Supporting Information

Passive samplers in sewers and rivers with highly fluctuating micropollutant

concentrations - better than we thought

Mutzner Lena^{1,2}, Vermeirssen Etiënne L. M^{3 3}, Ort Christoph^{1*}

1 Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland.

2 Institute of Civil, Environmental and Geomatic Engineering, ETH Zürich, 8093 Zurich, Switzerland.

3 Swiss Centre for Applied Ecotoxicology Eawag-EPFL, Überlandstrasse 133, 8600 Dübendorf, Switzerland

*Corresponding author: Eawag, Swiss Federal Institute of Aquatic Science and Technology. Überlandstrasse 133, 8600 Dübendorf, Switzerland. E-mail: christoph.ort@eawag.ch A. Measured high resolution events in sewers and sewer overflows

Figure SI 1. Event 1: 18.05.2016. Event-based sampling directly in the sewer. Passive sampler overflown and auto-sampling trigged at water levels above 6cm.

Figure SI 2. Event 1: 18.05.2016. First samples were taken before occurrence of rain event peak, hence the baseline wastewater flow was measured at the beginning of the sampled event.

Figure SI 3. Event 2: 25.04.2017. Sampling of a sewer overflow event with sampler installed at weir crust (schematic picture from a different sampled event)

Figure SI 4. Gap in water sampling data due to malfunction of automated sampler.

Figure SI 5. Event 3: 28.06.2017. Rain-event sampling in flow channel supplied with wastewater pumped from a main sewer.

Figure SI 6. Event 3: 28.06.2017. Installation of the passive sampler setup at the flow channel wall.

B. Characterization of concentration fluctuations

Figure SI 7. Schematic example for calculation of the half time ratio (htr) used to determine the postion of the peak. A negative htr means in the beginning.

Figure SI 8. Predicted deviation of $C_{M.PS.mod}$ to C_{true} for the modelled event-based sampling of sewer overflows (half-transparent black point): Event Length [h], Coefficient of Variation (CV in %), Half-time ratio (htr). 10% and 90% quantile regression are shown by the green solid lines, red dashed line shows htr = 0 and no deviation = 1. Triangles represent replicate $C_{M.PS.meas}$ vs. $C_{CS.meas}$ of the three events, only value within visible range.

The effect of the position of the peak can be detailed by looking at three exemplary events with an identical event length of five hours. These three events result in distinctively different deviations of $C_{M.PS.mod}$ from C_{true} of 33% (Figure SI 9 A), 183% (Figure SI 9 B) as well as no deviation (Figure SI 9 C).

Figure SI 9. Exemplary modelled peaks – extreme case with very low K_{SW} of 150 and typical average *Rs* of 0.03L/h. Equal event length but different position of peaks (htr) and coefficient of variation (CV). The predicted deviation from the true TWA concentration (Dev) is stated on top of the figures (A-C). A peak in the beginning

(A) leads to underestimation due to desorption, a peak in the end (B) to an overestimation, a constantly varying pattern (C) with almost zero slope, however leads to a very small deviation from the true TWA concentration.

C. Chemical analysis

Event 1 and 2

Table SI 1. HPLC gradient used for the chromatographic separation on an Atlantis T3 column. FA: formic acid.

Time	H ₂ O + 0.1% FA	MeOH + 0.1 % FA	Flow
[min]	[%]	[%]	[µL/min]
0.0	95	5	300
1.5	95	5	300
17.5	5	95	300
25.0	5	95	300
25.5	95	5	300
29.5	95	5	300

Table SI 2.	Settings	for the	QExactive	mass s	pectrometer
-------------	----------	---------	-----------	--------	-------------

Parameter	positive	negative
ESI settings		
Spray voltage	4000 V	3000 V
Capillary temperature	350 °C	350 °C
S-Lens RF voltage	50 V	50 V
Probe Heater Temp	40°C	40°C
Sheath Gas Flow (Arb)	40	40
Aux Gas Flow (Arb)	10	10
Spare Gas Flow (Arb)	0	0
Orbitrap settings		
MS1		
Scan range (m/z)	100 - 1000	100 - 1000
Mass resolution (m/z 200)	70,000	70,000
Automatic Gain Control	5e5	5e5
Max Injection time	100 ms	100 ms
MS2		
Mass resolution (m/z 200)	17,500	17,500
Automatic Gain Control	1e5	1e5
Max Injection time	80 ms	80 ms
Acquisition type	data-dependent	data-dependent
Data- dependent loop count	1	1
Isolation window (m/z)	1	1
Collision energy normalized	compound-optimized	compound-optimized
Dynamic exclusion	2 s	2 s
Arb: arbitrary units		

Arb: arbitrary units ms: milli seconds

s: seconds

Event 3

Table SI 3. HPLC gradient used for the chromatographic separation on an	Acquity	UPLC HSS	T3 column.	FA:
formic acid.				

