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Abstract 24 

Detecting disturbances in microbial communities is an important aspect of managing natural and engineered 25 

microbial communities. Here, we implemented a custom-built continuous staining device in combination with 26 

real-time flow cytometry (RT-FCM) data acquisition, which, combined with advanced FCM fingerprinting 27 

methods, presents a powerful new approach to track and quantify disturbances in aquatic microbial 28 

communities. Through this new approach we were able to resolve various natural community and single-29 

species microbial contaminations in a flow-through drinking water reactor. Next to conventional FCM 30 

metrics, we applied metrics from a recently developed fingerprinting technique in order to gain additional 31 

insight into the microbial dynamics during these contamination events. Importantly, we found that multiple 32 

community FCM metrics based on different statistical approaches were required to fully characterize all 33 

contaminations. Furthermore we found that for accurate cell concentration measurements and accurate 34 

inference from the FCM metrics (coefficient of variation ≤ 5%), at least 1,000 cells should be measured, 35 

which makes the achievable temporal resolution a function of the prevalent bacterial concentration in the 36 

system-of-interest. The integrated RT-FCM acquisition and analysis approach presented herein provides a 37 

considerable improvement in the temporal resolution by which microbial disturbances can be observed and 38 

simultaneously provides a multi-faceted toolset to characterize such disturbances. 39 

 40 

Keywords: flow cytometry, disturbance ecology, drinking water, fingerprinting, microbial ecology 41 

  42 



3 
 

1. Introduction 43 

Monitoring and managing microbial and physicochemical dynamics within engineered aquatic systems (e.g., 44 

drinking and cooling water systems, wastewater treatment) is an important research area in environmental 45 

engineering (Verstraete et al. 2007). Such dynamics can transpire within minutes (Koch et al. 2014), hours 46 

(Lautenschlager et al. 2010, Props et al. 2016a) or days (Guenther et al. 2012, Besmer et al. 2016). In particular 47 

in engineered aquatic systems, ecological disturbances are either present continuously through spatially 48 

separated treatment steps (e.g., ozonation, UV-disinfection) or sporadically through uncontrolled events (e.g., 49 

weather events (Zhang et al. 2017),  contamination (Besmer and Hammes 2016), outgrowth (Props et al. 50 

2016b)). The assessment of these rapid microbial processes through sampling at discrete time points is prone 51 

to so-called ‘aliasing’, i.e. bias in the observed frequency and/or the kinetics of the events, which can have 52 

considerable impacts on public health and product quality.  53 

As a result, the development of high-frequency monitoring techniques for detecting microbial 54 

community disturbances has gained momentum. Flow cytometry (FCM) is a multi-purpose single-cell analysis 55 

tool for studying microorganisms. Conventional manual FCM entails the collection of homogeneous samples, 56 

which are subsequently stained and measured by the operator. The transition from manual operation towards 57 

automation started with hardware developments in phytoplankton research aimed at the direct detection of 58 

cell size and auto-fluorescence (Dubelaar et al. 1999, Dubelaar and Gerritzen 2000). Recently, so-called online 59 

FCM has allowed the complete automation of the measurement process; discrete samples are automatically 60 

collected, stained, incubated and analyzed at routine intervals (typically 5 – 15 minutes) during extended time 61 

periods (days - months) (Besmer et al. 2014, Hammes et al. 2012, Abu-Absi et al. 2003, Zhao et al. 1999). 62 

A potential paradigm shift in FCM operation and analysis is so-called kinetic or real-time flow 63 

cytometry (RT-FCM), which exploits the inherent time-dependent nature of any FCM analysis (Martin and 64 

Swartzendruber 1980, Nolan and Sklar 1998, Arnoldini et al. 2013). In its most basic form, RT-FCM simply 65 

records single-cell data as a function of measuring time, which is a feature available on most commercial 66 

instruments (Arnoldini et al. 2013). In this context, RT-FCM has been applied to experiments where 67 

fluorescent staining is not required (e.g., green fluorescent protein (GFP) expression), or where a combination 68 
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of the stain and the immediate experimental environment is specifically required (e.g., assessment of stain-cell 69 

interactions) (Arnoldini et al. 2013, Vines et al. 2010, Juan et al. 1994). However, fluorescent labelling of the 70 

target cells is required for all studies characterizing indigenous microbial communities as they are otherwise 71 

not detectable. Two recent studies have described the first applications of RT-FCM data in combination with 72 

purpose-build automated staining devices (Besmer and Hammes 2016, Besmer et al. 2017).  73 

