
1 

UNTARGETED TIME-PATTERN ANALYSIS OF LC-HRMS DATA TO DETECT SPILLS 

AND COMPOUNDS WITH HIGH FLUCTUATION IN INFLUENT WASTEWATER 

Nikiforos A. Alygizakis1, Pablo Gago-Ferrero1, Juliane Hollender2,3, Νikolaos S. Τhomaidis1,*

1 Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of 

Athens, Panepistimiopolis Zografou, 15771 Athens, Greece 

2 Eawag: Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland 

3Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092, Zürich, Switzerland 
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HighlightsNovel prioritization capable of detecting compounds with high 

fluctuation over time 

 Application to LC-HRMS data of daily influent wastewater samples 

 30% of the prioritized compounds were tentatively identified 

 Two compounds were reported in wastewater for the first time 

 Four novel surfactant series were tentatively identified 

Abstract 

Peak prioritization plays a key role in non-target analysis of complex samples in order to focus the 

elucidation efforts on potentially relevant substances. The present work shows the development of a 

computational workflow capable of detecting compounds that exhibit large variation in intensity over 

time. The developed approach is based on three open-source R packages (xcms, CAMERA and 

TIMECOURSE) and includes the use of the statistical test Multivariate Empirical Bayes Approach to rank 

the compounds based on the Hotelling T2 coefficient, which is an indicator of large concentration 

variations of unknown components. The approach was applied to replicate series of 24-hour composite 

flow-proportional influent wastewater samples collected during 8 consecutive days. 60 events involving 
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unknown substances with high fluctuation over time were successfully prioritized. 14 of those compounds 

were tentatively identified using HRMS/MS libraries, chemical databases, in-silico fragmentation tools, 

and retention time prediction models. Four compounds were confirmed with standards from which two 

never reported before in wastewater. 

Keywords: Peak prioritization workflow; Trend analysis; Multivariate Empirical Bayes Approach; Non-

target screening; Wastewater. 
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1. Introduction  

Advances in high resolution mass spectrometry coupled to liquid chromatography (LC-HRMS) offer to 

environmental  analytical chemists the opportunity to identify a continuously increasingly number of trace 

organic pollutants, even in highly complex environmental samples [1]. Target screening is insufficient to 

assess the quality of environmental waters as only a small portion of organic contaminants can be 

captured, while other relevant and potentially harmful substances cannot be detected [2-4]. Although still 

most investigations focus on target screening (where reference standards are available), there is an 

increasing number of studies dealing with both suspect screening (prior structural information of the 

suspects available, but no reference standards are available) and non-target screening (no prior 

information and no reference standards are available).  

However, environmental samples are complex chemical mixtures containing tens of thousands of 

individual substances that produce a high number of peaks in LC-HRMS analysis. Their complete 

elucidation through the use of non-target strategies is not feasible, since it would require extensive time 

and effort. Thus, it is clear that the selection of the peaks of interest (peak prioritization) is a key step in 

any investigation involving non-target analysis. Depending on the goals of the study, different 

prioritization strategies should be applied to the set of obtained chromatographic peaks [5]. 

So far, most of the prioritization strategies followed intensity-based criteria in combination with the 

prioritization of substances with a distinctive isotopic pattern (e.g. halogenated compounds) [4, 6-8], as 

these can be considered as relevant substances with reasonable identification changes. Other approaches 

used mass defect to focus identification efforts on molecular formulas outside the matrix domain in 

complex sediment samples [9, 10]. It has also been proved useful when the objective is to find molecules 

with specific characteristics. An example was the detection of perfluoro-alkyl ether carboxylic acids and 

sulfonic acids in natural waters due to the negative mass defect of the multiple fluorine and oxygen atoms 

[11]. Few studies conducted peak prioritization prior non-target analysis based on effect-directed analysis 

(EDA), a useful tool for identifying predominant toxicants in complex environmental mixtures combining 

effect testing and fractionation [12-14]. Other strategies include time series prioritization (prioritizing 

features whose intensities varied substantially over the time course of a sampling campaign in one 

sampling site) [15, 16], are based on spatial variation [17] or use metabolic logic combined with 

multivariate statistics in order to find unknown metabolites of certain substances [18]. In the field of trend 

analysis, Schlüsener et al. [15], used vendor software from SCIEX (MarkerView) to analyze long-time series 

LC-HRMS data coming from a sampling station of Rhine river which was affected by effluent wastewater. 

