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Abstract we investigate the relative impact of topological, geometric, and hydraulic heterogeneity on
transport processes in three-dimensional fracture networks. Focusing on the two largest scales of heteroge-
neity in these systems, individual fracture and network structure, we compare transport through analogous
structured and disordered three-dimensional fracture networks with varying degrees of hydraulic heteroge-
neity. For the moderate levels of hydraulic heterogeneity we consider, network structure is the dominant
control of transport through the networks. Less dispersion, both longitudinal and transverse, is observed in
structured networks than in disordered networks, due in part to the higher connectivity in the former, inde-
pendent of the level of hydraulic heterogeneity. However, increases in dispersion with higher hydraulic het-
erogeneity are larger in the disordered networks than in the structured networks, thereby indicating that
the interplay between structural and hydraulic heterogeneity is nonlinear. We propose a measure of disor-
der in fracture networks by computing the Shannon entropy of the spectrum of the Laplacian of a weighted
graph representation of the networks, where the weights are given by a combination of topological, geo-
metric, and hydraulic properties. This metric, as a relative indicator by comparison between two networks, is
a first approach to the dispersion potential and “mixing capacity” of a fracture network.

1. Introduction

Fractures and discontinuities are widespread in the subsurface in all types of rocks, and occur at different
scales, ranging from micro to regional scale (Singhal & Gupta, 2010). This implies a spatial scaling of hydrau-
lic parameters including storage coefficient and hydraulic conductivity (Jiménez-Martinez et al., 2013). In
low permeability media fractures and discontinuities are the primary regions for the movement of fluids,
involving processes taking place at multiple length scales (Bonnet et al.,, 2001). Therefore, their study is rele-
vant for groundwater development (Roques et al.,, 2016), geothermal energy (Barbier, 2002), nuclear waste
disposals (Cvetkovic et al., 2004), and unconventional gas production (Hyman et al, 2016b). However,
while in some regions one or several families of discontinuities are well identified (e.g., Aspd Hard Rock
Laboratory, Rhén, 1997), in others, the coexistence of different types of discontinuities, such as bedding
planes, fractures, joints, faults and shear zones, foliation (including cleavage) or dykes, makes the definition
of families difficult (e.g., Klint et al., 2004). For this reason, fractured media are usually conceptualized and
classified in the literature as either regular (i.e., structured) or disordered (i.e., random) networks.

Discrete Fracture Network (DFN) models have been used since their development in 1980s (Long & Wither-
spoon, 1985) to conceptualize fractured media by representing each fracture individually within a network
and to resolve flow and transport at different scales (Cacas et al., 1990; de Dreuzy et al., 2004, 2012; Dersho-
witz, 2014; Erhel et al., 2009; Hyman et al., 2015b; Ji et al., 2011; Makedonska et al., 2016; Mustapha & Musta-
pha, 2007; Pichot et al.,, 2010, 2012). The interplay between features and scales can result in flow channeling
within these networks. Both the structure of a network (de Dreuzy et al., 2012; Tsang & Neretnieks, 1998)
and the spatial variability of aperture within a single fracture (Johnson et al.,, 2006; Moreno et al., 1988;
Tsang & Tsang, 1989) can create preferential flow regions. The topology of the network also results in vari-
able flow field within fractures even when an assumption of uniform aperture is adopted (Hyman et al.,
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2015b; Makedonska et al., 2016). de Dreuzy et al. (de Dreuzy et al.,, 2012), using DFN, studied the combined
effect of fracture scale heterogeneity (i.e., distribution of local apertures) and network topology (i.e., fracture
length distribution and density) on the flow properties, showing that there is a significant coupling between
flow heterogeneities at the fracture scale and at the network scale. However, when the system size is suffi-
ciently larger than the correlation length, this coupling is found to be weak. Therefore, fracture apertures,
length and density distributions (de Dreuzy et al., 2012), and local roughness (Tsang & Tsang, 1989), all con-
trol flow in fractured rocks, contribute substantially to the spreading of dissolved chemicals (Tsang et al.,
1996). The emergence of anomalous transport, also called non-Fickian or non-Gaussian, i.e., nonlinear scal-
ing with time of the mean-square displacement of solute distributions (dispersion), is a direct consequence
of the highly heterogeneous velocity field in this type of system (Berkowitz & Scher, 1997, 1998; Kang et al.,
2015, 2017). The dynamics of fluids or solute mixing—the process that increases the actual volume occu-
pied by the solute by smoothing out concentration contrasts (Dentz et al., 2011; Kitanidis, 1994; Ottino,
1989)—is also controlled by the structural and hydraulic heterogeneity of the network (Kang et al., 2015).

Transport processes have been studied in regular (Kang et al., 2015), commonly characterized by heteroge-
neity in hydraulic conductivity, and disordered (Berkowitz & Scher, 1997, 1998; Kang et al.,, 2017) fracture
networks. The impact of interplay between network heterogeneity and heterogeneity in hydraulic conduc-
tivity on solute dispersion and mixing is still an open question that requires a three-dimensional fracture
network model capable of resolving the multiple length scales within a fracture network. The smallest scale
in these networks is along fracture intersections/traces (quasi 1-D elements, lines). In these regions, mixing
models in 2-D, e.g., streamline routing or complete mixing, have been proposed and their influence on
upscaled transport behavior quantified (Kang et al., 2015). However, in 3-D, the existence of an hydraulic
head distribution along the intersection allows local fluid circulation (Hyman et al., 2015a; Park et al., 2003),
with a subsequent impact on fluids and solute mixing. At a slightly larger scale there are the fractures them-
selves (quasi 2-D elements, planes), where variable aperture, boundary conditions (i.e., locations of inflow
and outflow fractures), and stress (Kang et al., 2016), can lead to flow channelization that increases fluids
and solute mixing (Johnson et al., 2006). Finally there is the scale of the entire fracture network level (3-D),
where the fracture orientation (Rubin & Buddemeier, 1996), density (Huseby et al., 2001), and network con-
nectivity are the principal controls on solute dispersion and mixing.

We focus on the two largest scales (network and fracture scale) within structured and disordered three-
dimensional fracture networks by simulating flow and transport through these networks with varying
degrees of hydraulic heterogeneity. The structured networks are composed of square fractures drawn from
three families, whose mean orientations are orthogonal to one another and are aligned with the primary
Cartesian directions. The disordered networks are composed of the same sized square fractures with orien-
tations that are uniformly random. The density and surface areas of the two networks are the same for a fair
comparison. We introduce hydraulic heterogeneity by setting fracture permeabilities to be constant or
drawn from log-normal distributions with variance of 0.5 and 1.0, i.e., moderate degrees of heterogeneity.
We develop a measure of disorder in fracture networks that integrates topological, geometric, and hydraulic
properties, the Shannon entropy of the spectrum of the Laplacian of a weighted graph representation of
the networks, and which provides a first approach to the dispersion within fracture networks.

We represent the spreading of a nonreactive conservative solute by a cloud of passive tracer particles, i.e.,
using a Lagrangian approach. At uniformly spaced control planes we compute the longitudinal dispersion
and the relative concentration of particles that cross a median plane, a proxy for transverse dispersion. The
latter provides a first approach to the “mixing capacity,” but also to the reactive capacity, i.e., for fluid-fluid
mixing-driven chemical reactions (fast reactions), depending on fracture network type (i.e., structured or dis-
ordered) and the hydraulic heterogeneity.