FCM applications range from straightforward cell density measurements to complicated phenotypic 74 

assays such as cellular type, identity, viability and physiology (Shapiro 1983, Hammes and Egli 2010, Muller 75 

2007, Mueller and Nebe-von-Caron 2010, Berney et al. 2008). Up till now, FCM data has been primarily used 76 

to describe the microbial dynamics by means of descriptive metrics such as total cell density, intact cell 77 

density as well as a basic FCM fingerprint statistic (e.g., % high nucleic acid (HNA) content bacteria) (Prest et 78 

al. 2013, Bouvier et al. 2007). Similar to phytoplankton FCM data (Li 1997), bacterial FCM data has recently 79 

been shown to contain a significant amount of taxonomic community structure as well (Props et al. 2016a, 80 

Rubbens et al. 2017, Stepanauskas et al. 2017, Props et al. 2018). Novel computational FCM analysis tools, 81 

such as the phenotypic diversity index, now facilitate simultaneous tracking of taxonomic diversity and 82 

cytometric community structure based solely on multivariate FCM data derived from nucleic acid stained 83 

bacterial cells (Props et al. 2016a, Koch et al. 2013a, Koch and Müller 2017, Amalfitano et al.). All of these 84 

FCM metrics rely on the stability, reproducibility and sample sizes that can be obtained from FCM 85 

measurements, yet a quantitative assessment on the sample sizes, which may vary between hundreds to 86 

millions of cells, that are required for robust inference has not yet been performed. 87 

Here we integrated real-time staining and FCM data acquisition technology with advanced 88 

fingerprinting metrics (i.e. phenotypic diversity index and phenotypic community type) with the goal of 89 

detecting and characterizing microbial disturbances in a drinking water microbial community at the highest 90 

possible temporal resolution. The goals of this study were: (1) to demonstrate that advanced data analysis (i.e. 91 

fingerprinting) techniques are necessary to characterize simple and complex microbial disturbances in real-92 

time FCM data, and (2) to systematically assesses the acquisition requirements (e.g., sample size) in order to 93 

maximize the temporal resolution for microbial community fingerprint metrics.  94 



5 
 

 95 

2. Materials and Methods 96 

2.1. Real-time flow cytometry 97 

We applied a previously described prototype system that continuously extracts, stains and incubates water 98 

samples from any experimental environment and loads these continuously onto a commercially available flow 99 

cytometer for analysis (Besmer et al. 2017). The prototype extracts samples continuously with peristaltic 100 

pumping at a rate of 0.3 mL min-1 and then stains these samples continuously in a mixing chamber with a 101 

fluorescent dye, also at a rate of 0.3 mL min-1. In this study we used SYBR Green I (Invitrogen), diluted 102 

5,000-fold in TRIS-buffer. The result is a 50 % final dilution of both the sample and dye at a combined flow 103 

rate of 0.6 mL min-1. From the mixing chamber the stained sample flows through an incubation loop (0.75 104 

mm PEEK tubing) at a controlled temperature (37 °C). A pre-calculated loop length dictates the incubation 105 

time (10 minutes), after which the sample is delivered to a purpose-built sampling port compatible with a 106 

commercially available flow cytometer (Accuri C6; Becton Dickinson Biosciences, Erembodegem, Belgium). 107 

The FCM was equipped with a 488 nm laser with detectors for green fluorescence (533±30 nm) and deep red 108 

fluorescence (>670 nm), as well as for forward scatter (FSC) and sideward scatter (SSC) light. Data were 109 

collected continuously using the instrument’s “unlimited run” function as described previously (Arnoldini et 110 

al. 2013), with the sampling speed programmed on 16 µL min-1 at data acquisition rates varying between 50 – 111 

1,000 events second-1. 112 

 113 

2.2. Data acquisition stability 114 

A non-chlorinated municipal drinking water sample (Dübendorf, Switzerland) was measured continuously for 115 

60 minutes to assess the stable operation of the staining device and the overall quality of the data produced. 116 

The experiment was repeated three times. The experiment was subsequently repeated with river water 117 

(Chriesbach River; Dübendorf, Switzerland) to assess differences in data quality at high and low bacterial 118 

concentrations.  119 

 120 
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2.3. Contamination by axenic cultures 121 

A flow-through continuous stirred reactor (60 mL) with magnetic stirring was used to test the system’s 122 

performance in a dynamic environment (Figure 1). The reactor was continuously fed for 60 min with non-123 

chlorinated municipal drinking water at a flow-rate of 100 mL min-1, thus enabling 1.7 volume changes per 124 

minute. The feed water was kept in a 5 L reservoir and remained unchanged during the experiment. After 10 125 

minutes of baseline measurements, the drinking water was successively spiked thrice with an axenic culture of 126 

