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Abstract Data are essential in all areas of geophysics. They are used to better understand and manage
systems, either directly or via models. Given the complexity and spatiotemporal variability of geophysical
systems (e.g., precipitation), a lack of sufficient data is a perennial problem, which is exacerbated by various
drivers, such as climate change and urbanization. In recent years, crowdsourcing has become increasingly
prominent as a means of supplementing data obtained from more traditional sources, particularly due to its
relatively low implementation cost and ability to increase the spatial and/or temporal resolution of data
significantly. Given the proliferation of different crowdsourcing methods in geophysics and the promise they
have shown, it is timely to assess the state of the art in this field, to identify potential issues and map out
a way forward. In this paper, crowdsourcing-based data acquisition methods that have been used in seven
domains of geophysics, including weather, precipitation, air pollution, geography, ecology, surface water,
and natural hazard management, are discussed based on a review of 162 papers. In addition, a novel
framework for categorizing these methods is introduced and applied to the methods used in the seven
domains of geophysics considered in this review. This paper also features a review of 93 papers dealing with
issues that are common to data acquisition methods in different domains of geophysics, including the
management of crowdsourcing projects, data quality, data processing, and data privacy. In each of these
areas, the current status is discussed and challenges and future directions are outlined.

1. Introduction
1.1. Importance of Data

The availability of sufficient and high quality data is vitally important for activities in a broad range of areas
within geophysics (Assumpção et al., 2018). As shown in Figure 1, data are used, either directly or via models,
for a variety of purposes (Eggimann et al., 2017; Montanari et al., 2013; See et al., 2016), such as developing
increased understanding of physical systems or processes (e.g., the weather); geophysical event prediction
(e.g., rainfall, earthquakes); natural resources management (e.g., river systems); impact assessment (e.g., air
pollution); infrastructure system planning, design, and operation (e.g., water supply systems); and the
management of natural hazards (e.g., floods). In addition, they are also used in the model development
process itself (See, Schepaschenko, et al., 2015), as well as to inform us about deficits in our models and thus
foster an improved understanding/form the basis of scientific discovery (Del Giudice et al., 2016). It should be
noted that the examples in Figure 1 are not meant to be exhaustive, but to demonstrate the wide range of
purposes for which geophysical data can be used.
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In relation to models (Figure 1), data are used for both model building (model setup, calibration, and
validation) and executing models, as illustrated in Figure 2. For example, in the case of floodmodels, different
types of data are required, including topography and land cover during model setup; high water marks for
calibration and validation; and water levels/discharges, provided by gauging at the flooding area boundary,
during the use of models (Assumpção et al., 2018).

1.2. Challenges

As mentioned in section 1.1, the availability of adequate geophysical data is vital in a range of applications in
geophysics. However, a lack of availability of such data has restricted many research and application activ-
ities, as mentioned above. For example, models have often been developed with limited data (Reis et al.,
2015) and consequently these models are not used in practical applications due to a lack of confidence in
their performance (Assumpção et al., 2018). This is particularly true in relation to extreme events, such as
floods and earthquakes, as the available data for simulating/predicting such events are significantly rarer
than those available for more frequent events (Panteras & Cervone, 2018). The issue of data deficiency has
taken on even greater importance in recent years, as real-time system operations and integrated manage-
ment are becoming increasingly important in many domains within geophysics, which requires an increased
amount of data with high spatiotemporal resolution (Muller et al., 2015). Consequently, how to efficiently and
effectively collect sufficient amounts of data has been one of the key questions that needs to be addressed
urgently in the area of geophysics (See, Perger et al., 2015).

The different challenges associated with the availability of adequate geophysical data can be divided into a
number of categories, as shown in Figure 3 and summarized below:

1. Spatial and temporal resolution: Many geophysical processes are
highly spatially and temporally variable (e.g., recent research has found
that precipitation intensity within an identical storm event can vary by
up to 30% across a spatial region with an extent of 3–5 km; Muller et al.,
2015), but most existing data collection methods are not able to
capture this variation adequately.

2. Cost: Traditional means of collecting data (e.g., fixed monitoring sta-
tions, paying people for data collection) are expensive, limiting the
amount of data that can be collected within the constraints of available
resources.

3. Accessibility: Many locations where data are needed are difficult to
access from a physical perspective, or the services needed for data col-
lection (e.g., electricity) are not available.

4. Availability: In many instances, data are needed in real time (e.g., infra-
structure management, natural hazard management), but traditional

Figure 1. Example uses of data in geophysics.

Figure 2. Illustration of data requirements for model development and use.
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means of data collection and transmission are unable to make the data
available when needed.

5. Uncertainty: There can be large uncertainty surrounding the quality of
the data provided by traditional means.

6. Dimensionality: As mentioned in section 1.1, collecting the different
types of data needed for application areas that require a higher degree
of social interaction can be a challenge.

For example, some of the challenges associated with weather data are due
to the fact that they are traditionally obtained through ground gauges and
stations, which are usually sparsely distributed with low density (Kidd et al.,
2014; Lorenz & Kunstmann, 2012). This low density has long been an impe-
diment to more accurate real-time weather prediction and management
(Bauer et al., 2015), but further increases in their density would be difficult
to achieve because of a lack of availability of candidate locations and high
maintenance costs (B. Mahoney et al., 2010; Muller et al., 2013). Radar and
satellites have also been used to monitor weather data, but the spatial
and/or temporal resolution of the data obtained is often insufficient for
many applications (e.g., real-time management and operation) and char-
acterized by high levels of uncertainty (Thorndahl et al., 2017).

Another example of some of the challenges associated with traditional
data collection methods relates to the mapping of geographical features
such as buildings, road networks, and land cover, which has traditionally
been undertaken by national mapping agencies. In many cases the data

have not been made openly available or are only available at a cost. There is also a need to increase the
amount of in situ or reference data needed for different applications, for example, observations of land cover
for training classification algorithms or collection of ground data to validate maps or model outputs (See
et al., 2016).

Finally, challenges arise from the lack of data availability caused by the failure or loss of equipment, for exam-
ple, during natural disasters. To overcome this limitation in the field of flood management, remote sensing
and social media are being used increasingly for obtaining topographic information and flood extent.
However, to enable effective applications, the data must be obtained in a timely fashion (Cervone et al.,
2016; Gobeyn et al., 2015), or they may need to be obtained at a high spatial resolution, for example, to cap-
ture cross sections. In both cases, there may be too much uncertainty in the data (Grimaldi et al., 2016).

The above challenges are exacerbated by a number of drivers of change (Figure 3), including the following:

1. Climate Change: This increases the spatial and temporal variability, as well as the uncertainty, of many
geophysical processes (e.g., precipitation; Zheng, Westra, et al., 2015), therefore requiring data collection
at a greater spatiotemporal resolution. This increases cost and can present challenges related to
accessibility.

2. Urbanization: This can increase the spatial variability of a number of geophysical variables (e.g., due to the
urban heat island effect; Arnfield, 2003; Burrows & Richardson, 2011), as well as increasing system
complexity. This is likely to increase the cost, uncertainty, and the dimensionality associated with data
collection.

3. Community Expectation: Increased community expectations around levels of service provided by infra-
structure systems (e.g., water supply) and levels of protection from natural hazards can increase the spatial
and temporal resolution of the data required, as well as the speed with which they need to be made avail-
able (e.g., as a result of real-time operations; Muller et al., 2015). This is also likely to increase the cost and
dimensionality of data collection efforts.

For example, the above drivers can have a significant impact on the acquisition of in situ precipitation data,
the majority of which are currently collected through ground gauges and stations that are sparsely distribu-
ted around the world (Westra et al., 2014). However, these are unlikely to meet the growing data demands
associated with the management of water systems, which is becoming increasingly complex due to

Figure 3. Data challenges in geophysics and drivers of change of these
challenges.
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climate change and rapid urbanization (Montanari et al., 2013). This problem has been exacerbated in recent
years as real-time water system operations and management are being adopted increasingly in many cities
around the world. These real-time systems require substantially increased amounts of precipitation data with
high spatiotemporal resolution (Eggimann et al., 2017), which themselves are becoming more variable as a
result of climate change (e.g., Berg et al., 2013; Wasko & Sharma, 2015; Zheng, Westra, et al., 2015).

