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S1 Phase separation

Assume that the parent compound can be in 3 different states:

1. aqueous phase in water column (Maq),

2. sorbed to a suspended sediment particle in water column (Msusp),

3. being in the settled sediment (Msettl), including both aqueous state in porewater and

being sorbed onto settled particles.

Transitions between the states are governed by processes:

A Desorption from Msusp to Maq,

B Sorption from Maq to Msusp,

E Settling from Msusp to Msettl,

F Resuspension from Msettl to Msusp,

The behaviour of each molecule of the compound can be simulated by a Markov chain

having these finite number of states (Maq, Msusp, and Msettl) and continuous time (Fig.

S1). Phase transformation rates are denoted by symbols A, B, E , and F (C and D are not

used as they denote different quantities, namely concentration and diameter).
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Msettl
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Figure S1. Markov chain of partitioning. Dots denote return rates.

The probabilities of being in a certain state reach an equilibrium as t → ∞. Keeping

in mind that the sum of transition probabilities from a single node must sum up to 1, the

transition matrix assuming a state vector of [Maq Msusp Msettl ] based on Figure S1 is:
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P =


1 − B B 0

A 1 − A − E E

0 F 1 − F


(S1)

The equilibrium probability distribution φ = [ φ1 φ2 φ3 ] = [
Maq
Mtotal

Msusp
Mtotal

Msettl
Mtotal
]

doesn’t change when multiplied with P:

φP = φ (S2)

This means:

φ1 = (1 − B)φ1 + Aφ2

φ2 = Bφ1 + (1 − A − E)φ2 + Fφ3

φ3 = Eφ2 + (1 − F)φ3

so

φ1
φ2
=

A
B

(S3)

and

φ3
φ2
=

E
F

(S4)

Since φ1 + φ2 + φ3 = 1:

φ2 =
1

A
B + 1 + E

F

(S5)

Thus, just like reaction constants of opposing reactions determine the equilibrium

state in chemistry, A/B and E/F completely determine the equilibrium state of phase

separation in the system. The two ratios represent general sorption and sediment (e.g.

resuspension-settling) equilibria, respectively.

A/B directly describes the sorption equilibrium in the water phase:

A
B
=
φ1
φ2
=

Maq

Msusp
=

1
Kd · SSC

(S6)

–3–



where Kd is the distribution or sediment-water partitioning coefficient [m3 kg−1] and SSC

is the suspended sediment concentration [kg m−3].

E/F is the sediment mass ratio between the active sediment layer and the suspended

sediment:
E
F
=

S
SSC · Zw

(S7)

where S is the sediment mass in the active sediment layer [kg m−2], and Zw is the water

depth [m].

S1.1 Partitioning in the presence of biotransformation

When the parent compound is subject to degradation into transformation products

(TP) from any of the previously mentioned states, the system’s only equilibrium is when

all parent compound has degraded to TP (as TP is an “absorbing state” in a mathematical

sense, there is no exit process from it, Fig. S2). This means that in a strict sense “parti-

tioning equilibrium” doesn’t exist anymore for the parent compound.

Maq Msusp

MsettlTP
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Figure S2. Markov chain of partitioning when Maq and Msettl degrade with rate constants of G, and H,

respectively. Dots denote return rates.

However, when biotransformation is slow compared to phase transformation (e.g. G

and H is small compared to A, B, E , and F), an approximate, relative equilibrium exists

for the parent compound: ratios of Maq/Msusp and Msettl/Msusp remain close to constant

and Eqs. S3 and S4 are still good approximations.

Numerical simulations and the analysis of transient partitioning in the absorbing

Markov chain suggest that the applicability criteria for these approximations is E/H > 200
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for the range of A/B and E/F of the Rhine dataset. When this is fulfilled, φ1, φ2, and φ3

are approximated with a mean relative error of 4% via Eqs. S3 and S4.