Escherichia coli (MG1655, ATCC 25922) and thereafter thrice with an axenic culture of Pseudomonas stutzeri 127 

(A1501, Pasteur Institute). The axenic cultures were grown overnight at 30 °C in LB media, centrifuged (3 128 

min; 3,000 g) and suspended in non-chlorinated drinking water and 50 mM EDTA to a final concentration of 129 

545 cells µL-1 (E. coli) and 524 cells µL-1 (P. stutzeri). Each individual spiking event comprised two minutes of 130 

continuous spiking using a speed-controlled syringe pump (at 1 mL min-1) and eight minutes of subsequent 131 

washout (approximately 13 reactor volume changes).  132 

 133 

2.4.  Contamination by natural microbial communities 134 

The same flow-through reactor as above was used to assess more challenging disturbances, such as those 135 

presented by natural aquatic microbial communities. After 10 minutes of baseline measurements, the feed 136 

water was changed at 10-minute intervals to respectively bottled mineral water (Evian, France), groundwater 137 

(Dübendorf, Switzerland), 20-fold diluted pond water (Dübendorf, Switzerland), 10-fold diluted river water 138 

(Chriesbach River, Dübendorf, Switzerland), 20-fold diluted river water (Glatt River, Dübendorf, 139 

Switzerland) and finally again municipal drinking water (as above). Each water sample replaced the previous 140 

during 10 minutes (equaling 25 volume changes). Prior to the experiment, the contaminant communities were 141 

diluted to cell densities in the same order of magnitude as the drinking water community in order to create 142 

subtle transitions in the microbial community that would be more challenging to detect. The data were 143 

specifically analyzed with respect to the sensitivity of the system to detect gradual changes and differentiate 144 

between complex samples. 145 

 146 
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2.5. Data processing and statistical analysis 147 

Raw experimental data were collected with the FCM software (BD Accuri C6 Software). All data processing 148 

steps and statistical analyses were conducted in the R statistical environment (v3.3.0, seed = 777) with the 149 

Phenoflow package (v1.1, https://github.com/CMET-UGent/Phenoflow_package) and its dependencies.  150 

Each experiment generated a single FCS file, which was denoised (Figure S1), discretized in user defined 151 

time intervals (e.g., 10s, 30 s), and stored in separate FCS files using the time_discretization function. The 152 

denoised and discretized data were then used to calculate the total cell concentration and high nucleic acid 153 

(HNA) cell concentration using the gating and data processing strategy of Arnoldini et al. (2013). For each 154 

sample a phenotypic diversity index was calculated through advanced fingerprinting of the data using the 155 

Diversity_rf function with default settings (Props et al. 2016a). This function performs bivariate kernel density 156 

estimations on selected channels (FL1-H, FL3-H, SSC-H and FSC-H), and concatenates the normalized 157 

density values into a one-dimensional feature vector from which the phenotypic diversity index can be 158 

calculated. There was one outlier event in the river water data set that was caused by the introduction of an air 159 

bubble in the fluidics. As this event was diagnosed as a technical issue, the TCC and phenotypic diversity 160 

index of this observation were replaced by the 95 % quantile value of their respective data set.  161 

In addition to these continuous metrics, all samples per experiment (n) were clustered based on their 162 

fingerprints by means of k-medoids clustering to create so-called phenotypic community types (Reynolds et 163 

al. 2006). First, the informative features of the fingerprint were selected through principal component analysis 164 

by limiting the number of principal components to those that explained 90 % of the variance. Next, k-165 

medoids clustering was performed by varying the number of clusters from 2 to n-1 (pam function, cluster 166 

package (v2.0.6)). The robust number of clusters (phenotypic community types) was determined by evaluating 167 

the silhouette index, and selecting k for which the average silhouette index across clusters was maximal 168 

(Rousseeuw 1987). To account for differences in sample size, this workflow was repeated for 100 bootstrap 169 

samples, after which the most frequent community type for each sample was determined as representative 170 

cluster. The bootstrap score was calculated as the number of times that the representative community type 171 

was assigned to the sample. Contrasts between the fingerprints of each cluster were calculated using the 172 

https://github.com/CMET-UGent/Phenoflow_package
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fp_contrasts function on default settings. Longitudinal analysis of the diversity parameters and cell densities 173 

binned on 60 s intervals was performed by a model based approach. Generalized additive modelling (mgcv 174 

package (v1.8-12)) was performed with time as the sole fixed effect. Although there was only limited temporal 175 

autocorrelation present in the data (assessed with the acf function from the stats package (v3.3.0)), a 176 

continuous autoregressive function of order 1 was implemented. All models were checked for normal and 177 

homoscedastic residual distributions as well as autocorrelation in the residuals (Ljung-Box test). Statistical 178 

inference on the time effect was performed by the Wald’s test. All figures were made using ggplot2 (v2.2.1).  179 

