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Abstract 

Considerable pollutant loads can enter surface waters during rain events. Three factors challenge 

quantification of these pollutant fluxes using traditional sampling methods: (i) concentration fluctuations; 

(ii) unknown event duration; and (iii) placement, operation, and maintenance of equipment. Passive

samplers offer the advantage of sampling in a continuous mode without power supply. However, variable

uptake rates due to environmental factors and desorption in the case of fluctuating concentrations can

affect the accuracy of time-weighted average (TWA) concentration estimates. While uncertainties related

to environmental factors could be accounted for with additional effort, we can neither control nor quantify

the concentration variability. We present measured and modelled concentration profiles at high temporal

resolution and provide a systematic approach to assessing deviations from true TWA concentration due

to fluctuating concentration profiles. We evaluate sampling of sewer overflows (0.3–14h) with

Chemcatcher and 1-week sampling in rivers. The uncertainty due to fluctuating concentrations is small,

and other factors such as chemical analyses and sampler calibration have a similar or higher impact. The

uncertainty due to fluctuations clearly increases with the sampling duration, particularly when exceeding

the half-life of equilibrium. We conclude that passive sampling can also be used in wastewater systems

with potentially high concentration variations.
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Abbreviations 

C Concentration of contaminant in the water (sewer or river) 

Ci(t) Concentration at time point i 

TWA Time-weighted average 

Ctrue True CTWA (based on Ci, no error associated to sampling and measurements) 

PS Passive sampler 

M.PS. Mass of contaminant measured or modelled on passive sampler 

CPS.meas CTWA measured via passive sampler  

CPS.mod CTWA modelled for passive sampler  

CComp.Sample CTWA in a composite sample (grab samples combined over a specific sampling 

period) 

1 Introduction 

The discharge of wastewater, stormwater, and surface runoff from agricultural fields can adversely affect 

the quality of surface water. Increasingly, the focus is on micropollutants such as pharmaceuticals and 

pesticides (subsequently referred to as contaminants) that originate from a vast, uncounted number of 
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discharge points [1-4]. Therefore, effective sampling of these individual sources and surface waters is of 

major interest when evaluating and prioritizing further measures to reduce impacts of contaminants. Water 

concentrations of contaminants discharged from such points into surface waters can fluctuate substantially 

within short periods of minutes to hours. Concentrations of compounds such as pesticides occurring in 

runoff have been observed to range over two orders of magnitude or more in flood events [5-7]. These 

fluctuating concentrations together with event durations that are unknown a priori require high sampling 

resolutions to cover episodic peaks and thus challenge traditional sampling methods such as grab sampling 

and automated sampling. One alternative, passive sampling, offers several advantages. One is that a 

passive sampler is exposed to water continuously during the entire observation period. The mass collected 

on the passive sampler allows a time-weighted average (TWA) water concentration to be estimated. 

Various factors are known to influence the reliability of passive sampling results: (i) sampler set-up, 

installation, and storage; (ii) chemical analysis; (iii) calculation of the water concentration (sampler 

calibration); (iv) varying environmental conditions such as flow velocity, temperature, and matrix; and 

(v) fluctuating concentrations. A comprehensive interlaboratory study [8] has shown that both chemical 

analysis and the calculation of water concentrations are major factors contributing to the overall variation 

observed among laboratories. Chemical analysis is becoming more accurate. Further, monitoring and 

reporting of environmental conditions is becoming more common, and performance reference compounds 

[9] are increasingly studied to minimize uncertainty due to unknown environmental conditions. All these 

sources of uncertainty need further optimization. However, potentially high fluctuations of contaminant 

concentrations in water usually remain unknown. Therefore, it is important to quantify the contribution of 

uncertainty arising from fluctuating concentrations to time-weighted average (TWA) concentration 

estimates. Previous studies have examined the effect of selected peak events experimentally [10, 11] as 

well as in the field [5, 12-14]. These studies cover all potential uncertainty factors, including uncertainty 

due to fluctuating concentrations (Figure 1). However, these studies do not allow the effect of fluctuating 

concentrations to be separated from overall differences observed between passive samplers and composite 

water samples. Some works study the effect of modelled peaks [11, 15, 16] or specific patterns [17], thus 

indicating the uncertainty due to fluctuations of aqueous concentrations. However, these measured and 

modelled peaks cover just a few selected examples of concentration fluctuations occurring in water 

systems. We expect that high temporal variations in short periods might contribute substantially to 

uncertainty, especially in wastewater systems. Therefore, the objective of our study was to systematically 

quantify the uncertainty in TWA concentration estimates from passive samplers due to concentration 

fluctuations (#1 in Figure 1). This was done with novel measured and modelled concentration profiles and 

compared our uncertainty estimates to other uncertainty factors (#3 in Figure 1). 