Afterwards, they used open-source scripts to visualize the patterns and to perform autocorrelation to 

search and prioritize the features with high periodic variations. Plassmann et al. used trend analysis to 

detect continuously increasing peak intensities and filter out peak signals from naturally-occurring 

substances in whole blood samples [16]. Moreover, trend analysis has been used for assessing the quality 

of the chromatographic stability in LC-HRMS data using von Neumann trend test [19, 20].  

The main objective of the present study was the development of an automated prioritization workflow 

based on open-source tools that is capable of detecting automatically compounds that exhibit large 

variation in their intensity over time (trend-analysis). This new prioritization approach was realized by 

combining the different open-source R packages xcms, CAMERA and TIMECOURSE as well as the statistical 

test Multivariate Empirical Bayes Approach (MEBA) [21]. The statistically obtained Hotelling T2 coefficient 

was used as an indicator of large intensity variations to rank the compounds. MEBA seemed to be the 
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most suitable trend test for the generated dataset, because (i) it assesses longitudinal developmental 

time-series, (ii) it considers the repeatability of the replicates and (iii) it is not affected by progressive 

variations since data is not examined sequentially. Moreover, (iv) it accounts cumulatively for large 

variations among the different time points and (v) it is not affected by seasonality. 

The developed workflow was applied to the evaluation of influent wastewater samples in order to detect 

events of direct disposal (e.g. due to illegal discharges) or sudden changes in the use of any substance. 

Replicated time-series of 24-hour flow proportional composite influent wastewater samples were taken 

during 8 consecutive days from a large wastewater treatment plant (WWTP) in Athens, Greece, which 

receives both urban and industrial wastewater. The compounds were ranked according to the developed 

procedure and elucidation efforts focused on the top-prioritized ones through the application of non-

target identification strategies previously developed [7].  

2.  Materials and Methods 

2.1. Chemicals and reagents 

All solvents used in the present work were UPLC-MS grade. Acetonitrile (ACN) and methanol (MeOH) were 

purchased from Merck (Darmstadt, Germany), whereas 2-propanol of LC-MS grade was obtained from 

Fisher Scientific (Geel, Belgium). Distilled water was provided by a Milli-Q purification apparatus (Millipore 

Direct-Q UV, Bedford, MA, USA). Sodium hydroxide monohydrate (NaOH) for trace analysis ≥99.9995% 

and formic acid 99% were purchased from Fluka (Buchs, Switzerland). Details on the used chemicals and 

reagents for sample preparation and standard compounds purchased for confirmation purposes are 

provided in the Supporting Information (SI, SI-1). 

2.2. Sampling and storage 

24-hour composite flow proportional influent wastewater samples were collected from the WWTP of 

Athens (Greece) during 8 consecutive days in March 2015. The location of the WWTP of Athens can be 

found on section SI-2. The WWTP is designed with primary sedimentation, activated sludge process with 

biological nitrogen and phosphorus removal and secondary sedimentation. The residential population 

connected to the WWTP based on official census, excluding commuters, is 3,700,000 and the number of 

people estimated based on the number of house connections is 4,562,500. The WWTP is designed to serve 

a population equivalent of 5,200,000 and thus is by far the largest in Greece and one of the largest in the 

world. The estimated sewage flow for the collected samples was 720,000 m3 day-1.  

Raw influent wastewater was collected in pre-cleaned high-density polyethylene (HDPE) bottles. The 

samples were filtered with glass fiber filters (pore size 0.7 μm) immediately after arrival at the laboratory. 

They were stored in the dark at 4 °C until analysis, which happened directly after the end of the sampling 

campaign.  

2.3. Sample preparation and instrumental analysis 

Sample extraction was carried out using a slightly modified protocol developed by Kern et al.[22] In-house 

four sorbent SPE cartridges (200 mg Strata-X, 150 mg Isolute ENV+, 100 mg Strata-X-AW and 100 mg 

Strata-X-CW) were preconditioned with 6 mL with MeOH and 6 mL water. Cartridges were loaded with 

aliquots of 100 mL (preadjusted to pH 6.5), were dried under vacuum for 1 hour and were eluted with 4 
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mL of 50:50 MeOH:ethyl acetate containing 2% of ammonia, followed by 2 mL of 50:50 MeOH:ethyl 

acetate containing 1.7% of formic acid. Extracts were evaporated under a gentle nitrogen stream to a 

volume of 100 µL, reconstituted to 0.5 mL with a final proportion of 50:50 MeOH:water and filtered 

through a 0.2 µm RC syringe filter (Phenomenex, USA) .  