The typical range of E can be easily estimated, as it is closely bound to sediment

particle settling. For a typical suspended sand particle with 0.5 mm diameter the mean

settling velocity is about 7 mm per second. In a stream with 2 m mean depth E becomes

3069 [d−1]. This means that the partitioning approximations can be used for any com-

pound with H < 15 [d−1] (half-life in sediment < 1 hours). For the finest sand (d=0.0625

mm) the threshold sediment half-life is longer, but is still only 1 day.
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S2 Total-system degradation

? derived first-order degradation rate constants in water and sediment as functions of

a second-order degradation rate constant k ′bio. The first-order degradation rate constant is

the product of k ′bio [d−1 (kg OC)−1 m3] and the total particulate organic carbon concentra-

tion (POC [kg OC m−3]) as a proxy for the degrader biomass and the aqueous (bioavail-

able) fraction ( faq [–]) of the compound:

kdeg = k ′bio POC faq (S8)

where kdeg is the first-order degradation rate constant [d−1].

In a specific compartment the degradation rate at any moment (Deg(t) [kg d−1]) is

the product of the compartment-specific degradation rate constant and the mass of the par-

ent compound in the given compartment (M(t) [kg]):

Deg(t) = kdegM(t) (S9)

If relative separation remains constant among the compartments, the total system

degradation will be first-order as well1:

Degtotal(t) = k∗ Mtotal(t) (S10)

where Degtotal is the total system degradation rate [kg d−1], Mtotal is the mass of the par-

ent compound in the entire system [kg], and k∗ is the system-level degradation rate con-

stant [d−1].

Total-system degradation is composed of two first-order mechanisms:

Degtotal(t) = kwMw(t) + ksedMsed(t) (S11)

where kw and ksed are the first-order degradation rate constants in water and sediment

[d−1], respectively, and Mw and Msed are the masses of the parent compound in water and

sediment [kg], respectively. By expressing both degradation rate constants as functions of

k ′bio the total system rate can be found.

1 The total system degradation is really first-order if the ratios between Maq, Msusp and Msettl remain constant. Here we

assume this on the basis that for slowly degrading compounds a single river reach isn’t lasting long enough to remove sig-

nificant proportions via degradation. If degradation is significant inside a reach, mass distribution among the compartments

changes slightly from the pure sorption equilibrium.
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In the water phase the following equations apply2:

• Mass of compound in water column [kg]:

Mw(t) = Maq + Msusp = Mtotal(t) (φ1 + φ2) = Mtotal(t)
A
B + 1

A
B + 1 + E

F

(S12)

• Particulate OC concentration in water column [kg m−3]:

POCw = foc,sed SSC (S13)

where foc,sed is the organic carbon content of the sediment [–].

• Aqueous fraction in water column [−]:

faq,w =
Maq

Mw
=

1
1 + B

A

(S14)

Thus, the first-order degradation rate constant in water is:

kw = k ′bio foc,sed SSC
1

1 + B
A

(S15)

In the sediment the corresponding quantities are:

• Mass of compound in sediment [kg]:

Msettl(t) = φ3 Mtotal(t) = Mtotal(t)
E
F

A
B + 1 + E

F

(S16)

• Particulate OC concentration in sediment [kg m−3]:

POCsed = foc,sed
S
Za

(S17)

where Za is the depth of the active sediment layer [m].

• Aqueous fraction in sediment [−]:

faq,sed =
1

1 + KocPOCsed
=

1
1 + E

F
B
A

Zw
Za

(S18)

where Koc is the sediment organic carbon-water partitioning coefficient [m3 kg−1].

Note that Koc = Kd/ foc,sed =
B
A

1
foc,sedSSC , and POCsed =

foc,sedS
Za
= foc,sedSSC EZw

FZa
.

Therefore, the first-order degradation rate constant in sediment is:

ksed = k ′bio foc,sed
S
Za

1
1 + E

F
B
A

Zw
Za

(S19)

2 assuming that the compound does not bind to DOC
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The ratio between sediment and water degradation rate constants is the following:

ksed
kw
=

POCsed
POCw

faq,sed

faq,w
(S20)

where
POCsed
POCw

=
S

SSC Za
=

E
F

Zw
Za

(S21)

and
faq,sed

faq,w
=

1 + B
A

1 + E
F

B
A

Zw

Za

(S22)

With full substitution of dimensionless ratios:

ksed
kw
=

E
F

Zw
Za

1 + B
A

1 + E
F

B
A

Zw
Za

=

A
B + 1

A
B

F
E

Za
Zw
+ 1

(S23)

The total system degradation rate constant is:

k∗ = kw
Mw

Mtotal
+ ksed

Msed
Mtotal

(S24)

