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Abstract  22 

Aquatic organisms are consistently exposed to a mixture of micropollutants that 23 

can bioaccumulate, undergo biotransformation, and may exert mixture effects. 24 

However, little is known on the underlying mechanisms and species-specificity. 25 

Herein we investigated bioaccumulation, biotransformation and synergistic effects of 26 

azole (i.e. prochloraz) and strobilurin (i.e. azoxystrobin) fungicides in the two aquatic 27 

invertebrate species, Hyalella azteca and Gammarus pulex. Bioaccumulation of 28 

azoxystrobin was similar whereas bioaccumulation of prochloraz was slightly 29 

different in the two species but was still significantly below the REACH criteria for 30 

bioaccumulative substances. Similar biotransformation patterns were observed in both 31 

species, and only a few unique biotransformation reactions were detected in H. azteca 32 

such as malonyl-glucose and taurine conjugation. Toxicokinetic modeling additionally 33 

indicated that biotransformation is a more important elimination pathway in H. 34 

azteca. In mixtures, no-observed-adverse-effect levels of prochloraz decreased the 35 

LC50s of azoxystrobin in both species which correlated well with increased internal 36 

azoxystrobin concentrations. This synergistic effect is partly due to the inhibition of 37 

cytochrome P450 monooxygenases by prochloraz which subsequently triggered the 38 

reduced biotransformation of azoxystrobin (lower by 5 folds in H. azteca). The 39 

largely similar responses in both species suggest that the easier-to-cultivate H. azteca 40 

is a promising representative of invertebrates for toxicity testing. 41 

Key words: Fungicides, Synergistic effect, Mixture toxicity, Biotransformation, 42 
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Invertebrates, Hyalella azteca, Cytochrome P450 inhibition. 43 

Introduction 44 

The use of synthetic chemicals is increasing as a result of the combined global 45 

population and economic growths in many regions. These chemicals are typically 46 

introduced into aquatic ecosystems via household activities, agricultural run-off, 47 

industrial wastewater emissions, and effluent discharges from wastewater treatment 48 

plants. Hence, numerous chemicals have been concurrently detected in the aquatic 49 

environment with concentrations ranging from ng/L to µg/L.
1–3

 Some of these 50 

chemicals (i.e. pesticides, pharmaceuticals) are designed to be biologically active and 51 

may exert acute or chronic toxic effects to exposed aquatic organisms, especially 52 

towards highly sensitive species such as macroinvertebrates. For example, strobilurin 53 

(e.g. azoxystrobin) and azole fungicides (e.g. prochloraz), two classes of widely used 54 

agrochemicals that are often applied together,
4,5

 have been detected in surface waters 55 

at high frequencies with concentration ranging from low ng/L to several tens of 56 

µg/L.
3,6–8

 Azoxystrobin and prochloraz inhibit the respiratory chain and cytochrome 57 

P450 enzymes (CYPs) in fungi, respectively. They are both toxic toward aquatic 58 

invertebrates. 
6,9,10

 The acute toxicity (LC50s, 96h) of azoxystrobin and prochloraz on 59 

Gammarus pulex as single substances has been determined to be 270 and 2180 μg/L, 60 

respectively.
11

 In addition, prochloraz has high chronic toxic potency toward Daphnia 61 

magna, with an EC50 for fecundity reduction (measure of reproductive success) of 286 62 

μg/L.
12

 63 
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The toxicity of substance mixtures is often well estimated using concentration 64 

addition or independent action models.
13,14

 However, the interaction of co-occurring 65 

organic micropollutants can produce synergistic effects that alters contaminant fate 66 

and toxicity in non-target organisms.
15

 Indeed, recent studies have shown that azole 67 

fungicides significantly enhance the toxicity of other pesticides (e.g. strobilurins and 68 

pyrethroids) toward terrestrial 
16,17

 and aquatic invertebrates.
18,19

 Although the precise 69 

mechanisms are not clear in all species, we have recently shown that the inhibition of 70 

CYPs,
18

 the main detoxification enzymes present across all kingdoms of life, 71 

contributes to the synergistic effects observed in gammarids. Azole fungicides are 72 

known to inhibit CYPs by strongly coordinating to the active sites, the heme iron, 73 

thereby interrupting the CYP catalytic cycle.
20

 As a result, the internal concentration 74 

of the parent compound azoxystrobin increases following the CYPs inhibition and 75 

thus increases toxicity.
18

 In addition, we have previously demonstrated that specific 76 

prochloraz concentrations increase the uptake of azoxystrobin by inducing 77 

hyperactivity and thereby enhancing its toxicity to G.pulex.
19

 These synergistic effects 78 

on toxicokinetic processes such as uptake, biotransformation, and elimination of 79 

compounds can overall influence the sensitivity of different aquatic species.  80 

The freshwater amphipods G. pulex and H. azteca play an important ecological 81 

role in the production, decomposition, and translocation of organic matter in aquatic 82 

ecosystems.
21

 G. pulex is found across Europe and Northern Asia, while H. azteca is 83 

widespread in Central and North America. These species are highly sensitive towards 84 
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a wide range of chemicals and have been extensively used for biomonitoring and 85 

ecotoxicological testing.
22,23

 As a result of its widespread occurrence, ease of culture, 86 

environmental relevance and sensitivity towards chemicals, H. azteca has been used 87 

as test species for sediment and water quality assessment predominantly in North 88 

