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Abstract 21 

Wastewater treatment plants (WWTPs) are implicated as hotspots for the dissemination of 22 
antibacterial resistance into the environment. However, the in situ processes governing removal, 23 
persistence, and evolution of resistance genes during wastewater treatment remain poorly 24 
understood. Here, we used quantitative metagenomic and metatranscriptomic approaches to 25 
achieve a broad-spectrum view of the flow and expression of genes related to antibacterial 26 
resistance to over 20 classes of antibiotics, 65 biocides, and 22 metals. All compartments of 12 27 
WWTPs share persistent resistance genes with detectable transcriptional activities that were 28 
comparatively higher in the secondary effluent, where mobility genes also show higher relative 29 
abundance and expression ratios. The richness and abundance of resistance genes vary greatly 30 
across metagenomes from different treatment compartments, and their relative and absolute 31 
abundances correlate with bacterial community composition and biomass concentration. No strong 32 
drivers of resistome composition could be identified among the chemical stressors analyzed, 33 
although the sub-inhibitory concentration (hundreds of ng/L) of macrolide antibiotics in 34 
wastewater correlates with macrolide and vancomycin resistance genes. Contig-based analysis 35 
shows considerable co-localization between resistance and mobility genes and implies a history of 36 
substantial horizontal resistance transfer involving human bacterial pathogens. Based on these 37 
findings, we propose future inclusion of mobility incidence (%) and host pathogenicity of antibiotic 38 
resistance genes in their quantitative health risk ranking models with an ultimate goal to assess the 39 
biological significance of wastewater resistomes with regard to disease control in humans or 40 
domestic livestock. 41 
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Introduction 44 

Anthropogenic release of antibiotic resistance genes (ARGs) into environmental reservoirs has raised 45 
global public health concerns (Allen et al 2010, Berendonk et al 2015). The importance of wastewater 46 
treatment plants (WWTP) both as a barrier for resistant bacteria and as a potential hotspot for 47 
dissemination has been highlighted, although the evaluation of the risks for human health remains 48 
unresolved (Vikesland et al 2017, Bürgmann et al 2018). The increasing environmental occurrence of 49 
clinically relevant ARGs and evidence for horizontal dissemination of resistance between environmental 50 
bacteria and human pathogens demonstrate the importance of environmental resistomes (collections of 51 
resistance genes in a metagenome) (Allen et al 2010, Forsberg et al 2012, Szczepanowski et al 2009, 52 
Zurfluh et al 2013). Communal WWTPs receive diverse anthropogenic antimicrobial and microbiological 53 
contaminants including antibiotics (Michael et al 2013), biocides (Bollmann et al 2014), metals (Novo et 54 
al 2013), and human pathogens (Ju et al 2016). Metagenomic or qPCR analysis of genomic or plasmid 55 
DNA highlight the (co-)occurrence and prevalence of diverse ARGs and metal resistance genes (MRGs) 56 
in WWTPs (Czekalski et al 2014, Di Cesare et al 2016, Li et al 2015a, Li et al 2015b, Sentchilo et al 57 
2013, Yang et al 2013), which are implicated as point sources for their release into the environment 58 
(Czekalski et al 2014, Munir et al 2011). Moreover, several PCR-based and cultivation-based studies have 59 
detected vancomycin-resistant enterococci, methicillin resistant staphylococci, and cefazolin-resistant 60 
Enterobacteriaceae in wastewater biofilm, as well as clinically relevant ARGs (e.g., CTX-M, ampC, qnr 61 
and NDM-1) in the final effluent (Luo et al 2013, Schwartz et al 2003, Szczepanowski et al 2009). 62 



However, which mechanisms allow resistance genes to traverse WWTPs and how they are influenced by 63 
secondary treatment remain open questions (Fig. 1). 64 

Environmental contaminants including metals and biocides represent widespread and recalcitrant stressors 65 
in the WWTP environment that might exert selective pressure that potentially contribute to the persistance 66 
and enrichment of antibiotic resistance determinants through selection or co-selection (Baker-Austin et al 67 
2006, Li et al 2017, Pal et al 2014, Pal et al 2015). Although co-selection is well demonstrated at the 68 
levels of species and population (Baker-Austin et al 2006), whether the sub-inhibitory wastewater 69 
antibacterial residues may lead to trackable community resistance selection remains unclear. So far, no 70 
data is available on the extent to which resistome genes are expressed in WWTPs. Studying resistance 71 
gene expression could give important hints, which, if any, of these functions are active, and whether the 72 
activity changes across compartments or in response to environmental stressors. Importantly, determining 73 
the extent to which resistance determinants (i.e., bacteria, genes and transcripts) are selected for and 74 
horizontal gene transfer is facilitated by environmental conditions within WWTPs would inform policy 75 
decisions in risk assessment and resistance surveillance for preventing dissemination of antibacterial 76 
resistance to the environment. 77 

In this study, we used meta-omics approaches benchmarked with mRNA internal standards and qPCR 78 
analysis to build quantitative inventories of resistome genes, specifically ARG, biocide resistance gene 79 
(BRG), and metal resistance genes (MRG) in 12 communal WWTPs, providing a highly resolved view of 80 
the flow of resistance genes and their transcription in this system (Fig. 1). In the context of this 81 
manuscript, a resistome is thus understood as the collection of these resistance genes in the metagenome 82 
of a sample. By comparing the abundance and transcription levels of resistance genes across treatment 83 
compartments, we determined the factors that best predict the composition and transcription of the 84 
resistome among a wide range of biotic and abiotic (i.e., physicochemical and operational) variables. 85 
Through gene assembly and co-localization analysis, we obtained reliable ARG identification and 86 
additional information on co-located genes to predict ARGs mobility incidence (M%) and phylogenetic 87 
distribution. The results we obtained reveal how the conventional treatment process strongly influences 88 
resistance genes and their transcriptional activities within wastewater treatment stages. Our insights 89 
provide useful guidance to the risk assessment and control strategy of WWTP discharge of resistance 90 
determinants. 91 

Materials and Methods 92 

A full version of the Materials and Methods are available in the Supplementary Information (SI). 93 

Biomass and Liquid Collection 94 

For DNA and mRNA analysis, biomass was collected from post primary clarifier influent, denitrifying 95 
and nitrifying bioreactors, and secondary clarifier effluent of 12 Swiss WWTPs between March and April 96 
2016 (Table 1), as described in the SI. Filtered liquid samples were collected for in-lab chemical analysis 97 
(Fig. S2). 98 



mRNA Internal Standards 99 

mRNA internal standards were spiked immediately after cell lysis in known copy numbers to determine 100 
volume-based or biomass-based absolute copy numbers for transcript type (i.e., copies/L-1 or copies/g of 101 
biomass measured as volatile suspended solids). This approach circumvents the limitations of non-spiked 102 
metatranscriptomic datasets, which only provide relative abundance information (Gifford et al 2011, 103 
Satinsky et al 2012, Satinsky et al 2014). Two mRNA standards without poly(A) tails (to mimic 104 
prokaryotic and organelle mRNAs), BMS5 and BMS6, were synthesized by plasmid linearization and in 105 
vitro transcription based on a method modified from Satinsky et al., 2012 (Satinsky et al 2012), as 106 
described in the SI. 107 