1.3. Crowdsourcing

Over the past decade, crowdsourcing has emerged as a promising approach to addressing some of the grow-
ing challenges associated with data collection. Crowdsourcing was traditionally used as a problem solving
model (Brabham, 2008), or as a task distribution or particular outsourcing method (Howe, 2006), but it can
now be considered as one type of citizen science, which is regarded as the involvement of citizens in science,
ranging from data collection to hypothesis generation (Bonney, 2009). Although the terms crowdsourcing
and citizen science have appeared in the literature much more recently, citizens have been involved in data
collection and science for more than a century, for example, through manual reporting of rainfall to weather
services and participation in the National Audubon Society’s Christmas Bird Count.

Citizen science can be categorized into four levels according to the extent of public involvement in scientific
activities, as illustrated in Figure 4 (Estellés-Arolas & González-Ladrón-De-Guevara, 2012; Haklay, 2013). In
essence, these four levels can be thought of as representing a trajectory of shift in perspectives on data. As
part of this trajectory, crowdsourcing is referred to as Level 1, as it provides the foundations for the three
more advanced forms of citizen science, where its implementation is underpinned by a network of citizen
volunteers (Haklay, 2013). The second level is distributed intelligence, which relies on the cognitive ability of
the participants for data analysis, for example, in projects such as Galaxy Zoo (Lintott et al., 2008) or MPing
(Elmore et al., 2014). In the third level (participatory science), citizen input is used to determine what data
need to be collected, requiring citizens to assist in research problem definition (Haklay, 2013). The last level
(Level 4) is extreme citizen science, which engages citizens as scientists to participate heavily in research
design, data collection, and result interpretation. As a consequence, participants not only offer data, but also
provide collaborative intelligence (Haklay, 2013).

In practice, a limited number of participants have the ability to provide integrated designs for research pro-
jects due to their lack of knowledge of the research gaps to be addressed (Buytaert et al., 2014). This is espe-
cially the case in the domain of geoscience, as significant professional knowledge is required to enable
research design in this area (Haklay, 2013). Therefore, it has been difficult to develop the levels of trust
required to enable common citizens to participate in all aspects of the research process within geoscience.
This substantially limits the practical utilization of citizen science (especially Levels 3–4) in many professional
domains, such as floods, earthquakes, and precipitation within the geophysical domain, hampering its wider
promotion (Buytaert et al., 2014). Consequently, this review is restricted to crowdsourcing (i.e., Level 1
citizen science).

Crowdsourcing was originally defined by Howe (2006) as the act of a company or institution taking a function
once performed by employees and outsourcing it to an undefined (and generally large) network of people in the

Figure 4. Levels of participation and engagement in citizen science projects (adapted from Haklay, 2013).
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form of an open call. More specifically, crowdsourcing has traditionally been used as an outsourcing method,
but it can now be considered as an approach to collecting data through the participation of the general
public, therefore requiring the active involvement of citizens (Bonney, 2009). However, more recently, this
definition has been relaxed somewhat to also include data collected from public sensor networks, that is,
opportunistic sensing (Mccabe et al., 2017) and the Internet of Things (IoT; Sethi & Sarangi, 2017), as well
as from sensors installed and maintained by private citizens (Muller et al., 2015). In addition, with the onset
of data-mining, the data do not necessarily have to be collected for the purpose for which they are
ultimately used. For example, precipitation data can be extracted from commercial microwave links (CMLs)
with the aid of data mining techniques (Doumounia et al., 2014). Hence, for the purpose of this paper, we
include opportunistic sensing (Krishnamurthy & Poor, 2014; Messer, 2018; Uijlenhoet et al., 2017) within
the broader term crowdsourcing to recognize the fact that there is a spectrum to the data collection
process; this spectrum reflects the degree of citizen or crowd participation from 100% to 0%.

In recent years, crowdsourcing has been made possible by rapid developments in information technology
(Buytaert et al., 2014), which has assisted with data acquisition, data transmission, and data storage, all of
which are required to enable the data to be used in an efficient manner, as illustrated in the crowdsourcing
data chain shown in Figure 5. For example, in the instance where citizens count the number of birds as part of
ecological studies, technology is not needed for data collection. However, the collected data only become
useful if they can be transmitted cheaply and easily via the internet or mobile phone networks and are made
accessible via dedicated online repositories or social media platforms. In other instances, technology might
also be used to acquire data via smart phones in addition to enabling data transmission, or dedicated sensor
networks may be used, for example, through IoT. In fact, the crowdsourcing data chain has clear parallels with
a three-layer IoT architecture (Sethi & Sarangi, 2017). The data acquisition layer in Figure 5 is similar to the
perception layer in IoT, which collects information through the sensors, the data transmission and storage
layers in Figure 5 have similar functions to the IoT network layer data for transmission and processing; while
the IoT application layer corresponds to the data usage layer in Figure 5.

Crowdsourcing methods enable a number of the challenges outlined in section 1.2 (see Figure 3) to be
addressed. For example, due to the wide availability of low-cost and ubiquitous sensors (either dedicated
or as part of smart phones or other personal devices) used by a large number of citizens, as well as the sen-
sors’ ability to almost instantaneously transmit and store/share the acquired data, data can be collected at a

Figure 5. Crowdsourcing data chain.
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greater spatial and temporal resolution and at a lower cost than with the aid of a professional monitoring net-
work. It is noted that data obtained using crowdsourcing methods are often not as accurate as those
obtained from official measurement stations, but it possesses much higher spatiotemporal resolution com-
pared with traditional ground-based observations (Buytaert et al., 2014). This makes crowdsourcing a poten-
tially important complementary source of information, or, in some situations, the only available source of
information that can provide valuable observations.

In many instances, this wide availability also increases data accessibility, as dedicated data collection stations
do not have to be established at particular sites. Data availability is generally also increased, as data can be
transmitted and shared in real time, often through distributed networks that also increase reliability, espe-
cially in disaster situations (McSeveny & Waddington, 2017). Finally, given the greater ease and lower cost
with which different types of data can be collected, crowdsourcing techniques also increase the dimension-
ality of the data that can be collected, which is especially important when dealing with application areas that
require a higher degree of social interaction, such as the management of infrastructure systems or natural
hazards (Figure 1).

In relation to the use of crowdsourcing methods for the collection of weather data, measurements from ama-
teur gauges and weather stations can now be assimilated in real time (Agüera-Pérez et al., 2014; Bell et al.,
2013), and new, low-cost sensors have been developed and integrated to allow a larger number of citizens
to be involved in the monitoring of weather (Muller et al., 2013). Similarly, other geophysical data can now
be collected more cheaply and with a greater spatial and temporal resolution with the assistance of citizens,
including data on ecological variables (Chandler et al., 2016; Donnelly et al., 2014), temperature (Meier et al.,
2017), and other atmospheric observations (McKercher et al., 2017). These crowdsourced data are often used
as an important supplement to official data sources for system management.

In the field of geography, the mapping of features such as buildings, road networks, and land cover can now
be undertaken by citizens as a result of advances in Web 2.0 and global positioning system (GPS)-enabled
mobile technology, which has blurred the once clear-cut distinction between map producer and consumer
(Coleman et al., 2009). In a seminal paper published in 2007, Goodchild (2007) coined the phrase
Volunteered Geographic Information (VGI). Similar to the idea of crowdsourcing, VGI refers to the idea of citi-
zens as sensors, collecting vast amounts of georeferenced data. These data can complement existing author-
itative databases from national mapping agencies, provide a valuable source of research data, and even have
considerable commercial value. OpenStreetMap (OSM) is an example of a highly successful VGI application
(Neis & Zielstra, 2014), which was originally driven by users in the United Kingdom wanting access to free
topographic information, for example, buildings, roads, and physical features; at the time, these data were
only available from the U.K. Ordnance Survey at a considerable cost. Since then, OSM has expanded globally
and works strongly within the humanitarian field, mobilizing citizen mappers during disaster events to pro-
vide rapid information to first responders and nongovernmental organizations working on the ground
(Soden & Palen, 2014). Another strong motivator behind crowdsourcing in geography has been the need
to increase the amount of in situ or reference data needed for different applications, for example, observa-
tions of land cover for training classification algorithms or collection of ground data to validate maps or
model outputs (See et al., 2016). The development of new resources such as Google Earth and Bing Maps
has also made many of these crowdsourcing applications possible, for example, visual interpretations of very
high resolution satellite imagery (Fritz et al., 2012).