 

 
Figure 1. Illustration of the approach to determine the uncertainty due to fluctuating concentrations (#1). Measured 

and modelled concentrations Ci(t) at high temporal resolution are used to predict the mass uptake on the sampler 

disk MPS.mod. The resulting modelled passive sampler TWA concentration CPS.mod is compared with the true TWA 

concentration Ctrue. 
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We focus on sampling in sewers, and we address three specific aspects: 

1. How much uncertainty must be expected from unknown, fluctuating concentration profiles 

when using a passive sampler to estimate TWA concentrations? We compared concentrations for 

passive samplers with true TWA (CPS.mod ↔Ctrue, sections 2.1/2.2 and 3.1/3.2).  

2. How do characteristics of concentration patterns that are typically unknown influence 

uncertainty? We investigated the effect of event duration, the position of peaks, and the 

concentration variability (section 2.3 and 3.3).  

3. How accurate is a traditional composite sample when measuring  fluctuating concentrations? 

Usually, composite samples are used as a reference (CCompSample ↔Ctrue, section 2.4 and 3.4).  

2 Experimental 

2.1 Field study: concentration fluctuations in sewers 

The study was conducted at three locations in different sewer systems. An auto-sampler and passive 

samplers were used simultaneously to monitor one rain event at each location (Figures SI 1-6 for 

installation setups, Table 2 for event characteristics). At location 1, we sampled in a sewer pipe during 

wet weather. At location 2, we sampled in a sewer overflow at the overflow weir. Location 3 was a sewer 

by-pass in our experimental hall with a constant flow of real wastewater. Location 3 was also where the 

sampler uptake calibration experiment was performed [18]. Location 1 was equipped with a discharge 

measurement device (FloDar 4000SR). Additionally, the water level was measured (MB7369 HRXL-

MaxSonar-WRM) at locations 1 and 2. Three conditioned, replicate passive samplers (four replicate 

passive samplers at location 1) were exposed for the duration of the events, and four contaminants were 

studied (Table 1). Water samples were taken with automated sampling devices (Sigma 900MAX) every 

5min, pooling four samples to a 20min composite sample in a glass bottle (total 24 bottles). To enhance 

transparency of evaluation, we assumed that the concentration in composite samples CComp.Sample are equal 

to Ctrue. This simplification is discussed in Section 3.4. 

Table 1. Studied contaminants with logKow, model parameters: instantaneous sampling rate Rs and sampler water 

distribution coefficient KSW estimated for sewers (Eq.1).  

Contaminant name pKa logKowa (logDow 

pH 8) 
Rs b 

median 
 

KSW
b 

median 
t1/2

c
 

- - (L/d) [L/L] (h) 

1.3-benzothiazole-2-sulfonate  -0.99 0.21 280 7.6 
Diclofenac 4.15 4.51 (0.66) 0.64 1,750 15.8 
Diuron  2.68 1.24 3,610 16.7 
Metolachlor  3.13 1.28 5,920 26.4 

apKa and experimental logKow were taken from www.pubchem.ncbi.nlm.nih.gov (accessed 01.03.2018). Distribution 

coefficients in brackets are normalized to the fraction of the neutral species at the pH of river water (pH=8), Dow(pH 

8)=1/(1+10(8−pKa) )Kow,b[18], cEq. 3 in Section 2.2 

 