RNA Processing for Metatranscriptomes 108 

Total RNAs were extracted from tube pellets and filters using the RNeasy Mini Kit (Qiagen, Germany) 109 
after cell lysis in a FastPrep instrument (MP Biomedicals) for 40 seconds (at the speed of 6.0 m/s) and the 110 
spiking of mRNA internal standards into the cell lysate, as described in SI. Then, the residual DNA were 111 
digested by two successive treatments with the TURBO DNA-free Kit Kit (Invitrogen, Carlsbad, CA) and 112 
mRNA was enriched from the digested total RNA samples using illumina Ribo-zero rRNA Removal Kit. 113 
cDNA libraries were generated using the rRNA-depleted RNA by NEBNext® Ultra RNA Library Prep 114 
Kit (NEB, USA) following manufacturer’s instructions. 115 

DNA Processing for Metagenomes 116 

Genomic DNA was extracted using the FastDNA® SPIN Kit for Soil (MP Biomedicals, France), 117 
following manufacturer’s instructions. The DNA extracts were then split and used for construction of 118 
metagenomic libraries, 16S rRNA gene amplification, and quantitative polymerase chain reaction (q-119 
PCR), as described below. Metagenomic libraries were generated from 1μg DNA per sample using 120 
NEBNext® Ultra™ DNA Library Prep Kit for Illumina (NEB, USA), following manufacturer’s 121 
recommendations. 122 

16S rRNA Gene Amplification and qPCR 123 

The V3-V4 hypervariable regions of bacterial 16S rRNA genes were amplified using genomic DNA and 124 
the forward primer 338F and reverse primer 802R (Klindworth et al 2012). Bacterial 16S rRNA gene, 125 
class 1 integron integrase gene (intI1), and sulfonamide resistance gene Sul1 were quantified with qPCR 126 
using LightCycler® 480 Probes Master (Roche, Basel, Switzerland) and Roche LightCycler® 480 II. 127 
Details on the primer sets and PCR conditions used were available in the SI. 128 

Sequencing 129 

The constructed DNA and cDNA libraries were sequenced on the Illumina’s Hiseq4000 platform using a 130 
paired-end (2 x 150) sequencing strategy at the NOVOGENE (Beijing). The 16S rRNA gene amplicons 131 
were sequenced on the Illumina’s Miseq platform using a paired-end (2 x 250) sequencing strategy at the 132 
Microsynth (Switzerland). 133 



Analytical Chemistry 134 

Dissolved antibacterial pharmaceuticals in the samples were measured by liquid chromatography triple 135 
quad mass spectrometry with electrospray ionization. Dissolved metals were measured by high-resolution 136 
inductively coupled plasma mass spectrometry. Different forms of dissolved inorganic nitrogen and 137 
phosphate were measured using SKALAR SAN++ Continuous Flow Analyzer (Skalar, Breda, 138 
Netherlands). Dissolved total organic carbon was measured on a TOC-L TOC Analyzer (Shimadzu). 139 

Bioinformatics and Statistics 140 

The bioinformatics and statistical analysis of metagenomes, metatranscriptomes, and 16S rRNA gene 141 
amplicon data are described in detail in the SI (Fig. S2). Identification of antibiotic, biocide and metal 142 
resistance genes was based on similarity search against a concatenated protein database of The NCBI 143 
Reference Sequence Database (RefSeq release 78) (Pruitt et al 2007), The Comprehensive Antibiotic 144 
Resistance Database (CARD v1.0.1) (McArthur et al 2013), Antibiotic Resistance Genes Database 145 
(ARDB v1.1) (Liu and Pop 2009), Antibacterial Biocide and Metal Resistance Genes Database (BacMet 146 
v1.1) (Pal et al 2014) and functionally validated ARGs (Cheng et al 2012, Forsberg et al 2014, Sommer et 147 
al 2009), followed by cross validation using hmmscan search against Resfams (v1.2) (Gibson et al 2015), 148 
keyword match, and manual inspection. 149 

Results 150 

Gene Inventories of WWTPs 151 

Gene inventories of microbiomes were built from influent, bioreactor and effluent metagenomes of 12 152 
communal WWTPs (Table 1). Bioinformatics analysis of 47 metagenomes (16.6 to 22.3 million reads 153 
each) allowed us to identify 9,151,591 non-redundant open reading frames (ORFs) with contig N50 154 
length of 1.82 kb (Dataset S1). Based on protein sequence-based homolog search coupled with string 155 
match and manual inspection (see methods), we predicted 16,554 ORFs as antibiotic resistance genes and 156 
7,465 ORFs as biocide and/or metal resistant genes from all samples (Fig. 2a). These are carried on a total 157 
of 40,971 resistance contigs with N50 length of 18.8 kb (Dataset S2). From all resistance contigs, 7,687 158 
ORFs co-located with resistance genes were identified as mobility indicators (iMGE) by string match of 159 
their annotations using keywords, such as transposase, plasmid, and integrase (Forsberg et al 2014). 160 

   The resistance genes were further assigned to 109 resistance ‘Types’ by the antibacterial agents to 161 
which they were predicted to confer resistance to (Dataset S3). The most frequent ARG types were 162 
multidrug, aminoglycoside, beta-lactam, macrolide, teicoplanin, and tetracycline (Fig. 2b), representing 163 
three classic resistance mechanisms: antibiotic efflux mainly by Resistance-Nodulation-Cell Division 164 
(RND)-type, ATP-binding cassette (ABC)-type, Major facilitator superfamily (MFS)-type multidrug 165 
efflux pumps, antibiotic inactivation (e.g., beta-lactamase), and modification of antibiotic targets. 166 

Resistance Genes Shared by Wastewater Treatment Compartments 167 

How many resistance genes traverse WWTPs and whether they are differentially expressed remains 168 
largely unknown, although answers to these questions are critical to address the roles of dispersal and 169 
local enrichment of antibacterial resistance within WWTPs. The use of a cross-sample mapping strategy 170 
enabled us to quantify numerous resistance genes that were present in a sample, but not successfully 171 



assembled from its individual metagenome (Fig. S3). Based on the mapping results, a number of 172 
quantitative metagenomic and metatranscriptomic metrics were computed and used to measure the 173 
relative and absolute abundance of microbial genes and transcripts (Table S1). 174 