1.4. Contribution of This Paper

This paper reviews recent progress in the approaches used within the data acquisition step of the crowdsour-
cing data chain (Figure 5) in the geophysical sciences and engineering. The main contributions include (i) a
categorization of different crowdsourcing data acquisition methods and a comprehensive summary of how
these have been applied in a number of domains in the geosciences over the past two decades; (ii) a detailed
discussion on potential issues associated with the application of crowdsourcing data acquisition methods in
the selected areas of the geosciences, as well as a categorization of approaches for dealing with these; and
(iii) identification of future research needs and directions in relation to crowdsourcing methods used for data
acquisition in the geosciences. The review will cover a broad range of application areas (e.g., see Figure 1)
within the domain of geophysics (see section 2.1) and should therefore be of significant interest to a broad
audience, such as academics and engineers in the area of geophysics, government departments, decision-
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makers, and even sensor manufacturers. In addition to its potentially significant contributions to the litera-
ture, this review is also timely because crowdsourcing in the geophysical sciences is nearly ready for practical
implementation, primarily due to rapid developments in information technologies over the past few years
(Muller et al., 2015). This is supported by the fact that a large number of crowdsourcing techniques have been
reported in the literature in this area (see section 3).

While there have been previous reviews of crowdsourcing approaches, this paper goes significantly beyond
the scope and depth of those attempts. Buytaert et al. (2014) summarized previous work on citizen science in
hydrology and water resources, Muller et al. (2015) performed a review of crowdsourcing methods applied to
climate and atmospheric science, and Assumpção et al. (2018) focused on the crowdsourcing techniques
used for flood modeling and management. Our review provides significantly more updated developments
of crowdsourcing methods across a broader range of application areas in geosciences, including weather,
precipitation, air pollution, geography, ecology, surface water, and natural hazard management. In addition,
this review also provides a categorization of data acquisition methods and systematically elaborates on the
potential issues associated with the implementation of crowdsourcing techniques across different problem
domains, which has not been explored in previous reviews.

The remainder of this paper is structured as follows. First, an overview of the proposed methodology is pro-
vided, including details of which domains of geophysics are covered, how the reviewed papers were
selected, and how the different crowdsourcing data acquisition methods were categorized. Next, an over-
view of the reviewed publications is provided, which is followed by detailed reviews of the applications of
different crowdsourcing data acquisition methods in the different domains of geophysics. Subsequently, a
discussion is presented regarding some of the issues that have to be overcome when applying these meth-
ods, as well as state-of-the-art methods to address them. Finally, the implications arising from this review are
provided in terms of research needs and future directions.

2. Review Methodology
2.1. Geophysical Domains Reviewed

In order to cover a broad spectrum of geophysical domains, a number of atmospheric (weather, precipitation,
air quality) and terrestrial variables (geographic, ecological, surface water) are included in this review. This is
because crowdsourcing has been often implemented in these geophysical domains, which is demonstrated
by the result of a preliminary search of the relevant literature through the Web of Science database using the
keyword crowdsourcing (Thomson Reuters, 2016). This also shows that these domains are of great impor-
tance within geophysics. In addition, data acquisition in relation to natural hazard management (e.g., floods,
fires, earthquakes, hurricanes) is also included, as the impact of extreme events is becoming increasingly
important and because it requires a high degree of social interaction (Figure 1). A more detailed rationale
for the inclusion of the above domains is provided below. While these domains were selected to cover a
broad range of domains in geophysics, by necessity, they do not cover the full spectrum. However, given
the diversity of the domains included in the review, the outcomes are likely to be more broadly applicable.

Weather is included as detailedmonitoring of weather-related data at a high spatiotemporal resolution is cru-
cial for a series of research and practical problems (Niforatos et al., 2016). Solar radiation, cloud cover, and
wind data are direct inputs to weather models (Chelton & Freilich, 2005). Snow cover and depth data can
be used as input for hydrological modeling of snow-fed rivers (Parajka & Blöschl, 2008), and they can also
be used to estimate snow erosion on mountain ridges (Parajka et al., 2012). Moreover, wind data are used
extensively in the efficient management and prediction of wind power production (Agüera-Pérez et al., 2014).

Precipitation is covered here as it is a research domain that has been studied extensively for a long period of
time. This is because precipitation is a critical factor in floods and droughts, which have had devastating
impacts worldwide (Westra et al., 2014). In addition, precipitation is an important parameter required for
the development, calibration, validation, and use of many hydrological models. Therefore, precipitation data
are essential for many models related to floods, droughts, as well as water resource management, planning,
and operation (Hallegatte et al., 2013).

Air quality is included due to pressing air pollution issues around the world (Y. N. Zhang et al., 2011), espe-
cially in developing countries (Erickson, 2017; Jiang et al., 2015). The availability of detailed atmospheric
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data at a high spatiotemporal resolution is critical for the analysis of air quality, which can result in negative
impacts on health (Snik et al., 2015). A good spatial coverage of air quality data can significantly improve the
awareness and preparedness of citizens in mitigating their personal exposure to air pollution, and hence the
availability of air quality data is an important contributor to enabling the protection of public health (Castell
et al., 2015).

The subset of geography considered in this review is focused on the mapping and collection of data about
features on the Earth’s surface, both natural and man-made, as well as georeferenced data more generally.
This is because these data are vital for a range of other areas of geophysics, such as impact assessment
(e.g., location of vulnerable populations in the case of air pollution); infrastructure system planning, design,
and operation (e.g., location and topography of households in the case of water supply); natural hazard
management (e.g., topography of the landscape in terms of flood management); and ecological monitoring
(e.g., deforestation).

Ecological data acquisition is included as it has been clearly acknowledged that ecosystems are being threa-
tened around the world by climate change, as well as other factors, such as illegal wildlife trade, habitat loss,
and human-wildlife conflicts (Can et al., 2017; Donnelly et al., 2014). Therefore, it is of great importance to
have sufficient high quality data for a range of ecosystems, aimed at building solid and fundamental knowl-
edge on their underlying processes, as well as enabling biodiversity observation, phenological monitoring,
natural resource management, and environmental conservation (Groom et al., 2017; Mckinley et al., 2016;
van Vliet et al., 2014).

Data on surface water systems, such as rivers and lakes, are vital for their management and protection, as well
as usage for irrigation and water supply. For example, water quality data are needed to improve the manage-
ment effectiveness (e.g., monitoring) of surface water systems (rivers and lakes), which is particularly the case
for urban rivers, many of which have been polluted (T. Zhang et al., 2016). Water depth or velocity data in
rivers or lakes are also important, as they can be used to derive flows, or indirectly to represent the water
quality and ecology within these systems. Therefore, sourcing data for surface water with a good temporal
and spatial resolution is necessary for enabling the protection of these aquatic environments (Tauro
et al., 2018).

Natural hazards, such as floods, wildfires, earthquakes, tsunamis, and hurricanes, are causing significant
losses worldwide, both in terms of lives lost and economic costs (McMullen & Lytle, 2012; Newman et al.,
2017; Wen et al., 2013; Westra et al., 2014). Data are needed to support all stages of natural hazard manage-
ment, including preparedness and response (Anson et al., 2017). Examples of such data include real-time
information on the location, extent, and changes in hazards, as well as information on their impacts (e.g.,
losses, missing persons), to assist with the development of situational awareness (Akhgar et al., 2017;
Stern, 2017), assess damage and suffering (Akhgar et al., 2017), and justify actions prior, during, and after
disasters (Stern, 2017). In addition, data, and models developed with such data, are needed to identify risks
and the impact of different risk reduction strategies (Anson et al., 2017; Newman et al., 2017).

2.2. Papers Selected for Review

The papers to be reviewed were selected using the following steps: (i) first, we identified crowdsourcing-
related papers in influential geophysics-related journals, such as Nature, Bulletin of the American
Meteorological Society, Water Resources Research, and Geophysical Research Letters, to ensure that high-
quality papers are included in the review; (ii) we then checked the reference lists of these papers to identify
additional crowdsourcing-related publications; and (iii) finally, crowdsourcing was used as the keyword to
identify geophysics-related publications through the Web of Science database (Reuters, 2016). While it is
unlikely that all crowdsourcing-related papers have been included in this review, we believe that the selected
publications provide a good representation of progress in the use of crowdsourcing techniques in geophy-
sics. An overview of the papers obtained using the above approach is given in section 3.

