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ABSTRACT: For about the past eight decades, high concentrations of naturally
occurring fluoride have been detected in groundwater in different parts of India. The
chronic consumption of fluoride in high concentrations is recognized to cause dental
and skeletal fluorosis. We have used the random forest machine-learning algorithm to
model a data set of 12 600 groundwater fluoride concentrations from throughout India
along with spatially continuous predictor variables of predominantly geology, climate,
and soil parameters. Despite only surface parameters being available to describe a
subsurface phenomenon, this has produced a highly accurate prediction map of
fluoride concentrations exceeding 1.5 mg/L at 1 km resolution throughout the
country. The most affected areas are the northwestern states/territories of Delhi,
Gujarat, Haryana, Punjab, and Rajasthan and the southern states of Andhra Pradesh,
Karnataka, Tamil Nadu, and Telangana. The total number of people at risk of fluorosis due to fluoride in groundwater is
predicted to be around 120 million, or 9% of the population. This number is based on rural populations and accounts for
average rates of groundwater consumption from nonmanaged sources. The new fluoride hazard and risk maps can be used by
authorities in conjunction with detailed groundwater utilization information to prioritize areas in need of mitigation measures.

■ INTRODUCTION

With much of India consisting of arid and semiarid regions, the
country relies heavily on groundwater to support its growing
economy and population. Subsidized electricity for farmers has
also led to substantial increases in groundwater pumping for
irrigation since 1980, with groundwater now accounting for
more than 60% of irrigation water and 85% of rural drinking
water supplies in India.1 Furthermore, satellite observations
have detected a chronic overexploitation as well as drastic
reduction of groundwater resources.2,3 India has two main
aquifer types: alluvial aquifers of the Gangetic plains where
groundwater depth is generally less than 10 m and hard-rock
aquifers elsewhere where groundwater depths can reach in
excess of 60 m.4,5 Given that groundwater plays a key role in
the provisioning of water in India, considerable focus needs to
be placed not only on the availability of groundwater but also
its quality. Although groundwater is typically free of the
microbiological contamination that is widespread in surface
waters, various natural, or geogenic, chemical contaminants can
be a problem. One of the most important of these in India is
fluoride.6

Fluoride is reported to be beneficial for good dental health,
with the optimal amount in drinking water generally being in
the narrow range of 0.5−1.0 mg/L.7 However, dental fluorosis
or skeletal or nonskeletal fluorosis can result from chronic
excess exposure. The World Health Organization (WHO) has
set a maximum concentration guideline of 1.5 mg/L for

drinking water,8 although the volume of water consumed,
other sources of fluoride and nutritional deficiencies should
also be considered. For example, low intake of vitamin C,
micronutrients, and calcium are associated with a greater
incidence of fluorosis.9 Although India maintains a permissible
fluoride limit of 1.5 mg/L, it has set a target concentration of
1.0 mg/L, at least in part to account for the large quantities of
water that people must drink given the country’s hot climate.10

Fluorine is the 13th most abundant element in the earth’s
crust and can enter into groundwater as fluoride (F−) as the
result of geochemical interactions with fluoride-bearing
minerals such as micas, hornblende, pyroxene, and apatite in
rocks and sediments as well as from atmospheric deposition.11

High fluoride concentrations in groundwater are often
associated with rocks with low calcium content or alkaline
groundwater dominated by sodium bicarbonate.12 The
residence time of groundwater, climatic conditions such as
evapotranspiration and precipitation and soil pH and type can
also affect fluoride dissolution.12−17 In general, carbonate rocks
act as a sink for fluoride, and measured fluoride concentrations
have been found to be proportional to soil pH.11,15,18 Irrigation
has been shown to increase fluoride levels in groundwater due
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to an associated increase in alkaline and sodic soils.11

Anthropogenic sources may also play a role, such as through
the application of phosphate-based fertilizers, which typically
contain high levels of fluoride.19