America,
24–27

 whereas in Europe amphipods from the genus Gammarus are often used 89 

for biomonitoring or toxicity tests.
28–30

 However, since culturing of Gammarus spp. is 90 

challenging, most laboratory studies that employ Gammarus spp. for toxicity testing 91 

typically, collected them from uncontaminated stream sites with an exception of  a 92 

few studies that used lab-cultures.
31,32

 In addition to the easier cultivation of a 93 

homogenous test population, the genomes of several H. azteca strains have been 94 

sequenced and their genomes and transcripts have been annotated to identify the 95 

responsive genes associated with micropollutant exposure.
33

 However, there is still 96 

more information needed if H. azteca and related aquatic invertebrates exhibit similar 97 

sensitivities towards chemicals.  98 

The objectives of this study were to compare bioaccumulation, biotransformation 99 

patterns and the importance of biotransformation in reducing bioaccumulation, as well 100 

as mixture effects of azoxystrobin and prochloraz in H. azteca with our previous 101 

results obtained in G. pulex.
19

 Our hypothesis was that the inhibition of CYP-102 

mediated biotransformation reactions is similar in both species and results in 103 

synergistic toxicity. First, we compared the biotransformation patterns in the two 104 

species by determining the routes of biotransformation and the toxicokinetic rate 105 
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constants. Second, we elucidated the potential synergistic effects caused by 106 

prochloraz and thereof resulting altered toxicity of azoxystrobin in the two species.  107 

Materials and Methods 108 

All experiments concerning H. azteca were performed in this study. The lipid 109 

content and the internal concentrations of azoxystrobin at LC50s of G. pulex were 110 

measured in this study, while the remaining data on G. pulex were obtained from our 111 

previous studies.
19,34

 In general, experiments for G. pulex were performed in a similar 112 

way compared to H. azteca. Main differences are the optimal culturing conditions for 113 

G. pulex, i.e., 11 ± 2 °C and a 12 h/12 h light/dark cycle and the medium composition, 114 

i.e., aerated artificial pond water (APW).
35

 Details on experiments concerning G. 115 

pulex are given elsewhere.
19

 116 

Chemicals, Solutions and Test Organisms  117 

Detailed information on chemicals and solutions used in this study are provided 118 

in the Supporting Information (SI. A). H. azteca were cultured in aerated Borgmann 119 

water (BW) in the lab,
36

 whereas G. pulex were collected from uncontaminated creeks 120 

in Switzerland and acclimatized in an aquarium with APW.
35

 More details are given 121 

in SI. B.  122 

Experimental Design for Screening Biotransformation Products (BTPs) and 123 

Determining Toxicokinetic (TK) Rate Constants  124 

H. azteca (number of organisms n=30) were introduced into 600 mL-glass 125 

beakers filled with 500 mL BW. A piece of cotton gauze (6 × 8 cm) was added into 126 
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each beaker for animals to perch and hide. Experiments were performed in a climate 127 

incubator (Binder KB 115) while maintaining the optimal conditions for H. azteca (23 128 

± 1 °C and a 16 h/8 h light/dark cycle). For BTP screening experiments, azoxystrobin 129 

and prochloraz were separately spiked into the different beakers to yield a nominal 130 

initial concentration of 100 (0.25) and 100 (0.27) µg/L (µM), respectively. Animals 131 

were collected after 24 h exposure. In parallel, different control experiments were 132 

performed, including organism controls (chemical negative, organism and cotton 133 

gauze positive), chemical controls (organism and cotton gauze negative, chemical 134 

positive) and cotton gauze controls (organism negative, cotton gauze and chemical 135 

positive).  136 

For the determination of toxicokinetic rate constants, animals were exposed to 80 137 

µg/L (0.20 µM) azoxystrobin or 100 µg/L (0.27 µM) prochloraz for 24 h, and were 138 

sampled at 7 different intervals during the uptake phase. For the depuration phase, the 139 

animals were pre-exposed to the test chemicals for 24 h and then shortly rinsed with 140 

nanopure water, followed by transferring them into clean BW medium for depuration. 141 

The animals were sampled at 12 different intervals during the 120 h depuration phase 142 

(SI. C).  143 

Sample Preparation 144 

The collected animals were shortly rinsed with nanopure water, blotted dry using 145 

tissue paper, transferred into 2-mL centrifuge tubes, and weighed. The sampled 146 

organisms were then spiked with 100 µL of methanol containing azoxystrobin-d4 (0.2 147 
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µM) and prochloraz-d7 (0.3 µM), 500 µL of pure methanol and 300 mg of 1-mm 148 

zirconia/silica beads (BioSpec Products, Inc.). The samples were homogenized with a 149 

FastPrep bead beater (MP Biomedicals) in two cycles of 15 s at 6 m s
-1

 (cooling on ice 150 

in between). The homogenate was centrifuged (10 000 rpm × 6 min, 20 °C) and 151 

filtered through 0.45 µm regenerated cellulose filters (BGB Analytic AG). The filters 152 

were washed with 400 µL methanol. Afterwards, the filtrate and the wash solution 153 

were combined. The exposure media (500 µL) were sampled in 2 mL LC-vials at 0, 154 