   Overall, we found that while each compartment harbored unique sets of ARGs (Fig. 3a) and ARG 175 
transcripts (Fig. 3b), all compartments shared 7.4(±4.1)% of ARGs  and 2.6(±0.9)% ARG transcripts. 176 
This small core gene subset of the resistome (i.e., core resistome) was quite abundant (Fig. 3a). Similar 177 
results were found for the BRGs and MRGs (Table S2), as well as their gene transcripts (Table S3), 178 
revealing wastewater-driven dispersal of certain abundant and transcribed resistance genes or selective 179 
outgrowth of the bacteria carrying such genes throughout the WWTPs. Remarkably, 10.7±(2.7)% of 180 
ARGs (Fig. 3a), 9.4±(2.2)% of BRGs, and 10.5±(2.6)% of MRGs undetectable in the influent samples 181 
became subdominant in the downstream compartments (Table S2), implicating their selective enrichment 182 
within each compartment. In contrast, 70.8% of the non-redundant ARGs detected in the influent samples 183 
were no longer represented in the effluent samples. 184 

Cross-Compartmental Differences in  Resistance Gene transcription 185 

We used quantitative meta-omic approaches to absolutely quantify gene abundance and transcription 186 
throughout communal WWTPs (Table S1). We demonstrated high reproducibility in transcript 187 
abundances in three metatranscriptomes spiked with mRNA internal standards (R2>0.99, Fig. S4). Using 188 
the sulfonamide resistance gene sul1 as an example, we also found strong correlations between gene 189 
abundance derived from our quantitative metagenomic approach and the qPCR method (Fig. S5). To 190 
account for the significant change in the microbial biomass concentration (Table S4), bacterial 16S rRNA 191 
gene copies (Fig. S6a) and gene concentration (Fig. S6b) across WWTP compartments (P < 0.001), 192 
transcript copies were scaled to biomass concentration (transcript copies per gram-of-biomas) and to gene 193 
copies of the same gene / gene type (transcript copies per gene copy) to explore differential patterns of 194 
resistance gene transcription across samples. 195 

   The absolute and relative transcript abundance metrics of the WWTP resistomes were significantly (P < 196 
0.05) different across treatment compartments (Fig. 3e-f), consistent with the significant cross-197 
compartmental variations in the relative (Fig. 3c) and absolute (Fig. S7) abundances of resistance genes. 198 
Relative to the influent and effluent, the nitrifying and denitrifying bioreactor sludge had significantly 199 
higher per-liter transcript copies of antibiotic, biocide and metal resistance genes (Fig. 3d). The strong 200 
correlations of all resistance gene categories with biomass metrics (Spearman’s rs > 0.75, see the network 201 
in Fig. S8) support the expectation that bacterial biomass is the main driver on the variations in the total 202 
concentration of both resistance genes and transcripts throughout the WWTPs. In contrast, the effluent 203 
and influent had significantly higher transcript copies per gram-of-biomass (Fig. 3e) and transcript copies 204 
per gene copy (i.e., expression ratio, Fig. 3f) of resistance genes, compared with the bioreactor sludge. 205 
Notably, we observed significantly higher relative abundance for both class 1 integron-integrase gene 206 
(Fig. S6a) and resistance genes (Fig. 3c) in the effluent than in the influent. These results together suggest 207 
that conventional secondary WWTPs release bacterial populations in which resistance genes and/or class 208 
1 integrons are significantly enriched and that express these genes. 209 

   We further checked which types of antibacterial resistance genes were up-regulated and enriched in the 210 
effluent relative to the influent. Based on the relative change in the transcripts per gram-of-biomass of the 211 
most abundant resistance types for antibiotics, biocides and metals (Fig. 4a), we found that the 212 



transcription of most resistance types increased significantly (*P<0.05) from the influent to effluent (see 213 
red bars, Fig. 4a). This pattern was most pronounced for resistance types including four antibiotic classes 214 
(tetracycline, trimethoprim, bleomycin, and polymyxin), three biocides (e.g., hydrogen peroxide), and one 215 
metal (iron). Likewise, most resistance types showed higher average transcript copies per gene copy in 216 
the effluent than the influent (Fig. 4b), suggesting that transcription of these resistance genes could be 217 
upregulated in at least a subset of all WWTPs examined. However, the lack of significant differences in 218 
the averages of transcript copies per gene copy (P≥ 0.05) indicates that the increase in transcripts per 219 
gram-of-biomass largely originates with increases in the relative abundance of resistant bacteria. Indeed, 220 
the significant increase in relative abundance of most types of resistance genes, as measured by gene 221 
copies per copy of 16S rRNA gene (GP16S, Fig. 4b), agrees with the significant increase of antibiotic, 222 
biocide and metal resistance gene copies per gram-of-biomass (Fig. S7b). These results remarkably 223 
suggest substantial relative enrichment of a broad set of antibacterial resistance genes after conventional 224 
secondary wastewater treatment. 225 

Mobility Incidence and Biotic and Abiotic Drivers of WWTP resistomes 226 

   Co-localization or co-occurrence analysis between resistance genes and mobility indicators has been 227 
used to assess resistance mobility with regard to the potential for horizontal dissemination (Forsberg et al 228 
2012, Forsberg et al 2014, Li et al 2017, Pal et al 2015). To quantify mobility potential of resistance 229 
genes, we define “mobility incidence” (M%) as the percentage of resistance gene encoding contigs 230 
flanked with at least one co-occurring mobility indicator (iMGE) in all resistance contigs. Using 231 
resistance contigs assembled from all metagenomes, antibiotic, biocide and metal resistance genes scored 232 
a mobility incidence of 8.6%, 11% and 20%, respectively. We then classified all resistance genes by their 233 
mobility incidence. This innovative method enables the identification of resistance types, subtypes or 234 
genes that tend to be more mobilized than others in any environmental resistome. We found that in the 235 
WWTPs examined ‘highly mobilized’ (>95% mobility) antibiotic resistance types included sulfonamide 236 
and mercury resistance, whereas ‘poorly mobilized’ (<5% mobility) ones included polymyxin and 237 
nitroimidazole resistance (Table S5). At the subtype level (Table S6), we found 21 highly-mobilized 238 
subtypes encoding resistance functions to carbapenems (e.g., OXA-58 and OXA-181), oxacillin (e.g., 239 
OXA-10), macrolides (ermB and mel), sulfonamide (sul1, sul2 and sul3), trimethoprim (dfrB3), copper 240 
(ctpG), mercury (e.g., merE and merT), silver (silP), and etc. 241 