Preparation and extraction of passive sampler disks 

Before being exposed, styrene divinylbenzene passive samplers (Empore, SDB-RPS disks, 47 mm 

diameter) were preconditioned in methanol and in nanopure water [19]. The disks were exposed in a metal 

housing with an one-sided exposed surface area of 12.6cm2 (Figure SI 1). After exposure, the whole disks 

were extracted with acetone and then methanol as described in [20]. Structure-identical isotope-labelled 

standards were added directly after shaking the disks with acetone on the rotary shaker to also account for 

possible analyte loss during sample preparation steps. Extracts were evaporated to ca. 0.05mL and filled 

with nanopure water to 0.5mL. 
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Chemical Analysis 

All samples were stored at -20° C until analysis. Water samples from locations 1 and 2 were measured 

with an online-SPE-ESI-LC-HRMS/MS system (QExactive by Thermo Fisher Scientific Corporation) 

using Huntscha et al.’s (2012) method [21]. Chromatographic separation was performed with a Water 

Atlantis T3 (4.6x150 mm, 3 μm particle size). Data were generated in data-dependent mode. Water 

samples from location 3 were measured on an Agilent 6495 triple quad mass spectrometer using ESI. 

Chromatographic separation was performed with a Waters Acquity UPLC HSS T3 (3x100mm, 1.8 μm 

particle size). Data acquisition was achieved in dynamic MRM mode. All passive sample extracts were 

directly injected (100 μL) and measured on the QExactive using the same LC-MS conditions as for the 

water samples. Quantification was done using the internal standard method. Structure-identical isotopic-

labelled standards were available for all compounds except 1,3-benzothiazole-2-sulfate. Here, 

Bezotriazole-D4 was used for quantification, and measured values were corrected by the relative recovery 

of this compound. Quality controls such as external reference standards, spiked samples for recoveries, 

blind, field blind controls, and filter blind controls were measured regularly during all measurement 

sequences. Further details on chemical analysis are given in SI Section C. 

2.2 Uncertainty due to fluctuating concentration patterns 

An exponential function is often used to describe the uptake of contaminant mass (MPS) on passive 

samplers (Eq. 1); here, Ci is the concentration in the water phase at time point i, VPS the passive sampler 

volume (344µL with 90% of the total mass as sorbent mass [22]), and t the exposure duration.  

( ( ) )PS PS
S i

PS SW

dM M
R C t

dt V K
 


 (1) 

When Ci is constant, two main uptake phases can be distinguished: (i) an almost linear integrative phase, 

where uptake is mainly controlled by the sampling rate RS, and (ii) an equilibrium phase, described by the 

sampler-water distribution coefficient KSW [e.g. 23]. Fluctuating concentrations complicate this picture, 

for example when aqueous concentrations suddenly drop after equilibrium has almost been reached. In 

such a case, desorption can occur due to a lower equilibrium. Figure 2 illustrates an extreme case for a 

compound with a low t1/2 of 5.7h. In sewers and rivers, several peaks with varying durations can occur 

during a monitoring period.  

 
Figure 2. Example for an extreme case of equilibration and desorption on a passive sampler based on Eq. 1 (KSW = 

1500, RS = 1.5L/d, t1/2 = 5.7h). Mass on passive sampler MPS(t) showing desorption due to equilibration. Equilibrium 

1 of 258ng during the first part with high concentrations and a lower equilibrium 2 of 52ng due to lower 

concentrations in the second half of the time series. This results in an underprediction of the TWA concentration 

CPS.mod in comparison to the true TWA concentration Ctrue. 
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Using measured or modelled concentration time series with known Ci(t) as input for Eq. 1, we determine 

the theoretical mass modelled MPS.mod that should accumulate on the passive sampler, as shown in Figure 

1. This MPS.mod allows the TWA concentration CPS.mod to be back-calculated (Eq.2). The comparison of 

this modelled passive sampler TWA concentration CPS with the true TWA water concentration Ctrue 

quantifies the error solely due to fluctuating concentrations (#1 in Figure 1). In the following, we express 

this comparison as the ratio CPS/Ctrue and give the 80% interquantile range unless otherwise stated. In 

addition, the error CPS.mod.lin/Ctrue caused by neglecting desorption can be calculated by applying the linear 

model (Eq. 4). 