Normalising with kw yields:

k∗

kw
= (1 −

S
Mtotal

) +
ksed
kw

Msed
Mtotal

(S25)

We already know that
S

Mtotal
= φ3 =

E
F

A
B + 1 + E

F

(S26)

so
k∗

kw
=

A
B + 1

A
B + 1 + E

F

+

A
B + 1

A
B

F
E

Za
Zw
+ 1

E
F

A
B + 1 + E

F

=

A
B + 1

A
B + 1 + E

F

(
1 +

E
F

A
B

F
E

Za
Zw
+ 1

)
(S27)

In rivers water and suspended sediment move with the flow, while settled sediment

remains. Without phase separation the compound would always stay in Maq and the fol-

lowing equation would connect the fluxes at the upstream and downstream ends of the

reach:

Fout = Fin exp (−kwτw) (S28)

where Fin and Fout are the incoming and outflowing fluxes of the parent compound [kg

d−1], respectively, and τw is the mean water residence time in the reach [d].

When phase separation is present, system-wide degradation rate constants and resi-

dence times apply:

Fout = Fin exp (−k∗τ∗) (S29)
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where τ∗ is the mean system-level residence time of the compound in the reach [d].

Instead of calculating the reach-specific k∗, it is easier to calculate with degradation

rate constant (kw) and residence time (τw) of the water and introduce the influence of set-

tled sediment via a dimensionless modification factor (δ):

Fout = Fin exp (−δ kw τw) (S30)

where δ = k∗ τ∗

kw τw
.

The mean travel time ratio between the entire system and the water phase is:

τ∗

τw
=

1
1 − φ3

=

A
B + 1 + E

F

1 + A
B

(S31)

Finally, the settled sediment-related modification factor is:

δ =
k∗

kw

τ∗

τ
= 1 +

E
F

A
B

F
E

Za
Zw
+ 1

(S32)

S3 Possible extensions with other degradation mechanisms

S3.1 Phototransformation

Assume that Mw degrades with kphoto in addition to kw. Then the total system degra-

dation will be:

k∗ = kw
Mw

Mtotal
+ ksed

Msed
Mtotal

+ kphoto
Mw

Mtotal
(S33)

The ratio normalised by kw is:

k∗

kw
=

Mw
Mtotal

+
ksed
kw

Msed
Mtotal

+
kphoto

kw

Mw
Mtotal

(S34)

The final modification factor including phototransformation:

δphoto+ = 1 +
φ3

1 − φ3

ksed
kw
+

kphoto

kw
= δ +

kphoto

kw
(S35)

S3.2 Hydrolysis

Assume that both Mw and Msed degrade with khydr in addition to kw. Then the total

system degradation will be:

k∗ = kw
Mw

Mtotal
+ ksed

Msed
Mtotal

+ khydr
Mw

Mtotal
+ khydr

Msed
Mtotal

(S36)

–9–



1
5

20
10

0

1 100 10000

A B

E
F

τ*

τw

1

1.01
1.1

1.52

5

10

20

50

a

1 100 10000

1
5

20
10

0

A B

E
F

k*

kw

2

5

10
20

50

100

200
b

Zw

Za

100

500

1000

1 10 100 1000 10000

1
5

20
10

0

(A B)(Za Zw)

E
F

δ1.01

1.1

1.52

5
10

20

50

100

200
c

Figure S3. The role of the physical environment (E/F, Zw/Za) and sorption properties (A/B) on dimen-

sionless travel time (panel a), the dimensionless degradation rate constant (panel b), and the settled sediment

modification factor (δ, panel c).

–10–



The ratio normalised by kw is:

k∗

kw
=

Mw
Mtotal

+
ksed
kw

Msed
Mtotal

+
khydr

kw

(
Mw

Mtotal
+

Msed
Mtotal

)
(S37)

The final modification factor including hydrolysis:

δhydr+ = 1 +
φ3

1 − φ3

ksed
kw
+

1
1 − φ3

khydr

kw
= δ +

1
1 − φ3

khydr

kw
(S38)
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S4 Stream geometry, flow velocity, sediment grainsize distribution, and total sus-
pended solids concentrations

The calculation of API degradation requires the knowledge of Zw, Za, SSC, S, and

τw in each stream reach. These values are not available on the stream network scale, ob-

servations are concentrated in a few points. Therefore, reach-specific values have to be

estimated based on the few properties, which are known, namely the drainage area, and

the channel slope. Obviously, such estimation is very crude, it just serves finding the ap-

proximate order of magnitude for the estimated values.