   We further compared the relative strength of biotic factors (i.e., mobility elements, biodiversity, and 242 
biomass) and abiotic factors (i.e., antimicrobials, wastewater indexes, and operational parameters) in 243 
explaining the compositional variances of WWTP resistomes (Dataset S5). Redundancy analysis showed 244 
that the variances of both resistome gene and transcript compositions in the influent and effluent were 245 
best explained exclusively by biotic variables representing genetic mobility, including intI, resolvase and 246 
conjugative transfer protein, suggesting that changes happen primarily in the mobilized resistome. 247 
Bacterial alpha-diversity metrics including Shannon’s H and Simpson’s E (Table 2) also explained part of 248 
the variances, indicating the importance of community composition. In contrast, in the nitrifying and 249 
denitrifying bioreactors (Table S7), smaller but significant parts of resistome compositional variances 250 
were explained by three nitrogen metrics, three operational parameters, two metals (i.e., cadmium and 251 
nickel), and seven pharmaceuticals (e.g., levofloxacin, trimethoprim, and sulfamethoxazole). We also 252 
identified significant positive correlations (P<0.05, Table S8) between the concentration (ng/L) of 253 
measured antibiotics (i.e., macrolides, sulfonamides, lincosamide, trimethoprim and vancomycin) and the 254 



concentration of certain ARGs (170 instances, e.g., Fig. S9a-c) or ARG transcripts (43 instances, e.g., Fig. 255 
S10a-c). The majority of these correlations were found between an antibiotic class and ARGs (Fig. S9d-h) 256 
or ARG transcripts (Fig. S10d-f) conferring resistance to a different antibiotic class, i.e. correlations that 257 
could theoretically be derived from gene co-selection or co-expression. 258 

Interconnected WWTP Resistomes and Microbiomes 259 

Bacterial phylogeny structures soil resistomes (Forsberg et al. 2014). To test if this was the case in our 260 
dataset, we used ordination to follow structural variations in the resistomes (Fig. 5 and and S10) and 261 
microbiomes (Fig. S12) both between and within treatment compartments. The samples consistently 262 
clustered into three main groups by treatment compartment with bioreactor samples closely clustered 263 
together, whether the analysis was based on abundance metrics of antibiotic, biocide, and metal resistance 264 
genes (Fig. 5a-c and Fig. S11a-c) or transcripts (Fig. S11d-l). Consistent with the resistomes, the 265 
microbiomes also clustered by treatment compartment, whether a dissimilarity metric of bacterial 266 
abundance (Bray-Curtis), phylogeny (unweighted UniFrac), or both (weighted UniFrac) was used (Fig. 267 
S12). The ordinations for both resistomes and microbiomes typically showed higher within-cluster 268 
variances for the effluent samples, whereas within-cluster variances were typically smaller for the influent 269 
samples, reflecting a role of wastewater treatment in the divergence of the microbial community structure. 270 

   The structural correlations between resistome and microbiome were computed and visualized based on 271 
procrustes analyses (Fig. 5d-f). When all the treatment compartments were considered, Bray-Curtis 272 
distances calculated from abundance metrics of ARGs (d), BRGs (e) or MRGs (f) significantly (P < 273 
0.001) correlated with both bacterial OTUs (r = 0.81-0.97, Fig. 5d-f) and taxa (i.e., at the genus, family, 274 
order, class, and phylum levels, Table S9) inferred from 16S rRNA sequence data, whether a dissimilarity 275 
metric of abundance (Bray-Curtis), phylogeny (unweighted UniFrac), or both (weighted UniFrac) was 276 
used. Likewise, Bray-Curtis distances calculated from transcript abundance metrics of all three categories 277 
of resistance genes also significantly correlated (P < 0.001, r = 0.56-0.83) with both the bacterial 278 
abundance and phylogenetic structure (Table S9). On the other hand, resistome composition within 279 
treatment compartments also significantly (P < 0.05) correlated with abundance and/or phylogeny-based 280 
bacterial community structure (Table S10). If horizontal gene transfer occurs at very high frequencies, we 281 
might expect increasingly weaker correlations between resistome and phylogenetic structure from inflow 282 
to effluent, but this was not observed. Combined, the resistome composition correlates with both the 283 
phylogenetic (UniFrac) and taxonomic (Bray-Curtis) distance metrics of community structure across and 284 
within treatment compartments, revealing a close relationship between resistome composition and 285 
bacterial phylogeny. 286 

Discussion 287 

The power of metagenomics and bioinformatics have been demonstrated in exploring diversity of 288 
environmental ARGs (Forsberg et al 2012, Li et al 2015b, Pehrsson et al 2016, Yang et al 2013, Zhu et al 289 
2013). However, the absolute quantification of a broad-spectrum of ARGs and their transcripts remains 290 
challenging. We demonstrated the integration of metaomic approaches with mRNA internal standards and 291 
qPCR data of marker genes (e.g., 16S rRNA gene) as a powerful methodology to realize both absolute 292 
and relative quantification of a broad spectrum of microbial community genes and transcripts within a 293 
complex microbial ecosystem like WWTPs. Using these techniques, we provide extensive information on 294 
the fate and expression of the WWTP resistome genes, and influential biotic and abiotic factors. 295 



Fate and Expression of Antibacterial Resistance Genes   Our data confirm previous findings that 296 
conventional WWTPs remove the majority of bacterial cells and with it resistance genes. Previous studies 297 
have presented contradicting evidence regarding the removal versus enrichment of ARGs in WWTPs 298 
(Bengtsson-Palme et al 2016, Di Cesare et al 2016, Karkman et al 2016, Mao et al 2015, Szczepanowski 299 
et al 2009, Yang et al 2014). General conclusions remain difficult because of the discrepancies in the 300 
types of ARGs reported, abundance metrics used (i.e., relative or absolute), and/or normalization methods 301 
implemented (e.g., against 16S rRNA gene or biomass). Our data strongly supports the notion that 302 
WWTP are sites for the relative enrichment of antibacterial resistance genes and class 1 integrons, as we 303 
found a surprisingly consistent increase in the relative abundance of most resistance genes and the class 1 304 
integron-integrase gene IntI1. While the relative enrichment of ARGs is also noticed in WWTPs 305 
elsewhere (Bengtsson-Palme et al 2016, Di Cesare et al 2016, Mao et al 2015), the release of class 1 306 
integrons from wastewater systems deserves further research on their potential clinical relevance and 307 
environmental risks in the receiving environment (Gillings et al 2015). 308 