2. Flow and Transport Within Fracture Networks

We use dfnWorks (Hyman et al., 2015a) to generate each DFN, solve the steady state flow equations and
simulate transport therein. dfnWorks combines the feature rejection algorithm for meshing FRAM (Hyman
et al, 2014), the LaGriT meshing toolbox (LaGriT, 2013), the parallelized subsurface flow and reactive
transport code PFLOTRAN (Lichtner et al,, 2015), and an extension of the WALKABOUT particle tracking
method (Makedonska et al., 2015; Painter et al, 2012). FRAM is used to generate the three-dimensional
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fracture networks and LaGriT is used to create a conforming Delaunay triangulation of the DFN in parallel.
PFLOTRAN is used to numerically integrate the governing equations for pressure. A modification of the
WALKABOUT particle tracking method is used to determine pathlines through the DFN and simulate solute
transport. Details of the suite, its abilities, applications, and references for detailed implementation are pro-
vided in Hyman et al. (2015a).

2.1. Discrete Fracture Networks

We consider two fracture networks types. Both are composed of square fractures with sides of length T m
in a cuboid domain of size 25 m X 10 m X 10 m. We select uniform fracture sizes to isolate the effects of
network structure from influence of the distribution of fracture lengths. Fracture centers are uniformly dis-
tributed throughout the domain. A buffer region is included to remove density issues near domain bound-
aries. Each network is made up of three fracture families with the same target density, P3;=3 m™' (total
fracture surface area over domain volume). Thus, the domain is relatively dense to ensure that there are sev-
eral connected paths between the inflow and out flow boundaries.

Mean normal vectors of the families are aligned with the three principal axes of Cartesian space. The frac-
ture orientations are sampled from the three-dimensional Fisher distribution,

Kk exp (ku'x)

47 sinh (k) M

fix; u, )=
where u is the mean direction vector (T denotes transpose), which can be expressed in terms of spherical
coordinates, mean trend 0 and mean plunge ¢, and k > 0 is the concentration parameter that determines
the degree of clustering around the mean direction. Values of k approaching zero result in a uniform distri-
bution of points on the sphere while larger values create points with a small deviation from mean direction.
The Fisher distribution is sampled using the algorithm provided by Wood (1994).

In the first set of networks, we select a k value of 20. We refer to these networks as structured due to the lattice
like network that is obtained. Orientations in the second network are determined by taking the parameters
used for the structured networks and setting k=0.1, which results in uniformly random orientations. We refer
to these networks as random. Figure 1 shows the normal vectors for fractures in a (left) structured network
and in a (right) random network projected onto the unit sphere. Fractures from the same families are the
same color in Figure 1 (left). Complete generation parameters for the networks are provided in Table 1.

We generate 10 independent statistically identical realizations of the structured network and 10 indepen-
dent statistically identical realizations of random network. There is little variation in the upscaled properties

10=1.0 ' 16=10

Figure 1. Normal vectors of the fractures in (left) a structured network and (right) a random network projected onto the
surface of the unit sphere. All fracture are the same size. Colors in the structured network indicate fracture family. There
are three distinct families in the structured network, each with mean orientation aligned with one of the primary Cartesian
axis. There is variability around the mean sampled using a Fisher distribution. The random network has uniformly random
fracture orientation.
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Table 1

DFN Generation Parameters

we consider and 10 realizations is sufficient to represent statistical
quantities. Examples of the variations of breakthrough curves relative
to the mean behavior are provided in the supporting information.

Fisher distribution

Fracture density ~ Once each network is generated, all isolated fractures are removed,

Network (€) ¢ K P35 which results in slight differences in final Ps, values (~8.75 m™'
Stretired rather than 9 m ™). The networks both contain around 12,500 individ-
Family 1 0 0 20 3 ual fractures. Each fracture is meshed with a conforming Delaunay tri-
Family 2 /2 0 20 3 angulation using the feature rejection algorithm for meshing (FRAM)
Family 3 /2 m/2 20 3 (Hyman et al., 2014). The minimum edge length in the mesh is 0.01 m,
g:rr::?lzn: 0 0 04 3 100 times smaller than the fracture edge size, which was found to be
Family 2 /2 0 0.1 3 sufficiently small enough to ensure that pressure and velocity solu-
Family 3 /2 /2 0.1 3 tions are not influenced by the mesh resolution (details not provided).

Note. All networks are composed of uniform square fractures with sides of
length 1 m. Parameters of the Fisher distribution for fracture orientation,

Each fracture is meshed with around 3,000 triangles and the whole
networks are meshed with around 400,000 triangles. An example of

equation (1): mean trend (6), mean plunge (¢), and the concentration the mesh on a single fracture is provided in the supporting informa-
parameter (ic). Target values of P3, (m ') (total fracture surface area over tion. Details and theory behind the FRAM methodology are provided

domain volume).

Parmeability [m* ]
7274811
l a16e-11

= 831e12
1.26e12
251813

501614

1 ArAa 14
Permeaility [m* |

7274811

l 316611
= 83le12
126012
251813

501814

1.8780-14

in Hyman et al. (2014).

We consider three different scenarios in terms of fracture permeabil-
ities. In the baseline case, the fracture permeabilities are constant and equal between fractures (k=10""2 m?).
Apertures are determined using the cubic law and the fracture permeability. The values are physically rea-
sonable for a 1 m fracture in crystalline rock under assumptions of a positively correlated power law rela-
tionship between fracture size and radius (Svensk Karnbranslehantering, 2010). We consider two additional
cases of hydraulic heterogeneity, in which permeabilities are sampled from log-normal distributions with
log variance of 7,,=0.5 and 6}, =1.0. The use of a lognormal distribution is motivated by the observation
that conductivity values in many natural media are described by a log-normal distribution (Sanchez-Vila
et al., 2006). The mean value of the distributions is equal to the value used in the constant case. The varian-
ces are chosen because they are moderate levels of hydraulic heterogeneity and are similar to those
observed in crystalline rock (Svensk Karnbranslehantering, 2010). Because all fractures are the same size,
there is no correlation between fracture size and transmissivity, which is a common assumption in DFN
models (Hyman et al., 2016a). Fracture permeabilities are constant within each fracture plane, in-fracture
variability is not considered. Figure 2 (top) shows a structured network for the different permeability

Figure 2. Structured (top) and random (bottom) networks with fractures colored by permeability (logarithmic scale) for permeability distributions with log variance
(left) 62,,=0.0, (middle) 67 ,=0.5, and (right) ¢, =1.0.

HYMAN AND JIMENEZ-MARTINEZ

DISPERSION AND MIXING—REGULAR VERSUS DISORDERED NETWORKS 3246



~1
AGU

100

ADVANCING EARTH
/AND SPACE SCIENCE

Water Resources Research 10.1029/2018WR022585

Pressure [Pa]
2.00e+06

—1.8e+6

1.2e+6

1.00e+06

distribution: (left) constant network, (middle) o2 ,=0.5, and (right) 67, =1.0. Fractures are colored by per-
meability plotted on a log scale. Figure 2 (bottom) shows the corresponding plots for one of the random
network.

In total, 20 unique fracture networks are constructed. Meshing each networks takes ~2 h (wall clock) using
32 AMD Opteron(TM) Processors 6272 (1.4 GHz). For each network, three steady state pressure fields are
considered for a total of 60 flow and transport simulations. Using 64 cores obtaining steady state pressure
solution requires ~1.5 h (wall clock) for the constant permeability case. As a2, , increases the condition num-
ber of the pressure solution matrix increases as well. This results in more required CPU time for those real-
izations (up to 24 h for a single run), primarily due to i/o associated with saving Lagrangian information.