High fluoride concentrations are found in groundwater on
all inhabited continents around the world.12,20 Elevated
fluoride concentrations have been measured in groundwater
in India since the first part of the 20th century.21 Since then,
many other studies have detected high fluoride levels in the
northwest,22−25 in the south26−28 and in the east,29,30 including
the Gangetic Plains.31,32 It has been estimated on the basis of
dental fluorosis surveys in schools that about 62 million
Indians experience the effects of fluorosis due to consuming
water with high fluoride concentrations.33

In order to determine the extent of contamination to then
aid its mitigation, geostatistical modeling with prediction
variables is sometimes carried out. As opposed to the much
more common practice of interpolating among known
concentrations, modeling with predictor variables, including
machine learning techniques, can create a more accurate model
by finding relationships with the factors directly responsible for
or related to the accumulation of the contaminant in question.
This strategy has already been used on fluoride in groundwater
on a global scale13 and been widely applied to other
contaminants, notably arsenic.34−38

In this paper, we use the random forest method to model
fluoride concentrations in groundwater samples from through-
out India to create a predictive model of areas in which
fluoride concentrations exceed the WHO guideline of 1.5 mg/
L. The purpose of this model is to determine the extent of
fluoride contamination and to guide the localization and
remediation of the problem. We also identify some of the key
parameters related to the natural accumulation of fluoride in
groundwater in India.

■ MATERIALS AND METHODS

Groundwater Samples. Groundwater quality analyses
from throughout India were compiled almost exclusively from
Central Ground Water Board of India (CGWB) surveys in
201039 and 201340 but also augmented with georeferenced
samples from two other published sources (Table 1). A general
lack of geographical coordinates prevented further samples
from other studies being incorporated. The CGWB collected
these samples at the end of the dry season shortly before the
onset of the monsoon. Depending on the state, this was either
in April or May. In total, 12 600 fluoride concentrations were
compiled from all sources and are plotted with topography in
Figure 1. In brief, the CGWB surveys collected groundwater
samples from dug wells (85%) and bore/tube wells (15%)
following a standardized protocol for sample collection and
using a 1 L sampling size. The sampling wells are the same as
those used in ongoing water-level monitoring, which were
selected based on being regularly used and as evenly spaced as
possible. The CGWB prefers using dug wells in their national

monitoring network for the simplicity of measuring the level of
the groundwater table.
Aside from the geographical coordinates of wells, other

parameters were generally not available. Out of the total of
12 600 data points, 2895 (23%) exceed the local Indian
guideline of 1.0 mg/L, 1704 (14%) exceed the WHO guideline
of 1.5 mg/L and 394 (3%) are greater than 3.5 mg/L (see
Figure S1 of the Supporting Information, SI).

Data Set Preparation. Prior to modeling, the data points
of measured fluoride concentrations were assigned to one-
square-kilometer pixels, which is the finest resolution of the
independent variables used. If more than one measurement
was available within a pixel, then the geometric mean was
taken. This averaging reduced the number of data points from
12 600 to 11 320 for use in modeling. Of these, 1449 data
points were greater than 1.5 mg/L (13%) and 9871 were equal
to or less than 1.5 mg/L (87%). The data set was then
converted into high and low classes by assigning zero to all
fluoride concentrations ≤1.5 mg/L and one to all concen-
trations >1.5 mg/L. The resulting data set was then randomly
split into training (80%) and testing (20%) data sets that
maintain the same ratio of low and high values as in the full
data set.

Variable Selection for Statistical Modeling. Twenty-
five independent variables were selected for potential use in
statistical modeling based on established or presumed
relationships with the release and accumulation of fluoride in
groundwater (Table 2). These are generally geology, soil, or

Table 1. Sources of Groundwater Fluoride Measurements

data source no. of data max./avg. conc. F (mg/L) location well type(s)

Central Ground Water Board40 10 272 26.0/0.60 ± 0.85 throughout India dug wells, bore/tube wells
Central Ground Water Board39 2052 65.0/2.09 ± 2.88 throughout India dug wells, bore/tube wells
Gupta et al.41 228 9.90/1.34 ± 1.35 Gujarat dug wells, geothermal springs, hand-pumps, and tubewells
Hazarika and Bhuyan42 48 1.06/0.67 ± 0.18 Assam ringwells and tubewells