   Further, quantitative metatranscriptomics suggests that resistance genes are differentially expressed 309 
across the WWTP compartments, which provides credence to the idea that the resistance activity is 310 
influenced by environmental conditions during wastewater treatment. The constantly fluctuating physico-311 
chemical composition of influent wastewater and rapidly changing redox conditions from one treatment 312 
compartment to the next can expose microorganisms within WWTPs to rapidly varying stress. The 313 
expression of resistance genes could thus be tied to a general stress response that is not directly linked to 314 
the presence of suspected specific stressors such as measured antibiotics or metals. The impact of such 315 
specific agents is therefore discussed in detail below. The redox contrast between denitrification and 316 
nitrification compartments at least did not result in an overall differential expression of resistance genes 317 
(Fig. 3d-f). We have further demonstrated that (i) the core resistome genes are persistent, abundant and 318 
transcribed in all the WWTP compartments and (ii) resistance genes and mobility indicators are more 319 
transcriptionally active in the secondary effluent than in activated sludge bioreactors. These findings 320 
indicate that some resistance genes and resistant bacteria are highly recalcitrant to conventional secondary 321 
treatment processes and that these facilities release abundant actively transcribed resistance genes 322 
together with mobile genetic elements into the receiving environment. It should be noted, that the 323 
expression ratios of ARGs in WWTPs we detected are far lower than one transcript per gene copy. While 324 
these values are comparable to those reported with the same methodological approach for 325 
biogeochemically relevant genes in the Amazon River Plume (Satinsky et al 2014), such values lie far 326 
below what is typically observed in organism-based studies. Further research will be needed to 327 
understand these seemingly low transcriptional activities. 328 

 329 

Biotic and Abiotic Drivers of the WWTP Resistomes The relative roles of biotic and abiotic factors in 330 
shaping environmental resistome and facilitating resistance selection are poorly understood (Baker-Austin 331 
et al 2006, Berendonk et al 2015). We demonstrate that biotic factors including mobility elements (intI1, 332 
conjugal transfer protein, and resolvase) and biomass play an important role in shaping compositional 333 
variations of the influent and effluent resistomes. Class 1 integrons are central players in resistance 334 
dissemination (Gillings et al 2008, Gillings et al 2015), whose activation upon conjugative plasmid 335 
transfer allows host bacteria to rapidly develop antibiotic resistance (Baharoglu et al 2010, SLMB 2012). 336 
Plasmid mediated antibiotic and metal resistance has been reported in wastewater (Li et al 2015a, Schlüter 337 
et al 2007, Sentchilo et al 2013, Szczepanowski et al 2009). The proportions of ARGs (5.4%) and MRGs 338 



(8.1%) in total plasmid-borne genes we identified are comparable to the levels in two other Swiss 339 
WWTPs (ARG: ~ 2.5% and 4.0%; MRG: ~ 4.5% and 12.5%) (Sentchilo et al 2013). The strong 340 
explanatory power of mobility indicators thus shows the importance of mobilized resistance in the 341 
wastewater, and supports the use of e.g. intI1 as a general indicator of resistance (Gillings et al. 2015, 342 
Berendonk et al. 2015). However, in the activated sludge abiotic factors (i.e., inorganic nitrogen, pH, 343 
dissolved oxygen, and several antimicrobials) appear to play an additional role in shaping resistomes 344 
(Table S7). In this compartment nutrients and oxygen are substantially consumed by activated sludge 345 
biomass and may thus act as driving forces for both community and resistome composition. 346 

Positive Correlations between Antibiotics and Resistance   Positive correlations were found between 347 
certain antibiotics in wastewater and “their” resistance genes and resistance gene transcripts, as well as 348 
with resistance genes conferring resistance to a different antibiotic class. On the one hand, such positive 349 
relationships, for example those between wastewater concentrations of macrolide antibiotics, 350 
clarithromycin (150-450 ng/L) and azithromycin (50-250 ng/L) and the concentration of macrolide 351 
resistance gene macB (Fig. S9a-c), could be the consequence of enrichment of the resistance genes in the 352 
population based on selective pressures exerted by the antibiotic. Considering the demonstrated selection 353 
of resistant strains at very low and subinhibitory antibiotic concentration (Gullberg et al 2011) this is a 354 
reasonable expectation. However, further antibiotic susceptibility tests on wastewater isolates or 355 
experimental validation with wastewater communities are required to validate this correlation-based 356 
speculation. On the other hand, the demonstrated positive correlations between wastewater antibiotics and 357 
resistance genes or transcripts of another antibiotic class could reflect co-selection of multi-resistance on 358 
the same genetic elements, i.e. co-resistance (Baker-Austin et al 2006). The most striking examples are 359 
the strong positive correlations found between macrolide antibiotics and both vancomycin resistance 360 
genes (Fig. S9d-e) and their transcripts (Fig. S10d-e). The co-localization or adjacency of vancomycin 361 
and macrolide resistance genes on the same genomic fragments (12 instances, Dataset S2), as well as the 362 
strong positive correlations between their absolute copies in all the four WWTP compartments (R2=0.77-363 
0.93, Fig. S9f-i), are strong evidence for their co-selection, which also makes the induced expression of 364 
the vancomycin resistance genes by clarithromycin plausible (Fig. S10d-e). Another intriguing example is 365 
the strong positive relation found between the concentrations of sulfamethoxazole and transcripts of 366 
trimethoprim resistance gene dfrB3 (R2= 0.94, Fig. S10f). A general practice of combined use of 367 
trimethoprim and sulfamethoxazole in clinical settings may facilitate their co-selection. However, the 368 
observed correlations could also be inherited from selective processes in human gut bacteria of patients 369 
under treatment rather than within the WWTPs. 370 

   The above findings highlight the multi-dimensionality and complexity of environmental (co-)selection 371 
of antibiotic resistance and thus explain the inability of previous studies to assign or relate certain 372 
antibiotics to the occurrence and/or abundance of their respective resistance genes (Graham et al 2010, 373 
Looft et al 2012, Novo et al 2013, Oberlé et al 2012, Pehrsson et al 2016). In particular for the WWTP 374 
environment, one may argue that metal contaminants may also co-select for ARGs and MRGs, thus 375 
decoupling simple ‘antibiotic-ARG’ relationships (Baker-Austin et al 2006). However, our contig data do 376 
not support that such co-selection is common in the WWTPs, considering a very low incidence (0.6%) of 377 
an ARG and an MRG encoded on the same resistance contigs (Dataset S2). This lack of co-occurrence 378 
scenarios between MRGs and ARGs agrees with their rare co-occurrence on plasmids from natural 379 
environments (<0.7%) (Pal et al 2015). However our resistance contig-based analysis (N50 length of 18.8 380 



kb)  likely underestimates the co-selection potential if these genes are distanced on different genomic 381 
islands or multi-resistance plasmids (Baker-Austin et al 2006).  382 