2.2, Flow Equations

In the DFN methodology, the matrix surrounding the fractures is impervious and there is no interaction
between flow within the fractures and the solid matrix. Within each fracture the flow of a Newtonian fluid,
in our case water, at low Reynolds numbers is governed by the Darcy equation

q=—gVP7 (2)

where q is the Darcy flow rate, VP is the pressure gradient, y is the fluid viscosity, and K is the fracture per-
meability tensor, which we take to be a scalar K=k. We drive flow through the domain by applying a pres-
sure difference of 1 MPa across the domain along the x axis. No-flow boundary conditions are applied along
lateral boundaries. For simplicity, the effects of gravity are not considered in these simulations. Mass conser-
vation along with equation (2) are used to form an elliptic partial differential equation for the steady state
distribution of pressure within the network

V - (k(x)VP)=0. 3)

Equation (3) is numerically integrated using a two-point flux finite-volume scheme implemented in PFLO-
TRAN that ensures local mass conservation within fracture planes and at fracture intersections.

While k is uniform in each fracture plane, it does vary between fractures for cases with of,, > 0.0. This vari-
ability between fractures is another degree of heterogeneity in the system, in addition to the structural dif-
ferences between the two networks, that affects the pressure solution and in turn fluid velocity and solute
transport. Figure 3 shows the steady state pressure solution in a structured network (left) and a random net-
work (right) for 2, , =1.0.

The pressure values at cell centers and volumetric flow rates across cell boundaries returned by PFLOTRAN
are used to determine the velocity field u at every node in the conforming Delaunay triangulation through-
out each domain using the methods of Painter et al. (2012) and Makedonska et al. (2015). Complete mixing,
where the probability of a particle exiting in a given direction is proportional to the outgoing flux in that
direction, is adopted at fracture intersections (Makedonska et al., 2015).

Figure 3. Steady state pressure solution in (left) a structured network and (right) a random network, both permeability distributions with log variance of Glznk: 1.0.
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2.3. Transport Simulations

We represent the spreading of a purely advective nonreactive solute through each DFN by a cloud of indi-
visible passive tracer particles, i.e., using a Lagrangian approach. The use of particle tracking methods allows
for the investigation of direct links between transport properties and the network structure while mitigating
issues of numerical dispersion associated with Eulerian transport simulations. One hundred thousand par-
ticles are tracked through each network. In total over 6 million particle pathlines are determined and ana-
lyzed. Preliminary studies showed that upscaled quantities of interest were insensitive to including more
particles (details not included). Matrix diffusion is not included in these simulations because we seek to
investigate the relative importance of network structure and hydraulic heterogeneity, which is easier to
quantify in the absence of matrix diffusion. Thus, the model and analysis is limited to situations where the
times are too short enough to allow diffusion into the rock matrix or in the case of a very low permeability
rock matrix.

Let Q denote the set of particles with initial positions xo. Given a fixed mass M represented by Q and total
area of fractures along the inlet plane A, the mass associated with each particle, m(xo), is distributed across
all the particles according to

Q(xo) M
Q A’

m(xo)= 4
where Q(Xo) is the local flux rate at the initial position and Q is the total flux into the domain. This initial
condition is referred to flux-weighted injection, as opposed to resident or uniform (Kreft and Zuber, 1978).
These two initial conditions represent different physical scenarios and have been studied in both heteroge-
neous porous media and fracture networks (Demmy et al.,, 1999; Frampton & Cvetkovic, 2009; Gotovac
et al.,, 2010, 2009; Hyman et al., 2015b; Jankovi¢ & Fiori, 2010; Vanderborght et al., 1998; Kang et al., 2017).
The choice of flux-weighted is born from wanting to observe how the system behaves at equilibrium, the
equidistant sampled Lagrangian velocity distributions along are stationary for flux-injection and equal to
the Eulerian velocity pdf so long as the fields are stationary and ergodic (Comolli & Dentz, 2017; Dentz et al.,
2016). One could use resident (uniform) injection, having the same mass (number of particles) per unit of
fracture length at the inlet plane, so that variability in the concentration profile along the inlet plane
depends solely on network structure, not flux profile. In this case, one can observe the evolution of the par-
ticle plume into the stationary Lagrangian velocity distributions.

2.3.1. Particle Trajectories

Particles are released at unique points along the fractures that intersect the inlet plane of the domain at
x =0 at time t = 0. The trajectory x(t; Xo) of the particle starting at xo=(0, y, z) is given by

dax(t; x
dx(t; %) =v(t;Xo), x(0; Xo) =Xo, (5)
dt
where the Langrangian velocity v(t; Xo) is given in terms of the Eulerian velocity u(x) as
v(t;Xo)=u[x(t;Xo)]. (6)

The length of the pathline, /, is used to parameterize the spatial and temporal coordinates of the particle.
The space-time particle trajectory is given in terms of ¢ by

dx(¢;xe) _ V[t(£);Xo]

= 7
i v[t(l);xo)’ (7a)
dt(fi Xo) 1
' 20) = 7
GRS, e
where we set v(t,Xo)=|V(t;Xo)|. The length £(t; Xo) of the trajectory at a time t is given by
de(t; x
% =v,[£(t), Xo], (8)

where we defined v, (¢; Xo)=V[t(£); Xo)-

The arrival time 7(x’;Xo) of a particle at a control plane perpendicular to the primary direction of flow and
at distance x’ from the inlet is given by
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T(X'; %0) =t[A(X'); o], A(x)=inf {€|x(¢;x0) > x'}. ©)
2.3.2. Breakthrough Times
The mass represented by a particle and the breakthrough time at a control plane can be combined to com-
pute the total solute mass flux ¥(t, x’) that has broken through a control plane at x” at time t,

l}’(nx/):HdQ m(xo) Ht—(x', %o)] . (10)

Here H(t) is the Heavyside function where H(t) = 1 for t > 0, and H(t) = 0 otherwise. Equation (10) is the inte-
gral form of the cumulative distribution function (CDF) of solute passing through a control plane. We also
consider the complementary cumulative distribution function (CCDF) 1—"¥(t, x), which when plotted on a
log-log scale can be used to determine power law scaling of the tail of the ¥(t, x). The relevant solute flux
through this control plane is
d¥(t,x') 1
w(t7x’):%=ﬂjd9 m(xo)d[t—1(x’,Xo)], ()
which is an integral form of the breakthrough curve. Placing (4) into (11) one obtains the distributions of
travel time for our adopted initial conditions:
1

Yt x')= 20

JdQ Q(xo) 0[t—1(x',X0)] - (12)
We consider control planes with spacing Ax=1 m, the fracture size.
2.3.3. Dispersion Quantification
At each control plane we compute the mean squared displacement of the particle plume travel times,

1 2
=A—deg Q(xo) [f(x/,xo)—r(xf)} , (13)
where overbar indicates average over all particles in a plume. We focus on spreading in the majority of the
plume by limiting (13) to the initial 99.9% of the mass that breaks through the control plane. We also inves-
tigate the tailing behavior using a different set of tools; those mentioned above. Taking the derivative of
(13) with respect to the primary direction of flow da?(x')/0x, quantifies the stability of the plume as it
moves through the domain. If the bulk of the plume is relatively stable, then the values of da?(x')/0x < 1,
otherwise the plume is still growing.

a7 (x)

The movement of mass transverse to the primary direction of flow on the network scale is quantified by com-
puting the relative concentration of mass that crosses a plane in the center of the domain parallel to the pri-
mary direction of flow. We provide an analysis for the median plane aligned with y = 0, but similar results are
obtained when performing the same analysis using a plane at z= 0. First, we divide the set of all pathlines (Q)
into two disjoint sets. The set A contains all pathlines whose initial y coordinate, denoted X (y), is less than
zero and the set B contains all pathlines whose initial y coordinate is greater than or equal to zero,

A={i:xi(y) < 0}andB={i: x(y) > 0}, (14)

where X}, denotes the initial position of the ith particle. Thus, Q=A U B and A N B= (. The total mass travel-
ing along all pathlines into the inlet plane is given by

M():JdZdeJdQ m(Xo) . (15)
Using this equation, we can track to the total mass transported by pathlines in A and B,

Mo :". dz.‘. dyJ dQ m(xo)

:szjdy. dQ m(xo)+JdZde. dQ m(xo)

A 7B

:MA+MB,

where y, is the indicator function for pathlines in A and y; is the indicator function for pathlines in B. At a
control plane at distance x’ from the inlet plane, we can compute the amount of mass traveling along path-
lines in A that has crossed the median y plane using
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My (x) =J dzJ

dy} dQ m(x',y,z). (17)
y=0 1A

Likewise, the mass traveling along pathlines in B that has crossed the median y plane is

Mg (x/)=szJ

dyJ dQ m(x')y,z). (18)
y<0 18

The relative mass that has crossed the median at each control plane is given by

M () e

(19)

3. Simulation Results

In this section, we first report structural (topological and geometric) and hydraulic attributes of the fracture
networks. Then, we report observations of flow velocities and transport through them.

