25I10 scenario. The PEPIC model is a grid-version of the EPIC model (Williams, 1995; 

Williams et al., 1984). EPIC simulates soil–water–climate–management processes related to crop 

growth at a daily step. Previous investigations showed that PEPIC performed well in representing 

global crop yields and N losses (Liu et al., 2016a; Liu et al., 2016b). The PEPIC model also 

contributed to the Global Gridded Crop Model Intercomparison (GGCMI) (Elliott et al., 2015), 

which is part of the Agricultural Model Intercomparison and Improvement Project (AgMIP) 

(Rosenzweig et al., 2013). The performance of PEPIC in simulating historical yield variability at 

the country level compared well with the other 13 global crop models involved in the GGCMI 

(Müller et al., 2017; Porwollik et al., 2016). 

Inputs for the PEPIC model include a digital elevation model (DEM), slope, climate 

(Weedon et al., 2014), soil (Batjes, 2006), and crop management practices, e.g. irrigation area, 

fertilizer inputs, and planting and harvesting dates (Sacks et al., 2010). For the baseline, irrigated 

and rainfed cultivation areas were based on the MIRCA2000 dataset (Portmann et al., 2010). 

Fertilizer inputs of phosphorus (P) and N (including chemical mineral fertilizer and manure) were 

obtained from the EarthStat dataset (http://www.earthstat.org) (Mueller et al., 2012; West et al., 

2014) (Table S6-1). Irrigation was applied automatically when water deficits for a crop exceeded 

10% of water requirements without water limitation (Folberth et al., 2016). P was applied before 

planting based on Balkovič et al. (2014), while N (Nin-base based on the EarthStat dataset) was 

applied three times with equal amount during the whole growth season (Liu et al., 2016b). For the 

N25I10 scenario, irrigation was applied in the same way as in the baseline scenario, but 

converting 10% of rainfed croplands into irrigated cultivation. P was applied automatically by 

PEPIC without limitation to avoid the P deficiency that would limit plant growth (Folberth et al., 

2014). N was applied automatically, triggered by 10% N stress (Liu et al., 2016b). To determine 

N inputs in the N25I10 scenario, maximum N inputs with baseline irrigation condition (Nin-base-max) 

and maximum N inputs with full irrigation condition (Nin-full-max) were first estimated using PEPIC 

triggered by 10% N stress without N limitation. The minimum value of Nin-base and Nin-base-max was 

treated as Nin-base-limit to eliminate baseline N over-application. The difference of Nin-full-max and Nin-

http://www.earthstat.org/


Resource conservation and pollution reduction under food trade and agricultural intensification 

140 

base-limit was calculated as ΔNin (Figure S6-1). Finally, N inputs in the N25I10 scenario were 

estimated by Nin-base-limit + 0.25×ΔNin (Table S6-1). Therefore, the N25I10 scenario combines the 

effects of N input intensification and avoidance of N overuse. It should be noted that the idea of 

the designed intensification scenario is to propose a relatively balanced agricultural condition in 

terms of N and irrigation inputs. The N25I10 scenario is therefore an illustration of such idea. 

6.2.2 The GTAP model 

The GTAP model is a multi-sector and multi-region general equilibrium global trade model 

with constant returns to scale and perfect competition, considering capital, land, natural resources, 

skilled labour, and unskilled labour as production factors (Hertel, 1997). It provides a detailed 

description of the demand and supply for each sector and each region. The GTAP model has been 

widely used to investigate the impacts of changes in yields on international trade (Konar et al., 

2013; Konar et al., 2016; Liu et al., 2014). In GTAP, yield improvements due to agricultural input 

intensification affect food trade through changing food production and food price. Here, the 

GTAP v6 database, which refers to the year 2001, was used because the land-use data and the 

EarthStat fertilizer data under the baseline were mainly related to the period 1998–2002. 

Percentage differences in trade value (in million US dollars) between N25I10 (price effects on 

final trade value were eliminated) and baseline were generated based on the GTAP simulations. 

The average gross bilateral exported food volumes (EFV) [t yr−1] of the three crops between 1998 

and 2002 were obtained from FAOSTAT (http://www.fao.org/faostat/en/#home). Country-

specific food EFV was then aggregated to 96 regions defined in the GTAP v6 database (Tables 

S6-2 and S6-3). Final EFV under the N25I10 scenario was calculated as the product of EFV of the 

baseline and the percentage differences of trade value between N25I10 and baseline. 

6.2.3 Variable descriptions 

The variables used in this study include crop yield (Y) [t ha−1], BWU [mm], TWU [mm], Nin 

[kg N ha−1], Nw [kg N ha−1], and Nt [kg N ha−1]. TWU refers to growing season evapotranspiration. 

BWU is the part of the total growing season evapotranspiration derived from surface- and ground-

water. It was calculated based on Liu et al. (2009). Nw is N loss with surface runoff, leaching and 

erosion. Nt is the sum of Nw and N loss to the atmosphere (Liu et al., 2016b). 

In order to assess gross virtual resource export, and N losses associated with food export, we 

first calculated resource use intensities and N loss intensities relative to crop yields at the country 

level aggregated from grid level using area-weighted averages: 

𝐴𝐴𝐺𝐺𝑈𝑈𝐿𝐿 = 10 ∗ 𝐴𝐴𝐺𝐺𝑈𝑈 𝑌𝑌⁄          (6-1) 

𝑃𝑃𝐺𝐺𝑈𝑈𝐿𝐿 = 10 ∗ 𝑃𝑃𝐺𝐺𝑈𝑈 𝑌𝑌⁄          (6-2) 

http://www.fao.org/faostat/en/%23home
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𝑅𝑅𝑚𝑚𝑚𝑚𝐿𝐿 = 𝑅𝑅𝑚𝑚𝑚𝑚 𝑌𝑌⁄           (6-3) 

𝑅𝑅𝑤𝑤𝐿𝐿 = 𝑅𝑅𝑤𝑤 𝑌𝑌⁄           (6-4) 

𝑅𝑅𝑡𝑡𝐿𝐿 = 𝑅𝑅𝑡𝑡 𝑌𝑌⁄           (6-5) 

where BWUI [m3 t−1], TWUI [m3 t−1], NinI [kg N t−1], NwI [kg N t−1], and NtI [kg N t−1] are blue 

water use intensity, total water use intensity, N input intensity, water N loss intensity, and total N 

loss intensity, respectively. The 10 is used for unit transformation. Then, gross virtual BWU, 

TWU, and Nin export, as well as Nw, and Nt associated with export were obtained by multiplying 

EFV with the corresponding intensities: 

𝐴𝐴𝐺𝐺𝑈𝑈𝑃𝑃𝑚𝑚𝑝𝑝𝑓𝑓,𝑚𝑚 = 𝐴𝐴𝐺𝐺𝑈𝑈𝐿𝐿𝑓𝑓 ∗ 𝑃𝑃𝐺𝐺𝐶𝐶𝑓𝑓,𝑚𝑚        (6-6) 

𝑃𝑃𝐺𝐺𝑈𝑈𝑃𝑃𝑚𝑚𝑝𝑝𝑓𝑓,𝑚𝑚 = 𝑃𝑃𝐺𝐺𝑈𝑈𝐿𝐿𝑓𝑓 ∗ 𝑃𝑃𝐺𝐺𝐶𝐶𝑓𝑓,𝑚𝑚        (6-7) 

𝑅𝑅𝑚𝑚𝑚𝑚𝑃𝑃𝑚𝑚𝑝𝑝𝑓𝑓,𝑚𝑚 = 𝑅𝑅𝑚𝑚𝑚𝑚𝐿𝐿𝑓𝑓 ∗ 𝑃𝑃𝐺𝐺𝐶𝐶𝑓𝑓,𝑚𝑚        (6-8) 

𝑅𝑅𝑤𝑤𝑃𝑃𝑚𝑚𝑝𝑝𝑓𝑓,𝑚𝑚 = 𝑅𝑅𝑤𝑤𝐿𝐿𝑓𝑓 ∗ 𝑃𝑃𝐺𝐺𝐶𝐶𝑓𝑓,𝑚𝑚        (6-9) 

𝑅𝑅𝑡𝑡𝑃𝑃𝑚𝑚𝑝𝑝𝑓𝑓,𝑚𝑚 = 𝑅𝑅𝑡𝑡𝐿𝐿𝑓𝑓 ∗ 𝑃𝑃𝐺𝐺𝐶𝐶𝑓𝑓,𝑚𝑚        (6-10) 

where BWUExpe,i [m3], TWUExpe,i [m3], NinExpe,i [kg N] are gross virtual resource export from 

exporting country, e, to importing country, i, for BWU, TWU, and Nin, respectively; NwExpe,i [kg 

N] and NtExpe,i [kg N] are export-associated Nw and Nt. On the basis of the intensity differences 

between importing and exporting countries, resource conservation and pollution reduction 

through food trade were calculated using the following equations: 

𝐴𝐴𝐺𝐺𝑈𝑈𝐶𝐶𝐵𝐵𝐵𝐵𝑓𝑓,𝑚𝑚 = (𝐴𝐴𝐺𝐺𝑈𝑈𝐿𝐿𝑚𝑚 − 𝐴𝐴𝐺𝐺𝑈𝑈𝐿𝐿𝑓𝑓) ∗ 𝑃𝑃𝐺𝐺𝐶𝐶𝑓𝑓,𝑚𝑚      (6-11) 

𝑃𝑃𝐺𝐺𝑈𝑈𝐶𝐶𝐵𝐵𝐵𝐵𝑓𝑓,𝑚𝑚 = (𝑃𝑃𝐺𝐺𝑈𝑈𝐿𝐿𝑚𝑚 − 𝑃𝑃𝐺𝐺𝑈𝑈𝐿𝐿𝑓𝑓) ∗ 𝑃𝑃𝐺𝐺𝐶𝐶𝑓𝑓,𝑚𝑚      (6-12) 

𝑅𝑅𝑚𝑚𝑚𝑚𝐶𝐶𝐵𝐵𝐵𝐵𝑓𝑓,𝑚𝑚 = (𝑅𝑅𝑚𝑚𝑚𝑚𝐿𝐿𝑚𝑚 − 𝑅𝑅𝑚𝑚𝑚𝑚𝐿𝐿𝑓𝑓) ∗ 𝑃𝑃𝐺𝐺𝐶𝐶𝑓𝑓,𝑚𝑚       (6-13) 

𝑅𝑅𝑤𝑤𝑅𝑅𝑅𝑅𝑅𝑅𝑓𝑓,𝑚𝑚 = (𝑅𝑅𝑤𝑤𝐿𝐿𝑚𝑚 − 𝑅𝑅𝑤𝑤𝐿𝐿𝑓𝑓) ∗ 𝑃𝑃𝐺𝐺𝐶𝐶𝑓𝑓,𝑚𝑚       (6-14) 

𝑅𝑅𝑡𝑡𝑅𝑅𝑅𝑅𝑅𝑅𝑓𝑓,𝑚𝑚 = (𝑅𝑅𝑡𝑡𝐿𝐿𝑚𝑚 − 𝑅𝑅𝑡𝑡𝐿𝐿𝑓𝑓) ∗ 𝑃𝑃𝐺𝐺𝐶𝐶𝑓𝑓,𝑚𝑚       (6-15) 

where BWUCone,i [m3], TWUCone,i [m3], NinCone,i [kg N], NwRede,i [kg N], and NtRede,i [kg N] 

are BWU conservation, TWU conservation, Nin conservation, Nw reduction, and Nt reduction 

through food trade from exporting country, e, to importing country, i, respectively. A positive 

value of the five variables means resource conservation or pollution reduction, while a negative 

value means increase in resource consumption or pollution emission. Finally, global resource 

conservation through food trade was calculated as the sum of resource conservation resulting 

from the entire trade and global N loss reduction as the sum of N losses avoided due to 
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international trade of the respective crop, compared to the hypothetical situation with no trade, in 

which the import of crops would be replaced by equivalent amounts of additional crop production 

in the importing countries. 