( )

(1 )
S

PS SW

PS
PS R

t
V K

PS SW

M
C

V K e






 

 (2) 

1

2

ln(2)PS SW

S

V K
t

R


   (3) 

.
PS

PS lin

S

M
C

R t



 (4) 

This evaluation of the uncertainty due to fluctuating concentrations can be applied to high-resolution 

concentration patterns, both measured (section 2.1/3.1) and modelled (see subsequently and 3.2). Model 

calculation was performed in R [24]. 

Modelled concentration patterns for sewer overflows and rivers 

The concentration patterns measured in sewer overflows might only represent a few of the possible 

patterns. In contrast, modelled concentrations allow a higher number of observable patterns to be covered. 

In addition, we are able to extend our study to fluctuations in rivers. For sewer overflows, modelled 

mecoprop concentration patterns [25] were used to calculate MPS.mod for each of 216,052 modelled events 

(10-minute resolution). Similarly, 2,199 modelled river concentrations interpolated to hourly resolution 

were used to estimate the ratio of CPS.mod/Ctrue for six contaminants for which modelled data was available: 

diuron and atrazine at 10min resolution for 7 months, atrazine at 20min resolution for 5 years [26, 27], 

and isoproturon, metolachlor, and terbutylazine at 1h resolution in 12 locations for 1 year [28]. These 

modelled concentration patterns are potentially more representative for contaminants such as diuron and 

metolachlor that originate from surface runoff. This difference in contaminant behaviour is especially 

relevant for rivers, for which diclofenac is expected to display a more constant occurrence pattern. Further, 

the modelled concentration patterns rely on various model simplifications and thus cover only part of the 

complexity of contaminant release from many contributing sources. These modelled sewer overflow 

concentration patterns were applied to the four studied contaminants (Table 1). The periods of PS exposure 

considered were event-based, implying that CPS is evaluated over different durations (Table 2).  

For rivers, an ‘event’ was defined as a 1-week deployment period, resulting in a constant evaluation 

interval (t=7 days). We looked at diuron and used instantaneous RS of 0.82L/d and KSW of 27,000L/L 

reported in literature for naked SDB-RPS disks in river conditions [22, 29]. We used literature values 

instead of our own values to account for typically lower flow rates in rivers of 0.2 to 0.5m/s. Flow rates 

are known to affect Rs [19].  

 

2.3 Pattern characteristics influencing deviations from true TWA 

concentration 

To investigate the effect of fluctuating patterns on the passive sampler concentration estimate CPS.mod, we 

characterize patterns with (i) the event length, in the case of event-based sewer overflow sampling; (ii) the 
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fluctuation of the concentration described by the coefficient of variation (CV, defined as the standard 

deviation divided by the mean); and (iii) the position of the peak described by the half-time ratio (htr). 

The htr was calculated as shown in Eq. 5 with n as the total length of the time series (see Figure SI 7 for 

calculation example).  

1 /2

/2 1

( ( ) )
log

( ( ) )

n

n n

sum C t
htr

sum C t



 

 
   

 
 (4) 

These three characteristics were used to describe the three events measured at locations 1,2, and 3 and the 

modelled sewer overflow and river concentration patterns (Table 2). 

Table 2. Characteristics of the measured and modelled high resolution concentration patterns for sewer and rivers. 

Values given in median (80% interquantile). Position of the peak (htr): A negative value signifies a peak in the 

beginning and a positive value a peak in the end. CS: composite sample, PS: passive sample 

 Length CV Position of peak 
 (h) (%) (-) 

Measured locations   60 (44 – 120) -0.5 (-1.1 – 0.3) 

Location 1 (18.05.2016), v=1.4m/s 7.7 
  Location 2 (25.04.2017), v=0.75m/s CS: 7.7*, PS: 13.7 

Location 3 (28.06.2017), v=0.8m/s 8 

Modelled sewer overflow pattern 1.7 (0.3 – 6.8) 11 (3 – 39) -0.007 (-0.3 – 0.3) 

Modelled river pattern 168 7 (1 – 43) -0.003 (-0.2 – 0.2) 
*The automated water sampling only partly covered the whole event of 13.7h (see Figure SI 4). 

 

We hypothesize that (i) a shorter event duration results in a smaller error, due to not having reached 

equilibrium; (ii) a more fluctuating concentration (high CV) leads to a larger error due to a higher chance 

of desorption; and that (iii) a peak in the second half (positive htr value) leads to less desorption and thus 

a smaller error.  