Time	H2O + 0.1% FA	MeOH + 0.1 % FA	Flow
[min]	[%]	[%]	[µL/min]
0.0	100	0	500
18.5	5	95	500
22.0	5	95	500
22.5	100	0	500
Table SI 4. Sett	tings for the Agilent G6495	A mass spectrometer	
Parameter		positive	negative
ESI settings			
Gas Temp		250 °C	250 °C
Gas Flow		15 l/min	15 l/min
Nebulizer		25 psi	25 psi
Sheath Gas Hea	ater	380 °C	380 °C
Sheath Gas Flo	W	12 l/min	12 l/min
Capillary		3500 V	3000 V
QQQ settings			
Cycle time		650 ms	650 ms
Acquisition typ	e	DynamicMRM	DynamicMRM
MRM Repeats		3	3
Collision energ	y normalized	compound-optimized	compound-optimized

Table SI 5. Acquisition Method on Agilent G6495A triple quad mass spectrometer

Cpd Name	ISTD	Prec	MS1	Prod	MS2	Frag	CE	Ret Time	Polarit
•		Ion	Res	Ion	Res	(V)	(V)	(min)	у
1,3-Benzothiazole-2-sulfonic acid	No	216	Unit	134.1	Unit	380	16	8.98	Pos
1,3-Benzothiazole-2-sulfonic acid	No	216	Unit	90.1	Unit	380	20	8.98	Pos
Benzotriazole-D4	Yes	124.08	Unit	96.1	Unit	380	18	9.37	Pos
Benzotriazole-D4	Yes	124.08	Unit	69.1	Unit	380	26	9.37	Pos
Diclofenac	No	296.03	Unit	249.9	Unit	380	10	17.6	Pos
Diclofenac	No	296.03	Unit	214.1	Unit	380	30	17.6	Pos
Diclofenac	No	296	Unit	215	Unit	380	20	17.6	Pos
Diclofenac-D4	Yes	300.05	Unit	254	Unit	380	10	17.64	Pos
Diclofenac-D4	Yes	300.05	Unit	219.1	Unit	380	20	17.64	Pos
Diclofenac-D4	Yes	300.05	Unit	218	Unit	380	34	17.64	Pos
Diuron	No	233.03	Unit	72.2	Unit	380	28	15.35	Pos
Diuron	No	233.03	Unit	46.3	Unit	380	20	15.35	Pos

Diuron-D6	Yes	239.06	Unit	78.1	Unit	380	40	15.3	Pos
Diuron-D6	Yes	239.06	Unit	52.4	Unit	380	20	15.3	Pos
Metolachlor	No	284.14	Unit	252.1	Unit	380	12	17.5	Pos
Metolachlor	No	284.14	Unit	176.2	Unit	380	28	17.5	Pos
Metolachlor-D6	Yes	290.18	Unit	258.2	Unit	380	16	17.5	Pos
Metolachlor-D6	Yes	290.18	Unit	182.2	Unit	380	28	17.5	Pos

Table SI 6. Relative recoveries and LOQs for the different measurement series

Used mass spectrometer & injection/enrichment mode	Thermo Scientific QExactive Plus, direct injection*		Thermo Scientific Plus, coupled with	QExactive online-SPE	Agilent 6495 TQ, direct injection	
	Rel. recovery [%]	LOQ [µg/L]	Rel. recovery [%]	LOQ [ng/L]	Rel. recovery [%]	LOQ [ng/L]
1,3-Benzothiazole-2-sulfonic acid	130-202	1-2	158	8	130	13
Diclofenac	94-116	0.7-1	105	2	102	1
Diuron	101-119	0.6-2	102	2	114	1.9
Metolachlor	115-128	0.6-1	100	1.8	112	5.3

*Three measurement series were conducted with this setup, therefore a range of relative recovery and LOQ values is given