Figure 1. Fluoride concentrations from the sources listed in Table 1
(n = 12 600) and topography. This image was created in part using
QGIS version 2.14.1-Essen, available under CC BY-SA 3.0 from
https://www.qgis.org/en/site/.
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climate parameters but also take into account anthropogenic
effects such as land use and irrigation. The values of the
independent variables were extracted from the associated GIS
data sets (Table 2) at each fluoride measurement point and
compiled in a table.
A subset of the initial set of variables was selected based on

the statistical significance of relationships to fluoride
concentrations meeting or exceeding the WHO guideline of
1.5 mg/L. Correlations were measured between each
independent variable and the proportion of fluoride measure-
ments greater than 1.5 mg/L for bins of each variable (Table 2
and Figure S2). The number of bins was determined using
Sturges’ formula,43 which in this case was 15. The number of
bins was in turn used to determine a fixed number of data
values for each bin. Univariate logistic regressions were also
run using the threshold of 1.5 mg/L (Table 2). Variables for
which the correlation and/or univariate logistic regression did
not fall within the 95% confidence interval (p-value ≤0.05)
were not used in modeling. A modeling table was then
assembled consisting of the fluoride concentration measure-
ments along with the corresponding values of the remaining 15
potentially significant independent variables (Figure S3).
Random Forest Modeling. The random forest machine-

learning algorithm generates an ensemble of decision trees,
which are classification models that consecutively split a
dependent variable (e.g., fluoride) on independent variables
(nodes) and cutoff values that result in the greatest variance of
the dependent variable.56 The resulting decision tree model
can then be used to predict a binary class on the basis of the
values of the associated independent variables. All modeling
was carried out using the R statistical programming language.57

Random forests grow many trees and introduce randomness
to their development so as to cause trees to develop differently
and thus utilize different combinations of the information
contained in the input data set, ultimately resulting in a more
robust model. By taking the average of the class-prediction
results of the ensemble of trees, a random forest model is less
sensitive to the starting conditions and avoids problems of
overfitting and correlated variables masking each other, as
often occurs in a single decision tree.58 Randomness is
introduced in two ways in the growing of random forest trees:
(1) random selection with replacement of all data rows, which
results in roughly one-third of the data (e.g., each fluoride
measurement and its associated independent variables) not
being selected for a given tree and referred to as out-of-bag
samples (OOB),56 and (2) a greatly restricted number of
randomly selected variables made available at each node,59

which in our case was chosen as the square root of the total
number of independent variables (i.e., 3).
Since our data set of measured fluoride concentrations

contains considerably more low than high values (more that
are less than or equal to 1.5 mg/L) and to avoid a bias toward
low values, the training data set was randomly downsampled
for the growing of each tree by restricting the number of data
rows made available with a low-value target variable to 1162,
which is the number of high-value target variables and thus
provides a balanced data set for modeling. Using 2324 data
rows for each tree, a total of 1001 trees were grown to produce
the random forest model. In this way, the information from all
measurements was incorporated in the model, while also
avoiding the problem of overemphasizing low concentrations.

Table 2. Coefficients and Significance of Correlations and Univariate Logistic Regressions (Normalized) Based on the WHO
Guideline for Fluoride in Drinking Water of 1.5 mg/La

variable resolution correlation (p) logistic regression (p)