 

6.3 Results 

6.3.1 Virtual resource export and global conservation through food trade 

Global trade in the three crops in the year around 2000 involved a total gross virtual resource 

export of 14 km3 yr−1, 221 km3 yr−1, and 5621 Gg (Gg = 109 g) N yr−1 for BWU, TWU, and Nin, 

respectively (Table 6-1), accounting for 8%, 12%, and 10%, respectively, of the total 

consumption of these resources (Table S6-4). Rice contributed the largest percentage of gross 

virtual BWU export (46%), while wheat contributed the largest percentages of gross virtual TWU 

export (64%) and gross virtual Nin export (58%). The USA contributed most to gross virtual 

resource export, accounting for 40%, 30%, and 34% of global gross virtual resource export for 

BWU, TWU, and Nin, respectively (Figure 6-1). Because the USA was the major crop exporter 

for maize and wheat (Figure S6-2), the gross virtual resource export of BWU, TWU, and Nin from 

the USA was also the biggest for these two crops (Figures S6-3–S6-5). As for rice, Pakistan 

exported the largest virtual BWU, while Thailand exported the largest virtual TWU and China 

exported the largest virtual Nin (Figure S6-4). Regarding specific trade links, food exported from 

the USA to Japan was responsible for the largest bilateral virtual flow of BWU, TWU and Nin 

(Figure 6-1). 

Table 6-1. Global gross virtual resource export to importing countries and resource conservation 
through food trade for maize, rice, and wheat under the baseline and N25I10 scenario. BWU: blue water 
use; TWU: total water use; Nin: nitrogen inputs. 

Scenario Variable Gross virtual resource export to 
importing countries 

Resource conservation through food 
trade 

  maize rice wheat sum maize rice wheat sum 

Baseline BWU (km3 yr−1) 4.2 6.3 3.3 13.8 24.9 36.7 23.4 85.0 

 TWU (km3 yr−1) 53.0 26.8 141.2 221.0 41.7 42.1 21.0 104.8 

 Nin (Gg N yr−1) 1623 748 3251 5621 515 453 1366 2333 

N25I10 BWU (km3 yr−1) 4.1 2.4 6.2 12.6 14.7 29.1 30.4 74.3 

 TWU (km3 yr−1) 40.9 11.8 115.0 167.7 11.8 27.8 27.8 67.5 

 Nin (Gg N yr−1) 1642 320 4646 6608 332 -54 593 871 

We further found that these virtual resource exports generally occurred from regions with 

lower resource use intensities to regions with higher ones, while only a few links flowed in the 

opposite direction (Figures 6-1 and S6-3–S6-5). It indicated that most trade links did conserve 

global resources. Global resource conservation through trade in the three crops totalled up to 85 
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km3 yr−1, 105 km3 yr−1, and 2333 Gg N yr−1 for BWU, TWU, and Nin, respectively (Table 6-1). 

The resource conservation was particularly high for BWU. Total global BWU conserved through 

food trade was six times the total gross virtual export of BWU and accounted for 51% of the 

global BWU consumption for the three crops (Table S6-4). This means that the importing 

countries on average used much more blue water to produce a unit of these crops than the 

exporting countries. Also, global TWU and Nin conservation through food trade reached half of 

their total gross virtual export. Global Nin conservation through food trade was almost equivalent 

to the total Nin consumption in Africa and Oceania for the three crops. Rice trade conserved most 

BWU (43%) and TWU (40%), while wheat trade conserved most Nin (59%). Crop export to the 

Middle East presented the highest potential for conserving global resources, while crop export 

from the USA contributed the largest fractions of global conservation of the three resources 

(Figure 6-1). 

6.3.2 Global pollution reduction through food trade and export-associated N losses 

Similar to resource conservation, global food trade reduced agricultural N losses in most 

bilateral trading links, with only a few links increasing N losses (Figure 6-2). This means that 

most exporting countries produced the three crops wasting less N fertilizer than the importing 

countries. The total N losses reduced through food trade were 1924 Gg N yr−1 for Nw and 2211 Gg 

N yr−1 for Nt for all three crops together (Table 6-2). The main contribution came from 

international wheat trade. The USA, Australia, and Canada were the top three contributors, 

together accounting for 80% and 75% of total Nw and Nt reduction, respectively. The USA 

contributed the largest Nw and Nt reduction with maize and wheat trade, while Thailand reduced 

the most N losses with rice trade (Figures S6-6–S6-8). Trade from the USA to Japan led to the 

largest N loss reduction associated with a single bilateral trade flow (Figures 6-2b and 6-2d). Rice 

exported from China mainly resulted in increases in N losses (Figure S6-7). 

The simulation results indicate that global food trade conserved resources and reduced 

environmental pollution from N losses in terms of global totals, but the exported crops were still 

associated with substantial N losses to the environment in the exporting countries. This part of N 

losses were environmental burden shifts from food importing countries to food exporting 

countries. Total export-associated N losses related to the three crops reached 1914 Gg N yr−1 and 

3681 Gg N yr−1 for Nw and Nt, respectively (Table 6-2), accounting for about 7% and 8% of the 

respective total N losses for the production of the three crops (Table S6-4). Wheat alone 

accounted for more than half of the global Nw and Nt losses associated with the production of the 

three crops for export, with respective fractions of 54% and 59%. The USA, France, and China 

were the major emitters of N losses associated with food export, together emitting more than half 
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of the Nw and Nt on their territories. In particular, the USA alone accounted for about one-third of 

export-associated N losses (Figures 6-2a and 6-2c). 

 

Figure 6-1. Gross virtual resource export to importing countries and resource conservation through 
trade in the three crops under the baseline. BWU: blue water use (km3 yr−1); TWU: total water use (km3 
yr−1); Nin: nitrogen inputs (Gg N yr−1). Arrows point to food importing countries; blue beams represent 
resource conservation in subplots b, d, and f, while red beams represent increases in resource 
consumption; the links with volumes less than 0.5% of the global total are disregarded; numbers outside 
arcs show total volume of export and conservation for major trading countries. Regions are defined in 
Tables S6-2 and S6-3. 
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Figure 6-2. Export-associated nitrogen (N) losses in exporting countries and reduction in N losses 
through trade in three crops under the baseline. Nw: N losses to water (Gg N yr−1); Nt: N losses to the 
total environment (Gg N yr−1). Arrows point to food exporting countries; blue beams represent reduction 
in N losses in subplots b and d, while red beams represent increases in N losses; the links with volumes 
less than 0.5% of the global total are disregarded; numbers outside arcs show total volume of export-
associated N losses and reduction in N losses for major trading countries. Regions are defined in Tables 
S6-2 and S6-3. 

6.3.3 Impacts of agricultural intensification 

Based on our PEPIC and GTAP simulations, agricultural intensification according to the 

N25I10 scenario would increase global crop production (Table S6-4) and decrease trade volumes 

in most trade links (Figure S6-2), especially for maize and rice, due to the relatively large 

increases in crop yields in importing countries with low-input crop production. But it would also 

largely increase maize export in Argentina and wheat export in Australia, mainly because of their 

significant yield increases under the N25I10 scenario and their important roles in exporting the 

two crops in the world. Consequently, global gross virtual water export and export-associated N 

losses would generally decrease in the N25I10 scenario compared to the baseline scenario, while 

the flow of virtual Nin would generally increase (Figures S6-9 and S6-10, Tables 6-1 and 6-2). 

The exceptions are that export-associated Nw would slightly increase for maize, that Nin would 
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largely decrease for rice, and that BWU would increase and Nin decrease for wheat. Agricultural 

intensification would also reduce export-associated N losses in some food exporting countries 

under the N25I10 scenario, e.g. China and India (Figure S6-10). 

Table 6-2. Global export-associated nitrogen (N) losses in exporting countries and reduction in N losses 
through trade in maize, rice, and wheat under the baseline and N25I10 scenario. Nw: N losses to water; 
Nt: N losses to the total environment. 

Scenario Variable Export-associated N losses in 
exporting countries 

N loss reduction through food trade 
 

  maize rice wheat sum maize rice wheat sum 

baseline Nw (Gg N yr−1) 534 344 1036 1914 638 64.8 1221 1924 

 Nt (Gg N yr−1) 1026 499 2156 3681 826 125 1260 2211 

N25I10 Nw (Gg N yr−1) 559 141 779 1479 431 0.2 983 1415 

 Nt (Gg N yr−1) 1000 216 2080 3297 486 28.0 991 1505 

Global resource conservation and N loss reduction through food trade could largely decline 

under the N25I10 scenario relative to the baseline, except resource conservation in BWU and 

TWU would increase for wheat (Tables 6-1 and 6-2). In particular, total Nin conservation of the 

three crops would decrease from 2333 Gg N yr−1 in the baseline to 871 Gg N yr−1 in the N25I10 

scenario. Conservation in Nin for rice would become negative, indicating that global rice trade 

leads to increased consumption of N inputs. This is mainly due to substantial decreases in Nin 

conservation through food exported to the Middle East, where the major rice producer Iraq 

avoided N over-application and therefore Nin use intensity was reduced for the whole Middle East 

(Figure S6-13f). The declines in the contributions to resource conservation and N loss reduction 

were particularly large for the USA (Figures S6-9 and S6-10). For example, conservation in TWU 

through trade in the three crops drops from 40 km3 yr−1 in the baseline to only 8 km3 yr−1 in the 

N25I10 scenario in the USA. The major contributors of resource conservation and N loss 

reduction through global food trade would also change for each crop (Figures S6-11–S6-16). 

 

6.4 Discussion 

Previous studies found that global food trade could conserve TWU for crop production 

(Konar et al., 2013; Oki and Kanae, 2004), which is consistent with this study. Furthermore, we 

clearly presented that a large amount of BWU was conserved through food trade globally, 

reaching half of the total BWU consumption for producing the three crops. This is particularly 

important for managing global water resources, as TWU includes the dominant fraction of water 

resources from precipitation and soil moisture, which is difficult to use for other purpose 

(Rockström et al., 2009). To our best knowledge, also this study for the first time demonstrated 

that global food trade conserved N inputs and reduced N losses. This assessment largely improved 
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our understanding of the benefits of global food trade in terms of resource conservation and 

pollution reduction. 