2.3. Categorization of Crowdsourcing Data Acquisition Methods

As mentioned in section 1.4, one of the primary objectives of this review is to ascertain which crowdsourcing
data acquisition methods have been applied in different domains of geophysics. To this end, the categoriza-
tion of different crowdsourcing methods shown in Figure 6 is proposed. As can be seen, it is suggested that

10.1029/2018RG000616Reviews of Geophysics

ZHENG ET AL. 705



all data acquisition methods have two attributes, including how the data were generated (i.e., data genera-
tion agent) and for what purpose the data were generated (i.e., data type).

Data generation agents can be divided into two categories (Figure 6), including citizens and instruments. In
this categorization, if citizens are the data generating agents, no instruments are used for data collection,
with only the human senses allowed as sensors. Examples of this would be counting the number of fish in
a river or the mapping of buildings or the identification of objects/boundaries within satellite imagery. In
contrast, the instruments category does not have any active human input during data collection, but these
instruments are installed and maintained by citizens, as would be the case with collecting data from a
network of automatic rain gauges operated by citizens, or sourcing data from distributed computing
environments (e.g., Mechanical Turk; Buhrmester et al., 2011). As mentioned in section 1.3, while this category
does not fit within the original definition of crowdsourcing (i.e., sourcing data from communities), such
passive data collection methods have been considered under the umbrella of crowdsourcing methods more
recently (Bigham et al., 2014; Muller et al., 2015), especially if data are transmitted via the internet or mobile
phone networks and stored/shared in online repositories. As shown in Figure 6, some data acquisition
methods require active input from both citizens and instruments. An example of this would include the
measurement of air quality by citizens with the aid of their smart phones.

Data types can also be divided into two categories (Figure 6), including intentional and unintentional. If a data
acquisition method belongs to the intentional category, the data were intentionally collected for the purpose
they are ultimately used for. For example, if citizens collect air quality data using sensors on their smart device
as part of a study on air pollution, then the data were acquired for that purpose they are ultimately used for. In
contrast, for data acquisition methods belonging to the unintentional category, the data were not intention-
ally collected for the geophysical analysis purposes they are ultimately used for. An example of this includes
the generation of data via social media platforms, such as Facebook, as part of which people might make a
text-based post about the weather for the purposes of updating their personal status, but which might form
part of a database of similar posts that can be mined for the purposes of gaining a better understanding of
underlying weather patterns (Niforatos et al., 2014). Another example is the data on precipitation intensity
collected by the windshields of cars (Nashashibi et al., 2011). While these data are collected to control the
operation of windscreen wipers, a database of such information could be mined to support the development
of precipitation models. Yet another example is the determination of the spatial distribution of precipitation
data from microwave links that are primarily used for telecommunications purposes (Messer et al., 2006).

Figure 6. Categorization of crowdsourcing data acquisition methods.
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As shown in Figure 6, in some instances, intentional and unintentional data types can both be used as part of
the same crowdsourcing approach. For example, river level data can be obtained by combining observations
of river levels by citizens with information obtained by mining relevant social media posts. Alternatively,
more accurate precipitation data could be obtained by combining data from citizen-owned gauges with
those extracted frommicrowave networks or air quality data could be improved by combining data obtained
from personal devices operated by citizens and mined from social media posts.

As data acquisition methods have two attributes (i.e., data generation agent and data type), each of which
has two categories that can also be combined, there are nine possible categories of data acquisitionmethods,
as shown in Table 1. Examples of each of these categories, based on the illustrations given above, are
also shown.

3. Overview of Reviewed Publications

Based on the process outlined in section 2.2, 255 papers were selected for review, of which 162 are concerned
with the applications of crowdsourcing methods, and 93 are primarily concerned with the issues related to
their applications. Figure 7 presents an overview of these selected papers. As shown in this figure, very
limited work was published in the selected journals before 2010, with a rapid increase in the number of
papers from that year onward (2010–2017), to the point where about 34 papers on average were published
per year from 2014 to 2017. This implies that crowdsourcing has become an increasingly important research
topic in recent years. This can be attributed to the fact that information technology has developed in an

Table 1
Examples of Different Categories of Crowdsourcing Data Acquisition Methods

Data Generation Agent Data Type

ExamplesCitizens Instruments Intentional Unintentional

X X Counting the number of fish, mapping buildings
X X Social media text data
X X X River level data from combining citizen reports

and social media text data
X X Automatic rain gauges
X X Microwave data
X X X Precipitation data from citizen-owned gauges

and microwave data
X X X Citizens measure air quality with sensors
X X X People driving cars that collect rainfall data on windshields
X X X X Air quality data from citizens collected using

sensors, gauges and social media

Figure 7. Temporal distribution of reviewed publications on crowdsourcing related research in geophysics. The number on
the bars is the number of publications each year (the publication number in 2018 is not included in this figure).
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unprecedented manner after 2010, and hence a broad range of
inexpensive, yet robust, sensors (e.g., smart phones, social media,
telecommunication microwave links) has been developed to collect
geophysical data (Buytaert et al., 2014). These collected data have the
potential to overcome the problems associated with limited data
availability, as discussed previously, creating opportunities for research
at incomparable scales (Dickinson et al., 2012) and leading to a surge in
relevant studies.

Figure 8 presents the distribution of the affiliations of the coauthors of the
255 publications included in this review. As shown, universities and
research institutions have clearly dominated the development of
crowdsourcing technology reported in these papers. Interestingly,
government departments have demonstrated significant interest in this
area (Conrad & Hilchey, 2011), as indicated by the fact that they have been

involved in a total of 38 publications (14.9%), of which 10 and 7 are in collaboration with universities and
private or public research institutions, respectively. As shown in Figure 8, industry has closely collaborated
with universities and research institutions on crowdsourcing, as all of their publications (22 in total, 8.6%)
have been coauthored with researchers from these sectors. These results show that developments and
applications of crowdsourcing techniques have been mainly reported by universities and research
institutions thus far. However, it should be noted that not all progress made by crowdsourcing-related
industry is reported in journal papers, as is the case for most research conducted by universities (Hut et al.,
2014; Jongman et al., 2015; Kutija et al., 2014; Michelsen et al., 2016).

In addition to the distribution of affiliations, it is also meaningful to understand how active crowdsourcing-
related research is in different countries, which is shown in Figure 9. It should be noted that only the country
of the leading author is considered in this figure. As reflected by the 255 papers reviewed, the United States
has performed the most extensive research in the crowdsourcing domain, followed by the United Kingdom,
Canada, and some other European countries, particularly Germany and France. In contrast, China, Japan,
Australia, and India have made limited attempts to develop or apply crowdsourcing methods in geophysics.
In addition, many other countries have not published any crowdsourcing-related efforts so far. This may be
partly attributed to the economic status of different countries, as a mature and efficient information network
is a requisite condition for the development and application of crowdsourcing techniques (Buytaert
et al., 2014).

Figure 8. Distribution of affiliations of the 255 reviewed publications.

Figure 9. Distribution of countries of the leading authors for the 255 reviewed publications.
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As stated previously, one of the features of this review is that it assesses papers in terms of both application
area and generic issues that cut across application areas. The split between these two categories for the 255
papers reviewed is shown in Figure 10. As can be seen from this figure, crowdsourcing techniques have been
widely used to collect precipitation data (15% of the reviewed papers) and data for natural hazard
management (17%). This is likely because precipitation data and data for natural hazard management are
highly spatially distributed, and hence are more likely to benefit from crowdsourcing techniques for data
collection (Eggimann et al., 2017). In terms of potential issues that exist within the applications of
crowdsourcing approaches, project management, data quality, data processing, and privacy have been
increasingly recognized as problems based on our review and hence they are considered (Figure 10). A
review of these issues, as one of the important focuses of this paper, offers insight into potential problems
and solutions that cut across different problem domains, but also provides guidance for the future
development of crowdsourcing techniques.