Actual evapotranspiration (AET)44 30″ −0.918 (1.37 × 10−06) −5.26 (1.42 × 10−189)
Aridity (PET45/precipitation46) 30″ 0.956 (2.85 × 10−08) 8.78 (4.30 × 10−119)
Calcisols47 30″ 0.829 (1.35 × 10−04) 5.98 (7.74 × 10−81)
Carbonate sedimentary rocks48 polygon n/a 1.23 (3.06 × 10−04)
Clay fraction (1.5m depth)47 30″ −0.568 (2.73 × 10−02) −2.18 (5.25 × 10−34)
Cropland49 30″ n/a 0.284 (6.44 × 10−06)
Felsic igneous rocks48 polygon n/a 0.351 (8.18 × 10−05)
Mafic igneous rocks48 polygon n/a −0.622 (5.07 × 10−14)
Noncarbonate sedimentary rocks48 polygon n/a 0.148 (8.64 × 10−03)
Potential evapotranspiration (PET)45 30″ 0.908 (2.93 × 10−06) 7.24 (1.87 × 10−78)
Precipitation46 30″ −0.685 (4.81 × 10−03) −13.2 (4.32 × 10−135)
Sand fraction (1.5m depth)47 30″ 0.847 (6.77 × 10−05) 3.66 (1.41 × 10−64)
Silt fraction (1.5m depth)47 30″ −0.948 (7.42 × 10−08) −2.84 (1.30 × 10−44)
Slope50 30″ −0.673 (5.92 × 10−03) −4.24 (4.46 × 10−07)
Soil pH47,51,52 30″ 0.893 (7.51 × 10−06) 4.95 (4.39 × 10−76)
Evapotranspiration (ET), MODIS 2000−201353 30″ −0.128 (6.49 × 10−01) −0.328 (1.84 × 10−02)
Flow accumulation50 30″ 0.101 (7.21 × 10−01) −53.5 (1.63 × 10−01)
Gypsisols47 30″ 0.456 (8.74 × 10−02) 1.87 (2.66 × 10−26)
Histosols47 30″ −0.210 (4.53 × 10−01) −2.27 (1.71 × 10−11)
Irrigation amounts54 0.5° 0.175 (5.33 × 10−01) 0.322 (3.51 × 10−03)
Irrigated area55 5′ 0.460 (8.46 × 10−02) 0.373 (8.26 × 10−05)
Metamorphic rocks48 polygon n/a 0.0596 (3.58 × 10−01)
Soil cation exchange capacity47 30″ −0.331 (2.28 × 10−01) −0.795 (7.99 × 10−06)
Solonchaks47 30″ 0.430 (1.09 × 10−01) 2.64 (1.10 × 10−19)
Temperature46 30″ 0.200 (4.76 × 10−01) 1.13 (5.08 × 10−03)

aFifteen datasets met the 95% confidence interval for both statistics and were used for modeling. Those that did not are indicated in italics.
Correlations are plotted in Figure S2.
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Two ways to determine the accuracy of a class-prediction
model include calculating its true-positive rate (sensitivity) and
true-negative rate (specificity).60 When using the model as a
predictive tool, the cutoff corresponding to where sensitivity
and specificity are equal results in an evenly balanced
predictive accuracy of both high and low values and generally
corresponds to the highest overall accuracy over all cutoffs if
the testing data set is evenly balanced between high and low
values. Plotting both sensitivity and specificity for the full range
of model cutoff values from 0 to 1 produces a receiver
operating characteristic (ROC) curve and the associated area
under the ROC curve (AUC) value, which generally ranges
between 0.5 (no predictive capability) and 1 (perfect
predictive capability).60

To assess the relative importance of the predictor variables,
the values of each variable in all OOB samples were randomly
reassigned and the mean decrease in prediction accuracy was
calculated. The greater the decrease in accuracy, the greater is
the inferred importance of the variable. In addition, the mean
decrease in Gini node impurity61 was calculated over all splits
for all trees. Gini purity refers to the homogeneity of the
subnodes created by splitting on a given variable. The higher
the average decrease in Gini node impurity, the more
significant is the variable.
Multivariate Logistic Regression. The same predictor

variables of the random forest model were used in 1001 logistic
regressions to verify the random forest model and provide an
assessment of the relationships between the predictor variables
and the occurrence of fluoride concentrations exceeding 1.5
mg/L. As in the random forest model, the imbalance between
the number of high and low concentration values was rectified
in each logistic regression by downsampling the data rows of
the larger class (low values) to match the number of high
values, which is 1162 in the training data set. Since logistic
regression results can be difficult to correctly interpret in the
presence of strong collinearity among the predictor variables,
the variables aridity, clay fraction, and soil pH were removed
for this analysis on the basis of correlations exceeding 0.8
(Table S1). These variables are strongly correlated with actual
evapotranspiration, sand fraction, and precipitation, respec-
tively. All other modeling procedures, including the retaining
or discarding of models based on the Hosmer-Lemeshow
goodness-of-fit test62 and the weighting and averaging of
coefficients, are described by Podgorski et al.37