 180 

Data availability 181 

The full data analysis workflow is publicly available at https://github.com/rprops/Real-Time_FCM. The raw 182 

flow cytometry data have been deposited on FlowRepository and are publicly available under accession ID 183 

FR-FCM-ZY5P. 184 

 185 

  186 

https://github.com/rprops/Real-Time_FCM
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3. Results 187 

As described above, a lab-scale flow-through reactor containing a drinking water microbial community was 188 

periodically disturbed by either single-species contaminations or by complex natural microbial communities 189 

(Figure 1). The data acquired through real-time flow cytometric monitoring was then specifically analyzed by 190 

various conventional and fingerprinting metrics in order to characterize and differentiate between the 191 

disturbances. For this purpose we employed two conventional FCM metrics (i.e. total cell concentration 192 

(TCC), and high nucleic acid (HNA) bacteria), and two advanced fingerprinting metrics (i.e. phenotypic 193 

diversity index and phenotypic community typing). While the phenotypic diversity index has been shown to 194 

be strongly correlated to the taxonomic diversity of various aquatic microbial communities, phenotypic 195 

community typing clusters microbial community fingerprints into discrete groups or “types” with similar 196 

FCM properties. 197 

 198 

3.1. Stability and robustness of RT-FCM data acquisition 199 

First, the stability of the flow-through reactor and the FCM data acquisition was evaluated for drinking water 200 

and river water microbial communities over 60 minute time periods. Both microbial communities showed 201 

different degrees of stability for total cell concentration (TCC) and the phenotypic diversity index in function 202 

of the chosen temporal resolution (Figure 2). For the phenotypic diversity index, a clear linear relationship 203 

between the coefficient of variation (CV, relative standard deviation expressed in %) and the number of cells 204 

measured (~ temporal resolution) was found. For the TCC, a non-linear relationship was observed; the CV 205 

was ~5% for measurements which analyzed approximately 1,000 cells per sample, corresponding to a 206 

temporal resolution of one-to-two minutes for the drinking water community and 10 - 30 seconds for the 207 

river water community. We found that a lower threshold value in the range of 1,000 cells per time interval 208 

provides a good trade-off between temporal resolution and accuracy. Therefore, we adopted one-minute 209 

measurement intervals for all subsequent data analysis in this study. The average value (n = 60) for TCC was 210 

30.1 ± 1.9 cells µL-1, for %HNA content cells it was 32.6 ± 2.1%, and for the phenotypic diversity index it 211 

was 2154.6 ± 97.7 a.u.. Two additional repetitions of the same experiment with drinking water confirmed the 212 
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reproducibility of the experiment and the data analysis (Figures S2 and S3). The temporal trajectory of the 213 

phenotypic diversity index and total cell density could be adequately modelled by means of a generalized 214 

additive model. There was no significant temporal drift of the phenotypic diversity index over the 60 minute 215 

time period for both the tap and river water communities (p = 0.49). This indicates that the multivariate 216 

properties of the microbial community were accurately measured throughout the entire experiment. However, 217 

the cell densities did show a marginal (p = 0.001) drift over time for both the tap (average slope = 0.35 ± 0.99 218 

cells µL-1 min-1) and river water communities (average slope = -0.14 ± 1.05 cells µL-1 min-1). 219 

 220 

3.2. Detecting and differentiating between single species disturbances  221 

As the RT-FCM data generated stable and robust metrics we challenged the drinking water microbial 222 

community with two different axenic bacterial cultures (E. coli and P. stutzeri) (Figure 3). The presence of 223 

these axenic cultures in the drinking water community could be easily detected visually on basic fluorescence 224 

plots, and served as a positive control for our proposed approach. The initial drinking water microbial 225 

community contained 45.6 ± 3.3 cells µL-1 with 37.7 ± 1.7 % HNA cells and a phenotypic diversity index of 226 

approximately 2246.3 ± 99.9 a.u. During spiking, the cell concentrations reached maxima of 207.9 cells µL-1 227 