Gene Mobility Potentials of the WWTPs Resistomes The average mobility incidences (M%) of ARGs 383 
found in our WWTPs influent (10%), activated sludge (7.1%-7.8%), and effluent (9.8%) resistomes were 384 
comparable to those found in the human gut resistomes (14% of 161 contigs), where horizontal gene 385 
transfer (HGT) is implicated in facilitating resistance acquisition by human pathogens (Sommer et al 386 
2009). In contrast, lower mobility incidence of ARGs have been reported for soils (0.8% of 4,655 contigs 387 
(Forsberg et al 2012)), where HGT is suggested to play a limited role in resistance dissemination. 388 
Remarkably, we find that of the 17,486 resistance genes shared by bacteria, the majority (93.5%) are 389 
encoded on multiple resistance contigs (2 to 46) with considerably diverging flanking regions (Dataset 390 
S6). This novel finding of a large-scale distribution of identical resistance genes on divergent contigs 391 
derived from DNA samples from different WWTPs/compartments strongly implicates a history of 392 
substantial exchange of antibacterial resistance genes. 393 

   Moreover, three further lines of evidence suggested HGT may play a more important role in the 394 
secondary clarifiers than previously appreciated: (i) an important role of IntI1, resolvase and conjugal 395 
transfer protein in structuring resistomes in the low-biomass clarified effluent rather than the thick 396 
activated sludge (Fig. S13), (ii) the higher per-gram-of-biomass and per gene transcriptional activities of 397 
resistance and mobility-related genes (Fig. 3e and 3f), as well as higher relative abundance of IntI1 (Fig. 398 
S6a) and ARGs (Fig. 3c) in the secondary effluent than activated sludge, and (iii) high incidences of 399 
integrases (31%) and conjugal transfer proteins (35%) co-located with plasmid proteins on the same 400 
resistance contigs (Dataset S2). Based on these findings, we hypothesize that contrary to our original 401 
expectations, secondary clarifier suspended bacteria, which are mostly planktonic, are exposed to higher 402 
overall stress from contaminants (e.g., per-gram-of-biomass antibiotic/metal loadings). These results in 403 
both, stronger selection and more active transcription, of resistance-related genes compared with bacterial 404 
cells harbored within the protective activated sludge flocs. In flocs antibacterial resistance or 405 
detoxification can be achieved through extracellular inactivation (e.g., beta-lactam and aminoglycoside), 406 
exopolysaccharide binding (e.g., some metals and chemical toxins) and/or biodegradation or 407 
biotransformation (e.g., biodegradable pharmaceuticals).  408 

   Despite the evidence for gene mobilization within the resistomes of WWTP effluent, we have 409 
demonstrated that the resistome composition overall correlates tightly with the bacterial community 410 
phylogenetic and taxonomic composition (Fig. 5), suggesting that the changes to the species composition 411 
resulting from the wastewater treatment process strongly determine the effluent resistomes. While this 412 
finding agrees with a close connection found between antibiotic resistome and bacterial phylogeny in 413 
soils and human guts (Forsberg et al 2014, Pehrsson et al 2016), it may also reflect the existence of 414 
certain phylogenetic constraints for the horizontal dissemination of antibiotic resistance between bacterial 415 
populations. 416 

Implications for Risk assessment and Management of Resistomes. Our data strengthens the case for 417 
using intI1 gene abundance and concentration as a general indicator of anthropogenic impacts (Gillings et 418 
al 2015), as we could demonstrate their predictive power for WWTP resistomes and relative enrichment 419 
after wastewater treatment, in accordance with the significant increase in relative abundance of resistance 420 
genes. Using mobility incidence (M%), we are able to predict and compare the transferable potentials of 421 
resistance genes at the levels of resistance type, subtype and ecosystem, which is an important aspect for 422 



risk ranking in resistomes (Martínez et al 2015). While the keyword-based approach used in the 423 
assessment of M% is likely to have shortcomings – for example we only test for co-localization of an 424 
appropriately annotated genetic element but do not confirm its function or if it actually confers mobility to 425 
the ARG - it proved a useful tool and provided believable rankings. Typical examples of 100% mobilized 426 
ARGs we identified from WWTP effluent include well-known acquired resistance genes such as CTX-M, 427 
OXA, and TEM family extended-spectrum beta-lactamases (ESBL) and OXA family carbapenemases. Our 428 
approach could be further improved, for example, by using a verified reference database of mobility 429 
indicators instead of keywords. Besides gene mobility, risk ranking in resistome should also consider the 430 
host pathogenicity and clinical importance of ARGs with regard to disease control in humans and/or 431 
domestic livestock (Martínez et al 2015). We demonstrate that contig-based analysis of metagenomes can 432 
again provide a basis for such assessments: For instance, we found 11 non-redundant ARGs representing 433 
a total of 138 ORFs with 100% identity to reference sequences from known clinical isolates of human 434 
pathogens (Table 3). The high occurrence frequency of these ‘pathogenic’ ARGs (11/12) and their 435 
transcripts (9/12) in the effluent of examined WWTPs (e.g., sul1, ermB, ANT3, and cmlA) suggests that 436 
further investigation of their fate and health risk in the receiving environment is warranted. 437 

  Additional preventative or control measures of antibiotic resistance determinants in WWTP effluents 438 
may currently not be a priority, unless direct health risks for humans are verified. Nonetheless, our data 439 
underscores that the absolute amounts of resistance bacteria and genes discharged by WWTPs into the 440 
environment is heavily dependent on the bacterial biomass remaining in the final effluent. Thus, any 441 
measure that substantially reduces bacterial biomass in the discharged effluent, such as an increase of 442 
sludge settleability in the secondary clarifiers (Novo and Manaia 2010) or membrane filtration would 443 
reduce WWTP discharge of resistance genes. In agreement with this idea, membrane bioreactors are 444 
implicated to show much higher absolute removal efficiency of some antibiotic resistance genes and 445 
bacteria than conventional WWTPs (Munir et al 2011). 446 
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Figure Legends 644 

Figure 1. Key hypotheses about processes affecting the resistome (resistance gene content of the 645 
microbial metagenome) during passage of a WWTP. The WWTP consists (a) of compartments with 646 
contrasting environmental conditions including (b) changing concentrations of antibiotics, metals, and 647 
other stressors that may act as drivers on microbial community assembly and resistomes. By design 648 
(activated sludge process), and as an effect of the changing habitat conditions, we expect  (c) changes in 649 
biomass per volume (piechart area) but also persistence or even enrichment of ARG-carrying bacteria (red 650 
wedge). Likewise, (d) we expect a strong shift in the composition of the microbial community as a whole, 651 
and the antibiotic resistant subset (colored, ARB). These changes are expected to correlate to changes of 652 
the resistome (e) which are here shown as metagenomic contigs (bars colored by bacterium of origin) 653 
carrying different ARGs (colored arrows). ARB and ARGs discharged with the effluent may have 654 
different origins: Some may have passed through the entire WWTP if the bacteria survive treatment (here 655 
e.g. the red bacterium), others may originate from populations of bacteria that grow in the WWTP (blue & 656 
brown bacteria). If the environmental conditions in the WWTP favor populations that carry ARGs, these 657 
ARGs may become enriched in the bacterial community of the effluent. Studying ARG transcription and 658 
changes of transcription across stages (indicated by different shades of the red bacterium) may provide 659 
clues if genes that are enriched are also active. A contig-centered analysis further allows identification of 660 
marker genes for mobile genetic elements (blue squares) occurring on the same contig as an ARG. (f) 661 
Horizontal gene transfer may act on evolutionary timescales, thus that e.g. resistance plasmids arriving 662 
with human pathogens or commensals in the inflow eventually become established also in WWTP 663 
bacteria. If horizontal transfer of ARGs would happen with such high frequency that it amounts to a mass 664 
flow on timescales relevant to the flow of biomass, shifts in the population size of the original host 665 
bacteria may no longer correlate with ARG abundance, and the resistome structure could shift 666 
independently of the phylogenetic community structure. 667 