4. Review of Crowdsourcing Data Acquisition Methods Used
4.1. Weather

Currently, crowdsourced weather data mainly come from four sources: (i) human estimation; (ii) automated
amateur gauges and weather stations; (iii) CMLs; and (iv) sensors integrated with vehicles, portable devices,
and existing infrastructure. For the first category of data source, citizens are heavily involved in providing
qualitative or categorical descriptions of the weather conditions based on their observations. For instance,
citizens are encouraged to classify their estimations of air temperature and wind speed into three classes
(low, medium, and high) for their surrounding regions, as well as to predict short-term weather variables in
the near future (Niforatos et al., 2014; Niforatos, Vourvopoulos, et al., 2015). The estimations have been
compared against the records from authorized weather stations, and results showed that both data sources
matched reasonably in terms of the levels of the variables (e.g., low or high temperature; Niforatos, Fouad,
et al., 2015). These estimates are transmitted to their corresponding authorized databases with the aid of
different types of apps, which have greatly facilitated the wider uptake of this type of crowdsourcingmethod.
While this type of crowdsourcing project is simple to implement, the data collected are only
subjective estimates.

To provide quantitative measurements of weather variables, low-cost amateur gauges and weather stations
have been installed andmanaged by citizens to source relevant data. This type of crowdsourcing method has
been made possible by the availability of affordable and user-friendly weather stations over the past decade
(Muller et al., 2013). For example, in the United Kingdom and Ireland, the weather observation website and
Weather Underground have been developed to accept weather reports from public amateurs, and in early

Figure 10. Number of papers reviewed in different application areas and issues that cut across application areas.
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spring 2012, over 400 and 1,350 amateurs have been regularly uploading their weather data (temperature,
wind, pressure, and so on) to weather observation website and Weather Underground, respectively (Bell
et al., 2013). Agüera-Pérez et al. (2014) compiled wind data from 198 citizen-owned weather stations and suc-
cessfully estimated the regional wind field with high accuracy, while a high density of temperature data was
collected through citizen-owned automatic weather stations (Chapman et al., 2016; Wolters & Brandsma,
2012; Young et al., 2014), which have been used in urban climate research in recent years (Meier et al., 2017).

Alternatively, weather data could also be quantitatively measured through analyzing the transmitted and
received signal levels of commercial cellular communication networks, which have often been installed by
telecommunication companies or other private entities, and whose electromagnetic waves are attenuated
by atmospheric influences. For instance, during fog conditions, the attenuation of microwave links was found
to be related to the fog liquid water content, which enabled the use of commercial cellular communication
network attenuation data to monitor fog at a high spatiotemporal resolution (David et al., 2015), in addition
to their wider applications in estimating rainfall intensity, as discussed in section 4.2.

In more recent years, a large amount of weather data has been obtained from sensors that are available in
cars, mobile phones, and telecommunication infrastructure. For example, automobiles are equipped with a
variety of sensors, including cameras, impact sensors, wiper sensors, and sun sensors, which could all be used
to derive weather data such as humidity, sun radiation, and pavement temperature (B. Mahoney et al., 2010;
W. P. Mahoney & O’Sullivan, 2013). Similarly, modern smartphones are also equipped with a number of sen-
sors, which enables them to be used tomeasure air temperature, atmospheric pressure, and relative humidity
(Anderson et al., 2012; Madaus & Mass, 2016; Mass & Madaus, 2014; Mcnicholas & Mass, 2018; Sosko & Dalyot,
2017). More specifically, smartphone batteries, as well as smartphone-interfaced wireless sensors, have been
used to indicate air temperature in surrounding regions (B. Mahoney et al., 2010; Majethisa et al., 2015). In
addition to automobiles and smartphones, some research has been carried out to investigate the potential
of transforming vehicles to moving sensors for measuring air temperature and atmospheric pressure
(Anderson et al., 2012; Overeem, Leijnse, et al., 2013). For instance, bicycles equipped with thermometers
were employed to collect air temperature in remote regions (Cassano, 2014; Melhuish & Pedder, 2012).

Researchers have also discussed the possibility of integrating automatic weather sensors with microwave
transmission towers, and transmitting the collected data through wireless communication networks
(Vishwarupe et al., 2016). These sensors have the potential to form an extensive infrastructure system for
monitoring weather, thereby enabling better management of weather related issues (e.g., heat waves).

4.2. Precipitation

A number of crowdsourcing methods have been developed to collect precipitation data over the past two
decades. These methods can be divided into four categories based on the means by which precipitation data
are collected, including (i) citizens, (ii) CMLs, (iii) moving cars, and (iv) low-cost sensors. In methods belonging
to the first category, precipitation data are collected and reported by individual citizens. Based on the papers
reviewed in this study, the first official report of this approach can be dated back to the year 2000 (Doesken &
Weaver, 2000), where a volunteer network composed of local residents was established to provide records of
rainfall for disaster assessment after a devastating flooding event in Colorado. These residents voluntarily
reported the rainfall estimates that were collected using their own simple, home-made equipment (e.g.,
precipitation gauges). These data showed that rainfall intensity within this storm event was highly spatially
varied, highlighting the importance of access to precipitation data with a high spatial resolution for flood
management. In recognition of this, research communities have suggested the development of an official
volunteer network with the aid of local residents, aimed at routinely collecting rainfall and other meteorolo-
gical parameters, such as snow and hail (Cifelli et al., 2005; Elmore et al., 2014; Reges et al., 2016). More recent
examples include citizen reporting of precipitation type based on their observations (e.g., hail, rain, drizzle,
etc.) to calibrate radar precipitation estimation (Elmore et al., 2014), and the use of automatic personal
weather stations, which measure and provide precipitation data with high accuracy (De Vos et al., 2017).

In addition to precipitation data collection by citizens, many studies have explored the potential of other
ways of estimating precipitation, with a typical example being the use of CMLs, which are generally operated
by telecommunication companies. This is mainly because CMLs are often spatially distributed within cities,
and hence can potentially be used to collect precipitation data with good spatial coverage. More
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specifically, precipitation attenuates the electromagnetic signals transmitted between antennas within the
CML network. This attenuation can be calculated from the difference between the received powers with
and without precipitation and is a measure of the path-averaged precipitation intensity (Overeem et al.,
2011). Based on our review, Upton et al. (2005) probably first suggested the use of CMLs for rainfall estima-
tion, and Messer et al. (2006) were the first to actually use data from CMLs to estimate rainfall. This was fol-
lowed by more detailed studies by Leijnse et al. (2007), Zinevich et al. (2009), and Overeem et al. (2011),
where relationships between electromagnetic signals caused by precipitation and precipitation intensity
were developed. The accuracy of such relationships has been subsequently investigated in many studies
(Doumounia et al., 2014; Rayitsfeld et al., 2012). Results show that while quantitative precipitation estimates
from CMLs might be regionally biased, possibly due to antenna wetting and systematic disturbances from
the built environment, they could match reasonably well with precipitation observations overall (Chwala
et al., 2016; Fencl, Rieckermann, Sykora, et al., 2015; Fencl, Rieckermann, Vojtěch, 2015; Mercier et al., 2015;
Rios Gaona et al., 2015). This implies that the use of communication networks to estimate precipitation is pro-
mising, as it provides an important supplement to traditional measurements using ground gauges and radars
(Fencl et al., 2017; Gosset et al., 2015). This is supported by the fact that the precipitation data estimated from
microwave links have been widely used to enable flood forecasting and management (Overeem, Robinson,
et al., 2013) and urban storm water runoff modeling (Pastorek et al., 2017).

In parallel with the development of microwave-link based methods, some studies have been undertaken to
utilize moving cars for the collection of precipitation. This is theoretically possible with the aid of windshield
sensors, wipers, and in-vehicle cameras (Gormer et al., 2009; Haberlandt & Sester, 2010; Nashashibi et al.,
2011). For example, precipitation intensity can be estimated through its positive correlation with wiper
speed. To demonstrate the feasibility of this approach for practical implementation, laboratory experiments
and computer simulations have been performed, and the results showed that estimated data could generally
represent the spatial properties of precipitation (Rabiei et al., 2012, 2013, 2016). In more recent years, an
interesting and preliminary attempt has been made to identify rainy days and sunny days with the aid of
in-vehicle audio clips from smartphones installed in cars (Guo et al., 2016). However, such a method is unable
to estimate rainfall intensity and hence has not been used in practice thus far.