However, resource conservation and N loss reduction associated with global food trade were 

achieved at the expense of increased resource consumption and extra environmental pollution in 

the exporting countries. While, as found in this study, global food trade conserved substantial 

BWU, virtual water export has placed significant pressure on blue water sustainability in many 

exporting countries (Dalin and Conway, 2016; Dalin et al., 2014; Hoekstra and Mekonnen, 2016; 

Marston et al., 2015), particularly groundwater depletion induced by international food export 

(Dalin et al., 2017). For instance, about 9% of Japan’s domestic cereal supply relied on water 

resources from overexploited aquifers in the USA (Marston et al., 2015). Continuous depletion of 

blue water resources, associated with an increasing burden of environmental degradation, is 

challenging virtual water trade (Zhao et al., 2016). From this point of view, reducing the virtual 

water export and pollution associated with food trade in the USA would reduce the pressure on its 

water resources and environment. This could partially explain why there are fewer and fewer 

countries exporting food (Porkka et al., 2013). 

Our estimations of virtual water trade are comparable with previous studies. For example, 

Liu et al. (2009) concluded that around 6% of virtual water trade originated from BWU in 2000, 

consistent with our estimation. The total virtual TWU export of the three crops in this study (221 

km3 yr−1 under the baseline) is quite close to the estimate of Hanasaki et al. (2010) (213 km3 yr−1 

in 2000). Also the crop-specific comparison matches very well, i.e. 56, 35, 122 km3 yr−1 for maize, 

rice, and wheat in Hanasaki et al. (2010) vs. 53, 27, 141 km3 yr−1, respectively, in this study. 

However, due to a lack of crop-specific data on virtual Nin export and export-associated N losses, 

we could not compare our estimations of these variables with other studies. This calls for more 

integrated assessments of environmental impacts of international food trade by taking multi-

metrics into consideration (Dalin and Rodriguez-Iturbe, 2016; MacDonald et al., 2015). 

The N25I10 scenario included the effects of intensification in irrigation and N inputs and 

avoidance of N over-application. Therefore, crop yields and consumption in BWU and TWU 

would increase. Also, Nin would increase and more N would be lost to the environment in regions 

that under-applied N in the baseline. However, changes in resource use intensities and N loss 

intensities between N25I10 and baseline were quite different for different countries, due to 

different input intensification levels considered by the N25I10 scenario and different agro-

climatic yield potentials (Mueller et al., 2012). Generally, resource use intensities and N loss 

intensities would converge across countries in the intensification scenario compared to the 

baseline situation (Tables S6-5–S7). Combining the decreased export volumes in most food trade 

links (Figure S6-2), input intensification according to the N25I10 scenario could largely reduce 
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global resource conservation and N loss reduction associated with food trade. Still, input 

intensification creates a more level playing field. It improves crop yields, reduces the need for 

import and enhances self-sufficiency and food security, particularly for the lowest performing 

countries in Africa (Sanchez, 2010). Another positive outcome of input intensification would be 

the reduced resource consumption and exported-associated N losses for the major exporting 

countries. 

In order to investigate the impact of agricultural intensification on crop trade, we used 

percentage increases in yields derived from improved N and irrigation management as input to 

run the GTAP model. While there are other factors (e.g. population, policy, and technology) that 

can affect food trade (Dalin et al., 2015), only considering changes in yields is a common practice 

in using GTAP in order to reduce the complexity of the simulation (Konar et al., 2013; Konar et 

al., 2016). With this approach, we isolated the influence of increased N and irrigation inputs, 

particularly in countries with low inputs in the baseline, on global food trade by keeping other 

factors unchanged. Our main research objective was achieved. Including other factors, which may 

change trade picture, deserves more detailed research in the future. 

 

6.5 Conclusions 

In this study, we combined the PEPIC model with the GTAP model to investigate the 

impacts of international trade in three major crops on resource uses and N losses in the baseline 

year 2000 and an intensification scenario regarding increased N and irrigation inputs. For the first 

time we systematically demonstrated that global food trade did reduce N losses and conserve a 

large amount of N inputs and water resources. In particular, conservation in BWU through food 

trade accounted for more than half of the total BWU consumption for producing the three crops. 

This suggests that enlarging food trade could further improve these benefits. However, it brings 

challenges in enhancing self-sufficiency and food security for the lowest performing countries. 

Agricultural intensification improves crop yields and holds the key to address the challenges. 

However, as a result of the converging resource use and pollution intensities across countries, 

resource conservation and pollution reduction associated with international food trade will decline 

under the intensification scenario. The study provides useful information to understand the 

implications of international food trade and agricultural intensification on resource uses and 

pollution patterns. 
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Supplementary information for

Resource conservation and pollution reduction in the context of global food trade and 

agricultural intensification

Figure S6-1. Conceptual description for obtaining the maximum increases in nitrogen (N) inputs under 

baseline N under-application condition (a) and baseline N over-application condition (b). Nin-base:

baseline N inputs based on EarthStat dataset; Nin-base-max: maximum N inputs based on PEPIC simulation 

with baseline irrigation condition; Nin-full-max: maximum N inputs based on PEPIC simulation with full 

irrigation condition. ΔNin = Nin-full-max − Nin-base-limit, where Nin-base-limit = min(Nin-base, Nin-base-max).
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Figure S6-2. Food export volume (Tg yr−1) for maize, wheat and rice under baseline and differences 
between N25I10 and baseline. Arrows point to food importing countries; blue beams represent increases 
in export volume in subplots b, d, and f, while red beams represent decreases in export volume; the links 
with volumes less than 0.5% of the global total are disregarded; numbers outside arcs show total trade 
volume for major trading countries. Regions are defined in Tables S6-2 and S6-3. 
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Figure S6-3. Gross virtual resource export to importing countries and resource conservation through 
trade in maize under the baseline. BW: blue water (km3 yr−1); TWU: total water use (km3 yr−1); Nin: 
nitrogen inputs (Gg N yr−1). Arrows point to food importing countries; blue beams represent resource 
conservation in subplots b, d, and f, while red beams represent increases in resource consumption; the 
links with volumes less than 0.5% of the global total are disregarded; numbers outside arcs show total 
volume of export and conservation for major trading countries. Regions are defined in Tables S6-2 and 
S6-3. 
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Figure S6-4. Gross virtual resource export to importing countries and resource conservation through 
trade in rice under the baseline. BW: blue water (km3 yr−1); TWU: total water use (km3 yr−1); Nin: 
nitrogen inputs (Gg N yr−1). Arrows point to food importing countries; blue beams represent resource 
conservation in subplots b, d, and f, while red beams represent increases in resource consumption; the 
links with volumes less than 0.5% of the global total are disregarded; numbers outside arcs show total 
volume of export and conservation for major trading countries. Regions are defined in Tables S6-2 and 
S6-3. 
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Figure S6-5. Gross virtual resource export to importing countries and resource conservation through 
trade in wheat under the baseline. BW: blue water (km3 yr−1); TWU: total water use (km3 yr−1); Nin: 
nitrogen inputs (Gg N yr−1). Arrows point to food importing countries; blue beams represent resource 
conservation in subplots b, d, and f, while red beams represent increases in resource consumption; the 
links with volumes less than 0.5% of the global total are disregarded; numbers outside arcs show total 
volume of export and conservation for major trading countries. Regions are defined in Tables S6-2 and 
S6-3. 
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Figure S6-6. Export-associated nitrogen (N) losses in exporting countries and reduction in N losses 
through trade in maize under the baseline. Nw: N losses to water (Gg N yr−1); Nt: N losses to the total 
environment (Gg N yr−1). Arrows point to food exporting countries; blue beams represent reduction in N 
losses in subplots b and d, while red beams represent increases in N losses; the links with volumes less 
than 0.5% of the global total are disregarded; numbers outside arcs show total volume of exported-
associated N losses and reduction in N losses for major trading countries. Regions are defined in Tables 
S6-2 and S6-3. 
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Figure S6-7. Export-associated nitrogen (N) losses in exporting countries and reduction in N losses 
through trade in rice under the baseline. Nw: N losses to water (Gg N yr−1); Nt: N losses to the total 
environment (Gg N yr−1). Arrows point to food exporting countries; blue beams represent reduction in N 
losses in subplots b and d, while red beams represent increases in N losses; the links with volumes less 
than 0.5% of the global total are disregarded; numbers outside arcs show total volume of exported-
associated N losses and reduction in N losses for major trading countries. Regions are defined in Tables 
S6-2 and S6-3. 
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Figure S6-8. Export-associated nitrogen (N) losses in exporting countries and reduction in N losses 
through trade in wheat under the baseline. Nw: N losses to water (Gg N yr−1); Nt: N losses to the total 
environment (Gg N yr−1). Arrows point to food exporting countries; blue beams represent reduction in N 
losses in subplots b and d, while red beams represent increases in N losses; the links with volumes less 
than 0.5% of the global total are disregarded; numbers outside arcs show total volume of exported-
associated N losses and reduction in N losses for major trading countries. Regions are defined in Tables 
S6-2 and S6-3. 
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Figure S6-9. Differences of gross virtual resource export to importing countries and resource 
conservation through trade in the three crops between N25I10 and baseline. BW: blue water (km3 yr−1); 
TWU: total water use (km3 yr−1); Nin: nitrogen inputs (Gg N yr−1). Arrows point to food importing 
countries; blue beams represent increases in gross virtual resource export and red beams show decreases 
in gross virtual resource export in subplots a, c, and e; blue beams represent increases in resource 
conservation and red beams show decreases in resource conservation in subplots b, d, and f; the links 
with volumes less than 0.5% of the global total are disregarded; numbers outside arcs show total volume 
of export and conservation for major trading countries. Regions are defined in Tables S6-2 and S6-3. 
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Figure S6-10. Differences of export-associated nitrogen (N) losses in exporting countries and N loss 
reduction through trade in the three crops between N25I10 and baseline. Nw: N losses to water (Gg N 
yr−1); Nt: N losses to the total environment (Gg N yr−1). Arrows point to food exporting countries; blue 
beams represent increases in export-associated N losses and red beams show decreases in export-
associated N losses in subplots a and c; blue beams represent increases in N loss reduction and red 
beams show decreases in N loss reduction in subplots b and d; the links with volumes less than 0.5% of 
global total are disregarded; numbers outside arcs show total volume of export-associated N losses and N 
loss reduction for major trading countries. Regions are defined in Tables S6-2 and S6-3. 
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Figure S6-11. Differences of gross virtual resource export to importing countries and resource 
conservation through trade in maize between N25I10 and baseline. BW: blue water (km3 yr−1); TWU: 
total water use (km3 yr−1); Nin: nitrogen inputs (Gg N yr−1). Arrows point to food importing countries; 
blue beams represent increases in gross virtual resource export and red beams show decreases in gross 
virtual resource export in subplots a, c, and e; blue beams represent increases in resource conservation 
and red beams show decreases in resource conservation in subplots b, d, and f; the links with volumes 
less than 0.5% of the global total are disregarded; numbers outside arcs show total volume of export and 
conservation for major trading countries. Regions are defined in Tables S6-2 and S6-3. 
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Figure S6-12. Differences of export-associated nitrogen (N) losses in exporting countries and N loss 
reduction through trade in maize between N25I10 and baseline. Nw: N losses to water (Gg N yr−1); Nt: N 
losses to the total environment (Gg N yr−1). Arrows point to food exporting countries; blue beams 
represent increases in export-associated N losses and red beams show decreases in export-associated N 
losses in subplots a and c; blue beams represent increases in N loss reduction and red beams show 
decreases in N loss reduction in subplots b and d; the links with volumes less than 0.5% of global total 
are disregarded; numbers outside arcs show total volume of export-associated N losses and N loss 
reduction for major trading countries. Regions are defined in Tables S6-2 and S6-3. 
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Figure S6-13. Differences of gross virtual resource export to importing countries and resource 
conservation through trade in rice between N25I10 and baseline. BW: blue water (km3 yr−1); TWU: total 
water use (km3 yr−1); Nin: nitrogen inputs (Gg N yr−1). Arrows point to food importing countries; blue 
beams represent increases in gross virtual resource export and red beams show decreases in gross virtual 
resource export in subplots a, c, and e; blue beams represent increases in resource conservation and red 
beams show decreases in resource conservation in subplots b, d, and f; the links with volumes less than 
0.5% of the global total are disregarded; numbers outside arcs show total volume of export and 
conservation for major trading countries. Regions are defined in Tables S6-2 and S6-3. 