Analyses were carried out using an UHPLC/QTOF-MS system, equipped with a UHPLC apparatus (Dionex 

UltiMate 3000 RSLC, Thermo Fisher Scientific, Germany), consisting of a solvent rack degasser, auto-

sampler, a binary pump with solvent selection valve and a column oven coupled to the QTOF-MS/MS 

analyzer (Maxis Impact, Bruker Daltonics, Bremen, Germany). An Acclaim RSLC C18 column (2.1 × 100 mm, 

2.2 μm) from Thermo Fisher Scientific (Dreieich, Germany), preceded by an ACQUITY UPLC BEH C18 1.7 

μm, VanGuard Pre-Column from Waters (Dublin, Ireland), and thermostated at 30 °C, was used for 

separation.  

All the samples were first analyzed in full scan mode. The QTOF-MS system was operating in broadband 

collision-induced dissociation (bbCID, data-independent) acquisition mode and recorded spectra over the 

range of m/z 50−1000 with a scan rate of 2 Hz. This mode provides MS and MS/MS spectra at the same 

time working at two different collision energies (4 and 25 eV). A second data-dependent MS/MS 

acquisition was conducted using a preselected inclusion mass list containing the exact masses of the 

precursor ion of selected compounds. The collision energy applied was set to predefined values, according 

to the mass and the charge state of every ion. Detailed information on the UPLC-MS/MS performance is 

provided in section SI-3. 

2.4. Computational workflow  

Raw files acquired from the LC-HRMS analysis were converted to mzML file format by using Proteowizard 

software [23] with the following conversion parameters: Peak Picking, true 1-; MsLevel, 1-1 and Threshold 

peak filter, absolute 300-most intense. The computational workflow and the prioritization methodology 

here-in proposed is based on functions available in three R-packages. In brief, functions for peak 

detection, matching peaks across the samples and OBI-Warp retention time alignment are included in the 

XCMS R package, while functions for componentization based on retention time and peak shape and 

functions for annotation of adducts and isotopic peaks are included in the CAMERA R-package. 

TIMECOURSE package was used for prioritization using the one sample multivariate empirical Bayes 

statistic developed by Tai and Speed [21]. A step-wise illustration of the computational workflow can be 

found at Figure 1.  

(Figure 1) 

Sample feature detection was the first step and it was carried out using the function xcmsSet() with 

optimized parameters for QTOF MS data (CentWave parameters can be found in Table 1). After that, 

features representing the same analyte across samples were placed into groups using the group() 

function. Retention time alignment was performed using retcor() function (based on the Kernel density 

estimator [24]). Since there were feature groups with missing features from some of the samples (e.g., 

because an analyte is not present in a particular sample), these missing features were filled with a low 

intensity value with fillPeaks() function [25]. This is important in order to avoid errors due to missing values 

of non-detected peaks in some samples, when performing statistical analysis. Then, features were 

clustered according to retention time (using groupFWHM() function) and  further according to the peak 
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shape correlation coefficient (using groupCorr () function). For this purpose xcmsSet objects were 

converted to CAMERA objects by using xsAnnotate() function. Finally, isotopic peaks and adducts were 

annotated using the functions findIsotopes() and findAdducts(), respectively [26]. Peaks detected in the 

blank samples (with an intensity ratio below one order of magnitude) were removed. Target compounds 

were excluded based on accurate mass (±mass accuracy window of 3 mDa) and retention time (±retention 

time window of 0.50 min). Discussion of target screening results is out of the scope of the present 

manuscript. All remaining components were normalized by log2 transformation. After that, the statistical 

test (Multivariate Empirical Bayes Approach [21]) was applied and compounds were ranked based on the 

Hotelling T2 coefficient, which can be used as an indicator of large concentration variations among daily 

composite samples. 