3.1. Network Structure

The fracture network sets, structured, and random, exhibit different topological properties, which result
from the different family structures. We quantify their differences by considering two topological properties,
one local and one global. Topological characterization is performed by constructing a graph representation
of each network using the method described in Hyman et al. (2017). For each fracture in the DFN, there is a
unique node in a graph. If two fractures intersect, then there is an edge in the graph connecting the corre-
sponding nodes. Edges are assigned unit weight to isolate topological attributes from other attributes that
could be considered. All fractures that intersect the inflow plane are connected to a source node and all
fractures that intersect the outflow plane are connected to a target node. Thus, the graphs are based solely
on the topology (connectivity) of the networks. We use the NetworkX graph software package (Hagberg
et al., 2008) to compute topological properties of interest of the graphs.

The local attribute we consider is the number of other fractures that each fracture intersects (i.e., local topo-
logical heterogeneity), which we refer to as the fracture degree. The distribution of these values for both
types of networks (i.e., structured and random) is provided in Figure 4. The integer median of these distribu-
tions is 4 for the structured network and 3 for the random network. Thus, a typical fracture in the structured
network connects to four other fractures while a typical fracture in the random network only connects to
three others. Moreover, the distribution of the structured network has higher variance (2.64) than the ran-

dom one (1.98). These values indicate that the structured network is

0.30 slightly better connected locally than the random network.
—— Structured . . . .
—  Random The global (i.e., network-scale heterogeneity) property considered is
0.25 the node connectivity of the networks, which is the number of nodes
] (fractures) that need to be removed to disconnect the inflow and
boundaries. This value indicates how well a network is connected
020 with respect to the flow boundaries. The higher the value, the more
difficult it is to disconnect the inflow and outflow boundaries. The
<015 ] average node connectivity is 71.9 (variance of 8.09) for the structured
= — and 57.5 (variance of 6.25) for the random network. These values indi-
cate that the structured network is globally better connected than the
0.10 random network.

Although each fracture is the same shape, a range of length scales
0.05 exists within the fracture plane due to intersections among fractures.
A first order approximation of the transport distances within the frac-
0.00 —] ture planes can be obtained by computing the distance between cen-
4 6 8 10 ters of intersections (traces) within fracture planes (/). An image of this

Fracture Degree (d) . . . . . . .
construction is shown in the supporting information. Figure 5 (left)
Figure 4. Distribution of fracture connectivity (fracture degree) for the struc- shows the distribution of these distances for the structured (blue) and
tured networks (blue) and the random networks (red). the random networks (red). The observed distribution of lengths is
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Figure 5. (left) In-fracture length, /, and (right) permeability/in-fracture length, k/I, distributions. Values for the structured
(blue) and random (red) networks; log variance of permeability fields are distinguished by line type: alznkZO.O (solid), alznk
=0.5 (dashed), o2,,=1.0 (dotted).

quite similar, having a mean[m]=variance[m?] of 0.52 = 0.049 and 0.49 * 0.044 for the structured and ran-
dom network, respectively.

Another length scale can be obtained by considering the ratio of the fracture permeability over these dis-
tances (I'=k/I). The importance of this length scale can be seen by a change of variables within Darcy’s law,

kAP AP
_ —q=—/=. (20)
w 2

The ratio AP/ has dimensions of 1/time, so u/AP is a characteristic time scale of the system. Therefore,

I'= (21)

u
—a4;
is the distance traveled within a fracture plane in a characteristic time step at a given speed. Figure 5 (right)
shows the distribution of /' for the structured (blue) and the random network (red) for the three cases of
hydraulic variability that we consider: a2,, =0.0 (solid), 62 ,=0.5 (dashed), o2 ,=1.0 (dotted). The distribu-
tions for larger values of a7, , have wider variance, as expected. For each value of a7, ,, the distributions of
these in-plane attributes in the structured and the random networks are nearly indistinguishable. The simi-
larity of these distributions indicates that at the scale of individual fractures the two networks are
analogous.

We combine topological, geometric, and hydraulic properties to examine the interplay between structural
and hydraulic heterogeneity with respect to their influence on transport properties through the fracture
networks. Specifically, we compute the Shannon entropy for each of the networks as a measure of how eas-
ily particles can move through the networks. For this computation, we use a different graph representation
of each DFN than that used above. To better include more geometric and hydraulic information, nodes in
the graph represent intersections between two fractures and edges represent paths between traces along a
fracture plane. This mapping allows for geometric and hydraulic properties to be represented as edge
weights in the graph. Details of the mapping are included in the supporting information. This mapping is
similar to those used in pipe-network flow simulations within DFN, e.g., Dershowitz and Fidelibus (1999).
Weights are based on the length between intersections and permeability. We use an unnormalized linear
weighting scheme where the edge weight is permeability of the fracture over the distance between trace
centroids w=/'=k/I. Using this weighted graph representation, we determine the spectrum of the normal-
ized graph Laplacian, and then compute the Shannon entropy of this as: E=—>"1_, p(¢;) log p(c;), where p(c;)
is the eigenvalue probability distribution of the largest 200 normalized eigenvalues, i.e., the probability of defin-
ing an edge in the network with eigenvalue or relative importance ¢; (Jiménez-Martinez & Negre, 2017). The
size of the Laplacian O(20,000) X O(20,000) prohibited obtaining the entire spectrum. Average values of the
Shannon entropy for all networks along with variances are provided in Table 2.
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Table 2
Shannon Entropy for the Structured and Random Fracture Networks

Structured Random
Weights Mean Variance Mean Variance
ot =00 11.36 0.64 11.79 0.70
ot =05 1243 0.37 13.40 0.44
ot =10 13.41 0.41 14.77 0.40

Note. Entropy is computed using largest 200 normalized eigenvalues of
the spectrum of the weighted graph Laplacian with weights based on
k/I (m).

3.2. Velocity Distributions

Figure 6 shows the average distribution of Eulerian velocity magni-
tudes ([|u(x)||) in the structured networks and the random networks
for all three hydraulic cases. The random networks have more low
velocity regions than the structured networks. Low flow velocities
are more common with higher values of ¢f, in both network
structures.

3.3. Particle Transport

The influence of these low velocity regions is apparent in the break-
through times at the outlet plane, L =25 m (Figure 7). Figure 7 (left)
shows the distributions of breakthrough times computed using equa-
tion (12). All curves, here and in subsequent images, show the average

of each network set for each value of ¢7,,. Examples of the variations of breakthrough curves for individual
realizations relative to the mean behavior are provided in the supporting information. Times have been
nondimensionalized by the median breakthrough time of particles through the structured network with
constant permeability (o2, =0.0). The peak breakthrough is lower and later for the random than the struc-
tured network for all three a7, cases. Figure 7 (right) shows the complementary cumulative distributions of
breakthrough times computed using equation (10). Later breakthrough times are observed in the random
networks than their structured counterparts. As hydraulic heterogeneity increases, later breakthrough times
are observed in both network structures.