(E. coli) and 180.6 cells µL-1 (P. stutzeri) (Figure 3A). The % HNA content cells increased to 87.3 % during E. 228 

coli contamination and to 80.3 % during P. stutzeri contamination (Figure 3B) while concurrently the 229 

phenotypic diversity index decreased to a minimum of 977.8 a.u. and 1338.6 a.u., respectively (Figure 3C)). 230 

Clustering of the phenotypic fingerprints resulted in the identification of three distinct phenotypic community 231 

types throughout the experiment (Figure 3D). These represent sample groups of similar phenotypic 232 

fingerprints, and reveal changes in the community structure as a result of the contaminations. Community 233 

type 1 represented the natural drinking water community, community type 2 the E. coli contaminated 234 

community, and community type 3 the P. stutzeri contaminated community. Three data points situated at the 235 

transitions between community types had bootstrap confidence values less than 90 and thus could not be 236 

unequivocally assigned to a single community type. The combined use of FCM metrics demonstrated that it is 237 
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possible to detect both sudden (spiking) and gradual (washout) fluctuations at high temporal resolution and to 238 

discriminate between the water matrix and the different axenic cultures. 239 

 240 

3.3. Detecting and differentiating between complex microbial community disturbances 241 

Next, the sampling system and subsequent data analysis was challenged to detect transitions between 242 

contaminations of five different natural freshwater microbial communities (see section 2.4.). These were 243 

retrieved from grab samples of two distinct rivers, one freshwater pond, one groundwater reservoir, and a 244 

commercial bottled water. Freshwater communities from such systems have previously been shown to differ 245 

greatly in terms of their flow cytometric properties and community composition, often as a result of 246 

environmental factors (e.g., rain events, nutrient status, contamination) (Besmer et al. 2016, Prest et al. 2013, 247 

De Roy et al. 2012, Proctor et al. 2018). As such, these different freshwater systems form an ideal set of 248 

diverse communities by which our integrated RT-FCM approach can be challenged. 249 

 250 

Only by using a combination of both conventional (TCC and % HNA cells) and advanced FCM 251 

metrics (phenotypic diversity index and phenotypic community typing) was it possible to detect and 252 

discriminate between all five contaminations, while this was not possible with any single metric (Figure 4). 253 

Based on observations that exceeded > 2 standard deviations from the reference mean (first 15 minutes of 254 

experiment), two major community transitions could be detected through the cell density dynamics (i.e., 30 255 

minute and 60 minute mark, Figure 4A) and one additional disturbance could be detected through the % 256 

HNA cells (i.e. 20 minute mark). The phenotypic diversity index indicated three disturbances (i.e., at the 20 257 

minute, 50 minute and 60 minute marks, Figure 4C), of which the one at the 50 minute mark was more 258 

difficult to distinguish with the conventional metrics. Finally the robust clustering of the phenotypic 259 

fingerprints detected a total of five distinct community types (Figure 4D), which in combination with the 260 

community transitions detected by the cell density, %HNA cells, and phenotypic diversity index metrics 261 

allowed us to distinguish all six freshwater community contaminations.  Because a conservative and robust 262 

clustering approach was used, the groundwater microbial community (i.e. contamination 2), despite invoking 263 
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the largest change in TCC and a moderate decrease in % HNA cells,  clustered together with the drinking 264 

water microbial community into a single community type. If conventional k-medoids clustering with 265 

knowledge concerning the number of expected community types was used (i.e. k = 6), all six freshwater 266 

communities could be identified, yet the number of false positive cluster allocations increased (Figure S5).  267 

The phenotypic features that underlie the differences between community types were further 268 

investigated. We visualized the contrasts between the average phenotypic fingerprints of the two primary 269 

fluorescence parameters of the contaminated community types and the baseline drinking water microbial 270 

community (Figure 5). This allowed us to identify specific populations in the flow cytometric data that 271 

became enriched or reduced in relative abundance during each contamination event (Figure 5A). Each 272 

contamination event caused an enrichment in relatively high nucleic acid content populations that were 273 

largely unique to each contamination. However, there were also distinct high nucleic acid populations for the 274 

pond and river water contaminations that were reduced in relative abundance. Overall, for each 275 

contamination there were regions in the phenotypic fingerprint that were either contamination-specific or 276 

shared with other contaminations that allowed for discriminating between the different microbial community 277 

disturbances (Figure 5B). 278 

 279 

4. Discussion 280 

Our goal was the quantification and characterization of microbial disturbances in aquatic microbial 281 

communities through the integration of real-time FCM and advanced fingerprinting analysis. We 282 