2.4 Accuracy of composite samples 

As mentioned previously, the composite sample may not represent Ctrue. Therefore, we assess the effect 

of the time interval between samples collected for the composite sample, termed the sampling resolution, 

on the CTWA estimate from composite water samples for fluctuating concentrations. The uncertainty due 

to fluctuating concentrations in sewers during dry weather conditions has previously been studied by 

modelling grab sampling and predicting the error over a range of sampling time intervals [30]. The error 

from all potential sources of uncertainty (#1-3 in Figure 1) was assessed using the field data for composite 

water sampling CCS.meas and passive sampler TWA concentration CPS.meas. 

3 Results and discussion 

Section 3.1 describes the measured high-resolution concentration patterns and assesses the uncertainty 

expected from fluctuating concentrations alone (as in section 2.2). The uncertainty due to other factors 

(#3 in Figure 1) is also assessed, since measurements for MPS are available. In section 3.2, the method 

described in section 2.2 is applied to the modelled concentration patterns.  
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3.1 Measured concentration patterns and expected uncertainty of time-

weighted average concentration estimates due to fluctuating 

concentrations 

Twenty-minute composite samples collected at five-minute intervals reveal appreciable concentration 

fluctuations (Figure 3). The CVs of the 12 patterns range from 44% to 120%, indicating high variability 

of concentrations across all events and contaminants (Table 2).  

 



 

8 

 

Figure 3. Locations 1-3 measured with 20min resolution (four samples, t=5min) composite samples (Ci(t)): brown 

rectangles with solid line. Modelled mass on the disk (MPS.mod): solid green line. The mean measured mass on the 

passive samplers (MPS.meas) is shown with dark, green diamonds (whiskers show standard deviation; only partly 

shown if outside plotting range). The comparison of Ctrue with the modelled passive sampler CPS.mod covers the 

uncertainty due to fluctuating concentrations. 

The interlocation (Figure 3) comparison shows high variability in concentration ranges for 1.3-

benzothiazole-2-sulfonate, diclofenac, and diuron. In general, no contaminant or location specific pattern 

is observable. Location 1 was a sewer with potentially less complex sources of contaminants (5.7ha of 

solely residential area and short transport times), the patterns seem to exhibit source-specific behaviour. 

Diclofenac shows a distinct peak at the beginning (negative htr), while elevated diuron values appear 

towards the end (positive htr value). These observed variations at location 1 can be explained by 

contaminant-specific occurrence in urban sources. Diclofenac occurs mainly in the wastewater base flow, 

and as the sampling started 80min before elevated water levels were observed (see Figure SI 2), diclofenac 

is diluted during the actual surface runoff event. In contrast, 1.3-benzothiazole-2-suflonate, diuron and 

metolachlor are expected to be rain-driven and accordingly show a peak in location 1 as soon as the water 

level rises, indicating wash-off from surfaces. Interestingly, the diuron peak occurs very late and remains 

high over the last four hours of the event – this is hypothesized to be due to the runoff-driven, lagged 

wash-off behaviour of facades, the main source of diuron [7]. Although our 5-minute sampling regime is 

thought to capture all short-term peaks, the 20-minute compositing period might lead to attenuated peaks 

(section 3.4). 

Table 3. Uncertainty (expressed as ratio) of the measured and modelled passive sampling TWA concentration 

estimate: overall contaminants together. The mean of the samplers was used for measured passive sampling 

concentration CPS.meas. 

 Min 10%-quantile 90%-quantile Max 

 (%) (%) (%) (%) 

Measured locations 1-3     
Uncertainty due to fluctuationsa  (#1 in Figure 1) 
CPS.mod/Ctrue