The evolution of plume spreading in the primary direction of flow is quantified by computing the
mean squared displacement ¢2 via equation (13) at equidistant control planes (Ax=1 m). The deriva-
tive of a2 with respect to primary flow direction, da2(x’)/9x, is shown in Figure 8, where colors and line
style are the same as in Figure 7, to highlight plume growth rates. Beyond the first control plane, the

values of da%(x')/0x are somewhat constant, i.e., o

2
T

increases roughly linearly, as the plume moves

through subsequent control planes for all cases. There does, however, appear to be some boundary
influence near the inlet and outlet regions. The random networks have consistently higher values of 9
o2(x')/Ox than the structured networks for the same value of of,,, indicating faster growth of the
plume. Higher values of o7, result in higher values of 962 (x') /Ox in both network structures. The differ-
ences between do?(x’)/Ox values for increasing values of a2, are larger for the random than the struc-

tured networks.

=
S 10} —  Struct. 02, =0.0
w0l Struct. o2, =0.5
Struct. o, =1.0
107°}| —  Rand. 62,=0.0
jo-n|| 77 Rand. 62, =0.5
Rand. o2,=1.0

-13 ; ; ; , . ‘
10 107 107 107 107" 10" 10 10°
Velocity Magnitude Ilull [m/year]

Figure 6. Distribution of velocity magnitudes in the structured (blue) and the
random (red) network. Log variance of permeability fields are distinguished by
line type: o, ,=0.0 (solid), a2, ,=0.5 (dashed), 67, ,=1.0 (dotted).

Particles also disperse through the network in directions transverse to
the primary direction of flow. Figure 9 shows 100 particle pathlines in
the randomly oriented network with ¢, =1.0. The pathlines are col-
ored according to particle initial positions. Particles starting on the left
side of the domain are colored blue and those starting on the right
are colored red. Along with the pathlines, uniformly spaced control
planes normal to the main flow direction are also included (see also
left side of the image). As particles move through the domain, they
transition across this median plane, i.e,, transverse movement occurs
within the network. By the end of the domain, particles are mixed
with respect to their origin. Equation (19) measures the relative mass
that has transitioned across the median plane with distance traveled.
Observations for all networks are provided in Figure 10. Distributions
of particle locations used to compute these values are provided in the
supporting information. A consistent increase in values of the relative
concentration is observed, with larger values for the random than for
the structured network. For the same network structure, there is little
difference in the observed values between ¢?,=0.0 and o2, =0.5,
while for 6,=1.0, there is a noticeable difference from the two
others. These results appear to exhibit power law scaling with dis-
tance traveled, M*(x)=fix*, although the limited length of the domain
is not sufficient to confirm this hypothesis.
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Figure 7. Breakthrough times at the outlet plane (L = 25 m) for structured (blue) and random (red) networks. Log variance
of permeability fields are distinguished by line type: a2, =0.0 (solid), 62, ,=0.5 (dashed), o2 , =1.0 (dotted). Times are non-
dimensionalized by the median breakthrough time of structured network with log variance o, ,=0.0. (left) Distributions
of breakthrough times computed using equation (12). (right) Complementary cumulative distributions of breakthrough
times computed using equation (10).

4. Discussion

By a number of measures, the two fracture network sets studied, structured and random, are very similar.
This, along with the same boundary and initial conditions, allows for a systematic and quantitative compari-
son between them, as well as an opportunity to address the impact of the interplay between structural and
hydraulic heterogeneity on solute dispersion and mixing.

4.1. Structural Control
Differences in transport behavior within the two networks for the same value of a2, are the result of differ-
ences in their network-scale (i.e., macroscale) structure. This conclusion is supported by the following obser-
vations. First, the networks were designed to be analogous at the scale of individual fractures. They are
composed of equal-sized fractures whose centroids are uniformly distributed throughout the domain and
have similar values of total fracture surface area (over domain volume) and density (Table 1). Second, their
hydraulic properties are statistically indistinguishable, having either the same permeabilities on every frac-
ture or fracture permeabilites drawn from the same distribution. Distri-
butions of distances between trace centroids are similar (Figure 5

Struct. 62, =0.0
Struct. opy, =0.5

Struct. 62, =1.0
Rand. ¢2,=0.0
Rand. ¢2,=0.5

Rand. ¢2,=1.0

(left)) and the distributions of the length scale /I’ (ratio of permeability
and distance between centers of fracture plane intersections), which
we proposed to establish a relationship between structural and
hydraulic properties, are also nearly indistinguishable for the same val-
ues of a2, between the networks (Figure 5 (right)).

The principal difference between the two network sets is the orienta-
tion of fracture families (Figure 1). In the structured networks, the
mean orientations of the three fracture families are orthogonal to one
another and are aligned with the primary Cartesian directions. There-
fore, two of the three families in the structured networks contain frac-
tures that are aligned with the principal direction of flow and provide

0 5 10 15
Control Plane Distance [m]

20 25

Figure 8. Derivative of mean squared displacement a2 of breakthrough times
respect to the primary direction of flow (plume growth rate). da?(x") /Ox plot-
ted as a function of control plane distance for structured (blue) and random
(red) network. Log variance of permeability fields are distinguished by line
type: o2,,=0.0 (solid), a2, =0.5 (dashed), 7, ,=1.0 (dotted).

little resistance to flow and transport. In contrast, the disordered net-
works are composed of square fractures of the same size, but whose
orientations are uniformly random and provide no preferred direction
or resistance to flow. This difference between orientations also
resulted in networks with different connectivity properties. The two
measures proposed for connectivity, fracture degree and node con-
nectivity, indicate that the structured networks are better connected,
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002/0x

107

Figure 10. Relative concentration values M* (equation (19)) plotted as a func-
tion of control plane distance for the structured (blue) and random (red) net-

Figure 9. Pathlines of 100 particles in the random network with o2, ,=1.0. The pathlines are colored according to particle
initial positions: left-blue and right-red. Uniformly spaced [0—25 m] control planes (gray) normal to the main flow direc-
tion are also included. The left side of the image shows snapshots of particle locations at the normal control planes. As
particles move through the domain, they transition across a median plane.

both locally and globally, than their random counterparts. Thus, in addition to providing less resistance in
the direction of flow, it is easier for transport to pass between fractures in the structured networks.

The fracture degree (i.e, the number of fractures that each fracture intersects) corresponds to the coordination
value—a global topological characteristic for the entire fractured network—in percolation theory. Karrer et al.
(2014) showed that percolation threshold p.—a critical probability below which the connections are too sparse
to form a pathway through a sample leading to an interrupted macro-
scopic flow and transport—is given by p.=1/(fracture degree—1). This

Struct. 62, =0.0

+ Struct. 67, =0.5

Struct. 62, =1.0

Rand. ¢2,=0.0

- Rand. 62,=0.5

Rand. o2,=1.0

definition of percolation threshold, originally proposed for sparse networks
(tree-like networks), has been found to be accurate for denser networks
(many short loops) as well (Jiménez-Martinez & Negre, 2017). The value of
pc was 0.333 and 0.500 for structured and random networks, respectively;
while the theoretical p. for 3-D systems is 0.312. The lower average fracture
degree of the random network results in a percolation threshold that is
similar to a well-connected 2-D system (0.590) (Berkowitz & Balberg, 1993).
Although the obtained percolation threshold is subject to uncertainty, it
confirms that the structured network is better connected globally.