2.5. Identification of unknown compounds 

Identification of top prioritized components was based on the non-target approach established by Gago-

Ferrero et al [7]. Possible molecular formulas were assigned by applying thresholds of mass accuracy (≤2 

mDa) and isotope pattern (mSigma≤50 [27]). If elucidation of the molecular formula was not unequivocal 

based on mass accuracy and isotope pattern, MS/MS was also considered using Molgen-MS/MS software 

[28]. Molgen-MS/MS was used with the parameter following settings: Elements - C, H, N, O, P, S (unless 

there was evidence of halogens), existence filter “exist”, odd electron ions (oei), ppm = 5 and acc = 15 (MS 

and MS/MS accuracy settings in ppm). Once determined the molecular formula, candidates were obtained 

through the evaluation of the MS/MS  spectra, including the use of in silico fragmentation platforms 

(Metfrag [29] via Metfusion [30]) and the MassBank library [31].  Commercial importance criteria was also 

used through the evaluation of the number of references and data sources in Chemspider [32] and the 

number of patents in Pubchem [33]. The chromatographic retention time plausibility of the candidates 

was evaluated, using an in-house QSRR retention time prediction model [34].  

In four cases, the identity of the unknowns was confirmed by purchasing the corresponding standard and 

comparison of the tR and MS/MS spectrum. Spectral similarity values were calculated with the 

OrgMassSpecR package in R [35, 36]. Confirmation was considered successful only when tR deviation was 

below 0.2 min and MS/MS spectrum similarity was higher than 70%. The level of confidence for the 

identification of the detected compounds was used according to Schymanski et al. [37], where Level 1 

corresponds to confirmed structures (reference standard is available), level 2 to probable structures, level 

3 for tentative candidate(s), Level 4 to unequivocal molecular formulas, and level 5 to exact mass(es) of 

interest. 

3.  Results and Discussion  

3.1. Optimization of the computational workflow to obtain component lists 

The computational workflow established in order to obtain the compound list consists of three basic 

steps: peak picking, matching peaks across the samples and chromatographic tR alignment. Different input 

parameters in the aforementioned steps (e.g., mass accuracy or peak width in centWave peak picking 

algorithm) may lead to different compound lists [38, 39]. Therefore, parameters were optimized by Box-

Behnken fractional factorial design (IPO R-package) [38]. Optimized values for each parameter are 

summarized in Table 1 and are discussed below.  
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(Table 1) 

IPO optimization is based on natural stable 13C isotopic peaks. It calculates a peak picking score based on 

reliable peaks, meaning peaks for which their corresponding isotopes have been detected. This score 

combined with the total number of detected peaks and the number of low intensity peaks (isotopes may 

remain undetectable) is used as response variable. Peak picking parameters are tuned, so that the 

response variable is maximized following design of experiments method [38]. Optimum values for mass 

accuracy and peak width were almost the same in positive and negative ionization mode (17.6 ppm, ~15 

sec (minimum peakwidth) and 50 sec (maximum peakwidth)). The similarity in ESI(+) and ESI(-) mode was 

expected since the same separation method and instrument was used for analysis of the extracts in both 

polarities. The obtained mass accuracy threshold is lower than those used in most of the predefined 

methods in R-based online platforms (Scripps center for metabolomics (xcmsonline) [40]), where normally 

~ 30 ppm is applied for QTOF data, and therefore decreasing the number of false positives. This example 

shows that optimizing input parameters prior to data treatment is important for proper dataset 

generation and therefore prioritization. Other additional filters included such as prefilter, which is used in 

order to avoid peaks with very low intensity. When applying this filter, a given mass should be present at 

least in three consecutive scans with an intensity threshold (≥3000, ESI(+) and ≥1000, ESI(-)). Another filter 

was scanrange, which helps to avoid calibrant peaks by restricting peak picking to specific time intervals. 

In our case, calibrant substance was injected in the beginning of each chromatographic run using a 6-port 

valve and calibrant peaks appear for 12 consecutive scans, which were excluded by using the scanrange 

filter. 

Only features existing in 3 out of the 5 replicates were kept by setting the parameter minfrac (minimum 

fraction of samples in a subgroup) to 0.6. After that, the kernel density estimator method was used for 

matching peaks across the samples (grouping together peaks representing the same analyte in different 

samples). In this regard, the parameters bw (bandwidth of kernels) and mzwid (width of overlapping m/z 

slices), which indicate time tolerance and mass accuracy, respectively, were optimized (Table 1, part 

grouping of features based on kernel density estimator).  