Chapter 6 

165 

 

Figure S6-14. Differences of export-associated nitrogen (N) losses in exporting countries and N loss 
reduction through trade in rice between N25I10 and baseline. Nw: N losses to water (Gg N yr−1); Nt: N 
losses to the total environment (Gg N yr−1). Arrows point to food exporting countries; blue beams 
represent increases in export-associated N losses and red beams show decreases in export-associated N 
losses in subplots a and c; blue beams represent increases in N loss reduction and red beams show 
decreases in N loss reduction in subplots b and d; the links with volumes less than 0.5% of global total 
are disregarded; numbers outside arcs show total volume of export-associated N losses and N loss 
reduction for major trading countries. Regions are defined in Tables S6-2 and S6-3. 
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Figure S6-15. Differences of gross virtual resource export to importing countries and resource 
conservation through trade in wheat between N25I10 and baseline. BW: blue water (km3 yr−1); TWU: 
total water use (km3 yr−1); Nin: nitrogen inputs (Gg N yr−1). Arrows point to food importing countries; 
blue beams represent increases in gross virtual resource export and red beams show decreases in gross 
virtual resource export in subplots a, c, and e; blue beams represent increases in resource conservation 
and red beams show decreases in resource conservation in subplots b, d, and f; the links with volumes 
less than 0.5% of the global total are disregarded; numbers outside arcs show total volume of export and 
conservation for major trading countries. Regions are defined in Tables S6-2 and S6-3. 
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Figure S6-16. Differences of export-associated nitrogen (N) losses in exporting countries and N loss 
reduction through trade in wheat between N25I10 and baseline. Nw: N losses to water (Gg N yr−1); Nt: N 
losses to the total environment (Gg N yr−1). Arrows point to food exporting countries; blue beams 
represent increases in export-associated N losses and red beams show decreases in export-associated N 
losses in subplots a and c; blue beams represent increases in N loss reduction and red beams show 
decreases in N loss reduction in subplots b and d; the links with volumes less than 0.5% of global total 
are disregarded; numbers outside arcs show total volume of export-associated N losses and N loss 
reduction for major trading countries. Regions are defined in Tables S6-2 and S6-3. 
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Table S6-1. Description of the baseline and N25I10 scenario in terms of increasing nitrogen (N) inputs 
and irrigation (I) areas. 

Scenario N inputs Irrigation areas Rainfed areas 
baseline Nin-base Air Arf 
N25I10 Nin-base-limit + 0.25×ΔNin Air + 0.10×Arf 0.9×Arf 

Nin-base is actual N inputs based on the EarthStat dataset; Nin-base-limit = min(Nin-base, Nin-base-max), where Nin-base-max is 
maximum N inputs based on PEPIC simulation with baseline irrigation condition; ΔNin = Nin-full-max − Nin-base-limit, where 
Nin-full-max is maximum N inputs based on PEPIC simulation with full irrigation condition; Air and Arf are baseline 
irrigation and rainfed cultivation areas based on the MIRCA2000 dataset. 
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Table S6-2. Description of the 96 regions in the GTAP model. 

Num. Abb. Name Num. Abb. Name 
1 aus Australia 49 irl Ireland 
2 nzl New Zealand 50 ita Italy 
3 xoc Rest of Oceania 51 lux Luxembourg 
4 chn China 52 nld Netherlands 
5 hkg Hong Kong 53 prt Portugal 
6 jpn Japan 54 esp Spain 
7 kor SouthKorea 55 swe Sweden 
8 twn Taiwan 56 che Switzerland 
9 xea Rest of East Asia 57 xef Rest of European Free Trade Area 
10 khm Cambodia 58 xer Rest of Europe 
11 idn Indonesia 59 alb Albania 
12 mys Malaysia 60 bgr Bulgaria 
13 phl Philippines 61 hrv Croatia 
14 sgp Singapore 62 cyp Cyprus 
15 tha Thailand 63 cze Czech Republic 
16 vnm Vietnam 64 hun Hungary 
17 xse Rest of Southeast Asia 65 mlt Malta 
18 bgd Bangladesh 66 pol Poland 
19 ind India 67 rom Romania 
20 pak Pakistan 68 svk Slovakia 
21 lka Sri Lanka 69 svn Slovenia 
22 xsa Rest of South Asia 70 est Estonia 
23 can Canada 71 lva Latvia 
24 usa United States of America 72 ltu Lithuania 
25 mex Mexico 73 rus Russian Federation 
26 xna Rest of North America 74 xsu Rest of Former Soviet Union 
27 bol Bolivia 75 tur Turkey 
28 col Colombia 76 irn Iran 
29 ecu Ecuador 77 xme Rest of Middle East 
30 per Peru 78 egy Egypt 
31 ven Venezuela 79 mar Morocco 
32 arg Argentina 80 tun Tunisia 
33 bra Brazil 81 xnf Rest of North Africa 
34 chl Chile 82 bwa Botswana 
35 pry Paraguay 83 zaf South Africa 
36 ury Uruguay 84 xsc Rest of South African Customs 

Union 
37 xsm Rest of South America 85 mwi Malawi 
38 xca Rest of Central America 86 mus Mauritius 
39 xfa Rest of Free Trade Area of the 

Americas 
87 moz Mozambique 

40 xcb Rest of the Caribbean 88 tza Tanzania 
41 aut Austria 89 zmb Zambia 
42 bel Belgium 90 zwe Zimbabwe 
43 dnk Denmark 91 xsd Rest of Southern African 

Development Community 
44 fin Finland 92 mdg Madagascar 
45 fra France 93 nga Nigeria 
46 deu Germany 94 sen Senegal 
47 gbr United Kingdom 95 uga Uganda 
48 grc Greece 96 xss Rest of Sub-Saharan Africa 
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Table S6-3. Definition of regions in the GTAP model. 

Name Countries 
Rest of Oceania American Samoa, Cook Islands, French Polynesia, Fiji, Federated States of 

Micronesia, Guam, Kiribati, Marshall Islands, Nauru, New Caledonia, 
Norfolk Islands, Northern Mariana Islands, Niue, Palau, Papua New Guinea, 
Samoa, Solomon Islands, Tokelau, Tonga, Tuvalu, Vanuatu, Wallis & 
Futuna 

Rest of East Asia Democratic People’s Republic of Korea, Macau, Mongolia 
Rest of Southeast Asia Brunei Darussalam, Lao People’s Democratic Republic, Myanmar, Timor-

Leste 
Rest of South Asia Afghanistan, Bhutan, Maldives, Nepal 
Rest of North America Bermuda, Greenland, Saint Pierre & Miquelon 
Rest of South America Falkland Islands, French Guiana, Guyana, Suriname 
Rest of Central America Belize, Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua, Panama 
Rest of Free Trade Area of the 
Americas 

Antigua & Barbuda, Bahamas, Barbados, Dominica, Dominican Republic, 
Grenada, Haiti, Jamaica, Puerto Rico, Saint Kitts & Nevis, Saint Lucia, 
Saint Vincent & the Grenadines, Trinidad & Tobago, USA Virgin Islands 

Rest of the Caribbean Anguilla, Aruba, Cayman Islands, Cuba, Guadeloupe, Martinique, 
Montserrat, Netherlands Antilles, Turks & Caicos, UK Virgin Islands 

Rest of European Free Trade Area Iceland, Liechtenstein, Norway 
Rest of Europe Andorra, Bosnia & Herzegovina, Faroe Islands, Gibraltar, Macedonia, 

Monaco, San Marino, Serbia & Montenegro 
Rest of Former Soviet Union Armenia, Azerbaijan, Belarus, Georgia, Kazakhstan, Kyrgyzstan, Moldova, 

Tajikistan, Turkmenistan, Ukraine, Uzbekistan 
Rest of Middle East Bahrain, Iraq, Israel, Jordan, Kuwait, Lebanon, Oman, Palestinian Territory, 

Qatar, Saudi Arabia, Syrian Arab Republic, United Arab Emirates, Yemen 
Rest of North Africa Algeria, Libya 
Rest of South African Customs 
Union 

Lesotho, Namibia, Swaziland 

Rest of Southern African 
Development Community 

Angola, The Democratic Republic of Congo, Seychelles 

Rest of Sub-Saharan Africa Benin, Burkina Faso, Burundi, Cameroon, Cape Verde, Central African 
Republic, Chad, Comoros, Congo, Cote d´Ivoire, Djibouti, Equatorial 
Guinea, Eritrea, Ethiopia, Gabon, Gambia, Ghana, Guinea, Guinea-Bissau, 
Kenya, Liberia, Mali, Mauritania, Mayotte, Niger, Reunion, Rwanda, Saint 
Helena, Sao Tome & Principe, Sierra Leone, Somalia, Sudan, Togo 
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Table S6-4. Global total resource consumption, nitrogen (N) losses, crop production, and gross food 
export for maize, rice, wheat, and sum of the three crops under the baseline and N25I10 scenario. BWU: 
blue water use; TWU: total water use; Nin: nitrogen inputs; Nw: nitrogen losses to water; Nt: nitrogen 
losses to the total environment; Prod: crop production. 