4.2, Spreading
The structured networks show a narrower distribution of velocities than
3 15 20 25 the random networks for all log variance values considered. In general,
Control Plane Distance [m] the random networks display wider variance in the velocity field distri-

bution, in which low velocities regions coexist with connected preferen-
tial paths where velocities are high. This variance is also controlled by

works. Log variance of permeability fields are distinguished by line type: Tin- In contrast to 2-D DFN simulations, dead-end fractures, those with

o2, =0.0 (solid), o2, , =0.5 (dashed), 62, =1.0 (dotted).

fracture degree of one, are not no-flow regions. Gradients can exist
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along the single intersection on a dead-end fracture and create low velocity flow cells within the dead-end
fractures. Thus, recirculation regions exist within dead-end fractures and these flow cells have been shown
to contribute to delays in the particle transport, i.e., particle residence times are increased (Park et al., 2003).
This effect is less pronounced in the structured networks possibly due to the higher average and wider vari-
ance of fracture degree, as well as the higher network-scale connectivity.

Higher values of o, result in more longitudinal dispersion in both networks. However, the faster first arrival
times in the structured networks and a lower and later breakthrough peak in the random networks for all
three a2, cases, indicate that the greater longitudinal dispersion in the particle plume is mainly structurally
controlled. Similar conclusions have recently been reached for porous media, with higher variance of the
solute arrival times in spatially disordered than in more orderly conductivity fields, while in the latter, more
skewed distributions, as for higher o2,,, have been reported (Bianchi & Pedretti, 2017). Higher values of o2,
result in higher values of 62 in both network structures. Values of da2/0x increase rapidly through the first
few control planes and then stablize to a constant until the end of the domain, which is likely the result of
boundary effects. Nonetheless, the systematically higher values of ¢? for the random networks, indepen-
dent of a2, ,, highlights that network structure controls macroscale dispersion. Note as well that the plot is
on a semilog scale. Therefore, the systematic depends nonlinearly on a2, as well.

4.3. Transverse Dispersion: Mixing Capacity

Transverse dispersion provides a first approach to the mixing and reactive capacity of the system, i.e., for
fluid-fluid mixing-driven chemical reactions (fast reactions). The relative concentration of particles crossing
the median plane, M*, measuring the transverse movement within the network, was systematically higher
in the random networks (Figure 10). This indicates that structural heterogeneity plays a major role in con-
trolling transverse dispersion (e.g., Rubin & Bddemeier, 1996), and therefore in mixing. In general, the influ-
ence of hydraulic heterogeneity is less pronounced here than in the longitudinal direction. However, for the
structured network, larger transverse dispersion above a certain threshold in o7, (i.e., a2,,=1.0) is observed,
being heterogeneity in hydraulic properties the main control on traverse dispersion. M*, like a2, increases
with similar rate as the plume moves through the domain (i.e., with distance): slightly lower and increasing
with a2, for the structured and random networks, respectively.

In 3-D fracture networks, the combination of divergence-free flow fields and gradients along fracture inter-
sections contributes to the redistribution of the solute particles. As in porous media (e.g., Willingham et al.,
2010), streamline convergence in flow-focusing zones compresses transverse concentration, while stream-
line divergence after flow-focusing zones expands it. This is an important mechanism for mixing diffusion-
limited reactions under laminar flow conditions, as it increases the number of particles that cross the
median plane, and thus the probability that they will interact with the other set of particles, i.e., mixing.
Therefore, and for the similar, in the statistical sense, networks studied, the “mixing capacity”, as well as the
reactivity (i.e., the quality of being or the degree to it is reactive), are mainly structurally controlled, being
higher for the random than for the structured network.

Different measures to describe and quantify solute mixing in topologically complex environments, including
porous and fractured media, have been proposed, among them: scalar dissipation rate, mixing degree or
dilution index. Dilution index quantifies dilution as the distribution of solute mass over a medium volume,
i.e., volume of the medium occupied by a solute cloud (Kitanidis, 1994). This metric is expressed as the
exponential of the Shannon entropy, computed from the solute concentration probability distribution.
Entropy has been marginally used to measure spatial disorder of a permeability field and its control on the
flow (e.g., Journel & Deutsch, 1993]. More recently, the entropy computed from the eigenvalue probability
distribution has been demonstrated to provide a measure of the “mixing capacity” of a porous medium
(e.g., Jiménez-Martinez & Negre, 2017). In this work, Shannon entropy (of the spectrum of the Laplacian of a
weighted graph representation of the networks) is a measure, i.e, a relative indicator by comparison
between two networks, which anticipates in which network dispersion and mixing will be higher: dispersion
potential and “mixing capacity”, respectively. The random networks present higher entropy values than the
structured networks for all of the weighting schemes considered (Table 2). Therefore, the random networks
have, a priori, a higher “mixing capacity”. Compared to the structured networks, particles experienced a
greater number of heterogeneity transitions in the random networks, which promotes mixing (e.g., Bianchi
& Pedretti, 2017). This connection between higher values of network entropy with higher dispersion and
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mixing capacity underscores that the network structure is a dominant force controlling transport properties
within fractured media.

5. Conclusions

Heterogeneity exists at many length scales within fractured media. We designed two synthetic network sets
to isolate the influence of structure and disorder at the macroscale and then compare its importance rela-
tive to moderate levels of hydraulic heterogeneity. The networks were constructed to be analogous at the
scale of individual fractures, most macroscale properties, and hydraulic properties. The random networks
were designed to be a disordered network where fractures were not aligned with any preferred direction.
This construction resulted in lower values of connectivity compared to a structured network, which could
be linked to greater variation in transport behavior. We proposed the Shannon entropy of the fracture net-
work, which can integrate topological, geometric, and hydraulic properties, to provide a qualitative indica-
tion of which system may show greater dispersion or mixing even though it is not sufficient to characterize
transport behavior.

The primary findings of our study are the following:

1. For moderate levels of hydraulic heterogeneity, fracture network structure is the principal control on
transport times and dispersion.

2. The lower mechanical dispersion observed in the structured networks appeared to be linked to the
higher levels of connectivity in comparison with the poorly connected random networks.

3. As hydraulic heterogeneity increased, both longitudinal and transverse dispersion also increased.

4. The influence of the interplay between structural and hydraulic heterogeneity is nonlinear; increased
hydraulic heterogeneity for the random network resulted in more dispersion than for the structured
network.

5. Higher Shannon entropy of the spectrum of the normalized graph Laplacian, a measure of the disorder
in the networks, was linked to greater and higher mixing capacity.

Beyond the fact that heterogeneities at different scales imply a spatial scaling of hydraulic parameters (i.e.,
storage coefficient and hydraulic conductivity), the noninclusion of some heterogeneity families could sup-
pose changing from a random to a structural network, with the subsequent implications for transport and
mixing as shown in this work. Therefore, geological characterization (planes) at all scales (from foliation to
large-scale fractures), including work in the laboratory (e.g., cores) and field (e.g., well logs, cartography), are
essential to propose an equivalent system from DFN. Below the scale of individual fractures there are further
levels of heterogeneity to consider, e.g., in-fracture aperture variability and mixing rules along intersects.
Also, this study assumed that the matrix surrounding the fractures was impervious. Therefore, our model is
limited to situations where the times are too short enough to allow diffusion into the rock matrix or very
low permeability rock matrix. The influence of these features will be the focus of subsequent studies.

References

Barbier, E. (2002). Geothermal energy technology and current status: An overview. Renewable & Sustainable Energy Reviews, 6, 3-65.

Berkowitz, B., & Balberg, I. (1993). Percolation theory and its application to groundwater hydrology. Water Resources Research, 29(4), 775-
794.

Berkowitz, B., & Scher, H. (1997). Anomalous transport in random fracture networks. Physical Review Letters, 79(20), 4038-4041.