■ RESULTS AND DISCUSSION
Random Forest Model. The 15 variables initially used for

modeling (Table 2) were refined in a further step by
considering the importance of each individual independent
variable. The carbonate sedimentary rocks variable was
removed on the basis of the mean decrease in accuracy of
when its values were randomly rearranged in the OOB
samples. This variable was the only one to produce a mean
increase in accuracy with this test, which indicates that it likely
has no real relationship to the target variable.
The final random forest model was produced for the entire

country as well as the neighboring countries of Bangladesh,
Bhutan, Nepal, and Sri Lanka at a 1 km resolution (Figure 2a),
which is derived from the resolution of the predictor data sets.
The same model was applied to these immediately adjacent
countries to take advantage of likely similar conditions. The
model achieved an AUC of 0.84 on the test data set (Figure
3a) and an accuracy of 0.78 using a cutoff value of 0.44, which

was determined by the best trade-off between sensitivity and
specificity, i.e., where they are equal (Figure 3b). The accuracy
at this cutoff is less than that at higher cutoff values due to the
test data set being dominated by low values (87%). As a
consequence, a cutoff of 1 would predict 0 for all cases and
thereby yield 87% accuracy with the test data set, however all
of the high values would be incorrectly classified.
The accuracy of 0.78 using the test data set is comparable to

the internal OOB accuracy of 0.80. These two error estimates

Figure 2. Random forest model of areas of aquifers in India with
fluoride concentrations exceeding the WHO guideline of 1.5 mg/L.
(a) Probability or mean of the 1001 random forest trees, including the
neighboring countries of Bangladesh, Bhutan, Nepal, and Sri Lanka,
and (b) population density of areas with a high probability (≥44%) of
fluoride >1.5 mg/L (based on 2015 population statistics). This image
was created in part using QGIS version 2.14.1-Essen, available under
CC BY-SA 3.0 from https://www.qgis.org/en/site/.
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are consistent with each other and indicate that splitting the
full data set into testing and training data sets did not create
any fundamental differences between the two. The overall
accuracy of the random forest model on the entire data set of
11 320 points that together comprise the training and test data
sets (Figure 4a) is 0.91, which was found using a cutoff of 0.59
corresponding to an even trade-off between sensitivity and
specificity. It is noteworthy that this model with its associated
high accuracy was achieved using only surface parameters as
predictors, although the target groundwater concentrations
may originate from a considerable depth. Spatially continuous
3D data sets, such as of hydrogeology, could possible render a
significant improvement to the model, if such data sets were to
exist.
Prediction Map. The random forest model identifies parts

of 23 states and territories having a high hazard of fluoride
concentration in groundwater greater than 1.5 mg/L,
comprising a total of 28% of the country. Two large areas of
the country are strongly affected: the northwestern states/
territories of Delhi, Gujarat, Haryana, Punjab, and Rajasthan
and the southern states of Andhra Pradesh, Karnataka, Tamil
Nadu, and Telangana. More fragmented pockets of predicted
high fluoride concentrations are spread throughout the central
and eastern parts of the country. The percentage of area in

neighboring countries found to have a high fluoride hazard is
as follows: Bangladesh (5%), Bhutan (0%), Nepal (0%), and
Sri Lanka (4%).

Model Uncertainty. The probabilities of the random forest
model shown in Figure 2a are the averages of the 1001
individual trees grown for each pixel. Since each tree can have
an outcome of either 0 or 1, the corresponding standard
deviations are a quadratic function of the mean values (Figure
S4a). As a consequence, low standard deviations are associated
with high and low means or probabilities. Figure 4b displays
the model standard deviations, which are an indicator of the
model’s certainty. That is, the less variation in the votes of the
trees for a given pixel, the stronger the decision of the model in
selecting a high or low value.
The lowest standard deviations, i.e., greatest model certainty,

are found throughout much of the Western Ghats (SW coast),
Ganges River plain (north-central India), and far eastern India,
which is also where the lowest probabilities are located. The
histogram in Figure S4b confirms that the model contains
more low probabilities than high ones. Other low probability
areas, such as southern Gujarat or east-central India have
somewhat higher standard deviations than in the aforemen-
tioned areas. Model certainties associated with the high
probabilities of Figure 2a are greater in Delhi, Haryana,

Figure 3. Random forest modeling results (a) ROC curve (b) sensitivity, specificity, and accuracy plotted against cutoff.