24, and 120 h, spiked with 100 µL of methanol containing azoxystrobin-d4 (0.2 µM) 155 

and prochloraz-d7 (0.3 µM), and 500 µL pure methanol, and mixed evenly. All 156 

samples were stored at -20 °C until chemical analysis.  157 

Chemical Analysis 158 

All samples were cleaned up and enriched with an automated online solid phase 159 

extraction (SPE) system and further analyzed by reversed phase liquid 160 

chromatography coupled to a high resolution tandem mass spectrometer (LC-161 

HRMS/MS) (Q Exactive, Thermo Fisher Scientific Inc.) through an electrospray 162 

ionization interface. Full scan acquisition with a resolution of 70000 (at m/z 200) was 163 

conducted in polarity switching mode followed by data-dependent MS/MS scans (five 164 

scans at positive mode, and two at negative mode) with a resolution of 17500 (at m/z 165 

200) and an isolation window of 1 m/z. Further details are described elsewhere
19

 and 166 

information on quality control and quantification are given in SI. D. The mass lists 167 

used for triggering data-dependent MS/MS scans of BTPs were obtained from 168 
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literature and in silico prediction (SI. E).  169 

Biotransformation Products Identification 170 

To identify BTP candidates, a suspect and non-target screening was performed by 171 

analyzing the acquired HRMS/MS raw data using Compound Discoverer software 2.1 172 

(CD2.1) (Thermo Scientific, criteria and parameter settings in SI. E). BTP candidates 173 

were identified based on their unique presence in the treatment and absence in all 174 

controls, peak intensity > 10
5
, and ≥ 3 scans in the extracted ion chromatograms. 175 

Structure elucidation was based on (1) the exact mass and the isotopic pattern to 176 

assign molecular formulas, (2) MS/MS spectra information to identify diagnostic 177 

fragments or losses either specific for one structure or for several positional isomers, 178 

(3) fragmentation patterns reported in literature, databases or predicted with Mass 179 

Frontier (version 7.0, HighChem), and (4) reference standards. Finally, the confidence 180 

levels of the BTP identification were proposed according to Schymanski et al.
37

 181 

Toxicokinetic Modeling 182 

To determine toxicokinetic rate constants of uptake, elimination and 183 

biotransformation, toxicokinetic rate constants for both parent compounds and their 184 

BTPs were estimated using a first-order compartment kinetic model with Matlab 185 

R2015b (http://www.debtox.info/byom.html). The model is based on the 186 

biotransformation pathways of azoxystrobin and prochloraz in H. azteca and in G. 187 

pulex, respectively. In this model, we distinguish between the time courses of the 188 

parent compounds, the time courses of the sum of all detected primary BTPs directly 189 

Page 9 of 47

ACS Paragon Plus Environment

Environmental Science & Technology

http://www.debtox.info/byom.html


10 

 

formed from the parent compound, and the time courses of the sum of all detected 190 

secondary BTPs, where a direct precursor BTP was detected. This model is called 191 

“summed model”, because no rate constants for single BTPs are modeled.  192 

The first-order ordinary differential equations employed in the model are 193 

described as follows. Details on the raw data and the performance evaluation are 194 

available in SI. F. 195 

Parent compound: 196 

dCin,p(t)

dt
= Cwater(t) ∙ ku − Cin,p(t) ∙ ke − Cin,p(t) ∙ km,1st,total      197 

   (1) 198 

Primary BTPs: 199 

dCin,m,1st,total(t)

dt
= Cin,p(t) ∙ km,1st,total − Cin,m,1st,total(t) ∙ kem,1st,total − Cin,m,1st,total(t) ∙ km,2nd,total200 

  (2) 201 

Secondary BTPs: 202 

dCin,m,2nd,total(t)

dt
= Cin,m,1st,total(t) ∙ km,2nd,total − Cin,m,2nd,total(t) ∙ kem,2nd,total   (3) 203 

where Cin, p (t), Cin, m, 1st ,total (t) and Cin, m, 2nd, total (t) [µmol kgwet weight (ww)
-1

] are the 204 

whole body internal concentrations of the parent compound, the sum of all primary 205 

BTPs and the sum of all secondary BTPs, respectively in H. azteca or G. pulex. Cwater 206 

(t) [µM] describes the time course of the parent compound in the exposure medium. 207 

Measured exposure medium concentrations during the uptake and depuration phase 208 

were used as input for Cwater. Uptake of the parent compound via food, dermal and 209 

respiratory surfaces is described by the uptake rate constant ku [L kgww
-1

 d
-1

], whereas 210 
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ke [d
-1

] is the direct elimination of the parent compound via passive (respiratory and 211 

dermal surfaces) and active (excretion of faeces) processes. km, 1st, total and km, 2nd, total 212 

and kem, 1st, total and kem, 2nd, total are the biotransformation rate constants [d
-1

] and 213 

elimination rate constants [d
-1

] for the sum of primary BTPs and the sum of secondary 214 

BTPs, respectively. kem, 2nd, total is a lumped rate constant that includes direct excretion 215 

of secondary BTPs as well as elimination due to further biotransformation. All 216 

parameters were fitted simultaneously. 217 

Bioaccumulation factors (BAFs) [L kgww
-1

] were either calculated based on the 218 

ratio of the internal concentration of the parent compound in the organisms and the 219 

concentration of the parent compound in the exposure medium with the requirement 220 

of steady-state:  221 

BAF =
Cin,p(t)