Scenario Variable maize rice wheat sum 

baseline BWU (km3 yr−1) 57.1 45.8 63.9 166.8 
 TWU (km3 yr−1) 617.1 545.9 689.4 1852.4 
 Nin (Gg N yr−1) 17867.8 20493.7 20919.4 59280.8 
 Nw (Gg N yr−1) 6802.8 13653.1 8603.1 29058.9 
 Nt (Gg N yr−1) 12454.6 17285.7 14288.4 44028.7 
 Prod (Tg yr−1) 781.6 684.2 518.8 1984.6 
N25I10 BWU (km3 yr−1) 69.0 46.6 78.6 194.2 
 TWU (km3 yr−1) 629.7 546.8 704.9 1881.5 
 Nin (Gg N yr−1) 23062.7 21138.9 25880.3 70081.8 
 Nw (Gg N yr−1) 8323.8 13504.3 6220.0 28048.1 
 Nt (Gg N yr−1) 15467.9 17719.6 13781.9 46969.4 
 Prod (Tg yr−1) 949.6 764.0 727.1 2440.8 
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Table S6-5. Resource use intensities and nitrogen (N) loss intensities for maize under the baseline and 
N25I10 scenario. BWUI: blue water use intensity; TWUI: total water use intensity; NinI: nitrogen input 
intensity; NwI: water nitrogen loss intensity; NtI: total nitrogen loss intensity; --: no information. 

 BWUI (m3 t−1) TWUI (m3 t−1) NinI (kg N t−1) NwI (kg N t−1) NtI (kg N t−1) 
 baseline N25I10 baseline N25I10 baseline N25I10 baseline N25I10 baseline N25I10 

aus 688.0 289.0 1609.5 664.4 9.3 15.3 1.0 1.2 4.5 4.3 
nzl 47.5 49.2 502.3 503.3 29.3 26.9 14.1 12.8 19.7 18.7 
xoc 0.0 1.4 1869.9 610.1 2.0 16.4 25.4 10.1 31.8 13.5 
chn 87.4 91.0 725.6 727.2 39.4 27.6 15.6 8.7 24.9 18.3 
hkg -- -- -- -- -- -- -- -- -- -- 
jpn 0.8 1.3 440.6 419.1 26.3 29.8 21.1 23.9 24.9 28.0 
kor 0.0 0.0 402.0 400.0 30.7 33.7 17.6 22.7 21.1 26.4 
twn 0.0 0.0 425.5 404.2 25.6 30.2 12.0 16.5 15.0 20.3 
xea 0.3 0.2 612.7 435.0 19.8 20.7 13.4 13.4 16.6 16.0 
khm 0.0 0.0 1369.7 799.9 11.2 22.9 10.3 13.8 16.6 20.1 
idn 14.4 22.1 826.5 651.0 24.6 28.8 19.6 20.1 27.0 28.9 
mys 0.0 2.8 941.1 635.0 18.2 26.2 18.9 17.1 24.7 23.8 
phl 0.0 0.1 793.0 620.6 19.2 25.5 15.9 18.9 22.3 26.5 
sgp -- -- -- -- -- -- -- -- -- -- 
tha 0.0 0.2 809.1 695.9 19.7 25.1 7.7 11.1 15.0 20.0 
vnm 0.8 1.6 686.3 654.2 31.3 35.9 15.9 22.0 22.4 29.9 
xse 22.7 47.6 1072.0 749.4 21.1 33.8 25.0 21.2 35.1 33.5 
bgd 0.0 0.0 911.0 711.9 28.0 33.6 35.6 35.7 44.0 43.8 
ind 18.6 24.1 1000.0 811.1 20.4 25.7 9.3 10.4 17.0 19.5 
pak 186.5 181.2 624.9 582.5 18.9 17.4 2.9 2.9 6.4 6.6 
lka 0.0 6.3 1418.9 780.2 12.9 24.2 13.2 13.3 19.3 19.2 
xsa 534.0 312.5 1599.9 927.9 14.3 22.1 12.4 12.1 17.8 17.6 
can 5.9 16.3 476.4 473.9 27.0 29.6 13.2 16.6 19.8 23.2 
usa 63.7 74.3 562.4 546.8 19.6 23.8 5.3 8.5 11.4 14.8 
mex 65.6 56.8 900.5 717.2 23.7 27.4 11.2 13.2 18.1 20.9 
xna -- -- -- -- -- -- -- -- -- -- 
bol 30.4 20.3 2910.0 977.5 6.6 18.2 2.8 2.1 11.4 8.4 
col 1.8 2.5 1000.2 668.8 18.1 26.0 15.5 17.3 20.6 23.3 
ecu 59.4 60.6 816.9 718.3 26.6 28.5 27.2 31.2 35.7 40.6 
per 95.0 81.5 803.8 659.4 20.6 21.6 9.7 7.8 17.0 15.5 
ven 17.7 16.0 773.6 627.6 22.5 27.3 5.8 8.9 11.6 16.2 
arg 5.9 13.0 1140.3 545.7 7.8 16.3 4.2 3.8 8.7 7.9 
bra 0.5 7.2 1046.0 717.4 19.1 24.8 11.8 11.9 18.4 19.1 
chl 345.9 348.8 486.2 486.7 29.0 25.4 10.3 7.8 16.1 14.0 
pry 0.3 16.6 2859.9 1008.5 9.4 23.5 15.9 11.0 23.0 16.9 
ury 12.6 15.5 1099.5 525.0 9.7 17.2 7.6 6.1 12.2 10.4 
xsm 0.0 1.7 967.4 606.7 19.3 24.3 15.7 13.7 22.5 20.5 
xca 0.7 1.4 830.6 613.3 21.4 31.0 20.8 26.9 24.9 31.4 
xfa 5.0 10.0 1049.0 649.0 15.8 22.1 11.6 11.2 16.7 16.9 
xcb 0.6 0.4 705.6 483.7 10.1 15.3 5.7 5.5 10.4 10.3 
aut 0.1 1.8 450.1 451.1 21.5 22.5 7.8 9.8 13.4 15.3 
bel 1.0 5.8 499.1 493.4 34.4 27.8 20.4 13.7 26.1 19.6 
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Table S6-5. Continued. 

 BWUI (m3 t−1) TWUI (m3 t−1) NinI (kg N t−1) NwI (kg N t−1) NtI (kg N t−1) 
 baseline N25I10 baseline N25I10 baseline N25I10 baseline N25I10 baseline N25I10 

dnk 18.4 13.1 1049.8 619.3 0.0 8.4 1.8 1.7 9.8 7.8 
fin 1.0 8.7 533.8 526.9 3.2 5.1 5.2 4.9 15.6 15.2 
fra 43.1 49.4 471.2 456.0 26.0 27.9 9.2 11.1 14.2 16.4 
deu 0.9 5.1 499.8 499.8 23.6 22.8 10.3 9.4 16.8 15.9 
gbr 0.0 2.8 1170.7 607.1 0.0 8.3 3.8 2.2 11.3 6.8 
grc 311.4 296.3 555.8 521.9 24.4 23.2 5.6 5.2 10.9 11.1 
irl 0.0 0.0 999.7 742.3 0.0 5.3 6.8 5.0 14.2 11.3 
ita 84.6 85.9 436.5 425.5 23.6 25.8 7.1 9.8 11.4 14.5 
lux 0.0 12.2 491.7 491.5 40.4 32.9 20.7 13.8 25.5 18.5 
nld 1.9 5.2 619.9 511.5 22.6 17.4 15.2 6.7 21.8 13.3 
prt 367.9 257.3 698.1 480.9 17.7 18.8 5.0 3.7 9.1 7.8 
esp 279.0 269.7 566.8 532.3 26.0 21.6 7.4 4.3 12.1 9.5 
swe 5.9 3.3 1294.9 612.1 0.0 9.2 0.9 0.5 8.1 4.8 
che 0.1 0.4 464.9 450.0 23.5 25.6 16.9 17.6 20.9 21.8 
xef -- -- -- -- -- -- -- -- -- -- 
xer 2.6 20.1 656.8 508.9 10.9 18.3 2.6 3.8 8.3 10.3 
alb 366.8 302.2 958.8 772.6 22.9 28.6 4.6 7.2 12.0 16.7 
bgr 56.6 92.9 1932.3 1195.6 9.7 28.0 3.7 4.3 23.6 23.1 
hrv 0.6 22.5 948.8 821.6 24.9 32.1 7.5 11.1 16.5 22.0 
cyp 837.7 373.9 1962.5 748.4 0.1 24.5 1.4 2.1 21.5 16.9 
cze 0.0 3.7 501.6 499.5 15.3 18.5 3.3 5.6 9.9 12.0 
hun 1.1 16.3 524.5 495.5 14.2 18.1 1.5 2.7 8.2 9.6 
mlt -- -- -- -- -- -- -- -- -- -- 
pol 1.8 7.4 526.6 513.6 16.2 15.4 6.3 4.5 13.5 11.6 
rom 18.4 43.2 1096.0 892.5 14.8 23.0 3.9 4.7 16.3 18.7 
svk 5.9 12.2 545.2 502.6 12.0 16.8 1.9 3.7 7.6 9.8 
svn 1.3 5.2 450.7 451.3 27.0 28.0 12.6 15.7 17.6 20.8 
est 8.5 14.7 893.5 632.4 2.4 9.1 2.4 2.2 9.5 8.1 
lva 2.2 19.8 1294.9 1050.4 13.4 19.9 4.0 4.3 17.3 16.9 
ltu 1.8 13.8 1335.7 1007.9 8.9 17.3 2.7 3.2 14.8 14.8 
rus 87.1 99.2 1470.2 1125.4 6.4 17.8 3.0 3.4 19.6 18.1 
xsu 278.3 238.9 1496.4 1142.5 12.4 20.6 2.4 2.6 18.2 16.9 
tur 348.9 360.3 1198.8 1084.1 67.1 41.9 28.1 11.8 45.5 29.1 
irn 1626.1 1344.3 2060.1 1694.3 24.2 19.4 3.6 1.2 12.3 9.9 
xme 2193.3 1689.2 2643.4 2030.8 45.6 18.4 17.2 1.9 27.0 10.4 
egy 1603.1 1172.5 1624.0 1187.7 70.9 32.3 14.7 0.4 33.2 13.6 
mar 1551.2 781.0 2649.6 1296.9 18.6 22.8 1.6 1.3 18.1 13.0 
tun 0.0 648.6 27602.9 3336.9 1.4 100.7 85.9 39.7 309.7 92.5 
xnf 4556.2 1224.3 7955.8 2009.0 10.1 25.1 6.4 3.1 38.5 17.7 
bwa 6.4 135.4 3117.6 1385.3 17.4 29.5 0.5 0.7 15.2 13.8 
zaf 31.0 95.5 1702.0 1192.9 29.6 38.5 4.4 5.1 18.4 21.8 
xsc 18.4 42.9 1954.2 1015.5 14.9 22.6 10.3 7.5 19.0 15.8 
mwi 0.1 8.4 2049.8 783.9 9.2 20.6 3.8 2.9 10.0 9.8 
mus -- -- -- -- -- -- -- -- -- -- 
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Table S6-5. Continued. 