Figure 4. Validation of random forest model. (a) Probability plotted with the 11 320 fluoride concentrations of the training and testing data sets
and (b) standard deviation of the mean shown in (Figure 2a). This image was created in part using QGIS version 2.14.1-Essen, available under CC
BY-SA 3.0 from https://www.qgis.org/en/site/.
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Table 3. Number of High (>1.5 mg/L) and Total Measurements as well as Area and Population of India with High Probability
(≥44%) of F > 1.5 mg/L by State/Territorya

state/territory measurements high/total (%) area classified as high risk pop. in high risk area in 201566 (% of total)

Andaman and Nicobar 0/50 (0%) 0% 0 (0%)
Andhra Pradesh 99/564 (17.6%) 51% 7 516 234 (14%)
Arunachal Pradesh 0/11 (0.0%) 0% 0 (0%)
Assam 22/127 (17.3%) 15% 2 033 836 (6%)
Bihar 19/385 (4.9%) 4% 1 051 588 (1%)
Chandigarh 0/3 (0.0%) 0% 0 (0%)
Chhattisgarh 22/360 (6.1%) 6% 455 672 (2%)
Dadra and Nagar Haveli 0/5 (0.0%) 0% 0
Daman and Diu 27/103 (26.2%) 20% 19 306 (7%)
Delhi 2/66 (3.0%) 45% 1 894 174 (11%)
Goa 159/767 (20.7%) 0% 0 (0%)
Gujarat 127/364 (34.9%) 50% 10 988 520 (17%)
Haryana 0/41 (0.0%) 81% 8 152 992 (30%)
Himachal Pradesh 3/223 (1.3%) 0% 2952 (0%)
Jammu and Kashmir 9/133 (6.8%) 10% 185 938 (1%)
Jharkhand 187/1079 (17.3%) 9% 1 302 178 (4%)
Karnataka 2/712 (0.3%) 44% 9 260 131 (14%)
Kerala 244/1912 (12.8%) 0% 15 510 (0%)
Madhya Pradesh 34/1476 (2.3%) 23% 7 343 093 (9%)
Maharashtra 34/950 (3.6%) 9% 3 271 034 (3%)
Manipur 0/4 (0.0%) 1% 108 283 (3%)
Meghalaya 48/276 (17.4%) 0% 79 (0%)
Mizoram 477/1335 (35.7%) 0% 0 (0%)
Nagaland 67/394 (17.0%) 9% 153 065 (8%)
Orissa 39/300 (13.0%) 3% 552 800 (0%)
Puducherry 0/22 (0.0%) 0% 0 (0%)
Punjab 35/684 (5.1%) 56% 5 008 113 (17%)
Rajasthan 48/254 (18.9%) 81% 25 190 370 (33%)
Sikkim 0/50 (0%) 0% 0 (0%)
Tamil Nadu 99/564 (17.6%) 41% 10 890 790 (14%)
Telangana 0/11 (0.0%) 48% 7 332 835 (19%)
Tripura 22/127 (17.3%) 0% 0 (0%)
Uttar Pradesh 19/385 (4.9%) 13% 7 952 795 (4%)
Uttaranchal 0/3 (0.0%) 0% 9605 (0%)
West Bengal 22/360 (6.1%) 23% 8 307 174 (9%)
total 0/5 (0.0%) 28% 118 999 065 (9%)

aThe population numbers are from non-urban areas and account for 46% of rural areas not having access to piped water and 85% utilizing
groundwater for drinking.