 668 

Figure 2. Antibiotic (ARG), biocide (BRG), and metal (MRG) resistance genes predicted from 669 
influent, bioreactors, and effluent metagenomes of 12 communal wastewater treatment plants 670 
(WWTPs). a, Percent of non-redundant open reading frames (ORFs) predicted as resistance genes (left 671 
Y-axis) and number of resistance contigs (right Y-axis) for each WWTP (Table 1). b, Number of ORFs 672 
assigned to major mechanisms for antibiotic resistance. 673 

 674 

Figure 3. Cross-compartmental variation of the richness and abundance of genes, transcripts and 675 
mobility indicators of the WWTP resistomes. Four compartments: influent (red); denitrification 676 
(green); nitrification (cyan); effluent (purple). a-b, shared and unique percent richness (relative 677 
abundance) of ARGs (a) and ARG transcripts (b). Overall, 7.4% of ARGs and 2.6% of ARG transcripts 678 
detected in all compartments account for 26.1% of the sum for relative abundance of all ARGs (a) and 679 
42.7% of the sum for relative abundance of all ARG transcripts (b), revealing the persistence of certain 680 
abundant resistance genes that are transcribed throughout WWTPs. c-e, gene copies per 16S rRNA gene 681 
(c), transcripts per liter (d), transcripts per gram-of-biomass (e), and transcripts per gene (f). Boxes denote 682 
the interquartile range between the 25th and 75th percentiles, respectively, the line and white diamond 683 
inside namely denote the median and average value, black dots denote outliers and asterisks indicate 684 



significant different mean values (adjusted P: ***<0.001<**<0.01<*<0.05), compared with influent, 685 
which is checked by permutational Student’s t-test with 10000 simulations (n=11). For any downstream 686 
compartment with significantly different means (*) with influent, there is also a significant difference 687 
(P<0.05) between their medians (checked by Mann-Whitney U test). 688 

 689 

Figure 4. The relative change of transcript and gene abundance of antibiotic, biocide, and metal 690 
resistance genes from post-primary clarifier influent to secondary effluent. Relative change is 691 
defined as the difference between effluent and influent values divided by the maximum value, thus 692 
positive (negative) values indicate increase (decrease) after wastewater treatment. a, top X axis: relative 693 
change (bars) in transcript copies per gram-of-biomass (TPB) from influent to effluent; bottom X axis: 694 
gene copies per liter of effluent (grey circles). b, relative change in transcript copies per gene copy (TPG) 695 
and gene copies per 16S rRNA gene (GP16S). The significance of mean difference in each metric 696 
between influent and effluent is tested by permutational Student’s t-test with 10,000 simulations (P: 697 
***<0.001<**<0.01<*<0.05, n = 11). The data suggests massive increases in the expression ratio, per-698 
gram-biomass transcript copies, and relative abundance of most antibacterial resistance types (see red bars 699 
and cells). TPP: tetraphenylphosphonium. 700 

Figure 5. Resistome composition correlates with bacterial community composition and phylogeny 701 
across wastewater treatment compartments. a-c, Non-metric multidimensional scaling plots depict 702 
Bray-Curtis distances between treatment compartments based on relative abundance of antibiotic (a), 703 
biocide (b) and metal (c) resistance genes in the metagenomes. d-f, Procrustes analyses depict significant 704 
(P < 0.001) and strong (r > 0.85) correlations between bacterial community composition (Bray-Curtis, red 705 
circles) and content of antibiotic (d), biocide (e) and metal (f) resistance genes (Bray-Curtis, blue circles), 706 
respectively. OTU, operational taxonomic unit. IDs were labeled for samples outside compartment-707 
defined sample clusters (Dataset S1). 708 
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Table 1. Treatment capacity, wastewater characteristics and operational parameters of the 12 Swiss wastewater treatment plants sampled. 
Plant ID EM MN TG TE WT ZR FD AD TU FR AH BE 
Plant overview 
Sampling date 2016-3-17 2016-4-4 2016-4-5 2016-4-13 2016-4-7 2016-4-12 2016-4-15 2016-4-20 2016-4-19 2016-4-28 2016-4-29 2016-4-21 
Process design    INT UPS UPS & INT UPS UPS UPS & INT INT UPS UPS UPS UPS Fixed-Bed 
Flow rate, m3/d 90000 14000 25000 12000 51840 200000 15250 6000 40000 25264 15000 86000 
Population equivalent 210000 50000 85000 55000 130110 534000 50000 20000 132000 110000 50000 345212 
Hospital bedsa 830 0 512 253 670 3248 8 82 530 402 237 2527 
Industry inflow % 10% 35% 31% - - - - - <10% 60% 25% - 

Industry input besides 
hospital wastewater 

dairy, metal, 
etc. 

dairy, food, 
wine, etc. 