demonstrated that with this approach steady state conditions, gradual changes and sudden events, with 283 

disturbances from both axenic cultures and natural microbial communities could be detected and accurately 284 

quantified at high temporal resolution (Figures 3-5).  285 

 286 

4.1. Monitoring disturbance events through advanced fingerprinting 287 

In order to resolve all microbial contamination events the combination of at least two FCM fingerprint 288 

metrics (i.e. phenotypic diversity index and community type) and one quantitative descriptor (total cell 289 
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concentration or %HNA cells) was necessary. Each of these statistics provides a unique insight into the 290 

community structure of the microbial community. The phenotypic diversity index has previously been shown 291 

to strongly correlate with the taxonomic diversity of the microbial community of a cooling water system as 292 

well as natural lake bacterioplankton communities (Props et al. 2016a, Props et al. 2018). Therefore, the 293 

phenotypic diversity index may be able to serve as a proxy for shifts in the microbial community diversity of 294 

other engineered systems as well. Our observations during the spiking of axenic contaminants are consistent 295 

with these previous data; the phenotypic diversity rapidly declined indicating a reduction in the evenness 296 

component of the microbial diversity, i.e. a single taxon suddenly became highly abundant (Figure 3). The 297 

difference in phenotypic diversity index of the microbial community during the two strain contaminations can 298 

be explained by two factors: (i) the slight difference in strain concentration resulted in a less diverse 299 

community during the E. coli contamination events when compared to P. stutzeri, and (ii) the intrinsic 300 

phenotypic differences between the two strains led to distinct changes in the community phenotypic 301 

fingerprint (see (Buysschaert et al. 2018) for an example of strain-level differences in phenotypic fingerprints). 302 

As such, the sensitivity to detect single strain contaminations will be conditional on the nature of the 303 

contamination (e.g. phylogeny, physiology). 304 

 305 

The diversity dynamics for the disturbances with indigenous microbial communities were less distinct as these 306 

natural communities typically possess diversities that are within the same range as that of the receiving 307 

community. In addition, natural freshwater communities, such as those used in this study, often differ in their 308 

phenotypic properties such as nucleic acid content and cell morphology, as measured through flow cytometry 309 

(Bouvier et al. 2007). These differing phenotypic properties have been associated with distinct phylogenetic 310 

groups (Proctor et al. 2018, Wang et al. 2009), but also variable functionality (i.e., more productive systems 311 

have higher HNA cell density) (Bowman et al. 2017, Servais et al. 2003). Most contaminations resulted in a 312 

relative enrichment of various HNA populations, which are typically composed of larger cells, with a high 313 

cell-specific activity and larger genome size (Servais et al. 2003, Lebaron et al. 2002). Contaminations or 314 

disturbances in LNA populations, such as those dominating the groundwater community (> 70%), may prove 315 
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to be more difficult to detect based on flow cytometric fingerprinting and will require further research. 316 

However, our successful detection of a high LNA-content river water community in the tap water system 317 

suggests that this is possible for certain contaminations with the current computational workflow. 318 

 319 

Monitoring microbial diversity is important as it may potentially regulate a multitude of biological phenomena 320 

such as invasion (De Roy et al. 2013) and community functionality (Servais et al. 2003, Wittebolle et al. 2009), 321 

and as such deserves substantial consideration in engineered aquatic systems where outgrowths of pathogens 322 

(Proctor et al. 2017, Chiao et al. 2014), biofilms (Proctor et al. 2016) or bio-corroding communities 323 

(Choudhury et al. 2012, Chien et al. 2012) may occur. Phenotypic community types were defined by robust 324 

clustering of the fingerprints of 60 s bins. This approach allowed us to clearly demarcate the transitions 325 

between successive disturbances as well as between different types of disturbances. Different community 326 

types may reflect both significant changes in community structure (Rubbens et al. 2017) and in the 327 

phenotypic characteristics of the community (Muller 2007, Koch et al. 2013b) as a response to a disturbance. 328 

From a practical perspective this metric is attractive as it provides operators with a binary descriptor 329 

(disturbance/no disturbance) of the complex underlying changes in the microbial community. As we were 330 

able to attribute specific phenotypic populations to the discrete community types (Figure 5) we envision that 331 

supervised computational methods (i.e. machine-learning) will be able to drastically improve the sensitivity by 332 

which fingerprinting methods can automatically detect and distinguish between microbial contaminants in 333 

microbial communities. Analogous to our clustering approach, these supervised methods could function on 334 

the fingerprint as a whole and in this case classify samples as contaminated or not contaminated. On the 335 

other hand the properties of single-cell contaminants could be learned by machine-learning models and 336 

employed to classify and enumerate single-cells contaminants similarly to how Rubbens et al. (2017) 337 

characterized synthetic microbial communities. However, for both applications (i.e. sample and single-cell 338 

classification) a sufficiently large data collection should be available that contains samples or cells annotated 339 

with the classification label of interest (e.g., contamination status or cell-type). 340 