 BWUI (m3 t−1) TWUI (m3 t−1) NinI (kg N t−1) NwI (kg N t−1) NtI (kg N t−1) 
 baseline N25I10 baseline N25I10 baseline N25I10 baseline N25I10 baseline N25I10 

moz 2.8 7.7 2867.7 807.8 2.2 18.6 9.3 4.8 17.6 10.5 
tza 24.5 51.5 2368.8 973.2 7.3 27.1 7.8 9.0 21.5 20.1 
zmb 1.0 15.0 1712.8 765.1 8.2 20.2 4.7 3.8 12.3 11.5 
zwe 12.1 46.0 1553.6 840.6 17.5 25.9 5.3 4.1 12.9 13.0 
xsd 0.1 2.0 2080.3 681.9 2.0 16.9 4.3 2.9 13.1 9.4 
mdg 0.0 3.6 2517.8 827.9 5.4 21.7 37.0 14.8 44.8 19.8 
nga 0.5 2.6 1182.2 680.2 10.8 18.0 4.8 3.9 11.4 10.5 
sen 3.8 5.4 1165.9 749.5 12.9 18.2 4.2 4.9 10.4 11.1 
uga 0.0 6.4 1416.6 789.2 9.2 17.8 3.6 3.5 11.4 10.8 
xss 54.4 59.0 1560.1 827.3 13.1 21.5 5.3 4.8 13.1 12.8 
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Table S6-6. Resource use intensities and nitrogen (N) loss intensities for rice under the baseline and 
N25I10 scenario. BWUI: blue water use intensity; TWUI: total water use intensity; NinI: nitrogen input 
intensity; NwI: water nitrogen loss intensity; NtI: total nitrogen loss intensity; --: no information. 

 BWUI (m3 t−1) TWUI (m3 t−1) NinI (kg N t−1) NwI (kg N t−1) NtI (kg N t−1) 
 baseline N25I10 baseline N25I10 baseline N25I10 baseline N25I10 baseline N25I10 

aus 1867.9 838.6 3210.6 1435.9 6.9 13.5 0.5 0.4 6.1 4.4 
nzl -- -- -- -- -- -- -- -- -- -- 
xoc 0.0 0.4 2251.6 1005.7 0.3 23.6 23.1 21.9 27.6 25.4 
chn 61.5 61.6 695.0 693.3 49.0 36.5 35.6 25.2 42.3 32.2 
hkg -- -- -- -- -- -- -- -- -- -- 
jpn 7.1 6.7 637.8 635.0 42.7 35.5 38.8 31.8 44.8 37.8 
kor 7.9 8.3 622.5 623.1 48.5 41.6 35.4 31.6 40.3 36.6 
twn 0.7 1.0 695.2 612.7 26.5 28.1 13.6 13.6 17.4 18.0 
xea 0.3 0.3 706.2 640.1 27.4 25.7 16.5 16.7 21.8 21.0 
khm 16.2 16.5 1214.6 781.1 10.6 18.3 7.5 8.9 11.4 12.8 
idn 1.3 1.2 717.8 603.0 20.8 24.7 16.0 17.8 20.7 22.9 
mys 3.5 2.9 818.7 652.6 18.0 22.6 11.2 13.0 15.1 17.3 
phl 0.4 0.4 1002.4 721.6 14.0 20.8 12.1 14.3 15.9 18.4 
sgp -- -- -- -- -- -- -- -- -- -- 
tha 2.1 2.7 786.7 679.5 15.5 19.8 6.4 8.9 10.7 13.7 
vnm 0.0 0.0 689.4 657.4 27.8 29.4 18.6 19.8 24.0 25.6 
xse 0.2 0.1 1206.6 789.9 10.0 24.2 17.8 22.9 21.9 26.6 
bgd 0.0 0.0 711.8 671.2 27.1 29.3 22.6 24.2 27.4 29.6 
ind 43.6 42.7 758.6 722.9 27.3 27.3 14.5 15.2 19.5 20.7 
pak 945.1 923.3 1391.9 1359.4 26.3 17.9 3.0 1.0 9.0 6.2 
lka 22.1 21.9 655.7 613.3 23.4 27.0 11.3 14.2 15.2 18.7 
xsa 123.9 98.8 962.1 765.2 17.5 24.0 17.8 20.3 21.6 24.3 
can -- -- -- -- -- -- -- -- -- -- 
usa 285.3 280.1 782.7 767.4 25.7 28.6 6.0 11.1 11.2 17.0 
mex 582.4 429.9 1485.0 1068.0 16.1 18.1 6.8 6.6 12.1 11.3 
xna -- -- -- -- -- -- -- -- -- -- 
bol 11.6 7.4 2516.1 929.4 0.9 13.2 3.0 2.6 8.4 6.0 
col 17.9 15.1 745.7 612.6 18.7 23.1 13.9 15.4 17.4 19.4 
ecu 5.7 5.5 740.5 615.0 15.6 20.0 17.2 17.2 21.4 22.0 
per 363.3 303.8 889.4 735.4 16.1 17.4 9.6 8.9 14.5 13.7 
ven 45.1 44.6 585.9 578.4 24.4 27.1 7.1 10.3 11.7 15.4 
arg 126.6 80.0 1598.4 956.8 10.4 17.0 9.8 8.8 14.2 13.4 
bra 23.1 21.1 1047.7 722.4 12.6 18.9 6.9 8.1 10.9 12.4 
chl 621.0 586.6 889.0 839.5 18.1 20.7 4.3 5.8 9.8 12.7 
pry 77.2 37.2 1798.8 898.7 7.9 17.8 6.6 5.1 10.2 8.5 
ury 61.1 49.7 945.7 767.2 17.3 20.5 8.1 8.5 12.4 13.5 
xsm 0.0 0.0 883.5 659.7 15.8 22.3 8.8 12.3 12.0 15.6 
xca 14.2 10.6 795.2 627.7 23.0 26.3 22.5 22.2 27.6 27.4 
xfa 63.0 54.7 681.6 582.8 17.4 20.9 4.3 6.1 7.9 10.6 
xcb 0.0 5.4 789.0 732.6 22.0 25.3 8.1 11.4 13.6 17.8 
aut -- -- -- -- -- -- -- -- -- -- 
bel 60.4 31.8 1867.4 982.3 0.1 8.8 1.5 0.8 8.9 6.0 
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Table S6-6. Continued. 

 BWUI (m3 t−1) TWUI (m3 t−1) NinI (kg N t−1) NwI (kg N t−1) NtI (kg N t−1) 
 baseline N25I10 baseline N25I10 baseline N25I10 baseline N25I10 baseline N25I10 

dnk -- -- -- -- -- -- -- -- -- -- 
fin -- -- -- -- -- -- -- -- -- -- 
fra 940.1 336.2 2801.7 1003.3 0.1 11.6 8.0 2.3 14.8 5.9 
deu 62.8 29.6 1979.6 955.0 0.1 9.6 5.0 2.5 13.1 7.8 
gbr -- -- -- -- -- -- -- -- -- -- 
grc 466.0 430.2 849.0 783.4 17.5 20.1 1.7 4.1 7.0 10.5 
irl -- -- -- -- -- -- -- -- -- -- 
ita 175.6 155.4 763.4 676.4 22.0 23.2 6.5 7.8 11.7 13.0 
lux -- -- -- -- -- -- -- -- -- -- 
nld -- -- -- -- -- -- -- -- -- -- 
prt 838.6 420.9 1694.2 845.2 4.9 12.3 6.0 2.9 12.3 7.4 
esp 862.2 507.3 1486.7 875.2 9.4 13.3 1.6 0.9 7.0 5.1 
swe -- -- -- -- -- -- -- -- -- -- 
che -- -- -- -- -- -- -- -- -- -- 
xef -- -- -- -- -- -- -- -- -- -- 
xer 232.2 219.7 732.8 688.7 13.6 16.3 2.6 4.0 9.0 11.5 
alb 285.2 260.7 712.9 651.6 14.1 19.8 1.3 3.9 5.5 9.9 
bgr 174.0 176.5 726.6 721.8 24.7 22.7 8.3 7.3 16.0 16.0 
hrv -- -- -- -- -- -- -- -- -- -- 
cyp -- -- -- -- -- -- -- -- -- -- 
cze -- -- -- -- -- -- -- -- -- -- 
hun 66.7 69.2 731.8 733.8 18.5 17.6 5.0 5.0 14.1 14.2 
mlt -- -- -- -- -- -- -- -- -- -- 
pol 7.4 6.2 912.1 763.7 8.5 9.8 3.7 1.3 10.2 8.1 
rom 264.6 226.9 994.0 842.6 8.4 10.7 1.2 1.2 8.6 8.6 
svk 0.0 0.0 782.1 724.5 5.2 9.4 3.6 4.7 11.0 13.3 
svn 270.6 107.4 2586.0 1082.3 0.1 12.6 27.6 9.9 34.4 14.1 
est -- -- -- -- -- -- -- -- -- -- 
lva -- -- -- -- -- -- -- -- -- -- 
ltu -- -- -- -- -- -- -- -- -- -- 
rus 501.2 355.2 1461.8 1016.6 6.0 9.1 4.3 2.0 12.8 8.7 
xsu 1004.1 887.9 1359.3 1200.8 18.2 17.1 3.0 1.4 9.9 8.5 
tur 933.1 612.9 1473.9 968.3 10.0 14.4 1.3 1.0 6.4 5.8 
irn 1498.3 1249.0 1816.7 1514.2 17.1 14.9 2.4 0.8 9.0 7.2 
xme 9550.5 9144.7 9925.8 9504.2 211.0 3.5 34.9 2.5 56.2 16.4 
egy 916.9 907.7 940.5 931.1 28.9 22.5 0.9 0.4 10.4 8.7 
mar 2611.0 1002.8 3348.7 1285.6 0.4 11.1 0.8 0.4 7.3 3.8 
tun -- -- -- -- -- -- -- -- -- -- 
xnf 0.0 363.1 2402.7 1817.6 19.9 17.3 10.6 8.5 38.7 30.9 
bwa 1867.3 830.3 3609.5 1594.4 6.9 13.5 0.3 0.2 4.0 3.5 
zaf 1602.6 1230.2 1989.0 1524.8 14.5 16.3 0.0 0.1 3.2 3.7 
xsc 923.4 321.8 3472.5 1206.2 4.5 13.9 6.7 3.6 11.5 6.7 
mwi 11.3 12.4 1260.5 746.9 12.3 19.4 3.9 4.9 7.0 8.7 
mus -- -- -- -- -- -- -- -- -- -- 
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Table S6-6. Continued. 