As alternatives to the crowdsourcing methods mentioned above, low-cost sensors are also able to provide
precipitation data (Trono et al., 2012). Typical examples include (i) home-made acoustic disdrometers, which
are generally installed in cities at a high spatial density, where precipitation intensity is identified by the
acoustic strength of raindrops, with larger acoustic strength corresponding to stronger precipitation intensity
(De Jong, 2010); (ii) acoustic sensors installed on umbrellas that can be used to measure precipitation inten-
sity on rainy days (Hut et al., 2014); (iii) cameras and videos (e.g., surveillance cameras) that are employed to
detect raindrops with the aid of some data processing methods (Allamano et al., 2015; Minda & Tsuda, 2012),
and smartphones with built-in sensors to collect precipitation data (Alfonso et al., 2015).

4.3. Air Quality

Crowdsourcing methods for the acquisition of air quality data can be divided into three main categories,
including (i) citizen-owned in situ sensors, (ii) mobile sensors, and (iii) information obtained from social
media. An example of the application of the first approach is presented by Gao et al. (2015), who validated
the performance of the use of seven Portable University of Washington Particle sensors in Xi’an, China, to
detect fine particulate matter (PM2.5). Similarly, Jiao et al. (2015) integrated commercially available technol-
ogies to create the Village Green Project, a durable, solar-powered air monitoring park bench that measures
real-time ozone and PM2.5. More recently, Miskell et al. (2017) demonstrated that crowdsourced approaches
with the aid of low-cost and citizen-owned sensors can increase the temporal and spatial resolution of air
quality networks. Furthermore, Schneider et al. (2017) mapped real-time urban air quality (NO2) by combin-
ing crowdsourced observations from low-cost air quality sensors with time-invariant data from a local-scale
dispersion model in the city of Oslo, Norway.

Typical examples of the use of mobile sensors for the measurement of air quality over the past few years
include the work of B. Yang et al. (2016), where a low-cost mobile platform was designed and implemented
to measure air quality. Munasinghe et al. (2017) demonstrated how a miniature microcontroller-based hand-
held device was developed to collect hazardous gas levels (CO, SO2, NO2) using semiconductor sensors. In
addition to moving platforms, sensors have also been integrated with smartphones and vehicles to

10.1029/2018RG000616Reviews of Geophysics

ZHENG ET AL. 711



measure air quality, with the aid of hardware and software support (Honicky et al., 2008). Application exam-
ples include smartphones with built-in sensors used to measure air quality (CO, O3, and NO2) in urban envir-
onments (Oletic & Bilas, 2013) and smartphones with a corresponding app in the Netherlands to measure
aerosol properties (Snik et al., 2015). In relation to vehicles equipped with sensors for air quality measure-
ment, examples include Elen et al. (2012), who used a bicycle for mobile air quality monitoring, and
Bossche et al. (2015), who used a bicycle equipped with a portable black carbon sensor to collect black car-
bon measurements in Antwerp, Belgium. Within their applications, bicycles are equipped with compact air
quality measurement devices to monitor ultrafine particle number counts, particulate mass, and black carbon
concentrations at a high resolution (up to 1 s), with each measurement automatically linked to its geographi-
cal location and time of acquisition using GPS and Internet time (Elen et al., 2012). Subsequently, Castell et al.
(2015) demonstrated that data gathered from sensors mounted on mobile modes of transportation could be
used to mitigate citizen exposure to air pollution, while Apte et al. (2017) applied moving platforms with the
aid of Google Street View cars to collect air pollution data (black carbon) with reasonably high resolution.

The potential of acquiring air quality data from social media has also been explored recently. For instance,
Jiang et al. (2015) have successfully reproduced dynamic changes in air quality in Beijing by analyzing the
spatiotemporal trends in geotagged social media messages. Following a similar approach, Sachdeva et al.
(2017) assessed the air quality impacts caused by wildfire events with the aid of data sourced from social
media, while Ford et al. (2017) have explored the use of daily social media posts from Facebook regarding
smoke, haze, and air quality to assess population-level exposure in the western United States. Analysis of
social media data has also been used to assess air pollution exposure. For example, Sun et al. (2017) estimated
the inhaled dose of pollutant (PM2.5) during a single cycling or pedestrian trip using Strava Metro data and
GIS technologies in Glasgow, United Kingdom, demonstrating the potential of using such data for the assess-
ment of average air pollution exposure during active travel, and Sun and Mobasheri (2017) investigated asso-
ciations between cycling purpose and air pollution exposure at a large scale.

4.4. Geography

Crowdsourcing methods in geography can be divided into three types: (i) those that involve intentional par-
ticipation of citizens; (ii) those that harvest existing sources of information or which involve mobile sensors;
and (iii) those that integrate crowdsourcing data with authoritative databases. Citizen-based crowdsourcing
has been widely used for collaborative mapping, which is exemplified by the OSM application (Heipke, 2010;
Neis et al., 2011; Neis & Zielstra, 2014). There are numerous papers on OSM in the geographical literature; see
Mooney andMinghini (2017) for a good overview. The Collabmap platform is another example of a collabora-
tive mapping application, which is focused on emergency planning; volunteers use satellite imagery from
Google Maps and photographs from Google StreetView to digitize potential evacuation routes. Within geo-
graphy, citizens are often trained to provide data through in situ collection. For example, volunteers were
trained to map the spatial extent of the surface flow along the San Pedro River in Arizona using paper maps
and GPS units (Turner & Richter, 2011). This low-cost solution has allowed for continuous monitoring of the
river that would not have been possible without the volunteers, where the crowdsourced maps have been
used for research and conservation purposes. In a similar way, volunteers were asked to go to specific loca-
tions and classify the land cover and land use, documenting each location with geotagged photographs with
the aid of a mobile app called FotoQuest (Laso Bayas et al., 2016).

In addition to citizen-based approaches, crowdsourcing within geography can be conducted through various
low-cost sensors, such as mobile phones and social media. For example, Heipke (2010) presented an example
from TomTom, which uses data from mobile phones and locations of TomTom users to provide live traffic
information and improved navigation. Subsequently, Fan et al. (2016) developed a system called
CrowdNavi to ingest GPS traces for identifying local driving patterns. This local knowledge was then used
to improve navigation in the final part of a journey, for example, within a campus, which has proven proble-
matic for applications such as Google Maps and commercial satnavs. Social media has also been used as a
form of crowdsourcing of geographical data over the past few years. Examples include the use of Twitter data
from a specific event in 2012 to demonstrate how the data can be analyzed in space and time, as well as
through social connections (Crampton et al., 2013), and the collection of Twitter data as part of the Global
Twitter Heartbeat project (Leetaru et al., 2013). These collected Twitter data were used to demonstrate
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different spatial, temporal, and linguistic patterns using the subset of georeferenced tweets, among several
other analyses.

In parallel with the development of citizen and low-cost sensor-based crowdsourcing methods, a number of
approaches have also been developed to integrate crowdsourcing data with authoritative data sources.
Craglia et al. (2012) showed an example of how data from social media (Twitter and Flickr) can be used to plot
clusters of fire occurrence through their CONtextual Analysis of Volunteered Information system. Using data
from France, they demonstrated that the majority of fires identified by the European Forest Fires Information
System were also identified by processing social media data through CONtextual Analysis of Volunteered
Information. Moreover, additional fires not picked up by European Forest Fires Information System were also
identified through this approach. In the application by Rice et al. (2013), crowdsourced data from both
citizen-based and low-cost sensor-based methods were combined with authoritative data to create an acces-
sibility map for blind and partially sighted people. The authoritative database contained permanent obstacles
(e.g., curbs, sloped walkways, etc.), while crowdsourced data were used to complement the authoritative map
with information on transitory objects such as the erection of temporary barriers or the presence of large
crowds. This application demonstrates how diverse sources of information can be used to produce a better
final information product for users.

4.5. Ecology

Crowdsourcing approaches to obtaining ecological data can be broadly divided into three categories, includ-
ing (i) ad hoc volunteer-based methods; (ii) structured volunteer-based methods; and (iii) methods using
technological advances. Ad hoc volunteer-based methods have typically been used to observe a certain type
or group of species (Donnelly et al., 2014). The first example of this can be dated back to 1966, where a
Breeding Bird Survey project was conducted with the aid of a large number of volunteers (Sauer et al.,
2009). The records from this project have become a primary source of avian study in North America, with
which additional analysis and research have been carried out to estimate bird population counts and how
they change over time (Geissler & Noon, 1981; Link & Sauer, 1998; Sauer et al., 2003). Similarly, a number
of well-trained recreational divers have voluntarily examined fish populations in California between 1997
and 2011 (Wolfe & Pattengill-Semmens, 2013), and the project results have been used to develop a fish data-
base where the density variations of 18 different fish species have been reported. In more recent years, local
residents were encouraged tomonitor surface algal blooms in a lake in Finland from 2011 to 2013, and results
showed that such a crowdsourcing method can provide more reliable data with regard to bloom frequency
and intensity relative to the traditional satellite remote sensing approach (Kotovirta et al., 2014).
Subsequently, many citizens have voluntarily participated in a research project to assist in the identification
of species richness in groundwater, and it was reported that citizen engagement was very beneficial in esti-
mating the diversity of the amphipod in Switzerland (Fiser et al., 2017). In more recent years, a crowdsourcing
approach assisted with identifying a 75% decline in flying insects in Germany over the last 27 years (Hallmann
et al., 2017).