The next step consisted of retention time alignment. It was performed by using the ordered bijective 

interpolated warping (ΟΒΙ-Warp) algorithm [24]. Two penalty parameters, gapInit and gapExtend, which 

prevent the over-alignment of the chromatograms, were optimized. Optimization of grouping and 

retention time alignment takes place at the same time and is based on peaks appearing in all samples. 

Response variable is a linear combination of grouping response variable and retention time alignment 

response variable [38]. The obtained values were very similar to those obtained by Prince and Marcotte 

[24] (Table 1). Moreover, it was observed that the maximum chromatographic drift during the analysis 

was 20 and 10 s (ESI(+) and ESI(-), respectively), showing the robustness of the chromatographic system.  

Since ESI is a soft ionization technique, several ion species can be observed for the same compounds (e.g., 

adducts or isotopes). In order to obtain the final compound list, the peaks belonging to the same 

compound were grouped. This was conducted using the CAMERA R-package [26]. This package can group 

the peaks based on retention time and peak shape and annotates isotopic and adduct peaks. Finally, to 

avoid prioritizing known substances, 207 and 32 target components in positive and negative ionization 

respectively were excluded (target list of University of Athens consisted of 2249 compounds and is 

available at NORMAN Suspect list exchange http://www.norman-network.com/?q=node/236). 

ACCEPTED M
ANUSCRIP

T



9 
 

3.2. Prioritization methodology   

To find the compounds exhibiting high fluctuation among the daily samples, the one-sample Multivariate 

Empirical Bayes Approach (MEBA) statistical test was applied. This test is suitable for longitudinal 

replicated developmental time-course data. Originally, this statistical test was designed to solve the 

problem of ranking genes in microarray experiments [21]. MEBA has advantages compared to other F-

statistic approaches (i.e. ANOVA) since it incorporates replicate variances and the correlations among 

responses of time–series samples from longitudinal data. 

Intensity normalization is a mandatory step for statistical hypothesis testing. Therefore, as a first step Log2 

transformation was performed in the dataset (compound list), since it is the most appropriate 

transformation for the applied statistical test [21]. Then, the statistical test was applied to every 

compound and a score (Hotelling T2) was assigned based on the peak area values observed in the time-

series samples. This score is a positive number without an upper limit, which takes into account the 

repeatability of the intensity among replicates representing one time point and the magnitude of change 

of intensity between time points.  A high value indicates high fluctuation among the time series samples. 

Compounds were ranked according to the score and the results for the first top 30 prioritized substances 

in each ionization mode are summarized in table 2 and in SI (section SI-4, tables S4A and S4B).  

Through the evaluation of the graphs several compounds with a pollution spill trend could be observed.  

The graphics for the compounds with this behavior are summarized in the SI (SI-5a) and in Figure 21 

(selected cases).  

(Figure 2) 

Spill trend cases were compounds detected in specific samples (normally at high intensities), while remain 

undetectable in the other samples. This becomes obvious for the top-ranked compounds and especially 

for the cases #P1, #P2 (Figure 2) as well as for the others depicted in Figure S5b, which exhibit extreme 

changes in intensities and were mainly found in one daily sample. Cases of pollution spills can also include 

compounds that can be detected in most of the samples at low intensity but the signal increase 

disproportionately in specific samples. The most obvious cases are #P12 and #P10, where the signal 

increased more than 5 and 18 times, respectively, compared to the average intensity. Compounds 

belonging to this pollution spill category are of crucial environmental importance, since they can reach 

high concentration levels and become potentially toxic for the ecosystem. The detection and identification 

of these substances may allow the authorities to trace the pollution source and adopt appropriate 

measures.  

Apart from the cases of pollution spills, also compounds with dropping signal intensities during specific 

days were determined through the application of the developed prioritization methodology. Examples of 

this behavior for the compounds #N18 and #N16 are depicted in Figure 2b. The signal decreased very 

significantly during the weekend period indicating an industrial origin.  