Figure 5. Measures of random forest variable importance. (a) Mean decrease in accuracy in OOB samples when using random values of each
variable. (b) Mean decrease in Gini node impurity for each variable.61
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Punjab, and Rajasthan than in the high-probability areas of
Gujarat or the south or east (Figure 3b). This highlights that
more spatially detailed water sample testing may be required in
these latter areas. Likewise, the model is also less certain in the
areas of low to moderate probability throughout the rest of the
country.
Population in High Hazard Areas. Figure 2b shows the

density of population using unmanaged groundwater sources
in high hazard areas. Accordingly, the total population
potentially exposed to fluoride in groundwater exceeding 1.5
mg/L (greater than or equal to 44%) is nearly 120 million
(118 999 065). This is based on 2015 population counts,63

considers only nonurban areas49 and takes into account that
approximately 46% of rural populations do not have access to
piped water64 and that 85% of rural populations consume
groundwater for drinking. Table 3 lists the proportion of land
area of each state/territory that is classified as high hazard and
the number and percentage of population potentially at risk as
well as the number of high (>1.5 mg/L) to total measurements
used in modeling. The figure of approximately 120 million
people at risk could be further refined with more detailed
statistics on piped water, which is generally ensured to contain
a low concentration of fluoride. Furthermore, consideration of
the nutritional status of populations in different areas could
highlight differences in susceptibility to fluorosis. The
prediction model confirms the presence of high fluoride
concentrations found in other recently published studies, e.g.,
the Sonbhadra district of Uttar Pradesh,29,30 the Bhilwara
district,22 Pokhran area,24 and Thar Desert23,25 of Rajasthan,
the Chandauli-Varanasi region in Uttar Pradesh,65 the
Nalgonda district of Telangana,26 the Guntur district27 and
Anantapur district28 of Andhra Pradesh, and the Jamui district
of Bihar.32

Predictor Variables. Figure 5 contains rankings of the
importance of the predictor variables in the random forest
model. The mean decrease in accuracy associated with
randomizing a variable in OOB samples (Figure 5a) and the
mean decrease in Gini node impurity (Figure 5b) are
consistent in assessing the relative importance for roughly
half of the predictor variables: aridity and precipitation (high
importance); slope, sand fraction, and silt fraction (moderate
importance); and calcisols and cropland (low importance).
Logistic Regression Model. To better assess the

relationships between the predictor variables and high fluoride
concentrations, the same 11 of the predictor variables from the
random forest model (all except aridity, clay fraction, and soil
pH) were used in 1001 logistic regressions, 452 of which
passed the goodness-of-fit test. Each variable was standardized
by subtracting the variable’s minimum value and then dividing
by the difference between its high and low values, resulting in
each variable ranging between 0 and 1. The composite logistic
regression model also has a high AUC of 0.78, although
accuracy is only 0.72 (at a cutoff of 0.66). The weighted
coefficients and standard deviations of each variable along with
their frequencies in the individual logistic regressions are listed
in Table 4. Five variables appear in most or all of the 452
acceptable logistic regressions: AET, PET, precipitation, mafic
igneous rocks, and noncarbonate sedimentary rocks. These are
shown in Figure S3.
Main Predictor Variables. The correlations and logistic

regressions (Tables 2 and 4) clearly indicate that drier
conditions are associated with the occurrence of high fluoride
concentrations. That is, AET and precipitation negatively

predict high fluoride concentrations, whereas PET positively
predicts fluoride. As per the logistic regression, the two most
prominent geology variables, mafic igneous rocks and non-
carbonate sedimentary rocks, in general negatively predict the
presence of high fluoride concentrations (except in Rajasthan)
and are also two of the most important variables in the random
forest model according to the accuracy test (Figure 5a). Felsic
igneous rocks generally positively predict high fluoride
concentrations in the logistic regressions, however this variable
was present roughly only two-thirds as frequently as the other
two geology variables. Although it would be expected that
carbonate sedimentary rocks would be positively related to
high fluoride concentrations, very little of such rocks is found
in India. As such, this variable proved to be ineffective in the
initial random forest modeling of fluoride.
As a test, the same five dominant variables of the logistic

