1 Combustion of sewage sludge: Kinetics and speciation of the combustibles

2	Supporting Information
3	Jonas Wielinski ^{a,b} , Christoph Müller ^c , Andreas Voegelin ^a , Eberhard Morgenroth ^{a,b} , Ralf Kaegi ^{a,*}
4	^a Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf,
5	Switzerland
6	^b ETH Zürich, Institute of Environmental Engineering, 8093 Zürich, Switzerland
7	^c ETH Zürich, Institute of Energy Technology, 8092 Zürich, Switzerland
8 9	* Corresponding author, e-mail: ralf.kaegi@eawag.ch , fax: +41 58 765 5802, Eawag, Überlandstrasse 133, 8600 Dübendorf, Switzerland
10	
11	
12	6 pages, 4 figures
13	

14 Step by step derivation of equation 4:

15
$$\frac{d\alpha}{dt} = f(\alpha)k(T)h(p)$$
 (S1)

Remove h(p) as all experiments were conducted at constant partial pressures of oxygen.

17
$$\frac{d\alpha}{dt} = f(\alpha)k(T)$$
 (S2)

18
$$\int_0^{\alpha(t)} \frac{d\alpha}{f(\alpha)} = \int_0^{t(\alpha)} k(T) dt$$
 (S3)

We define the integrated reaction model (S4) and the Arrhenius equation (S5):

20
$$g(\alpha) \equiv \int_0^\alpha \frac{1}{f(\alpha)} d\alpha$$
 (S4)

$$21 k(T) = A \exp(-\frac{E}{RT}) (S5)$$

Insert the integration reaction model (S4) into equation S3:

23
$$g(\alpha) = \int_0^{t(\alpha)} k(T) dt$$
 (S6)

24 Insert equation S5 into equation S6:

25
$$g(\alpha) = A \int_0^t \exp\left(\frac{-E}{RT(t)}\right) dt$$
 (S7)

26 Equation S7 is equivalent to equation 4.

28 Figures:

30

31

32

Figure S1: Nine repetitions of the combustion of the sewage sludge. Black curves represent the measured data (10 and 20 K/min). The red and blue circles represent the calculated thermograms resulting from the TGA evaluation algorithm with heating rates of 10 and 20 K/min. Each curve runs from unity to zero. Curves are stacked for convenient display.

Figure S2: Input and output parameters of a sewage sludge combustion experiment including 12 overlapping reactions. The input parameters are determined by the TGA evaluation algorithm. The data resulted from TG experiments (heating rates: 10 and 20 K/min) with sewage sludge. The input parameters are further used to calculate synthetic thermograms using equation 7. In turn, the TGA evaluation algorithm is used retrieve the kinetic parameters (activation energy (*E*) and pre-exponential factor (*A*)) from the synthetic thermograms again. These are called 'output parameters'.

Figure S1: Simulated data (blue and red lines) with E = 200 kJ/mol and $A = 10^8$ s⁻¹. Conversions (blue and red dots) based on the retrieved kinetic parameters, E = 201.42 kJ/mol and $A = 10^{8.0712}$ s⁻¹. Relative errors are 0.7% for E and 0.9% for A.

Figure S2: Confidence regions resulting from the analysis of the TG recorded for P1 applying the Coats-Redfern method and using a pseudo 0.5-order reaction model. The triangles represent the calculated values and the black lines define the regions of maximal statistical variations.