Several of the prioritized compounds corresponded to substances exhibiting the same time pattern. In 

almost all cases of successful identifications these substances were identified as surfactants belonging to 

different homologue series. Figure 2c shows an example with three different surfactants sharing the same 

time pattern. More examples of this behavior are depicted in Figure S6B (SI). These compounds obviously 
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share a common origin and even might coexist in products. However, in order to draw sound conclusions 

with other groups of substances more successful identifications would be required. 

Evaluating the ranking, substances that remained undetectable in at least one sample (very low number 

or zero assigned by fill gaps function) also received a relatively high score, since the statistical approach is 

highly affected by this fact. This is the reason why some compounds (e.g. #N15 or #P7) were prioritized 

even though their pattern in the rest of the time-points seems almost steady. Also, the score of a 

compound decreases when the repeatability within replicates of a sample time point is low, since MEBA 

takes into account all the replicates. This is the main reason why compounds with very similar trends are 

ranked slightly different (e.g. #N9-#N12, SI). Despite of the aforementioned disadvantages the 

prioritization approach provided good results and it was proved capable of detecting pollution spills and 

compounds exhibiting high fluctuation over time. 

3.3. Identification of top-ranked prioritized compounds 

Identification efforts were focused on the first 30 prioritized components in each ionization mode (60 

potential compounds in total) and the results are summarized in Tables 2 (tentatively identified 

compounds) and S4a, S4b for prioritized but not tentatively identified compounds). In ESI (+), two 

substances, 3,6,9,12-tetraoxatetracosan-1-ol and N,N,N`,N`-tetrakis(2-hydroxyethyl)hexanediamide, 

were confirmed with the corresponding commercial standard, reaching the confidence level 1. Eight 

additional substances were tentatively identified; all of them as tentative candidates (level 3). For eight 

compounds it was not possible to go beyond the determination of the unequivocal molecular formula 

(level 4) and the remaining twelve compounds remained as exact mass of interest (level 5). In ESI (-), two 

substances, 3-nitrobenzenesulfonic acid and lauryl sulfate, were confirmed, one reached confidence level 

2 and five compounds reached level 3. For twelve additional compounds an unequivocal molecular 

formula was assigned (level 4) and ten peaks remained at level 5. 

An interesting case was the identification of the compound N,N,N`,N`-tetrakis(2-

hydroxyethyl)hexanediamide (CAS: 6334-25-4) (case #P2 in table 2). A peak corresponding to m/z 

321.2033  (tR 2.70 min) was prioritized and the unequivocal molecular formula C14H28N2O6 was assigned 

based on the mass accuracy, the isotope pattern and the annotation of the fragments. There were 38 

compounds with this formula in the ChemSpider database. The MS/MS spectra indicated a neutral loss of 

105.078 (corresponding to C4H11NO2) and the loss of a H2O molecule. The structure corresponding to the 

confirmed compound received the highest MetFrag score and was within the top 4 MetFusion candidates. 

Moreover, this compound was the one with the highest commercial importance (38 data sources, 41 

references and 7 patents in Chemspider and PubChem, respectively) in comparison with the other 

candidates. In addition, the confirmed compound received the closest predicted retention time, indicating 

that models for prediction of chromatographic behavior can be useful for helping in revealing the identity 

of unknown compounds. Finally, the identity of the substance was confirmed with a commercial standard. 

This substance was present in 3 out of the 8 evaluated days, two of them at an almost negligible intensity 

(~ 3 until 9×104) and at very high intensity on the other day (Wednesday 11th March 2015 (3.6×107). 

Therefore, this is a characteristic example of a pollution spill-trend. This chemical is mainly used in the 

fabrication of adhesives, where it is added in order to enhance their performance by acting as cross-linker 

[41]. An intensive use of this substance during the specific day of 11th March 2015 by some adhesive 

industry with resulting high concentrations in the discharged wastewater or an event of direct disposal of 

this chemical into the sewage system are plausible hypothesis to explain the observed behavior. Another 
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interesting example of a compound with a pollution spill trend can be found in the case #N1 (Table 2 and 

Figure S6b). This compound was tentatively identified as hydroxybenzenesulfonic acid (level 3). On a 

specific day (Wednesday, 4th of March 2015), it was determined at a concentration 5 times higher than 

the average of the remaining days of the sampling campaign. 