Cwater(t)
         (4) 222 

or based on the kinetic rate constants:  223 

BAFk (kinetic BAF) =
ku

ke+km,1st,total
       (5) 224 

Elimination half-lives (t1/2) [h] were calculated based on the total elimination for 225 

azoxystrobin, primary BTPs and secondary BTPs: 226 

t1/2 of parent compound:  227 

t1/2,p  =
ln2

ke+km,1st,total
        228 

 (6) 229 

t1/2 of primary BTPs: 230 

t1/2,1st,total  =
ln2

kem,1st,total+km,2nd,total
      231 
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 (7) 232 

t1/2 of secondary BTPs: 233 

t1/2,2nd,total  =
ln2

kem,2nd,total
       234 

 (8) 235 

Acute Toxicity with and without Prochloraz 236 

To evaluate the influence of prochloraz on the acute toxicity of azoxystrobin, the 237 

LC50s of azoxystrobin with and without prochloraz were determined in H. azteca 238 

similar to our study with G. pulex.
19

 Briefly, animals (n=10) were pre-exposed to 0.2 239 

µM (74 µg/L) prochloraz or to clean medium for 18 h, followed by a 24-h co-240 

exposure to increasing concentrations of azoxystrobin (0 - 1.5 µM) in duplicates. 241 

Azoxystrobin concentrations were chosen based on a range-defining test (SI. G). 242 

Survival was monitored directly after the 24h exposure phase to azoxystrobin to 243 

determine the survial rate. A glass rod was used to prod immobile organisms. The 244 

organism was defined as “dead” when no movement of the appendices was observed. 245 

The LC50s were determined by fitting a two-parameter log-logistic model available in 246 

the Graphpad Prism (v. 5.02, GraphPad Software Inc., USA). The 5%-response 247 

benchmark dose (BMD5) was calculated with PROAST version 38.9 in R by 248 

following the manual provided by European Food Safety Authority (EFSA).
38

 249 

Subsequently, the internal concentrations of azoxystrobin in the organisms were 250 

determined at the estimated LC50s for azoxystrobin in the presence and absence of 251 

prochloraz in both test species under the same exposure conditions (see sections 252 
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“Sample Preparation” and “Chemical Analysis”).  253 

Half-maximal Inhibitory Concentration (IC50) of Prochloraz for CYP-254 

mediated Biotransformation 255 

To determine the half-maximal inhibitory concentration of prochloraz based on 256 

CYP-mediated azoxystrobin biotransformation reactions (IC50, PRZ, AZs), the internal 257 

concentrations of azoxystrobin and its BTPs in H. azteca were monitored in the 258 

presence of varying prochloraz concentrations (SI. H and I) similar to G. pulex.
19

 259 

Briefly, animals (n=30) were pre-exposed to prochloraz at different concentrations (0, 260 

0.0005, 0.001, 0.002, 0.01, 0.02, 0.06, 0.1, 0.2 and 1.0 µM) for 18 h, followed by a 261 

24-h co-exposure to azoxystrobin (0.1 µM). Internal concentrations of azoxystrobin 262 

and associated BTPs were measured using the above described online SPE LC-263 

HRMS/MS method. The IC50, PRZ, AZ was determined by fitting a four-parameter log-264 

logistic model (SI. J). 265 

Lipid Content Determination  266 

The average lipid content of H. azteca and G. pulex was determined in unexposed 267 

organisms by gravimetric measurement of the lipid extract. The lipid extraction was 268 

based on the method developed by Kretschmann
39 

with a mixture of isopropanol-269 

cyclohexane-water (4 : 5 : 5.5, v/v/v).  270 

Locomotory Behavior  271 

The locomotory behavior of H. azteca (n=17) was recorded via video-tracking in 272 

the presence of different prochloraz concentrations (0, 0.02, 0.1, 0.2, 1 and 2 µM) 273 
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according to our previous study in G. pulex.
19

 Details on video-tracking and data 274 

analysis are described in the SI. K.  275 

Results and Discussion 276 

Bioaccumulation of Azoxystrobin and Prochloraz in H. azteca compared to G. 277 

pulex  278 

After 24 h exposure, the medium concentrations of azoxystrobin and prochloraz, 279 

important for the calculation of BAFs, decreased by less than 7% (SI.H). The BAF 280 

based on internal and exposure concentrations of azoxystrobin in H. azteca was 4 ± 281 

0.2 L kgww
-1

, which is similar to the BAF found in G. pulex (5 ± 0.5 L kgww
-1

), 282 

indicating comparable bioaccumulation potential of azoxystrobin in these two species. 283 

This is in line with the similar lipid contents in H. azteca (1.9 ± 0.7% of ww) and G. 284 

pulex (2.6 ± 0.3% of ww) measured in this study, as well as lipid contents reported in 285 

other studies.
40

 By contrast, BAFs of prochloraz in H. azteca (110 ± 22 L kgww
-1

) were 286 

doubled compared to G. pulex (57 ± 4 L kgww
-1

). The higher BAFs of prochloraz 287 

compared to those of azoxystrobin in both species can be explained by the higher 288 

hydrophobicity of prochloraz (log Kow of 4.1
41

 and 2.5,
42

 respectively). The observed 289 

BAFs were similar to the BAFs of micropollutants with similar log Kow in H. azteca 290 

and G. pulex.
43–45

  Nevertheless, azoxystrobin and prochloraz are considered as lowly 291 

bioaccumulative in both species according to the threshold provided by the REACH 292 