 87 89 105 140 
Uncertainty due to other factors (#3 in Figure 1) 
CPS.meas/CPS.mod 47 59 120 180 
Modelled sewer overflow pattern: Uncertainty due to fluctuations (#1 in Figure 1) 
CPS.mod/Ctrue 27 99.5 100.4 170 
CPS.mod.lin/Ctrue 9 83 99 100 
Modelled river pattern: Uncertainty due to fluctuations (#1 in Figure 1) 
CPS.mod/Ctrue

b 74 97 102 127 
aassuming the measured CComp.Sample is an approximation of Ctrue, 

bDiuron with RS=0.82L/d and KSW=27,000L/L 
 

If the differences observed between passive sampling and composite water sampling in Figure 3 could be 

explained by the fluctuating concentration patterns, one would expect to observe values for CPS.meas that 

do not deviate more than -13% to +40% from the theoretical CPS.mod (Table 3). CPS.mod is determined from 

the measured high-resolution concentration Ci(t) and incorporates all desorption effects. However, we find 

that the uncertainty attributed to other factors, expressed by the ratio CPS.meas /CPS.mod, ranges from 47% 

(metolachlor) to 180% (diclofenac); this clearly exceeds the uncertainty caused solely by fluctuating 

concentrations.  

The measured CPS.meas is lower than the theoretical CPS.mod for diuron (66%, 70%, 79%) and metolachlor 

(59%, 88%, 47%) in all three locations (Figure 3). Hence, this observed underestimation for diuron and 

metolachlor cannot be attributed to fluctuating concentrations either (ratio CPS.mod/Ctrue of diuron: 97%, 

106%, 98% and metolachlor: 89%, 86%, 100%).  
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3.2 Uncertainty of time-weighted average concentration estimates due to 

fluctuating concentrations for modelled concentration patterns 

In this section, the pattern-specific, modelled CPS.mod is compared to Ctrue to exclude other influencing 

uncertainty factors such as sampler set-up, chemical analysis, and calculation of water concentration. 

Passive sampling of sewer overflows shows a ratio CPS.mod/Ctrue of minimum 27% to maximum 170% 

(80%-interquantile 99.5-100.4%, Table 3). Nevertheless, in the majority of modelled sewer overflow 

event patterns, the deviation is smaller < 0.5% for all four contaminants (Figure 4).  

 
Figure 4. Predicted contaminant-specific ratios of CPS.mod/Ctrue for the modelled sewer overflow concentration pattern. 

Outliers are not shown; the whiskers show 1.5× interquartile range. Contaminants are sorted top to bottom from high 

to low t1/2. 

The modelled sewer overflow event patterns span 80% interquantile CVs of 3% to 39%. This is lower 

than for the twelve measured patterns, which had CVs of 44% to 120% (Table 2). This indicates the 

complexity of considering all contaminant sources and potential spills in model predictions of fluctuating 

concentrations.  

Overall, the modelled uncertainty due to fluctations is small. The three measured events span a ratio of 

CPS.mod/Ctrue of 89% to 105% due to fluctuations, which is higher than for the modelled patterns of 99.5% 

to 100.4% (80% interquantile). The modelled concentration patterns cover a high number of sewer 

overflow locations and rain events but do not specifically reflect the three sampling locations. This 

indicates that the extreme cases are more common than the modelled pattern indicates. 

The effects of RS and KSW and the integrative model approach 

The contaminant-specific model parameters for sampling rate, Rs, and sampler-water distribution 

coefficient, KSW, can cause the predicted ratio of CPS.mod/Ctrue to increase; this is the case for 1.3-

benzothiazole-2-sulfonate. A higher sampling rate, Rs and a lower KSW both result in equilibrium being 

reached more quickly, and thus the deviation of CPS.mod from Ctrue increases. 

Applying the solely integrative model with instantaneous Rs to the sampling of sewer overflows leads to 

a ratio CPS.mod.lin/Ctrue ranging from 83% to 99% (median 96.4%). This range is substantially broader than 

that predicted for the full model: 99.5% to 100.4%. The integrative model thus leads to higher deviations 

when calculating CPS.mod using Eq. 4, as many events are affected by equilibrium issues: peak 

concentrations followed by low concentrations, which can cause desorption. This shows that using the full 

model is the preferred option, because it produces results that are either comparable with the integrative 

model in the linear phase or more accurate when intermediate sampling phases occur. Technically, the full 

model is not more difficult to implement.  