A compound showing lower concentration levels during the weekend was 3-nitrobenzenesulfonic acid 

(CAS 98-47-5, case #N16, table 2), which was confirmed with a standard, reaching level 1. This compound 

is used in electrical/electronics, photographic, and textile processing industries [42]. The behavior of this 

compound can be explained due to the fact that these industries do not operate (at least at the same 

level) during weekends leading to decreasing concentrations. Another substance which also showed lower 

levels during the weekend days was tentatively identified (level 3) as the glucuronated derivative of 3-

methylcyclopent-2-enone (CAS: 251914-61-1) (case #P9). This chemical is used in the food industry as a 

color additive [43]. For other compounds following exactly the same trend (summarized in Figure S6B), it 

was not possible to go beyond level 4, mostly due to the high number of potential candidates. 

 Several surfactants belonging to the homologous series CH3(CH2)11(CH2CH2O)XSO4 (X=1…12), which have 

not been previously reported in wastewater, were detected and identified as it is shown in Figure 3. These 

compounds corresponded to the cases #P20 m/z 437.1973 (tR: 12.66 min), #P22 m/z 481.2233 (tR: 12.62 

min), #P19 m/z 525.2544 (tR: 12.81 min) and #P21 m/z 569.2756 (tR: 12.89 min) (Table S5a). In both 

ionization modes, consistent peak shapes and constant increase of tR were observed when increasing the 

chain length. The proposed structures can explain all the fragments obtained in the ESI(+)-QTOFMS (Figure 

3). All the spectra corresponding to the homologous series were very similar, showing in all cases 

characteristic fragments at m/z 45.0334, 89.0597, 133.0859 and 177.1121, corresponding to the group 

(CH2CH2O)x (x=1-4). The protonated adduct could not be detected in ESI(+)-QTOFMS. However, the 

adducts [M+NH4]+
 and [M+K]+ showed high intensity, in agreement with other studies dealing with 

identification of surfactants [7, 44]. Substances with the same molecular formulas and time trend were 

also detected in ESI(-)-QTOFMS. The presence in the MS/MS spectra of the characteristic fragments with 

m/z=79.7574 (SO3
–), m/z=96.9601 (HSO4

–) and 122.9758 (C2H3SO4
–) supports the proposed structures. 

Although ChemSpider and PubChem databases only provided linear chain candidates, ramified 

compounds may exist (and similar MS/MS spectra are expected). Therefore, a level of confidence 3 was 

assigned to these substances.  

(Figure 3) 

Other identified surfactants included the substances CH3(CH2)12(CH2CH2O)4OSO3H (level 3), 

CH3(CH2)11(CH2CH2O)4OH (level 1) and CH3CH=CH(CH2)15(OCH2CH2)10OH (level 3) and the additional 

compounds belong to the respective homologue series detected through retrospective analysis (Figure 

S7A, S7B and S7C, respectively). In all these cases consistent tR shifts, peak shapes and MS/MS spectra 

were observed. All these identifications indicate that several surfactants and their corresponding 

transformation products remain unreported in wastewater yet.  

The spectra of the successfully confirmed substances were uploaded in MassBank database (AU4064, 

AU4065, AU4066, AU4067) in order to assure their easy accessibility for the community of analytical 

environmental chemists. 

4.  Conclusions 
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The developed computational workflow was successfully optimized for critical parameters as 

demonstrated for influent samples from the WWTP of Athens. The statistical test MEBA, which have had 

not been used before in such identification workflows, was successfully used to prioritize compounds with 

large concentration variations among the samples. This success of the workflow was demonstrated by 

tentative identification of 14 compounds wherefrom two compounds detected for the first time in raw 

wastewater.   

The development of new prioritization methods capable to prioritize and identify unknown compounds 

in environmental samples is important as non-target screening becomes wide-spread. Smart prioritization 

strategies combining the power of LC-HRMS with advanced statistics can lead to a much better 

understanding of the environment from a chemical point of view. However, the current lack of an 

interface to host the developed prioritization approaches prevents transparent comparison of the 

different approaches and standardization of the methods. It also complicates the application of multiple 

methods to the same set of samples which may lead to the identification of an increasing number of 

unknown compounds. The development of unified interfaces that solve the aforementioned limitations 

in combination with platforms for the storage of large mass spectrometric data would provide important 

advances to better understand the presence and fate of micropollutants in the environment.  
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Table 1. Parameters used for the computational analysis 1 