criteria,
46 

i.e. substances with BAFs > 2000 L kg
-1

 are considered as bioaccumulative. 293 
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Biotransformation Products of Azoxystrobin and Prochloraz in H. azteca and G. 294 

pulex and its Relevance in Invertebrates 295 

To compare biotransformation pathways of azoxystrobin and prochloraz in H. 296 

azteca and G. pulex, target, suspect, and non-target screening approaches were used to 297 

identify BTPs in the test species 24 h after exposure. Both compounds were 298 

extensively transformed in both species. In total, 29 BTPs were identified for 299 

azoxystrobin and 30 BTPs for prochloraz in H. azteca, whereas 18 BTPs were 300 

identified for each compound in G. pulex (SI. L and M). Despite the differences in 301 

the number of identified BTPs in H. azteca and G. pulex, the biotransformation 302 

reactions of each compound were to a large extent similar (Figure 1). For 303 

azoxystrobin, the main biotransformation reactions took place at the active (E)-methyl 304 

β-methoxyacrylate group in both species. These reactions were mainly ether cleavage, 305 

hydroxylation, demethylation, glucose and/or sulfate conjugation as well as 306 

glutathione conjugation-derived cysteine products (Figure 1A). Two unique new 307 

reactions, i.e. malonyl-glucose conjugation and taurine conjugation were only 308 

observed in H. azteca, but not in G. pulex (Figure 1A). For prochloraz, main 309 

biotransformation reactions took place at the fungicidal active moiety, i.e. the 310 

imidazole ring. These reactions include ring cleavage or ring loss, de-methylation, 311 

hydrolysis, oxidation, acetylation, sulfate conjugation, glucose-sulfate conjugation, 312 

and glutathione conjugation-derived BTPs (Figure 1B). Malonyl-glucose conjugation 313 

of prochloraz was only observed in H. azteca (Figure 1B). These results suggest that 314 
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in general H. azteca comprises similar transforming enzymes compared to G. pulex.  315 

The major oxidation BTPs of prochloraz resulting from hydroxylation 316 

(PRZ_M392), ring cleavage (PRZ_M353/325), and ring loss (PRZ_M282) were also 317 

detected in other species such as Sprague-Dawley rat,
47,48

 and rainbow trout 318 

(Oncorhynchus mykiss).
49

 The de-methylation product of azoxystrobin (AZ_M390a) 319 

was also observed in bacteria,
50

 urine and feces of Wistar rat,
51

 and plant (lettuce, 320 

pack choi, and broccoli).
52,53

 The ester hydrolysis products (AZ_M390b) was also a 321 

major BTP of other strobilurin fungicides such as trifloxystrobin
54,55

 and kresoxim-322 

methyl,
55

 presumably mediated by methyl esterase acitivities.
50

 Furthermore, the 323 

formation of these BTPs are likely detoxification processes for this fungicide class, 324 

because the ester moiety of the methyl β-methoxyacrylate group of azoxystrobin is 325 

crucial for its binding at the respiration complex III and therefore for the inhibition of 326 

mitochondrial respiration.
56–58

 This suggests that these reactions and responsible 327 

enzymes are conserved across species. 328 

The conjugation reactions with glutathione (PRZ_M573 (G. pulex (G), H. azteca 329 

(H))/M615 (H)) and the subsequent further transformation is an important pathway 330 

for both azoxystrobin and prochloraz in both species. The BTPs resulting from the 331 

breakdown of glutathione are varied (AZ_M328 (G), AZ_M525 (G, H), AZ_M493 332 

(G, H), AZ_M541 (H), PRZ_M558 (H), PRZ_M386 (H), and PRZ_M429 (H)). 333 

Glutathione conjugation and thereof formed degradation products were found in many 334 

species across invertebrates (e.g. D. magna and G. pulex)
19,34,45,59

 and vertebrates,
60,61

 335 
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suggesting that glutathione conjugation is a common xenobiotic defense mechanism 336 

in invertebrates and vertebrates.  337 

Sulfate conjugation and glucose conjugation are also important detoxification 338 

pathways.
62

 In this study, BTPs resulting from these conjugations and the combination 339 

of both were observed for prochloraz and azoxystrobin in H. azteca and G. pulex. 340 

Especially sulfate conjugations were well observed for several compounds in many 341 

species such as G. pulex,
34,43,45,59

 D. magna,
59,63,64

 and other aquatic invertebrates
65

 as 342 

well as vertebrates
47

 and plants.
66,67

 In contrast, glucuronide conjugation was not 343 

observed in both H. azteca and G. pulex, which is in line with previous observations 344 

that glucoside conjugation is more common in invertebrates, whereas glucuronide 345 

conjugation is mainly found in vertebrates.
62,68

 346 

Taurine conjugation of azoxystrobin was identified for the first time in small 347 

aquatic invertebrates, such as H. azteca (Figure 1). The taurine conjugate was likely 348 

derived from the ester hydrolysis product AZ_M390b, which has a carboxylic acid 349 

group. This is in agreement with many other studies that identified taurine 350 

conjugation for compounds carrying a carboxylic acid group in large crustacean,
69,70