metal, food, 
chemical, 

etc. 
abattoir, 

dairy, etc. 
chemical, 
beer, etc. abattoir, etc. cosmetics 

food, etc. metal, etc. food, dairy, 
abattoir, etc. dairy, etc. food, 

metal, etc. 
pharma-
ceuticals, 

etc. 
Hydraulic retention time, h 19.2 32.5 17.8 23.0 21.8 21.1 24.9 39.5 22.5 19.1 46.0 >2 
Antimicrobials in influent/effluent b,c 
Macrolides, ng/L 540/660 820/720 620/410 440/390 680/430 650/520 960/480 210/170 320/190 620/300 460/440 540/390 
Fluoroquinolones, ng/L 1200/160 1500/100 1400/180 2200/110 1500/130 1500/140 2200/190 990/120 1500/60 1500/200 960/91 740/390 
Sulfonamides, ng/L 1400/160 1200/550 1300/150 1600/140 1600/200 1500/220 760/300 1200/300 1700/100 460/39 670/160 1300/200 
Trimethoprim, ng/L 270/140 170/180 210/100 210/95 240/130 200/150 130/100 170/93 210/53 60/35 100/60 170/130 
Metronidazole, ng/L 220/93 47/24 200/79 190/37 290/110 230/110 290/120 49/28 140/51 120/68 140/27 240/270 
Triclosan, ng/L 660/250 340/93 740/110 290/83 460/61 690/220 630/170 480/110 410/110 680/65 350/57 470/140 
Metformin, μg/L 77/1.6 78/0.38 120/0.53 81/1.6 120/0.57 90/1.2 120/2.2 110/2.7 98/0.39 60/7.2 55/4.2 47/7.1 
Arsenic (As), ng/L 600/150 945/550 1615/320 900/630 505/240 800/405 885/470 865/320 680/180 1065/160 1570/585 450/415 
Cadmium (Cd), ng/L 145/30 75/25 25/45 60/30 35/30 60/25 125/60 120/90 45/25 50/25 25/30 25/160 
Nickel (Ni), μg/L 1.0/2.7 3.9/2.6 4.9/16.5 0.2/1.5 0.1/0.8 2.2/0.1 2.4/0.2 7.6/6.4 1.0/0.4 4.0/0.4 2.4/3.8 2.9/2.7 
Copper (Cu), μg/L 6.5/4.6 48.6/2.0 13.7/3.1 9.8/1.5 10/2.9 35.2/2.5 13.5/4.1 31.6/10.3 10.3/5.4 9.4/2.5 9.9/8.0 6.2/4.4 
Zinc (Zn), μg/L 58.7/49.1 64.2/131.5 44.6/106.0 84.8/139.4 75.3/149.8 48.8/49.2 80.8/18.3 179/377.6 87.2/149.8 1378/135.2 126/124.3 143.8/203.1 
Nitrification Bioreactors c 
Sludge retention time, d 6.3 19.2 9.1 11.8 15.0 12.8 8.0 14 12.4 10.5 11.2 - 
Sludge volume index, mL/g 117 99 195 102 177 224 144 152 266 132 72 - 
Dissolved oxygen, mg/mL 2.20 1.78 3.31 1.90 1.25 2.47 2.08 2.65 1.05 2.04 1.70 - 
pH 6.52 6.57 7.00 6.62 6.00 6.25 6.44 6.09 6.84 7.16 6.74 - 
Temperature, °C 14.4 15.8 16.7 14.1 14.5 16.7 14.6 12.7 12.2 14.9 13.3 - 
VSS, mg/L 2103 2374 2956 1996 1810 2114 1359 2128 2121 1052 1956 320 

INT intermittent denitrification, UPS upstream denitrification, VSS  volatile suspended solids 
a Number of beds in general hospitals, in rehabilitation hospitals and psychological clinics within the plant catchment (Kuroda et al. 2016) 
b Concentrations of antibiotic are rounded to 2 significant digits  
c See a full list of the wastewater and operational parameters in Dataset S5 



Table 2. Redundancy analysis showing percent variation in the wastewater resistome composition 
explained by biotic and abiotic variables. IntI1, class 1 integron-integrase gene; 16S, 16S ribosomal 
RNA gene; CTP, conjugal transfer protein-coding gene; VSS, volatile suspended solids. Only variables 
and values with significant constraints in the RDA tests (P < 0.05, 1,000 permutation) are shown, and a 
full list of the tested variables are available in Dataset S5. 

 

 
Gene composition  Transcript composition 

Influent   Effluent  Influent  Effluent 

ARG BRG MRG  ARG BRG MRG  ARG BRG MRG  ARG BRG MRG 

Biotic variables 
 IntI1/16S 34.5  28.7  27.9   27.8  22.5  32.1   24.9  18.8  18.8   33.2  16.7  18.9  

 Resolvase/16S 35.7  31.1  30.1  26.3  20.4  32.5   28.5  20.8  21.2  39.1  14.8  18.9  

 CTP/16S 34.5  29.4  28.9  28.6  24.8  35.7   25.6  20.1  19.2  42.1  17.6  21.1  

 Shannon’s H    29.4  25.7  33.6      40.3  17.1  20.6  

 Simpson’s E    14.2  14.1  16.1      30.8   10.4  

Abiotic variables 

 VSS (mg/L) 13.3  9.8  14.1   7.9  13.7  11.8    16.3    16.9   10.4  

 Nitrate nitrogen (mg/L)    10.8           

 Total nitrogen (mg/L)    12.3           

 pH 24.7  19.4             

 ciprofloxacin (ng/L)   14.5        15.9     

 triclosan (ng/L)         10.3      

 



Table 3. Non-redundant antibiotic resistance genes with 100% identity to known human bacterial 
pathogens. The last four columns show the number of WWTPs in which the resistance gene and its 
transcripts are detected in the influent or effluent compartment. 

Gene ID 
Length 

(aa) 

 Resistance  Number 
of 

sequence 

Example of pathogen  
(NCBI taxon ID) 

Gene  Transcript 

Type Subtype Influent Effluent  Influent Effluent 

W56_28340_1&*# 260  Aminoglycoside ANT3  3 A. baumannii (509173) 12 5  10 8 

W54_36555_1&*# 265  Aminoglycoside APH(3’)  9 S. epidermidis (176279) 12 3  7 2 

W54_1320_4 &# 144  Aminoglycoside sat-1  8 B. vulgatus (435590) 12 5  2 0 

W56_17638_3&*# 278  Aminoglycoside strB  7 K. pneumoniae (272620) 12 8  8 6 

W54_14042_1&# 281  Beta-lactam OXA-58  5 A. baumannii (405416) 11 4  7 1 

W56_739_2& 425  Beta-lactam ampG  6 B. vulgatus (435590) 12 7  0 0 

W70_15043_2&*# 420  Chloramphenicol cmlA  5 K. pneumoniae (272620) 12 2  9 5 

W60_5396_4&# 250  Macrolide ermB  15 E. faecalis (226185) 12 11  12 12 

W54_264_15& 377  Multidrug mexE  12 B. vulgatus (435590) 12 12  1 0 

W71_4945_1&*# 309  Sulfonamide sul1  47 S. enterica (423368) 12 12  12 12 

W56_1220_2 658  Tetracycline tetQ  19 B. fragilis (295405) 12 12  9 4 

W72_76188_2&# 104  Trimethoprim dfrA14  2 B. hermsii (314723) 9 0  2 1 

& found in human bacterial pathogens, but its resistance contigs showing < 95% global nucleotide identity (at least 5% 

divergence) to the pathogen sequences. # co-located with indicators of mobile genetic elements on the same resistance contig; 

* found on both genomes and plasmids of at least one pathogens 
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