Berkowitz, B., & Scher, H. (1998). Theory of anomalous chemical transport in random fracture networks. Physical Review E, 57(5), 5858-5869.

Bianchi, M., & Pedretti, D. (2017). Geological entropy and solute transport in heterogeneous porous media. Water Resources Research, 53,
4691-4708.

Bonnet, E., Bour, O., Odling, N. E., Davy, P., Main, ., Cowie, P., et al. (2001). Scaling of fracture systems in geological media. Reviews of Geo-
physics, 39(3), 347-383.

Cacas, M. C,, Ledoux, E., De Marsily, G., Barbreau, A., Calmels, P., Gaillard, B., et al. (1990). Modeling fracture flow with a stochastic discrete
fracture network: Calibration and validation. 2: The transport model. Water Resources Research, 26(3), 491-500.

Comolli, A,, & Dentz, M. (2017). Anomalous dispersion in correlated porous media: A coupled continuous time random walk approach.
European Physical Journal B, 90(9), 166.

Cvetkovic, V., Painter, S., Outters, N., & Selroos, J. (2004). Stochastic simulation of radionuclide migration in discretely fractured rock near
the Aspd hard rock laboratory. Water Resources Research, 40, W02404. https://doi.org/10.1029/2003WR002655

de Dreuzy, J.-R., Darcel, C., Davy, P., & Bour, O. (2004). Influence of spatial correlation of fracture centers on the permeability of two-
dimensional fracture networks following a power law length distribution. Water Resources Research, 40, W01502. https://doi.org/10.
1029/2003WR002260

HYMAN AND JIMENEZ-MARTINEZ

DISPERSION AND MIXING—REGULAR VERSUS DISORDERED NETWORKS 3256


https://doi.org/10.1029/2003WR002655
https://doi.org/10.1029/2003WR002260
https://doi.org/10.1029/2003WR002260
https://github.com/dfnWorks/dfnWorks-Version2.0
https://github.com/dfnWorks/dfnWorks-Version2.0

~1
AGU

100

ADVANCING EARTH
/AND SPACE SCIENCE

Water Resources Research 10.1029/2018WR022585

de Dreuzy, J.-R., Méheust, Y., & Pichot, G. (2012). Influence of fracture scale heterogeneity on the flow properties of three-dimensional dis-
crete fracture networks (dfn). Journal of Geophysical Research, 117, B11207. https://doi.org/10.1029/2012JB009461

Demmy, G., Berglund, S., & Graham, W. (1999). Injection mode implications for solute transport in porous media: Analysis in a stochastic
Lagrangian framework. Water Resources Research, 35(7), 1965-1973.

Dentz, M., Kang, P. K., Comolli, A, Le Borgne, T., & Lester, D. R. (2016). Continuous time random walks for the evolution of Lagrangian veloc-
ities. Physical Review Fluids, 1(7), 074004.

Dentz, M., Le Borgne, T., Englert, A., & Bijeljic, B. (2011). Mixing, spreading and reaction in heterogeneous media: A brief review. Journal of
Contaminant Hydrology, 120-121, 1-17.

Dershowitz, W. (2014). FracMan version 7.4—Interactive discrete feature data analysis, geometric modeling, and exploration simulation: User
documentation. Redmond, Washington, DC: Golder, LLC. Retrieved from http://fracman.golder.com/

Dershowitz, W., & Fidelibus, C. (1999). Derivation of equivalent pipe network analogues for three-dimensional discrete fracture networks
by the boundary element method. Water Resources Research, 35(9), 2685-2691.

Erhel, J., de Dreuzy, J.-R., & Poirriez, B. (2009). Flow simulation in three-dimensional discrete fracture networks. SIAM Journal on Scientific
Computing, 31(4), 2688-2705.

Frampton, A., & Cvetkovic, V. (2009). Significance of injection modes and heterogeneity on spatial and temporal dispersion of advecting
particles in two-dimensional discrete fracture networks. Advances in Water Resources, 32(5), 649-658.

Gotovac, H., Cvetkovic, V., & Andricevic, R. (2009). Flow and travel time statistics in highly heterogeneous porous media. Water Resources
Research, 45, W07402. https://doi.org/10.1029/2008 WR007168

Gotovac, H., Cvetkovic, V., & Andricevic, R. (2010). Significance of higher moments for complete characterization of the travel time probabil-
ity density function in heterogeneous porous media using the maximum entropy principle. Water Resources Research, 46, W05502.
https://doi.org/10.1029/2009WR008220

Hagberg, A. A, Schult, D. A., & Swart, P. (2008). Exploring network structure, dynamics, and function using networkx. In Proceedings of the
7th Python in Science Conferences (SciPy 2008) (Vol. 2008, pp. 11-16). Pasadena, CA: SciPy Organizers.

Huseby, O., Thovert, J. F.,, & Adler, P. M. (2001). Dispersion in three-dimensional fracture networks. Physics of Fluids, 13(3), 594-615.

Hyman, J. D., Aldrich, G., Viswanathan, H., Makedonska, N., & Karra, S. (2016a). Fracture size and transmissivity correlations: Implications for
transport simulations in sparse three-dimensional discrete fracture networks following a truncated power law distribution of fracture
size. Water Resources Research, 52, 6472-6489.

Hyman, J. D., Gable, C. W,, Painter, S. L., & Makedonska, N. (2014). Conforming Delaunay triangulation of stochastically generated three
dimensional discrete fracture networks: A feature rejection algorithm for meshing strategy. SIAM Journal on Scientific Computing, 36(4),
A1871-A1894.

Hyman, J. D., Hagberg, A., Srinivasan, G., Mohd-Yusof, J., & Viswanathan, H. S. (2017). Predictions of first passage times in sparse discrete
fracture networks using graph-based reductions. Physical Review E, 96(1), 013304.

Hyman, J. D., Jiménez-Martinez, J.,, Viswanathan, H. S., Carey, J. W., Porter, M. L., Rougier, E., et al. (2016b). Understanding hydraulic fractur-
ing: A multi-scale problem. Philosophical Transactions of the Royal Society A, 374(2078), 20150426.

Hyman, J. D, Karra, S., Makedonska, N., Gable, C. W., Painter, S. L., & Viswanathan, H. S. (2015a). dfnWorks: A discrete fracture network
framework for modeling subsurface flow and transport. Computers & Geosciences, 84, 10-19.

Hyman, J. D., Painter, S. L., Viswanathan, H., Makedonska, N., & Karra, S. (2015b). Influence of injection mode on transport properties in
kilometer-scale three-dimensional discrete fracture networks. Water Resources Research, 51, 7289-7308.

Jankovi¢, I, & Fiori, A. (2010). Analysis of the impact of injection mode in transport through strongly heterogeneous aquifers. Advances in
Water Resources, 33(10), 1199-1205.

Ji, S--H., Park, Y.-J,, & Lee, K-K. (2011). Influence of fracture connectivity and characterization level on the uncertainty of the equivalent per-
meability in statistically conceptualized fracture networks. Transport in Porous Media, 87(2), 385-395.

Jiménez-Martinez, J., Longuevergne, L., Borgne, T., Davy, P., Russian, A., & Bour, O. (2013). Temporal and spatial scaling of hydraulic
response to recharge in fractured aquifers: Insights from a frequency domain analysis. Water Resources Research, 49, 3007-3023.

Jiménez-Martinez, J., & Negre, C. F. A. (2017). Eigenvector centrality for geometric and topological characterization of porous media. Physi-
cal Review E, 96(1),013310.