Input Parameter POSITIVE ESI negative ESI 

CentWave parameters 

ppm 17.6 17.6 

Minimum peak width 14.34 15.5 

Maximum peak width 50 50 

prefilter 3, 3000 3, 1000 

scanrange 20 until 1840 20 until 1840 

fitgauss TRUE TRUE 

integrate TRUE TRUE 

Retention Time alignment based on OBI-Warp algorithm 

Distance function cor_opt cor_opt 

gapInit 0.3 0.27 

gapExtend 2.4 2.36 

Grouping of features based on kernel density estimator 

bw 5 5 

mzwid 0.032 0.0305 

minfrac 0.6 0.6 

minsamp 2 2 

max 50 50 
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 2 

 3 

Figure 1.  Compiled and optimized workflow for detecting compounds with a characteristic intensity 4 

fluctuation over time. 5 
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6 
Figure 2.  (a) Examples of pollution spills (events of direct disposal of chemicals into the sewage system); (b) Examples of compounds with 7 

dropping response during the weekend (The space between the green lines correspond to the weekend); (c) Surfactant compounds sharing a 8 

common time trend. 9 
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Figure 3. Tentative identification (Level 3) of a novel ethoxy hydrogen surfactant (EHS) homologue series 
in negative and positive ionization mode. Spectra correspond to m=3. 
ACCEPTED M

ANUSCRIP
T



20 
 

Table 2. Summary of the results for the prioritized and tentatively identified compounds in positive and 
negative ionization mode. 

Rank m/z 
Molecular formula 
(Name if available) 

tR 

(min) 

Pred. 
tR 

(min) 

Level of 
confidence 

Time trend 

#P2 321.2033 

C14H28N2O6 
N,N,N',N'-Tetrakis(2-

hydroxyethyl) 
hexanediamide) 

2.70 2.80 1 

 

#P3 259.2822 C16H35NO 12.98 - 3 

 

#P9 215.0916 

C10H14O5 
(1S,3R,4S,4aS,7aS)-1,4-

dihydroxy-3-
(hydroxymethyl)-7-
methyl-3,4,4a,7a-

tetrahydro-1H-
cyclopenta[c]pyran-5-

one) 

3.40 3.34 3 

 

#P16 288.2539 
C16H33NO3 

(2-[(2-Hydroxyethyl) 
amino] ethyl laurate) 

11.74 9.84 3 

 

#P19 525.2544 C22H46O9S 12.81 - 3 
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#P20 437.1973 C18H38O7S 12.66 - 3 

 

#P21 569.2756 C24H50O10S 12.89 - 3 

 

#P22 481.2233 C20H42O8S 12.62 - 3 

 

#P27 726.5726 C38H76NO11 14.98 - 3 

 

#P29 363.3105 
C20H42O5 
(3,6,9,12-

Tetraoxatetracosan-1-ol) 
13.51 13.05 1 
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#N1 172.9914 C6H5O4S 3.27 - 3 

 

#N3 581.2464 
C22H46O15S 
(10 GES) 

4.30 7.90* 2B 

 

#N16 201.9817 
C6H4NO5S 

(3-nitrobenzenesulfonic 
acid) 

3.08 3.17 1 

 

#N21 441.2546 

C20H42O8S 
(3,6,9,12-

Tetraoxatetracos-1-yl 
hydrogen sulfate) 

12.46 10.11* 3 

 

#N22 661.3863 

C30H62O13S 
(3,6,9,12,15,18,21,24,27-
nonaoxanonatriacontyl 

hydrogen sulfate) 

12.73 11.21 3 

 ACCEPTED M
ANUSCRIP

T



23 
 

#N24 455.2694 

C21H44O8S 
(2-[2-[2-(2- 

tridecoxyethoxy) ethoxy] 
ethoxy] ethyl hydrogen 

sulfate) 

12.98 10.20 3 

 

#N27 265.1457 
C12H26O4S 

(lauryl sulfate) 
10.94 10.05 1 

 

#N28 311.1684 
C17H28O3S 
(C11-LAS) 

12.00 12.10 

3§ 
MassBank 

record: 
ETS00014 

 
§mix of isomers (spectra present in MassBank as a mix of isomers) 

*Out of the domain of the retention time prediction model 
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