 341 
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Total cell concentration has been the most applied FCM metric for monitoring disturbances in aquatic 342 

microbial communities of engineered systems (Hammes and Egli 2010, Van Nevel et al. 2017). It is the 343 

easiest parameter to assess and interpret disturbances by, but it lacks any resolving power when the 344 

disturbance affects the community structure and not the cell density of the community, such as through 345 

balanced growth and lysis or if the invading community (partially) displaces the indigenous microbial 346 

community. An example of the latter phenomenon can be found in the first disturbance of the 347 

autochthonous microbial community in the drinking water system (Figure 4C/D). This disturbance could 348 

only be detected using the other metrics. However, the accuracy of these metrics was shown to be highly 349 

dependent on the sample size (i.e. number of cells measured) and as such on the temporal resolution. The 350 

search for an optimal sample size highlights the critical trade-off between high temporal resolution and 351 

accuracy in the data analysis, which is a decision the researcher should make, demonstrate and justify on a 352 

case-by-case basis. Similar to our experimental design, we advise to perform suitable control runs for new 353 

applications in order to determine acceptable constraints on each FCM metric. In particular for our study, we 354 

opted to constrain the coefficient of variation on the FCM metrics to 5 %, corresponding to a maximum 355 

temporal resolution of 60 s for the drinking water and 10-30 s for the river water community. This resolution 356 

would be well suited for numerous microbial processes in both laboratory scale experiments and full-scale 357 

engineered systems that can transpire within minutes (Koch et al. 2014, Muller 2007). While previous work 358 

using kinetic or real-time flow cytometry addressed this to some extent (Arnoldini et al. 2013), samples in 359 

those studies were either not stained or were of a nature that staining did not interfere with the experiment 360 

(e.g., studying the kinetics of dye penetration into bacterial cells). We recommend that our analysis guidelines 361 

should also be taken into consideration during the advanced data analysis of any manual or online FCM data 362 

of SYBR Green stained samples in order to avoid false-positive classification of disturbance events.  363 

 364 

4.2. Future applications of RT-FCM technology 365 

There exist numerous research applications for RT-FCM technology, such as detailed tracking of disinfection 366 

kinetics with oxidants such as ozone or chlorine (von Gunten 2003, Benarde et al. 1967), growth (Props et al. 367 
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2016b) and/or stress responses (Arnoldini et al. 2012), cellular grazing by invasive species (Props et al. 2018, 368 

Denef et al. 2017) or lysis by bacteriophages (Weinbauer and Höfle 1998). The application of RT-FCM 369 

technology is not limited to laboratory-scale studies and several applications in environmental or engineered 370 

aquatic ecosystems can be considered. Real-time flow cytometry was recently used in a 5 hour study to 371 

successfully measure changes in the cell concentration of the effluent of a drinking water biofilter under 372 

fluctuating operational conditions, and as a tool to simulate the effects of emergency chlorine disinfection 373 

procedures (Besmer and Hammes 2016, Besmer et al. 2017). In this regard, measuring bacterial detachment 374 

and stabilization kinetics in building plumbing during the backwashing of biological filters (Dai et al. 2018) or 375 

throughout the operation of cooling water systems (Props et al. 2016b) are interesting research avenues. The 376 

current RT-FCM instrumentation is primarily powerful for studying (eco-)systems or laboratory experiments 377 

that display dynamic behavior of which the exact kinetics are of primary interest. RT-FCM would as such not 378 

be suitable as a long-term monitoring device since extended runs will result in substantial operational costs 379 