Johnson, J., Brown, S., & Stockman, H. (2006). Fluid flow and mixing in rough-walled fracture intersections. Journal of Geophysical Research,
111, B12206. https://doi.org/10.1029/2005JB004087

Journel, A. G, & Deutsch, C. V. (1993). Entropy and spatial disorder. Mathematical Geolsciences, 25(3), 329-355.

Kang, P. K., Brown, S., & Juanes, R. (2016). Emergence of anomalous transport in stressed rough fractures. Earth and Planetary Science Let-
ters, 454, 46-54.

Kang, P. K, Dentz, M., Le Borgne, T., & Juanes, R. (2015). Anomalous transport on regular fracture networks: Impact of conductivity hetero-
geneity and mixing at fracture intersections. Physical Review E, 92(2), 022148.

Kang, P. K, Dentz, M., Borgne, T. L., Lee, S., & Juanes, R. (2017). Anomalous transport in disordered fracture networks: Spatial Markov model
for dispersion with variable injection modes. Advances in Water Resources, 106, 80-94.

Karrer, B, Newman, M. E.,, & Zdeborova, L. (2014). Percolation on sparse networks. Physical Review Letters, 113(20), 208-702.

Kitanidis, P. K. (1994). The concept of the Dilution Index. Water Resources Research, 30(7), 2011-2026.

Klint, K., Gravesen, P, Rosenbom, A, Laroche, C, Trenty, L., Lethiez, P., et al. (2004). Multi-scale characterization of fractured rocks used as a
means for the realistic simulation of pollutant migration pathways in contaminated sites: A case study. Water, Air, & Soil Pollution, 4(4-
5),201-214.

Kreft, A, & Zuber, A. (1978). On the physical meaning of the dispersion equation and its solutions for different initial and boundary condi-
tions. Chemical Engineering Science, 33(11), 1471-1480.

LaGriT (2013). Los Alamos Grid Toolbox (LaGriT). Los Alamos, NM: Los Alamos National Laboratory. Retrieved from http://lagrit.lanl.gov

Lichtner, P, Hammond, G,, Lu, C,, Karra, S., Bisht, G., Andre, B., Mills, R., & Kumar, J. (2015). PFLOTRAN user manual: A massively parallel reac-
tive flow and transport model for describing surface and subsurface processes (Tech. Rep. LA-UR-15-20403). Los Alamos, NM: Los Alamos
National Laboratory.

Long, J., & Witherspoon, P. A. (1985). The relationship of the degree of interconnection to permeability in fracture networks. Journal of Geo-
physical Research, 90(B4), 3087-3098.

Makedonska, N., Hyman, J. D., Karra, S., Painter, S. L., Gable, C. W., & Viswanathan, H. S. (2016). Evaluating the effect of internal aperture var-
iability on transport in kilometer scale discrete fracture networks. Advances in Water Resources, 94, 486-497.

Makedonska, N., Painter, S. L., Bui, Q. M., Gable, C. W., & Karra, S. (2015). Particle tracking approach for transport in three-dimensional dis-
crete fracture networks. Computational Geosciences, 19(5), 1123-1137.

HYMAN AND JIMENEZ-MARTINEZ

DISPERSION AND MIXING—REGULAR VERSUS DISORDERED NETWORKS 3257


https://doi.org/10.1029/2012JB009461
http://fracman.golder.com/
https://doi.org/10.1029/2008WR007168
https://doi.org/10.1029/2009WR008220
https://doi.org/10.1029/2005JB004087
http://lagrit.lanl.gov

~1
AGU

100

ADVANCING EARTH
/AND SPACE SCIENCE

Water Resources Research 10.1029/2018WR022585

Moreno, L., Tsang, Y. W., Tsang, C. F., Hale, F. V., & Neretnieks, I. (1988). Flow and tracer transport in a single fracture, a stochastic model
and its relation to some field observations. Water Resources Research, 24(12), 2033-2048.

Mustapha, H., & Mustapha, K. (2007). A new approach to simulating flow in discrete fracture networks with an optimized mesh. SIAM Jour-
nal on Scientific Computing, 29, 1439.

Ottino, J. M. (1989). The kinematics of mixing: Stretching, chaos, and transport. Cambridge, UK: Cambridge University Press.

Painter, S. L., Gable, C. W., & Kelkar, S. (2012). Pathline tracing on fully unstructured control-volume grids. Computational Geosciences, 16(4),
1125-1134.

Park, Y.-J,, Lee, K-K., Kosakowski, G., & Berkowitz, B. (2003). Transport behavior in three-dimensional fracture intersections. Water Resources
Research, 39(8), 1215. https://doi.org/10.1029/2002WR001801

Pichot, G., Erhel, J., & de Dreuzy, J. (2010). A mixed hybrid mortar method for solving flow in discrete fracture networks. Applicable Analysis,
89(10), 1629-1643.

Pichot, G., Erhel, J., & de Dreuzy, J. (2012). A generalized mixed hybrid mortar method for solving flow in stochastic discrete fracture net-
works. SIAM Journal on Scientific Computing, 34(1), B86-B105.

Rhén, 1. (1997). Asp6 HRL: Geoscientific evaluation 1997/4: Results from pre-investigations and detailed site characterization: Comparison of pre-
dictions and observations: Hydrology, groundwater chemistry and transport of solutes. Stockholm, Sweden: Svensk karnbranslehantering
AB/Swedish Nuclear Fuel and Waste Management.

Roques, C., Bour, O., Aquilina, L., & Dewandel, B. (2016). High-yielding aquifers in crystalline basement: Insights about the role of fault
zones, exemplified by Armorican Massif, France. Hydrogeological Journal, 24(8), 2157-2170.

Rubin, H., & Buddemeier, R. W. (1996). Transverse dispersion of contaminants in fractured permeable formations. Journal of Hydrology,
176(1), 133-151.

Sanchez-Vila, X, Guadagnini, A, & Carrera, J. (2006). Representative hydraulic conductivities in saturated groundwater flow. Reviews of Geo-
physics, 44(3),

Singhal, B. B. S., & Gupta, R. P. (2010). Applied hydrogeology of fractured rocks. Dordrecht, the Netherlands: Springer Science & Business
Media.

Svensk Karnbranslehantering, A. B. (2010). Data report for the safety assessment SR-site (Tech. Rep. TR-10-52). Stockholm, Sweden: Svensk
Karnbranslehantering AB.

Tsang, C. F.,, & Neretnieks, I. (1998). Flow channeling in heterogeneous fractured rocks. Reviews of Geophysics, 36(2), 275-298.

Tsang, Y. W., & Tsang, C. F. (1989). Flow channeling in a single fracture as a two-dimensional strongly heterogeneous permeable medium.
Water Resources Research, 25(9), 2076-2080.

Tsang, Y. W., Tsang, C. F., Hale, F. V., & Dverstorp, B. (1996). Tracer transport in a stochastic continuum model of fractured media. Water
Resources Research, 32(10), 3077-3092.

Vanderborght, J.,, Mallants, D., & Feyen, J. (1998). Solute transport in a heterogeneous soil for boundary and initial conditions: Evaluation of
first-order approximations. Water Resources Research, 34(12), 3255-3270.

Willingham, T., Zhang, C., Werth, C. J., Valocchi, A. J., Oostrom, M., & Wietsma, T. W. (2010). Using dispersivity values to quantify the effects
of pore-scale flow focusing on enhanced reaction along a transverse mixing zone. Advances in Water Resources, 33(4), 525-535.

Wood, A.T. (1994). Simulation of the von Mises Fisher distribution. Communications in Statistics, 23(1), 157-164.

HYMAN AND JIMENEZ-MARTINEZ

DISPERSION AND MIXING—REGULAR VERSUS DISORDERED NETWORKS 3258


https://doi.org/10.1029/2002WR001801

	l
	l
	l
	l
	l
	l