 BWUI (m3 t−1) TWUI (m3 t−1) NinI (kg N t−1) NwI (kg N t−1) NtI (kg N t−1) 
 baseline N25I10 baseline N25I10 baseline N25I10 baseline N25I10 baseline N25I10 

moz 17.1 8.6 2718.2 852.9 1.1 15.0 4.3 3.9 9.2 6.9 
tza 217.7 112.5 2540.2 968.3 1.8 17.8 7.4 6.3 16.0 12.2 
zmb 356.3 139.2 2544.3 965.6 1.6 14.4 3.3 3.3 9.2 7.4 
zwe 410.5 175.7 2607.3 1110.0 7.1 17.3 6.3 4.6 10.4 8.5 
xsd 45.8 25.5 1176.1 654.3 2.2 12.4 3.5 4.7 9.5 9.3 
mdg 180.7 81.8 1925.2 888.3 5.4 17.7 21.5 14.7 26.4 18.3 
nga 2.2 16.5 1430.2 763.0 7.2 16.7 4.5 5.6 9.5 10.0 
sen 773.7 455.5 2216.4 1290.5 10.7 16.4 6.0 5.9 10.1 9.4 
uga 0.0 0.7 1186.6 643.2 3.9 12.2 2.5 2.1 8.2 6.9 
xss 188.4 107.9 1696.5 897.7 6.4 17.2 11.0 10.7 16.1 14.8 
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Table S6-7. Resource use intensities and nitrogen (N) loss intensities for wheat under the baseline and 
N25I10 scenario. BWUI: blue water use intensity; TWUI: total water use intensity; NinI: nitrogen input 
intensity; NwI: water nitrogen loss intensity; NtI: total nitrogen loss intensity; --: no information. 

 BWUI (m3 t−1) TWUI (m3 t−1) NinI (kg N t−1) NwI (kg N t−1) NtI (kg N t−1) 
 baseline N25I10 baseline N25I10 baseline N25I10 baseline N25I10 baseline N25I10 

aus 8.7 71.4 1633.9 972.3 30.6 41.1 3.2 3.7 15.0 15.6 
nzl 0.0 3.1 764.6 554.0 40.4 40.8 21.8 17.3 28.1 23.5 
xoc 0.0 1.8 3323.7 1080.5 0.1 32.5 56.1 21.3 67.5 26.3 
chn 177.7 179.0 972.0 958.8 50.8 44.2 17.4 13.7 27.1 24.7 
hkg -- -- -- -- -- -- -- -- -- -- 
jpn 0.7 0.2 1023.4 738.7 47.9 47.3 41.8 30.9 49.6 38.5 
kor 8.7 11.1 658.7 659.0 55.8 61.5 26.2 35.6 33.2 44.3 
twn -- -- -- -- -- -- -- -- -- -- 
xea 4.5 18.6 1396.4 974.6 14.0 22.8 7.5 3.9 18.0 11.7 
khm 0.0 0.0 1353.7 1282.0 78.2 72.9 57.3 52.2 65.9 60.7 
idn -- -- -- -- -- -- -- -- -- -- 
mys 0.0 1.6 966.4 935.8 45.4 56.8 19.3 30.2 25.3 37.0 
phl -- -- -- -- -- -- -- -- -- -- 
sgp -- -- -- -- -- -- -- -- -- -- 
tha 0.0 0.3 1190.0 1123.2 60.9 63.4 43.9 46.6 51.4 54.1 
vnm 0.0 0.0 922.8 916.0 57.5 63.4 30.6 37.9 37.8 45.8 
xse 6.3 4.0 2003.0 1119.1 11.2 35.0 45.7 35.1 55.0 41.3 
bgd 0.0 0.0 1522.3 1499.8 61.8 67.4 56.9 65.4 67.2 75.9 
ind 117.9 122.4 1770.3 1748.2 100.4 47.0 73.6 29.1 86.6 41.6 
pak 1177.6 1163.9 2490.1 2448.6 192.1 31.6 81.1 7.0 96.9 22.2 
lka -- -- -- -- -- -- -- -- -- -- 
xsa 896.8 531.5 2655.5 1435.4 28.0 36.6 15.8 9.4 28.4 19.7 
can 3.6 18.8 1085.1 877.7 19.8 26.2 1.6 1.7 11.6 11.3 
usa 50.1 68.8 1406.4 1081.9 31.8 35.6 8.9 6.7 20.5 18.0 
mex 685.9 571.0 1757.3 1475.2 54.6 29.1 27.0 7.8 38.6 16.7 
xna -- -- -- -- -- -- -- -- -- -- 
bol 0.0 18.5 3494.6 1118.4 2.4 26.3 10.2 4.5 21.6 9.4 
col 0.0 0.0 1087.3 836.9 30.2 41.9 34.6 34.8 40.4 40.7 
ecu 3.1 1.7 2502.9 1237.1 3.5 32.3 89.9 58.2 101.7 64.9 
per 0.0 8.9 1203.1 767.8 19.2 28.3 13.0 10.2 19.4 15.9 
ven 0.0 25.5 1534.2 1335.3 32.2 31.2 18.4 13.6 27.7 23.1 
arg 1.3 5.3 1131.2 724.3 18.5 26.9 6.2 5.7 13.4 12.5 
bra 0.2 1.0 1577.3 932.4 17.1 32.9 28.1 18.0 36.1 24.4 
chl 330.7 197.8 1066.5 605.2 48.4 44.9 55.5 32.2 65.0 40.1 
pry 0.0 0.4 2231.6 1075.1 14.8 32.4 41.0 16.2 48.7 21.0 
ury 0.0 0.2 1042.1 905.8 28.4 38.7 15.3 19.5 22.9 29.0 
xsm -- -- -- -- -- -- -- -- -- -- 
xca 0.0 0.7 1888.0 1110.4 34.1 54.5 47.8 47.7 53.2 51.8 
xfa -- -- -- -- -- -- -- -- -- -- 
xcb -- -- -- -- -- -- -- -- -- -- 
aut 0.1 4.3 845.2 630.1 39.8 39.0 19.8 12.1 27.9 21.5 
bel 0.0 7.3 657.8 577.9 60.8 58.1 35.7 28.2 43.3 37.8 
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Table S6-7. Continued. 

 BWUI (m3 t−1) TWUI (m3 t−1) NinI (kg N t−1) NwI (kg N t−1) NtI (kg N t−1) 
 baseline N25I10 baseline N25I10 baseline N25I10 baseline N25I10 baseline N25I10 

dnk 6.0 8.9 843.2 527.3 41.1 36.7 21.6 8.4 31.1 17.7 
fin 0.0 2.9 792.9 651.6 41.4 39.1 27.4 20.5 42.8 34.9 
fra 1.8 13.2 1180.5 644.0 34.2 36.1 15.4 9.9 23.1 16.6 
deu 0.1 6.0 802.1 598.2 40.1 39.5 17.6 10.3 25.8 19.3 
gbr 0.1 3.6 896.7 535.4 36.6 34.7 17.9 9.0 25.9 16.5 
grc 13.3 19.9 992.9 580.6 31.8 32.5 13.8 6.7 21.5 13.5 
irl 0.0 2.4 1086.4 565.5 47.6 40.9 32.0 15.2 39.7 21.0 
ita 17.3 31.2 1080.3 652.3 39.1 42.8 17.2 11.8 26.4 21.8 
lux 0.0 22.1 1218.1 652.1 54.3 42.3 27.8 11.4 34.5 18.4 
nld 0.0 4.9 750.7 572.7 50.7 44.2 28.6 16.1 39.0 26.0 
prt 115.9 117.7 1405.9 873.5 45.3 57.9 15.1 16.7 29.8 31.7 
esp 19.8 29.4 820.9 574.2 30.7 33.6 6.3 4.0 13.6 11.8 
swe 0.0 5.1 727.1 511.9 60.5 49.8 41.9 21.4 52.1 32.6 
che 0.0 0.1 2090.7 878.7 88.0 48.1 116.2 51.1 124.4 56.4 
xef 0.0 5.2 1056.3 545.1 94.2 53.2 107.3 41.7 123.6 54.3 
xer 0.0 12.5 1535.8 788.6 24.7 31.0 11.1 6.5 21.5 14.5 
alb 13.8 12.6 1114.4 558.4 40.0 36.7 31.9 15.2 38.1 20.6 
bgr 3.3 15.3 1162.1 704.3 27.8 30.5 10.2 5.0 20.8 13.8 
hrv 0.2 11.4 1545.9 846.4 37.5 40.6 20.8 16.8 28.6 23.5 
cyp 1748.8 565.7 3321.4 1071.9 0.1 24.9 1.7 0.4 17.7 7.4 
cze 0.0 2.9 862.5 596.8 37.0 35.9 16.4 7.4 24.6 16.0 
hun 1.2 12.2 975.8 710.5 26.9 30.7 6.7 3.9 17.1 13.9 
mlt -- -- -- -- -- -- -- -- -- -- 
pol 0.2 6.6 988.4 614.3 33.1 34.5 16.5 8.0 27.0 17.2 
rom 22.6 28.0 1602.4 836.6 18.2 25.9 7.0 3.6 18.4 11.7 
svk 2.2 8.7 1203.8 663.7 31.8 32.2 18.3 6.8 28.1 14.6 
svn 0.5 5.9 1364.3 841.1 50.1 48.7 38.3 28.3 45.8 35.6 
est 0.0 4.1 1412.1 591.1 31.1 30.4 19.4 5.0 30.5 12.3 
lva 0.0 6.3 2216.3 728.6 7.1 27.5 8.1 5.2 22.4 12.4 
ltu 0.0 4.2 1863.3 691.0 15.3 27.3 10.3 4.1 22.3 11.1 
rus 9.9 21.8 1523.0 962.7 10.4 25.0 3.4 3.7 16.4 14.7 
xsu 99.4 85.5 1710.5 1045.8 15.3 24.9 3.3 2.2 17.9 14.1 
tur 92.5 85.0 1514.7 867.8 39.1 40.7 14.4 8.3 26.2 19.0 
irn 810.2 577.6 2239.3 1474.3 46.2 39.7 9.6 3.8 24.3 16.3 
xme 1166.5 785.4 2271.5 1496.9 75.9 33.6 24.5 4.3 38.7 15.1 
egy 964.2 935.7 1018.3 988.1 66.7 41.2 12.9 0.5 23.4 10.8 
mar 181.0 144.2 1573.0 855.6 25.6 37.7 4.2 3.7 19.9 16.2 
tun 72.7 90.9 1540.2 979.4 38.5 44.3 7.6 6.9 21.8 20.3 
xnf 124.2 138.1 2437.1 1104.2 27.1 40.5 5.9 3.1 23.2 16.9 
bwa 535.1 287.0 2713.9 1273.0 16.9 33.3 1.5 3.8 9.5 10.0 
zaf 193.2 174.6 1366.4 904.2 31.1 37.0 7.0 6.0 17.1 16.7 
xsc 49.9 45.9 1681.6 796.7 18.0 27.7 4.8 3.0 11.6 9.0 
mwi 0.0 16.1 3938.1 1279.0 19.3 43.9 13.9 13.7 22.8 21.1 
mus -- -- -- -- -- -- -- -- -- -- 
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Table S6-7. Continued. 