 351 

fish,
62,71,72

 rodents,
73,74

 birds,
73

 mammals,
73,75

 and humans.
75,76

 These results suggest 352 

that H. azteca may also transform other xenobiotic carboxylic acids to taurine 353 

conjugates. The specificity of taurine conjugation for biotransformation in H. azteca 354 

compared to G. pulex needs to be confirmed by testing more substrates that contain a 355 

carboxylic acid moiety (e.g. acidic pharmaceuticals) or substrates where 356 
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biotransformation leads to a BTP with a carboxylic acid moiety. In addition to taurine 357 

conjugation, malonyl conjugation of glucose conjugates was another unique reaction 358 

observed in H. azteca for both compounds. Malonyl-glucose conjugates have been 359 

observed in higher plants,
77,78

 phytoplankton,
79

 and terrestrial invertebrates.
80

 360 

Although glucoside is the natural substrate of the O-malonyltransferase,
79,81

 and 361 

malonyl conjugation serves as a general biotransformation pathway in plant, this 362 

pathway was only observed in H. azteca and not G. pulex, suggesting malonyl-363 

glucose conjugation is not a general biotransformation pathway in invertebrates.  364 

Toxicokinetics of Azoxystrobin and Prochloraz in H. azteca and G. pulex 365 

To quantitatively compare the kinetics of bioaccumulation, biotransformation, 366 

and elimination between the two species, internal concentrations of azoxystrobin, 367 

prochloraz, and their BTPs were determined during a 24-h uptake phase and a 120-h 368 

depuration phase. In the uptake phase, the internal concentrations of azoxystrobin and 369 

prochloraz quickly increased up to a maximum of 0.77 µM and 28.0 µM in H. azteca 370 

and 0.75 µM and 12.2 µM in G. pulex, respectively (Figure 2A and 2D). In the 371 

depuration phase (24-144 h), the levels of azoxystrobin and prochloraz decreased to 372 

negligible levels in H. azteca (0.06 and 0.4 µM) and G. pulex (0.02 and 0.1 µM) at the 373 

end of the 120-h depuration phase (Figure 2A and 2D). 374 

To compare toxicokinetics between the two test species, a first-order 375 

compartment model with a reduced biotransformation pathway was used to 376 

simultaneously fit the time course of the internal concentration of the parent 377 
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compound, the time course of the sum of all primary BTPs and the sum of all 378 

secondary BTPs. This process allows the quantification of rates regardless of detailed 379 

knowledge on the biotransformation pathway.  The number of parameters is also 380 

reduced in the modeling, thereby decreasing model uncertainties. Consequently, no 381 

biotransformation rate constant of single BTPs (kmx, 1st or 2nd) can be compared, but the 382 

summed model still allows for an estimation of the importance of biotransformation 383 

since km, 1st, total indicates how much biotransformation adds to the reduction of parent 384 

compound bioaccumulation. A comparison of the summed azoxystrobin kinetic model 385 

of G. pulex with the detailed modelling of kinetic rate constants of single BTPs in 386 

G. pulex carried out in our previous study revealed similar results.
19

 In general, the 387 

summed model with simultaneous fitting of all parameters was able to describe the 388 

experimental data (Figure 2). However, the modeled time courses of the parent 389 

compound for both species did not perfectly reflect the measured internal 390 

concentrations. For H. azteca, the experimental data hinted a more rapid uptake than 391 

was predicted, whereas for G. pulex uptake was well captured by the model but 392 

simulated elimination during the depuration phase was much faster than proposed by 393 

the experimental data (Figure 2A). Thus, these rate constants should be carefully 394 

interpreted. We further applied a stepwise fitting approach to initially determine the 395 

uptake and elimination rate of the parent compound by fitting the experimental data 396 

with the simplest compartment model (see SI. F) comprising with only two 397 

parameters (ku and ke, total or parent) to the internal concentration of the parent compound. 398 
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In a second step, ku was fixed, BTPs were included and the remaining rate constants 399 

were fitted simultaneously. This stepwise approach ensures that stronger weight is 400 

given to the uptake rate, since in the first step only two parameters are fitted at once. 401 

Overall, the simultaneously fitting approach of all rate constants and the stepwise 402 

fitting approach showed similar results (SI. F). 403 

BAFks of azoxystrobin and prochloraz derived from the kinetic rate constants 404 

were comparable and in accordance with BAFs determined from experimentally 405 

derived internal and external concentrations in both species. A fourfold lower uptake 406 

rate of azoxystrobin was estimated for H. azteca than for G. pulex. In contrast, similar 407 

uptake rates of prochloraz were observed in both species (Figure 2A and 2D). For the 408 

direct excretion rates of the parent compounds, the difference was higher between the 409 

species than for the compounds. They were much lower in H. azteca compared to G. 410 

pulex. The total elimination rates (ke + km, 1st, total) of both compounds were lower in H. 411 

azteca (azoxystrobin, 1.9 d
-1

; prochloraz, 4.7 d
-1

) compared to G. pulex (azoxystrobin, 412 

8.7 d
-1

; prochloraz, 8.4 d
-1

). The uptake rate for azoxystrobin in H. azteca was similar 413 

to uptake rates for other neutral organic chemicals with similar log Kow determined in 414 

H.azteca.
82

 However, these results were against our initial expectation, since H. 415 

azteca exhibits a greater surface area to volume ratio compared to G. pulex, and with 416 

decreasing body size, the ventilation volume and gill surface area per unit body 417 

weight usually increases. Other factors such as biotransformation might play a role for 418 

the uptake and elimination.  419 
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The total primary or secondary biotransformation rate constants (km, 1st, total and km, 420 