While being simple in implementation, the ad hoc volunteer-based crowdsourcing methods mentioned
above are often not well designed in terms of their monitoring strategy, and hence the data collected may
not be able to fully represent the underlying properties of the species being investigated. In recognizing this,
a network named eBird has been developed to create and sustain a global avian biological network (Sullivan
et al., 2009), where this network has been officially developed and optimized with regard to monitoring loca-
tions. As a result, the collected data can possess more integrity compared with data obtained using crowd-
sourcing methods where monitoring networks are developed on a more ad hoc basis. Based on the data
obtained from the eBird network, many models have been developed to exploit variations in observation
density (Fink et al., 2013) and show the distributions of hemisphere-wide species (Fink et al., 2014), thereby
enabling better understanding of broad-scale spatiotemporal processes in conservation and sustainability
science. In a similar way, a network called PhragNet has been developed and applied to investigate the
Phragmites australis (common reed) invasion, and the collected data have successfully identified environ-
mental and plant community associations between the Phragmites invasion and patterns of management
responses (Hunt et al., 2017).

In addition to these volunteer-based crowdsourcing methods, novel techniques have been increasingly
employed to collect ecological data as a result of rapid developments in information technology (Teacher
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et al., 2013). For instance, a global hybrid forest map has been developed through combining remote sensing
data, observations from volunteer-based crowdsourcing methods and traditional measurements performed
by governments (Schepaschenko et al., 2015). More recently, social media has been used to observe dolphins
in the Hellenic Seas of the Mediterranean, and the collected data showed high consistency with currently
available literature on dolphin distributions (Giovos et al., 2016).

4.6. Surface Water

Data collection methods in the surface water domain based on crowdsourcing can be represented by three
main groups, including (i) citizen observations, (ii) the use of dedicated instruments, and (iii) the use of
images or videos. Of the above, citizen observations represent the most straightforward manner for sourcing
data, typically water depth. Examples include a software package designed to enable the collection of water
levels via text messages from local citizens (Fienen & Lowry, 2012), and a crowdsourced database built for
collecting stream stage measurements, where text messages from citizens were transmitted to a server that
stored and displayed the data on the web (Lowry & Fienen, 2013). In more recent years, a local community
was encouraged to gather data on time-series of river stage (Walker et al., 2016). Subsequently, a crowd-
sourced database was implemented as a low-cost method to assess the water quantity within the Sondu
River catchment in Kenya, where citizens were invited to read and transmit water levels and the station num-
ber to the database via a simple text message using their cell phones (Weeser et al., 2016). As the collection of
water quality data generally requires specialist equipment, crowdsourcing data collection efforts in this field
have relied on citizens to provide water samples that could then be analyzed. Examples of this include esti-
mation of the spatial distribution of nitrogen solutes via a crowdsourcing campaign, with citizens providing
samples at different locations, the investigation of watershed health (water quality assessment) with the aid
of samples collected by local citizens (Jollymore et al., 2017), and the monitoring of fecal indicator bacteria
concentrations in waterbodies of the greater New York City area with the aid of water samples collected
by local citizens.

An example of the use of instruments for obtaining crowdsourced surface water data is given in Sahithi
(2016), who showed that a mobile app and lake monitoring kit can be used to measure the physical proper-
ties of water samples. Another application is given in Castilla et al. (2015), who showed that the data from 13
cities (250 water bodies) measured by trained citizens with the aid of instruments can be used to successfully
assess elevated phytoplankton densities in urban and peri-urban freshwater ecosystems.

The use of crowdsourced images and videos has increased in popularity with developments in smart phones
and other personal devices, in conjunction with the increased ability to share these. For example, Secchi
depth and turbidity (water quality parameters) of rivers have been monitored using images taken via mobile
phones (Toivanen et al., 2013), and water levels have been determined using projected geometry and aug-
mented reality to analyze three different images of a river’s surface at the same location taken by citizens with
the aid of smart phones, together with the corresponding GPS location (Demir et al., 2016). In more recent
years, Tauro and Salvatori (2017) developed a system with lasers and an internet protocol camera equipped
with two optical modules to acquire velocity data for the river surface of the Tiber River; Kampf et al. (2018)
proposed the CrowdWater project to measure stream levels with the aid of multiple photos taken at the same
site, but at different times; and Leeuw and Boss (2018) introduced HydroColor, which is a mobile application
that utilizes a smartphone’s camera and auxiliary sensors to measure the remote sensing reflectance of nat-
ural water bodies.

Crowdsourced data can also be combined with other types of data to improve data quality. For example,
Kampf et al. (2018) developed a Stream Tracker with the goal of improving intermittent stream mapping
and monitoring using satellite and aircraft remote sensing, in-stream sensors, and crowdsourced observa-
tions of streamflow presence and absence. The crowdsourced data were used to fill in information on stream-
flow intermittence anywhere that people regularly visited streams, for example, during a hike or bike ride, or
when passing by while commuting.

4.7. Natural Hazard Management

The crowdsourcing data acquisition methods used to support natural hazard management can be divided
into three broad classes, including (i) the use of low-cost sensors; (ii) the active provision of dedicated infor-
mation by citizens; and (iii) the mining of relevant data from social media databases. Low-cost sensors are
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generally used for obtaining information of the hazard itself. The use of such sensors is becoming more pre-
valent, particularly in the field of flood management, where they have been used to obtain water levels (Liu
et al., 2015) or velocities (Braud et al., 2014; Le Coz et al., 2016; Tauro & Salvatori, 2017) in rivers. The latter can
also be obtained with the use of autonomous small boats (Sanjou & Nagasaka, 2017).

Active provision of data by citizens can also be used to better understand the location, extent, and severity of
natural hazards and has been aided by recent advances in technological developments, not only in the acqui-
sition of data, but also their transmission and storage, making themmore accessible and usable. In the area of
flood management, Alfonso et al. (2010) tested a system in which citizens sent their reading of water level
rulers by text messages. Since then, other studies have adopted similar approaches (Lowry & Fienen, 2013;
McDougall, 2011; McDougall & Temple-Watts, 2012) and have adapted them to new technologies, such as
website upload (Degrossi et al., 2014; Starkey et al., 2017). Kutija et al. (2014) developed an approach in which
images of floods are received, from which water levels are extracted. Such an approach has also been used to
obtain flood extent (Yu et al., 2016) and velocity (Le Coz et al., 2016).

Another means by which citizens can actively provide data for natural hazard management is collaborative
mapping. For example, as mentioned in section 4.4, the Collabmap platform can be used to crowdsource eva-
cuation routes for natural hazard events. As part of this approach, citizens are involved in one of five micro-
tasks related to the development of maps of evacuation routes, including building identification, building
verification, route identification, route verification, and completion verification (Ramchurn et al., 2013). In
another example, citizens used a WEB GIS application to indicate the position of ditches and to modify the
attributes of existing ditch systems on maps, to be used as inputs in a flood model for inland excess water
hazard management (Juhász et al., 2016).

The mining of data from social media databases and image/video repositories has received significant atten-
tion in natural hazard management (Alexander, 2008; Goodchild & Glennon, 2010; Horita et al., 2013) and can
be used to signal and detect hazards, to document and learn from what is happening, and support disaster
response activities (Houston et al., 2015). However, this approach has been used primarily for hazard
response activities in order to improve situational awareness (Anson et al., 2017; Horita et al., 2013). This is
due to the speed and robustness with which information is made available, its low cost and the fact that it
can provide text, image/video, and locational information (McSeveny & Waddington, 2017; Middleton
et al., 2014; Stern, 2017). However, it can also provide large amounts of data from which to learn from past
events (Stern, 2017), as was the case for the 2013 Colorado Floods, where social media data were analyzed
to better understand damage mechanisms and prevent future damage (Dashti et al., 2014).