In a specific catchment discharge of a certain probability is commonly estimated as

a power function of drainage area, and depth is estimated with another power function of

discharge [????]. Nested power functions form a power function again, so stream depth at

mean flow (Zw [m]) can be estimated a power function of drainage area (A [km2]):

Zw = a · Ab (S39)

The parameters a (0.15) and b (0.3) are set to yield a minimal depth of 0.15 m at

the drainage area of 1 km2, and provide the known 5-6 m along the lower half of the

Rhine (A > 100’000 km2). Since most natural and channelized streams have high width:depth

ratios, the hydraulic radius (R [m]) is approximately equal to Zw.

We assume that flow extremes determine the long-term grain size distribution of

streambed. Relative flow variability is calculated based on statistics of discharge and drainage

area in multiple streams (Fig. S4):

MHQ
MQ

= 40.928 · A−0.217 (S40)

where MHQ, and MQ are mean high flow and mean flow, respectively. Similarly,

MHQ
MLQ

= 298.77 · A−0.336 (S41)

where MLQ is mean low flow. Mapping from discharge to stage is usually performed by a

common power-type rating curve:
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Figure S4. Mean high flow (MHQ) relative to mean flow (MQ) and mean low flow (MLQ) in 100 selected

gauges of Bayern and Baden-Württemberg (Rheingebiet I and II).

Q ∝ Zk
w (S42)

From this

Zw ∝ Q
1
k (S43)

For natural channels where flow depth is small compared to width and bank slopes

are gentle, k can be approximated with 2 based on the Manning-Chézy equation. Thus,

MHZ
MZ

≈

√
MHQ
MQ

(S44)

and

MHZ
MLZ

≈

√
MHQ
MLQ

(S45)

where MHZ, MLZ, and MZ are the mean high, low, and mean flow depths, respctively.
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The shear velocity [m s−1] for a given flow depth is

u∗ =
√
gZwI (S46)

where I is the channel slope [–]. For the extreme flows

u∗H =

√
gZw

MHZ
MZ

I (S47)

and

u∗L =

√
gZw

MLZ
MZ

I (S48)

because Zw = MZ, as we generally assume mean flow.

These shear velocities allow calculating the extreme values of the grainsize-distribution

based on the Rouse numbers (P = vs
κu∗ , where vs is settling velocity [m s−1] and κ = 0.4 is

the von Kármán constant) belonging to full suspension (0.8) and instability (2.5). As the

first step, the settling velocity for a particle with D diameter [m] is calculated [?]:

vs =
1.65gD2

18 · 10−6 +
√

0.75 · 1.65gD3
(S49)

It is assumed that the largest grainsize is at the limit of stability during high flow,

while the smallest is that can be resuspended at low flows. Accordingly, for D90 the target

settling velocity 2.5κu∗H , while for D10 it is 0.8κu∗L .

From D90 the base Manning roughness of the channel is calculated according to a

polynomial fit to the USGS channel roughness data for different grainsizes [?]:

n = 0.00017 d3 − 0.00147 d2 + 0.00547 d + 0.02598 (S50)

where d = log D90 and D90 has the units of [mm]

Mean flow velocity (U [m s−1]) is calculated by using the Manning and Chézy equa-

tions:

U =
1
n

R2/3√I (S51)
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Knowing D10 and D90 lets us estimate the entire grainsize-distribution (unimodal,

log-normal, with D50 =
√

D10D90) and from that the fraction of suspendible material (sand

and finer, below 2 mm grainsize):

qsand =
1
2

(
1 + erf

(
log 0.002 − log D50

2.56(log D90 − log D10)
√

2

))
(S52)

S4.1 Capacity-limited SSC

A significant number of semi-empirical formulas can be found in the literature to

quantify suspended sediment loads. The formulas are generally based on hydrological/hydraulic

parameters, such as flow depth, flow velocity, bed shear stress, critical bed shear and sed-

iment parameters, e.g. characteristic grain diameter. In this study we use the model of

?, which is one of the most tested formulas for the sediment carrying capacity of flow

and has been successfully used in a wide variety of riverine applications. Hereby we as-

sume that the suspended sediment is represented by an average sand particle with D = 0.5

[mm].