2nd, total) of azoxystrobin were up to 3 times higher in H. azteca than in G. pulex 421 

(Figure 2). km, 1st, total contributed approximately 93% (34%) to the total elimination of 422 

azoxystrobin (prochloraz) in H. azteca but only 10% (18%) in G. pulex, suggesting 423 

that biotransformation adds more to the total elimination of the parent compounds in 424 

H. azteca compared to G. pulex. Moreover, km, 2nd, total of both compounds were 4-17 425 

times higher than km, 1st, total in both species (Figure 2C and 2F), indicating that the 426 

primary BTPs of both azoxystrobin and prochloraz quickly underwent further 427 

biotransformation. These results indicate the relevance of secondary 428 

biotransformation reactions such as conjugation reactions in aquatic invertebrates. 429 

Inhibition of Prochloraz on Azoxystrobin Biotransformation and Species 430 

Differences 431 

We have recently observed that prochloraz inhibits the CYP-catalyzed 432 

biotransformation of azoxystrobin and decreases the levels of CYP-catalyzed BTPs in 433 

G. pulex.
19

 To test whether this process occurs in H. azteca, the internal concentrations 434 

of azoxystrobin and its primary CYP-catalyzed de-methylation product AZ_M390a 435 

were monitored in the presence of varying prochloraz concentrations. The presence of 436 

prochloraz increased the internal concentration of azoxystrobin in a concentration-437 

dependent manner, indicating that also in H. azteca prochloraz inhibited the 438 

biotransformation of azoxystrobin (Figure 3A). Based on the dose-response curve of 439 

the parent compound azoxystrobin, the half maximal inhibition concentration of 440 
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prochloraz (i.e. IC50, PRZ, AZ) was 0.1 µM (95% confidence interval (CI): 0.08 - 0.15 441 

µM) and 0.02 µM (95% CI: 0.01 - 0.04 µM)  for H. azteca and G. pulex, respectively, 442 

indicating that G. pulex is 2-15 times significantly more sensitive than H. azteca 443 

towards prochloraz induced CYP-inhibition (Figure 3A). Correspondingly, the 444 

internal concentration of AZ_M390a decreased when H. azteca or G. pulex were co-445 

exposed to prochloraz. The IC50, PRZ, AZ_390a based on the dose-response curve of 446 

AZ_M390a gave similar values to that of IC50, PRZ, AZ in H. azteca but about 2.5-fold 447 

higher values in G. pulex (see Figure 3B and SI. J)), which may be explained by the 448 

increased uptake of azoxystrobin. The IC50s of prochloraz on CYP-mediated 449 

azoxystrobin biotransformation in H. azteca is in the same range of IC50s of 450 

prochloraz and other azole fungicides determined for other substrates in 451 

invertebrates.
83–85

  452 

Impact of Prochloraz on Lethal Toxicity of Azoxystrobin in H. azteca compared 453 

to G. pulex  454 

To investigate whether the synergistic effects of prochloraz contribute to the acute 455 

toxicity of azoxystrobin in H. azteca similar as in G. pulex,
19

 the lethal toxicity of 456 

azoxystrobin for H. azteca was studied in the presence and absence of a nonlethal 457 

prochloraz concentration (Figure 4A). In the absence of prochloraz, the LC50 was 458 

0.51 µM (95% CI: 0.48 - 0.55 µM) in H. azteca, whereas it substantially decreased to 459 

0.15 µM (95% CI: 0.13 - 0.16 µM) in the presence of 0.2 µM prochloraz (fold change 460 

of 3-4). Similar synergistic effects had been observed for G. pulex, with LC50 of 461 
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azoxystrobin of 0.4 µM (95% CI: 0.37 - 0.43 µM) and 0.1 µM (95% CI: 0.08 - 0.09 462 

µM) in the absence and presence of prochloraz, respectively (fold change of 4-5). 463 

These results suggest that prochloraz can greatly enhance the toxicity of azoxystrobin 464 

in both species and G. pulex appeared to be slightly more sensitive. The BMD
38

 were 465 

also lower when the animals were co-exposed to azoxystrobin and prochloraz (SI. J). 466 

To further confirm our hypothesis that prochloraz increases the internal azoxystrobin 467 

concentration by inhibiting CYP-catalyzed biotransformation and thus enhances the 468 

toxicity, the internal concentrations at the LC50 were determined in both species. 469 

Indeed, they were not significantly different (p > 0.05) in the presence and absence of 470 

prochloraz, i.e. a lower external exposure concentration of azoxystrobin was required 471 

in the presence of prochloraz compared to the single exposure to azoxystrobin, to 472 

reach the same internal concentrations of azoxystrobin (Figure 4B). Our results are in 473 

agreement with a study on D. magna ,
86

 with the same binary mixture but in this 474 

study, we provided insights on the synergistic mechanism for the first time by 475 

comparing the internal concentration at the LC50.  476 

Influence of Prochloraz on Locomotory Behavior and Species Differences 477 

Hyperactivity can lead to increased uptake of chemicals and subsequently higher 478 

toxicity. It has been previously observed for several invertebrates (G. pulex, Leuctra 479 

nigra, and Heptagenia sulphurea) when being exposed to environmental relevant 480 

concentrations (low ng L
-1

) of cypermethrin,
87,88

 and also recently for G. pulex 481 

exposed to 0.1 µM prochloraz.
19

 For H. azteca no information about the locomotory 482 
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behavior has been reported so far. To test if hyperactivity contributes also to the 483 

observed synergistic effects of prochloraz towards H. azteca the locomotory behavior 484 

of the organisms was recorded during 18 h exposure of prochloraz (SI. K). At the 485 

tested concentrations, ranging from 0.02 to 2.0 µM of prochloraz, the total distance H. 486 

azteca moved during 18 h was not substantially different from the control, suggesting 487 

that prochloraz did not induce hyperactivity in H. azteca and hence, does not 488 

contribute to the synergistic effect. This might explain the stronger decrease of the 489 