3.3 Pattern characteristics influencing deviations from true TWA 

concentration 

As hypothesized, we find that the characteristics of the fluctuating concentrations influence the magnitude 

of the deviation of CPS.mod from Ctrue. Figure 5 shows this ratio for all modelled sewer patterns in relation 
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to event length, CV, and position of the peaks for diclofenac and metolachlor (1.3-benzothiazole-2-

sufonate and diuron are shown in Figure SI 8). Each grey dot reflects the uncertainty CPS.mod/Ctrue due to 

concentration fluctuations for a single modelled concentrations pattern. The longer the event length is, the 

higher is the ratio of CPS.mod/Ctrue, as shown by the 10% and 90% quantile regression lines (Figure 5, left). 

The same applies for the concentration variability: the larger the CVs are, the more CPS.mod deviates from 

Ctrue (Figure 5, middle).  

The effect of the position of the peak can be seen in Figure 5, right. A positive htr, indicating a peak at the 

end, leads to an overestimation of Ctrue, whereas a negative htr, indicating a peak at the beginning, leads 

to an underestimation of Ctrue. In summary, the absolute deviation from Ctrue depends strongly on the 

specific pattern characteristics. A further extreme case with very low KSW for the position of the peak is 

shown in Figure SI 9. 

 
Figure 5. Predicted uncertainty due to fluctuating concentration CPS.mod/Ctrue for the modelled sewer concentration 

pattern (half-transparent grey point) in relation to event length [h], coefficient of variation (CV in %), and position 

of the peak (htr). The 10% and 90% quantile regressions are shown by the green solid lines; red dashed lines show 

htr = 0 and CPS.mod/Ctrue = 1. For comparison, the overall uncertainty (green triangles) of the measured passive 

sampling CPS.meas/CComp.Sample of locations 1-3 is shown. 

Looking at the overall measured uncertainty of the ratio CPS.meas /CComp.Sample in relation to event length and 

CV, the ratios for metolachlor lie outside the quantile regression lines (Figure 5, left and middle). The 

observed underestimation of metolachlor cannot be explained by either the event length or the CV. In the 

case of diclofenac, the observed deviation lies within the extreme cases, and thus part of the deviation can 

be explained by the observed event-specific pattern. Interestingly, the position of the peak does not seem 

to be a good predictor of underestimation or overestimation for some of the contaminants, as seen for 

diclofenac (Figure 5, right).  
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In summary, the overall uncertainty, expressed as the ratio of CPS.meas/CComp.Sample, ranges from minimum 

47% to maximum 165% for sewers (Table 4), and the mean reported ratios for rivers range from 50% 

(Shaw and Mueller, 2009) to 260% (Fernandez et al. 2014). These can only partly be explained by the 

fluctuating concentrations that typically occur in sewers and river streams. The observed experimental and 

analytical parameter uncertainty and the uncertainty due to variable environmental conditions indicate 

similar or even higher uncertainty ranges. In addition, part of the difference observed between passive 

sampling and composite water sampling can be attributed to uncertainties associated with the water 

sampling regime (CComp.Sample). The water sampling regime often does not cover the full concentration 

variability, and thus can lead to unrepresentative TWA concentration estimates. Therefore, when 

comparing passive sampling CPS.meas with active sampling CComp.Sample, it should also be considered that the 

measured CComp.Sample may not represent Ctrue (section 3.4). 

3.4 Accuracy of composite samples 

Fluctuating concentrations and other factors imply that both CPS.meas and CComp.Sample are only 

approximations of Ctrue. The question arising is how accurate passive sampling is in comparison to high-

resolution grab sampling, leaving aside other influencing factors such as sample preparation, accuracy and 

precision of chemical analyses, and passive sampler calibration. CComp.Sample can deviate from Ctrue due to 

(i) the sampling resolution, how often a sample is taken to form a composite sample over the entire period, 

and (ii) the time span that the composite sample covers. For composite sampling of sewer overflows, the 

ratio CComp.Sample/Ctrue is between 98% to 102% for 15-min sampling intervals and 86% to 110% for 120-

min sampling intervals. To be in the same uncertainty range as modelled for passive sampling (CPS.mod/Ctrue 

of 99.5% to 100.3%), then, sampling intervals should not exceed 15min. However, the measured 

concentration patterns indicate a higher concentration variability than the modelled patterns (Section 3.2), 

so sampling intervals <10min are recommended.  