(e.g. consumption of stain, attrition of tubing, fouling). For long term baseline monitoring, the use of online 380 

or manual FCM is advised (Hammes et al. 2012, Abu-Absi et al. 2003). 381 

 382 

Conclusions 383 

 High-frequency RT-FCM data was integrated with advanced fingerprinting methods to describe 384 

temporal disturbances in a natural aquatic microbial community.  385 

 We demonstrated that multiple conventional and advanced fingerprinting metrics are required for the 386 

detailed characterization of microbial disturbance events. 387 

 We provide analysis guidelines that should be taken into consideration during the advanced data 388 

analysis of manual, online, and real-time FCM data.  389 

 This technology represents a powerful tool for research applications in various (microbiological) 390 

research fields.  391 

 392 

 393 
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Figures 401 

Figure 1. Schematic presentation of the real-time flow cytometry (RT-FCM) approach taken in this study. A 402 

prototype continuous-staining device links a conventional flow cytometer and an experimental environment, 403 

coupled with various fingerprinting methods for data analysis. The experimental environment was a 404 

continuous stirred reactor with possibilities for wash-in/wash-out operation and contaminant spiking. The 405 

prototype extracts samples continuously with peristaltic pumping at a rate of 0.3 mL min-1 and then stains 406 

these samples continuously in a mixing chamber with a fluorescent dye. From the mixing chamber the sample 407 

flows through an incubation loop at a controlled temperature (35 °C), after which the sample is delivered to a 408 

sampling port compatible with a commercially available flow cytometer. 409 

 410 

Figure 2. Influence of temporal resolution (and consequently the number of events per bin) on the accuracy 411 

of FCM-derived microbial community metrics for the drinking water and river water microbial communities. 412 

(A) Coefficient of variation (CV) for the phenotypic diversity index calculated from data at various temporal 413 

resolutions vs. the number of cells measured. The black line represents an ordinary least squares regression 414 

fit. (B) Coefficient of variation (CV) for the total cell concentration (TCC) calculated from data at various 415 

temporal resolutions vs. the number of cells measured. The black line represents a locally weighted regression 416 

fit. The horizontal dotted lines indicate a CV-threshold of 5%, which is commonly considered to be a good 417 

target value for conventional FCM metrics. 418 

 419 

Figure 3.  Repeated spiking of two axenic cultures (E. coli and P. stutzeri) in a continuous reactor containing 420 

non-chlorinated drinking water. Each culture was spiked three consecutive times for one minute in a 50 mL 421 

reactor with a drinking water flow through rate of 100 mL min-1. Colored arrows on panels indicate the time 422 

periods during which the contaminations could theoretically be detected. These time periods are lagging 423 

approximately 10 minutes behind the actual disturbance events as a result of the incubation loop in the RT-424 

FCM setup. (A) Total cell concentration (TCC), (B) %HNA cells and (C) phenotypic diversity index 425 

resolved at one-minute intervals. Error bars on the phenotypic diversity index indicate bootstrap errors (n = 426 
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100). Color gradients for (A), (B) and (C) indicate relative deviation from the mean (calculated from the first 427 

15 data points) expressed in units of standard deviation. (D) Phenotypic community type as identified by 428 

robust clustering of the phenotypic fingerprints, each community type is highlighted by a specific color. The 429 

representative community type for each sample was determined after 100 bootstraps. Representative 430 

community types supported by less than 90 of the 100 bootstrap runs are colorless and highlighted by the star 431 

icons.  432 

  433 

Figure 4.  Subsequent contamination of the continuous drinking water reactor by five mixed natural 434 

communities (i.e. respectively bottled mineral water (Evian), groundwater, 20-fold diluted pond water, 10-fold 435 

diluted river water (Chriesbach River), 20-fold diluted river water (Glatt River)). Colored arrows on panels 436 

indicate the time periods during which the contaminations could theoretically be detected. These time periods 437 

are lagging approximately 10 minutes behind the actual disturbance events as a result of the incubation loop 438 

in the RT-FCM setup. (A) Total cell concentration (TCC) (B) %HNA cells and (C) phenotypic diversity 439 

index resolved at one-minute intervals. Error bars on the phenotypic diversity index indicate bootstrap errors 440 

(n = 100). Color gradients for (B) and (C) indicate relative deviation from the mean (calculated from the first 441 

15 data points) expressed in units of standard deviation. (D) Phenotypic community type as identified by 442 

robust clustering of the phenotypic fingerprints, each community type is highlighted by a specific color. The 443 

representative community type for each sample was determined after 100 bootstraps. Representative 444 

community types supported by less than 90 of the 100 bootstrap runs are colorless and highlighted by the star 445 

icons. 446 

 447 

Figure 5.  (A) contrasts between the average fingerprints of the control and the contaminations as identified 448 

by the phenotypic community typing (Figure 4D). High density differences indicate populations or regions in 449 

the flow cytometry data that are enriched (∆ Density > 0) or reduced (∆ Density < 0) during contamination 450 

relative to the baseline drinking water community. (B) Overlay of the contrasts of (A) highlighting both 451 

overlapping and distinct zones that respond to each contamination. 452 
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