regression were used to create a random forest model in the
same manner as described previously. The AUC of the random
forest model with five variables was 0.81 (versus 0.84 with 14
variables) and the accuracy (at a cutoff of 0.41) was 0.74
(versus 0.78 with 14 variables). That is, the 14-variable random
forest model (Figure 2a) outperforms the random forest model
using only the five dominant variables of the logistic regression,
which itself is the least-performing of the three models. The
areas of high hazard as predicted by each of these models are
shown in Figure S5.
The positive though weak correlation with cropland may be

related to the downward leaching of fluoride contained in
phosphate fertilizers and/or an increase in sodicity brought
about by irrigation.67 However, neither the amount of
irrigation nor the land area under irrigation appeared to be
significant in our initial screening of variables and were
therefore excluded from further consideration. As expected,
soil pH positively correlates with high fluoride concentrations
(Table 2), with soil pH itself being strongly inversely
correlated with precipitation (Table S1). Slope is inversely
related to high fluoride and is a proxy for the hydrological
gradient and thereby the residence time of groundwater, which
increases the interaction time between fluoride-bearing
minerals and aquifer pore water.12 This is particularly relevant

Table 4. Coefficients, Standard Deviations and Frequencies
of the Standardized Predictor Variables of 1001 Logistic
Regressions Run Using a Threshold of 1.5 mg/L for
Fluoridea

variable coefficient
standard
deviation

freq in logistic
regressions

(Intercept) −1.06 0.82 452
Actual ET −1.96 0.47 407
Calcisols 2.05 0.61 225
Cropland 0.23 0.04 113
Felsic igneous rocks 0.43 0.11 289
Mafic igneous rocks −0.66 0.15 450
Noncarb. sed. rocks −0.41 0.10 442
Potential ET 2.96 0.60 451
Precipitation −5.17 1.15 452
Sand fraction 1.35 0.38 316
Silt fraction 0.80 0.49 67
Slope −1.97 1.25 59

a452 logistic regressions passed the Hosmer-Lemeshow goodness-of-
fit test, which, along with the frequencies, was used to weight the
coefficients and standard deviations.
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when the water is saturated with calcite, which is consistent
with the positive coefficient found for calcisols.
Implications. Our fluoride prediction map and associated

population risk assessment represent a significant improvement
in understanding of both the detailed locations of high fluoride
concentrations in groundwater as well as the number of people
potentially affected. This is largely due to the fact that
government reports and other studies on the countrywide
occurrence of fluoride generally provide information only at
the district level. For example, Chakraborti et al.68 calculated
411.4 million people at risk based on the total population living
in districts where fluoride had been measured in groundwater
greater than 1.5 mg/L. The present study is much more precise
by applying the derived statistical model to produce maps at a
resolution of 1 km2. Since the average size of a district is 4650
km2, this represents an improvement in resolution of over 3
orders of magnitude. Furthermore, we have utilized the best-
available statistics to account for groundwater usage and access
to managed water sources. In addition to identifying large rural
populations at risk of fluorosis, the newly produced maps can
aid in prioritizing the application of mitigation funding in areas
where the fluoride hazard is elevated and groundwater is being
extracted at a high rate relative to recharge. The latter is
relevant since the groundwater being pumped in such
circumstances has generally had a longer residence time in
the aquifer during which to accumulate fluoride.
Once safe and unsafe water sources have been identified,

effective mitigation measures can be taken. If wells with high
and low fluoride concentrations exist within close proximity to
one another, then the simplest measure is to close the unsafe
well or restrict its use to only nonconsumption activities, such
as washing. Other possibilities include the dilution of fluoride-
contaminated groundwater with surface water or the harvesting
and use of rainwater. If such options do not exist or are not
feasible, then various membrane and adsorption filtering
methods are available.69

While our fluoride prediction map (Figure 2a) provides a
highly accurate determination of the locations of high-fluoride
containing aquifers and highlights areas of particular concern,
it is not intended to be a definitive guide to safe and unsafe
water sources. Especially since small-scale aquifer hetero-
geneities exist that cannot be modeled with the available data
and resolution, particularly in hard-rock aquifers, as well as a
lack of depth information, it is still necessary to test individual
wells to determine the concentration of fluoride. In this regard,
the presented fluoride prediction map can be invaluable in
determining where to focus testing efforts and resources.
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