Table 4. Uncertainty, expressed as ratio, of the composite water TWA concentration estimate for the modelled 

pattern (uncertainty due to fluctuations, #1 in Figure 1) and measured overall uncertainty (#1-3 in Figure 1). 

 Min 10%-quantile 90%-quantile Max 
 (%) (%) (%) (%) 

Measured locations 1-3: Overall uncertainty (#1-3 in Figure 1) 
CPS.meas/CComp.Sample.meas 47 54 110 165 

Modelled sewer overflow pattern: Uncertainty due to fluctuations (#1 in Figure 1) 
CComp.Sample/Ctrue Δt=15min 28 98 102 160 
CComp.Sample/Ctrue Δt=120min 1.3 86 110 590 

Modelled river pattern: Uncertainty due to fluctuations (#1 in Figure 1) 
Ccomp.sample/Ctrue Δt=48h 0.001 94 106 510 
Ccomp.sample/Ctrue Δt=12h for CV>20% 27 88 105 270 

aWithout benzotriazole values from location 2 and 3 

 

3.5 Surface waters: Uncertainty due to fluctuating concentrations for 

modelled concentration patterns 

For diuron, the uncertainty due to fluctuating concentrations CPS.mod/Ctrue ranges from 97% to 102% (Table 

3). The slightly higher ratio of CPS.mod/Ctrue for river sampling than for sewer sampling can be explained 

by the sampling duration of a week, which is in a similar range as the reported t1/2 of 7.9 days. The 

predicted uncertainty due to fluctuations will also increase for other contaminants with lower t1/2 values. 

In rivers, longer periods with low concentrations can occur during dry weather, so desorption may affect 

CPS.mod more than with sampling in sewers.  
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One-week composite sampling of rivers taking a sample every second day (based on concentration 

resolution of one hour) leads to an estimated ratio CCcomp.Sample/Ctrue of 94% to 106% (Table 4). The 

predicted ratio for passive samplers of CPS.mod/ Ctrue for diuron in rivers of 97% to 102% is in a similar 

range. A grab sample every second day might be an appropriate sampling scheme for baseline 

concentrations. For concentration peaks that might pose a higher eco-toxicological risk for aquatic 

organisms, the extreme cases with higher peaks are of interest. Therefore, we looked at a subset of the 

data in which CVs were higher than the mean of 20%, resulting in 455 concentration patterns (1-week 

sampling). Here we find that a sample every 12h or more frequent would be required to bring the deviation 

into the same range as predicted for passive samplers. 

4 Conclusions 

The theoretical effects of integrative sampler uptake and desorption for simple cases is well understood. 

However, the extent to which unknown, complex fluctuations in concentration affect the estimation of 

TWA concentrations is less obvious. We find evidence that concentration fluctuations in sewers cannot 

explain the overall observed difference between measured passive sampler and composite water sample 

TWA concentrations. Using a high number of modelled patterns, we find that the effect of fluctuating 

concentrations on the TWA concentration estimate from passive samplers is small (<1% for sewer 

sampling and <3% for one-weekly river sampling). For our scenarios, we find low uncertainties associated 

with fluctuating concentrations, provided that the sampler operates in integrative mode (i.e., event 

durations do not substantially exceed t1/2) and calibration is appropriate for environmental conditions. Our 

results clearly show that uncertainty increases with higher event duration or an early or late peak. In 

general, the calibrated full-uptake model leads to more reliable results across variable sampling durations 

and for fluctuating concentrations. By extending the integrative phase, for instance by mounting a 

membrane, sampling uncertainty in rivers could be further reduced, depending on the sampling duration. 

However, the effect of uptake lag would have to be studied. The transferability of our finding to other 

contaminants depends strongly on contaminant properties and behaviour in aquatic systems.  

In summary, we find indication that the uncertainty due to fluctuating concentrations is small, with a 

maximum range of 87% to 140% for the measured sewer locations. Other factors such as matrix, 

environmental conditions, and chemical analysis have a similar or even higher impact on concentration 

estimates. The effect of the matrix on contaminant uptake needs to be studied in more detail. We conclude 

that passive samplers seem to provide useful concentration estimates for wet-weather events in wastewater 

systems with substantial short-term concentration fluctuations.  
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