 BWUI (m3 t−1) TWUI (m3 t−1) NinI (kg N t−1) NwI (kg N t−1) NtI (kg N t−1) 
 baseline N25I10 baseline N25I10 baseline N25I10 baseline N25I10 baseline N25I10 

moz 0.0 1.6 2852.3 1177.8 3.1 32.4 68.7 40.0 85.2 47.8 
tza 0.0 8.0 2362.5 962.6 2.4 25.6 8.9 6.5 20.7 12.7 
zmb 81.5 34.1 3002.7 1118.6 5.0 32.1 56.0 29.9 73.0 37.6 
zwe -- -- -- -- -- -- -- -- -- -- 
xsd 7.2 4.6 2966.6 1073.5 0.3 28.1 18.2 13.0 30.7 18.8 
mdg 0.0 6.6 3907.3 1311.0 3.7 43.4 148.1 68.3 167.4 75.5 
nga 68.2 30.7 3997.5 1590.8 4.5 27.7 7.6 9.3 16.2 13.5 
sen 0.0 13.2 2758.3 1783.4 2.2 14.4 2.3 2.0 14.0 9.5 
uga 0.0 4.8 3062.1 1112.7 0.9 23.3 6.6 3.5 17.3 8.8 
xss 74.2 61.1 1477.3 916.4 23.5 37.3 8.0 11.4 15.4 18.3 
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Chapter 7 
 

General conclusions and outlook 

 

7.1 General conclusions 

The major goal of this study was to analyse the global water–food–environment–trade nexus 

in the context of agricultural input intensification. With this aim, we developed and applied a 

grid-based crop model PEPIC, which facilitates the implementation of EPIC on large scales, and 

combined it with a global trade model GTAP for the analysis. The study explored the trade-offs 

between water consumption, nitrogen (N) losses, and yields for the baseline of the year 2000 and 

several agricultural intensification scenarios regarding irrigation and N managements, and 

analysed the impacts of global food trade on resource conservation and pollution reduction. 

The PEPIC model was first used to investigate uncertainties associated with the selection of 

five different potential evapotranspiration (PET) estimation methods in simulating crop–water 

relations. For the first time it showed that the choice of different PET estimation methods can lead 

to significant uncertainties in simulating crop–water relations globally. These impacts were 

particularly high for water-related variables, but less on crop yields, mainly because crop yields 

are indirectly linked to the PET estimation. The uncertainties related to the PET methods differed 

with water availability. The understanding of these uncertainties is particularly important for 

projecting impacts of future climate change on water and food security, where PET is the basis for 

the projection. Generally, using the Penman–Monteith estimation method, the PEPIC model 

provided the best crop yields estimates relative to statistics. Therefore, the Penman–Monteith 

method was also used in the following sections of the study. 

Global crop-specific assessment showed that total N losses to the environment reached 44 Tg 

N yr−1 in 2000 for the three major crops—maize, rice and wheat—with two-thirds of these being 

lost to water bodies. N losses were found to be concentrated in some hot-spot regions for certain 

crops, e.g. China and the USA for maize, and China and India for rice and wheat. At the country 

level, N loss intensity—a ratio of N losses to crop yields—demonstrated substantial variations, 

indicating potentials to reduce N losses and increase crop yields through redistributing N inputs 

and avoiding N over-use. For lowest performing countries, there were high potentials to increase 
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crop yields through applying more N inputs, particularly in Africa. It highlights the importance of 

input intensification for the under-performed regions. 

The grey water footprint (GWF) is an indicator of water pollution intensity. In this study, the 

agricultural GWF was calculated using N and phosphorus (P) loads to water caused by global 

maize cultivation. The GWF for P was much higher than that for N, which was mainly because P-

related water quality standards are far more stringent than those for N. Assessment of grey water 

stress showed that GWF related to N and P loads from maize cultivation alone has exceeded local 

water availability in many parts of the world, especially in the north-eastern parts of China and 

north central parts of the USA, indicating serious degradation of water quality. This assessment 

showed that crop production not only directly consumes a large amount of water resources, but 

also causes water pollution, which requires substantial water resources to dilute the polluted water 

to meet the ambient water quality standard. The GWF expresses water pollution in terms of water 

volume needed to dilute contaminated water to a given quality standard, so that it can be 

compared with water consumption. However, more effort is needed to standardise this 

methodology. 

After assessing the global N losses and crop yields trade-offs for the three major crops, 

potentials in yield achievements and possible changes in N losses were investigated for five 

agricultural intensification scenarios regarding increased irrigation areas and N inputs. It was 

found that increases in crop yields and N losses were particularly high in the southern hemisphere, 

due to their low irrigation and N inputs under the baseline. On the other hand, yields presented 

minor benefits in high resource application regions with large incremental N losses relative to N 

input additions. These high input regions generally have achieved a high level of agro-climatic 

yield potentials under the baseline. Hence, avoiding intensification in these high yield regions can 

significantly alleviate N losses and crop yields trade-offs. For instance, by only intensifying 

regions with baseline yields lower than 75% of yield potentials, relative increases in N losses can 

be reduced by 3–193%, while relative increases in yields will only decrease by 1–23%. 

The last part of the study demonstrated that global food trade provided positive influences on 

the environmental impacts of crop production. Global agricultural resources conserved 85 km3 

yr−1 of blue water use, 105 km3 yr−1 of total water use, and 2333 Gg N yr−1 of N inputs for the 

three major crops. Conservation in blue water use was particularly high, accounting for more than 

50% of total blue water use for the three crops. In addition to resource conversation, substantial N 

losses were also reduced due to food trade, reaching about 1923 and 2210 Gg N yr−1 for N losses 

to water and the total environment. These benefits of global food trade were because resource use 

intensities and pollution intensities were generally lower in major food exporting countries than 

most food importing countries. However, global food trade also resulted in substantial resource 
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losses and export-associated N losses for the food exporting countries, especially in the USA. The 

GTAP model was used to simulate the trade patterns under an agricultural intensification scenario, 

in which particularly low-input countries under the baseline enhance crop yields by increasing N 

and irrigation inputs. It suggests that global resource conservation and N loss reduction would 

decline, due to converging resource use and N loss intensities across countries. Agricultural 

intensification can increase global food supply but compromise the benefits of global food trade 

in terms of water conservation and N loss reduction. 

 

7.2 Limitations 

Due to time constraints, only three major crops, i.e. maize, rice and wheat, were included for 

the analysis in the study. Although these three crops play a dominant role in providing dietary 

calories (62%), and consuming N inputs (61%) and irrigation water use (70%) of the 17 most 

commonly produced crops (West et al., 2014), more crops should be considered in future research. 

For example, another 10% of total N inputs for the 17 crops were applied to barley and soybean 

and about 20% of additional global irrigation water use was consumed by cotton and sugarcane. 

Including these crops can give a more complete picture of global agricultural challenges and 

hence help to propose effective mitigation strategies. 

Limited by the crop-specific data availability, such as nutrient inputs (Mueller et al., 2012; 

West et al., 2014), irrigated and rainfed cultivation areas (Portmann et al., 2010), and crop 

planting and harvesting dates (Sacks et al., 2010), the analysis in the study was based on the year 

2000. This is actually a general limitation for the current global large-scale crop modelling 

(Müller et al., 2017). There have been increasing global N inputs (Liu et al., 2016) and expanding 

irrigated areas (Alexandratos and Bruinsma, 2012) in recent years, implying more serious 

challenges faced with agriculture to date. There is an urgent need to update the analysis to a more 

recent timeline, e.g. 2010 or even 2015. It, therefore, calls for actions to share and develop more 

detailed crop-specific input database for supporting global large-scale crop simulations. The 

EarthStat database (http://www.earthstat.org), which provides a large number of basic agricultural 

input datasets, is one of the excellent examples. But much more effort is still required to 

overcome the data constraints. 

Another significant environmental impact of agricultural production—greenhouse gas (GHG) 

emissions (Parton et al., 2015)—is not considered in this study. This is mainly due to the fact that 

simulation routines related to GHG emissions are not included in the public version of the EPIC 

model (Gerik et al., 2015). Recent efforts have focused on developing new routines for EPIC to 

estimate GHG emissions, such as CO2, CH4, and N2O (Izaurralde et al., 2012). An integrated 

http://www.earthstat.org/
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investigation of influences of agricultural production on water pollution and climate change can 

provide a complete view of agricultural environmental impacts. Therefore, GHG emissions 

should be explicitly considered in further research when the new version of EPIC is available.

7.3 Outlook

Looking forward, there are three ways that could further strengthen our abilities to 

investigate the agricultural trilemma using large-scale crop models: comprehensive evaluation of 

model performance, determining N inputs trough balancing N uptakes and N losses, and adopting 

alternative cropping systems, e.g. integrated production (IP) systems (Figure 7-1).

Figure 7-1. Conceptual framework for the future research.

Currently, large-scale crop models have been mainly evaluated by comparing estimated 

yields at national or sub-national scale with statistical data (Balkovič et al., 2013; Deryng et al., 

2011; Folberth et al., 2012). The ability of large-scale crop models to predict other target variables 

or to simulate processes such as ET, soil moisture and erosion, and nutrient dynamics, was rarely 

tested against observed data, due to lack of reported spatial data. In order to provide a robust 

research tool, it is important to conduct a comprehensive calibration and validation of large-scale 

crop models on simulating multiple processes and variables related to environmental impacts by 

adopting an automatic calibration method (Abbaspour, 2011).

In addition to avoiding over-use of N, redistributing global N inputs patterns, and 

intensifying N through a more efficient pathway, there is another strategy for addressing N 

challenges: determining N inputs by simultaneously balancing N uptakes and N losses and 
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thereby optimizing trade-offs. Three steps are involved in obtaining the balanced N inputs: 1) 

applying N inputs with an incremental step, saying 5, 10, 15, … kg N ha−1; 2) drawing response 

curves of N uptakes and N losses relative to N inputs; 3) deriving the balanced N inputs when 

marginal increase of N uptakes (MarNup) equals to marginal increase of N losses (MarNloss) from 

the response curves. This way of estimating the balanced N inputs is based on the idea that when 

N inputs exceed the balanced level, more N will be lost to environment other than being uptake by 

crops. It should be noted that yields obtained using this method may be lower than actual yields in 

some regions, due to currently excessive N application. In order to ensure sufficient food supply, 

maintaining a minimum level of current high yields should also be considered before adopting the 

strategy for determining the balanced N inputs. 

This study mainly focused on conventional production systems, which rely on extensive 

external inputs, e.g. water, nutrient, and pesticides. Besides conventional cropping systems, a 

number of alternative cropping systems are being developed all over the world to address the 

agricultural challenges, particularly IP systems. IP systems use a variety of crop management 

practices, e.g. crop residue utilization (Turmel et al., 2015), conservation tillage (Van den Putte et 

al., 2010), legume-based crop rotation (Reckling et al., 2016), and integrated nutrient management 

(Wu and Ma, 2015). IP systems can refer to a variety of production systems, e.g. low-input 

production systems (Giuliano et al., 2016), legume-based cropping systems (Drinkwater et al., 

1998), biologically diversified farming systems (Kremen and Miles, 2012), and eco-efficient 

agriculture (Keating et al., 2010). It is not clear what sorts of crop management practices and 

regions are most or least beneficial for adopting the IP systems on a global scale. Hence, a meta-

analysis can be employed to identify the most commonly used IP practices. Then, a robust large-

scale crop model can help to determine the potentials of the IP practices on maximizing global 

water–nutrient–food–environment benefits. Although it is still a big challenge to simulate detailed 

IP systems on a global scale, it should be one of the major research directions in the future. 
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