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Supporting Material for “RUFIDAM: A Rapid Urban 

Flood Inundation and Damage Assessment Model” 

 

S1 Impact Zones (IZs) generation 

The main input data for the pre-processing step is the digital elevation model (DEM) of the 

floodplain domain. Each cell in the DEM raster file is considered as an impact cell. The ArcPy 

module (ESRI, 2012) of ArcGISTM software was used within the Python programming 

language to automate this pre-processing step. The hydrology toolbox is used to delineate IZs 

by first calculating the flow direction and then delineating a raster of basins and converting 

them to a polygon shapefile of IZs. At this stage, those IZs that are smaller than the minimum 

IZ area (specified as model parameter), are selected and merged with their neighbours that have 

the largest areas in the neighbourhood using the Eliminate tool in ArcGIS (Figure S1). By 

converting the polygons of IZs into polylines, a shapefile can be extracted that includes the 

neighbouring information of IZ polygons. Each line in the extracted polyline feature represents 

the boundary of two neighbouring IZs. Using the Stack Profile tool, the elevation data along 

each line (one point per grid cell) is extracted from the DEM. The minimum elevation of each 

profile is the communication level of two neighbouring IZs. The Zonal Statistics as Table tool 

is used to extract impact cell elevation values within each IZ. Given the water elevation, the 

stored volume in each IZ can be calculated as the difference between water level and impact 

cell elevation and their area. The location of the nodes in 1D models are linked to the IZs using 

the Spatial Join tool. All the extracted data is then stored in a database on disk to be used by 

the rapid flood inundation model. 

 

Figure S1. Example of the generated Impact Zones (IZs) from a 1m resolution DEM (left) and after eliminating 

IZs that are smaller than 150m2 
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S2 Rapid flood inundation model routine 

A flow diagram of the adapted RFSM in this study is given in Figure S21. At the start of the 

simulation, all IZs are dry. The routine starts with spreading the surcharge volume of the first 

manhole. Due to the nature of the routine, the order of selecting manholes has no impact on the 

final calculated flood extent. Initially the IZ that locates the first surcharging manhole becomes 

active. Water level is then raised to the lowest communication point(s) greater than the current 

water level (which is initially zero). If the located neighbour has the same water level as the 

active IZ, they merge together and stay active for the next iteration. Otherwise, the active IZ 

will flow to the found IZ(s). The total flood volume spread over IZs is calculated and if it is 

equal or greater than the surcharge volume of manhole one, the spreading process starts for 

manhole 2 after changing the status of active IZ(s) to inactive.  Otherwise, all active IZ(s) 

become inactive and selected IZs become active (except the merged IZs that should remain 

active). If the condition of the located IZ is dry, it becomes active for the next iteration. 

Otherwise, it means that the selected IZ(s) is already flowing to another IZ. The algorithm then 

searches for all inactive IZs that are receiving flow from the selected IZ but not flowing to any 

neighbouring IZs and change their condition to active. The next iteration starts with filling 

water in active IZs and spilling to the selected neighbouring IZs. Finally, the total flood volume 

is equal or greater than the total flood volume from the surcharging manholes, the algorithm 

stops and creates flood extent and depth maps.  

The filling/spilling routine described here only accounts for volume transfers, but, in reality, 

the movement of water from one IZ to another requires an extra driving head, Δz, to overcome 

friction and other head loss (Krupka, 2009). Therefore, when estimating the maximum water 

level in each IZ, an additional head should be added above the level of the lowest link. The 

value of Δz can either be set constant for all links in the domain or it can be calculated for each 

link individually to account for the local flow conditions (Krupka, 2009). In this study we used 

the constant extra head approach.  



3 

 

 

Figure S21. Flowchart for the adapted rapid flood spreading algorithm 

Figure S3 shows an example of the filling and merging process for a case where flooding 

originates from an IZ that is located within a large natural depression. As shown in this Figure, 

the impact zones are merging together as the flood extent grows and at step 7, we can see that 

the local depression becomes one single IZ formed by merging the 6 initial IZs. 
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Figure S3. Process of filling and merging of impact zones located within a larger depression 

 

S3. Impact Zones (IZs) specifications 

Table S1 shows the number of initially identified IZs and final IZs after elimination for each 

catchment. The number of IZs were reduced by merging IZs that have areas smaller than 

150m2. The minimum IZ area parameter was selected based on the Sensitivity Analysis results.  

 

Table S1. Number of initially created and final IZs (after merging IZs that have area smaller than 

150m2) 

 area 

number of 

initially 

generated IZs  

number of IZs after 

elimination (minim 

IZ are = 150 m2) 

minimum 

IZ area 

average IZ 

area 

maximum 

IZ area 

 [ha] [thousands] [thousands] [m2] [m2] [m2] 

Catchment 1 760 950.8 112.0 150 220 1589 

Catchment 2 987 1,047.5 136.0 150 249 1835 

Catchment 3 78 118.4 14.2 150 206 1125 
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S34 Typical time series pattern for SIP1 experiment 

Figure S42 shows the typical surcharge time series considered for all source points as input to 

MIKE FLOOD. In order to generate the inflow time series, we multiplied the total surcharge 

volume of each node by the time series pattern.  

 

 

Figure S4. Typical surcharge time series pattern 

 

  

                                                 
1 Surface Inundation Prediction 
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S5 Static vs. dynamic 1D drainage network simulation (SVD experiment) 

Figures S53 compares maximum water levels obtained in the static 1D drainage network 

simulations with ponding and spilling configurations, against those obtained from a dynamic 

(1D-2D MIKE FLOOD) simulation for all catchments and return periods. Figure S64 does this 

same comparison for link flow volumes. 

 

Figure S5. Comparison of maximum water level at nodes in 1D ponding and spilling simulations 

against dynamic (1D-2D MIKE FLOOD) results for all catchments and return periods.   
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Figure S6. Comparison of total link flows in 1D ponding and spilling simulations against dynamic 

(1D-2D MIKE FLOOD) results for all catchments and return periods.   
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S6. Model parameter sensitivity analysis using the hydraulic performance 

indicators 

 

Figure S7. Boxplots of RMSE, Fit and Bias indexes for different 1D model configurations, as well as 

varying constant head (Δz) and minimum IZ area parameters. Black lines indicate the mean value. 

 