LC50 in the presence of prochloraz for G. pulex (4 fold) in comparison to H. azteca 490 

(2.5 fold) (Figure 4A). 491 

Environmental Implications 492 

Our findings highlight that organic micropollutants can be extensively 493 

biotransformed in aquatic organisms, and that biotransformation influences the 494 

bioaccumulation and the subsequent toxicity of these compounds toward freshwater 495 

crustaceans.
34,43,45,59,82

 Aside from a few unique BTPs observed in H. azteca, H. 496 

azteca and G. pulex exhibit comparable biotransformation capacities on both 497 

azoxystrobin and prochloraz. Toxicokinetic modeling indicated that biotransformation 498 

is more important for the reduction of bioaccumulation in H. azteca compared to G. 499 

pulex. The summed modeling of BTPs could be used as a promising approach to 500 

include biotransformation into toxicokinetic modeling without specifically identifying 501 

the biotransformation pathway in detail. Hence, the importance of biotransformation 502 

regarding the reduction of bioaccumulation can be evaluated directly. The co-503 
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occurrence of azoxystrobin and prochloraz induced synergistic effects in both species, 504 

but H. azteca was about five times less sensitive than G. pulex.  The importance of 505 

these species’ sensitivity differences regarding ecotoxicological risk assessment 506 

depends on the quality of the toxicity data and the related assessment factors. 507 

However, both species can be used for toxicity tests in risk assessment frameworks 508 

and would deliver results in the same order of magnitude. Nevertheless, H. azteca 509 

might be preferred as test species in the future because H. azteca can provide a 510 

homogenous test population throughout the whole year, as indicated previously, 511 

several strains of H. azteca were sequenced and the genomes and transcripts have 512 

been annotated to identify toxicant responsive genes.
33

 Indeed, H. azteca is already in 513 

use for measuring toxicity and bioaccumulation of sediment-associated contaminants 514 

in North America.
25

  515 

The synergistic effects of prochloraz and azoxystrobin were observed at 516 

concentrations 10-1000 folds higher than concentration ranges found in the 517 

environment.
10

 However, these findings are still relevant because, considering a 518 

realistic exposure situation, aquatic organisms are exposed to a mixture of synergists 519 

such as to different azoles (e.g., prochloraz, epoxiconazole, tebuconazole, and 520 

propiconazole) that have the same mode of action. 
6,8,9

 They may add up to a total 521 

exposure concentration that exceeds the threshold where synergism - in this case CYP 522 

inhibition - starts. Indeed, a mixture of epoxiconazole and propiconazole enhanced the 523 

toxicity of pyrethroids in D. magna.
6,8,89

 Nevertheless, whether such synergistic 524 
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effects occur for environmental mixtures in agriculture-impacted streams, for example 525 

after rain events in the pesticide application period, needs to be confirmed.  526 
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Figure Captions 851 

Figure 1. Common or different biotransformation reactions of azoxystrobin (A) 852 

and prochloraz (B) between H. azteca and G. pulex. The number of reactions is 853 

indicated in parentheses. The pathways that involve unique biotransformation 854 

products are displayed on the right side of each panel.  855 

 856 

Figure 2. Toxicokinetics of azoxystrobin (A) and prochloraz (D), their respective 857 

summed 1
st
 (B, E) and 2

nd
 (C, F) biotransformation products (BTPs). The 858 

toxicokinetics rate constants with respective 95% confidence intervals are displayed 859 

in brackets. The kinetic rate constants (ku, ke, km, kem), half-lives (t1/2), bioaccumulation 860 

factors (BAFs) for both H. azteca and G. pulex are displayed on the right side of each 861 

panel. 862 

 863 

Figure 3. Inhibition effects of prochloraz on the biotransformation of 864 

azoxystrobin in H. azteca (blue, filled circle and solid line) and G. pulex (green, 865 

square and dashed line). (A) Relative internal concentrations of azoxystrobin, and 866 

(B) relative internal concentrations of oxidative transformation product AZ_M390a in 867 

H. azteca or G. pulex pre-exposed to increasing concentrations of prochloraz. 868 

Concentrations of azoxystrobin or its transformation product AZ_M390a were 869 

normalized to those in animals that are not pre-exposed to prochloraz. 870 

 871 

Figure 4. Lethal toxicity of azoxystrobin (AZ) to H. azteca and G. pulex pre-872 

exposed to prochloraz (PRZ). (A) dose (concentrations in medium) −response 873 

(survival rate) curves of AZ; (B) internal concentration of azoxystrobin (AZ) in H. 874 

azteca and G. pulex pre-exposed to 0 or 0.2 µM of PRZ at the LC50 in medium. 875 

 876 

 877 
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