The critical depth-averaged velocity for initiation of motion [m s−1] is:

Ucr = 8.5D0.6
50 log(12

Zw
Za
) (S53)

where Za is the thickness of the active sediment layer ([m] Za = 3D50).

The mobility parameter [–]:

Me =
U −Ucr√
1.65gD

(S54)

where U is the mean flow velocity [m s−1].

The dimensionless particle size [–]:

D∗ = D
(
1.65g
ν2

)1/3
(S55)

where ν is the kinematic viscosity of water [10−6 m2 s−1]

Specific suspended sediment discharge or sediment transport rate [kg m−1 s−1]:

qs,cap = 0.012 · ρ ·UDM2.4
e D∗−0.6 (S56)

where ρ = 2650 [kg m−3] is the sediment density (for quartz).
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SSC assuming capacity limitation [kg m−3]:

SSCcap =
qs,cap

qw
=

qs,cap
UZw

(S57)

where qw = U · Zw is the specific flow discharge [m2 s−1].

S4.2 Supply-limited SSC

Assume that SSC is determined by sediment supply, and source of the suspended

material is the streambed (by mean flow land supply should be negligible due to the lack

of current surface runoff). For the supply-limited transport it is again assumed that the

resuspended particle is an average sand with D = 0.5 [mm].

The settled (suspendible) sediment stock calculates from the active sediment depth

(Za = 3 D), the sediment porosity (θ), and the sand content:

S = Za · (1 − θ) · ρ · qsand (S58)

The resuspension rate constant [m s−1] is expressed as function of the excess shear

velocity:

ks = α
(

u∗

vs
− 1

)
exp

(
−

D50
D

)
(S59)

where α = 0.52 [m s−1] is a calibrated constant, D50
D is a grain-diameter ratio be-

tween the “average” sand particle and D50, because high grain diversity hinders resuspen-

sion of finer particles due to streambed armouring.

The suspended sediment transport rate under supply-limitation [kg m−1 s−1]:

qs,sup = ksS (S60)

SSC assuming supply limitation [kg m−3]:

SSCsup =
qs,sup

qw
=

qs,sup
UZw

(S61)

S4.3 Actual SSC

The actual SSC is the smaller value from the capacity- and supply-limited pair:

SSC = min
(
SSCsup, SSCcap

)
(S62)
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In the Rhine basin SSCsup was almost exclusively determining SSC, so most chan-

nels are possibly supply-limited.

Modelled SSCs were typically between 30 and 100 [mg L−1] (Fig. S5) in major

rivers. For the Rhine channel mean annual SSCs are reported to be 27 [mg L−1] at Maxau

[?], and 20-50 [mg L−1] along the entire German section [?]. The modelled values fell

into the same range. Smaller tributaries had typically higher SSCs, with channel slope as

a secondary selection factor. Among the major inflows, the Main had the lowest and the

Aare had the highest modelled SSCs. Mean measured SSC in the lower Aare varies be-

tween 80-200 [mg L−1] [?].
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Figure S5. Modelled SSCs in major rivers. DTRM: distance to Rhine mouth. Dashed line: mean mea-

sured concentrations for the Rhine channel (see text). High amplitude fluctuations in SSC are due to the

coarse resolution of channel slope data and the lack of longitudinal coherence in the presented simple SSC

approximation.
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S5 Role of input uncertainty
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Figure S6. Dependence between k ′esc [–] and k ′bio [d−1 (kg OC m−3)−1]. Posterior sample for API8 with

vague (wide uniform) priors. True value for k ′esc is 0.09 (Singer et al. 2016).
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S6 Longitudinal profiles of APIs in the Rhine
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Figure S7. Degradation profiles of APIs along the Rhine (1). Open symbols: measurements (circles:

Rhine, triangles: tributaries), closed symbols: modelled values for tributary inflows. Dashed red line: conser-

vative assumption (accumulated load). Black line: best model fit. Grey band: 95% uncertainty interval.
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Figure S8. Degradation profiles of APIs along the Rhine (2). Open symbols: measurements (circles:

Rhine, triangles: tributaries), closed symbols: modelled values for tributary inflows. Dashed line: conserva-

tive assumption (accumulated load). Black line: best model fit. Grey band: 95% uncertainty interval.
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