Due to accessibility issues, the most common platforms for obtaining relevant information are Twitter and
Flickr. For example, Twitter data can be analyzed to detect the occurrence of natural hazard events (Li
et al., 2012), as demonstrated by applications to floods (Palen et al., 2010; Smith et al., 2015) and earthquakes
(Sakaki et al., 2013), as well as the location of such events, as shown for earthquakes (Sakaki et al., 2013), floods
(Vieweg et al., 2010), fires (Vieweg et al., 2010), storms (Smith et al., 2015), and hurricanes (Kryvasheyeu et al.,
2016). The location of wildfires has also been obtained by analyzing data from VGI services such as Flickr
(Craglia et al., 2012; Goodchild & Glennon, 2010).

Data obtained from analyzing social media databases and image/video repositories can also be used to
assess the impact of natural disasters. This can include determination of the spatial extent (Brouwer et al.,
2017; Cervone et al., 2016; Jongman et al., 2015; Rosser et al., 2017) and impact/damage (de Albuquerque
et al., 2015; Jongman et al., 2015; Kryvasheyeu et al., 2016; Vieweg et al., 2010) of floods, as well as the
damage/injury arising from fires (Vieweg et al., 2010), hurricanes (Kryvasheyeu et al., 2016; Middleton et al.,
2014; Yuan & Liu, 2018), tornadoes (Kryvasheyeu et al., 2016; Middleton et al., 2014), earthquakes
(Kryvasheyeu et al., 2016), and mudslides (Kryvasheyeu et al., 2016).

Social media data can also be used to obtain information about the hazard itself. Examples of this include the
determination of water levels (Aulov et al., 2014; de Albuquerque et al., 2015; Eilander et al., 2016; Jongman
et al., 2015; Kongthon et al., 2012; Li et al., 2017; Smith et al., 2015; Vieweg et al., 2010) and water velocities (Le
Boursicaud et al., 2016), including using such data to evaluate the stability of a person immersed in a flood
(Milanesi et al., 2016). The analysis of Twitter data has also been able to provide information on a range of
other information relevant to natural hazard management, including information on traffic and road
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conditions during floods (de Albuquerque et al., 2015; Kongthon et al., 2012; Vieweg et al., 2010) and
typhoons (Declan, 2013), as well as information on damaged and intact buildings and the locations of key
infrastructure, such as hospitals, during Typhoon Hayan in the Philippines (Declan, 2013). Goodchild and
Glennon (2010) were able to use VGI services such as Flickr to obtain maps of the locations of emergency
shelters during the Santa Barbara wildfires in the United States.

Different types of crowdsourced data can also be combined with other types of data and simulation models
to improve natural hazard management. Other types of data can be used to verify the quality and improve
the usefulness of outputs obtained by analyzing social media data. For example, Middleton et al. (2014) used
published information to verify the quality of maps of flood extent resulting from Hurricane Sandy, and
damage extent resulting from the Oklahoma tornado, obtained by analyzing the geospatial information con-
tained in tweets. In contrast, de Albuquerque et al. (2015) used authoritative data on water levels from 185
stations with 15-min resolution, as well as information on drainage direction, to identify the tweets that pro-
vided the most relevant information for improving situational awareness related to the management of the
2013 floods in the River Elbe in Germany. Other data types can also be combined with crowdsourced data to
improve the usefulness of the outputs. For example, Jongman et al. (2015) combined near-real-time satellite
data with near-real-time Twitter data on the location, timing, and impacts of floods for case studies in
Pakistan and the Philippines for improving humanitarian response. McDougall and Temple-Watts (2012)
combined high quality aerial imagery, LiDAR data, and publically available volunteered geographic imagery
(e.g., from Flickr) to reconstruct flood extents and obtain information on depth of inundation for the 2011
Brisbane floods in Australia.

With regard to the combination of crowdsourced data with models, Juhász et al. (2016) used data on the loca-
tion of channels and ditches provided by citizens as one of the inputs to an online hydrological model for
visualizing areas at potential risk of flooding under different scenarios. Alternatively, Smith et al. (2015) devel-
oped an approach that uses data from Twitter to identify when a storm event occurs, triggering simulations
from a hydrodynamic flood model in the correct location, and to validate the model outputs, whereas Aulov
et al. (2014) used data from tweets and Instagram images for the real-time validation of a process-driven
storm surge model for Hurricane Sandy in the United States.

4.8. Summary of Crowdsourcing Methods Used

The different crowdsourcing-based data acquisition methods discussed in sections 4.1 to 4.7 can be broadly
classified into four major groups: citizen observations, instruments, social media, and integrated methods
(Table 2). As can be seen, the methods belonging to these groups cover all nine categories of crowdsourcing
data acquisition methods defined in Table 1. Interestingly, six out of the nine possible methods have been
used in the domain of natural hazard management (Table 2), which is primarily due to the widespread use
of social media and integrated methods in this domain.

Of the four major groups of methods shown in Table 2, citizen observations have been used most broadly
across the different domains of geophysics reviewed. This is, at least partly, because of the relatively low cost
associated with this crowdsourcing approach, as it does not rely on the use of monitoring equipment and
sensors. Based on the categorization introduced in Figure 6, this approach uses citizens (through their senses,
such as sight) as data generation agents and has a data type that belongs to the intentional category. As part
of this approach, local citizens have reported on general degrees of temperature, wind, rain, snow, and hail
based on their subjective feelings, and land cover, algal blooms, stream stage, flooded area, and evacuation
routines according to their readings and counts.

While citizen observation-based methods are simple to implement, the resulting data might not be suffi-
ciently accurate for particular applications. This limitation can be overcome by using instruments. As shown
in Table 2, instruments used for crowdsourcing generally belong to one of two categories: in situ
sensors/stations (installed and maintained by citizens, rather than authoritative agencies) or mobile devices.
For methods belonging to the former category, instruments are used as data generation agents, but the data
type can be either intentional or unintentional. Typical in situ instruments for the intentional collection of
data include automatic weather stations used to obtain wind and temperature data, gauges used to measure
rainfall intensity, and sensors used to measure air quality (PM2.5 and Ozone), shale gas and heavy metal in
rivers, and water levels during flooding events. An example of a method as part of which the geophysical
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data of interest can be obtained from instruments that were not installed to intentionally provide these data
is the use of the microwave links to estimate fog and rain intensity.

Instruments belonging to the mobile category generally require both citizens and instruments as data gen-
eration agents (Table 2). This is because such sensors are either attached to citizens themselves or to vehicles
operated by citizens (although this is likely to change in future as the use of autonomous vehicles becomes
more common). However, as is the case for the in situ category, data types can be either intentional or unin-
tentional. As can be seen from Table 2, methods belonging to the intentional category have been used across
all domains of geophysics considered in this review. Examples include the use of mobile phones, cameras,
cars, and people on bikes measuring variables such as temperature, humidity, rainfall, air quality, land cover,
dolphin numbers, suspended sediment, dissolved organic matter, water level, and water velocity. Examples
from the unintentional data type include the identification of rainy days through audio clips collected from
smartphones installed in cars (Guo et al., 2016) and the general assessment of air pollution exposure with
the aid of traces and duration of outdoor cycling activities (Sun et al., 2017). It should be noted that there
are also cases where different instruments can be combined to collect/estimate data. For example, weather
stations and microwave links were jointly used to estimate wind and humidity by Vishwarupe et al. (2016).

Crowdsourced data obtained from social media or image/video repositories belong to the unintentional data
type category, as they are mined from information not shared for the purposes they are ultimately used for.
However, the data generation agent can either be citizens or citizens in combination with instruments
(Table 2). As most of the information that is useful from a geophysics perspective contains images or spatial
information that requires the use of instruments (e.g., mobile phones), there are few examples where citizens
are the sole data generation agent, such as that of the analysis of text-based information from Twitter or
Facebook to obtain maps of flooded areas to aid natural hazard management (Table 2). However, applica-
tions where both citizens and instruments are used to generate the data to be analyzed aremore widespread,
including the estimation of smoke dispersion after fire events, the determination of the geographical loca-
tions where tweets were authored, the identification of the number of tigers around the world to aid tiger
conservation, the estimation of water levels, the detection of earthquake events, and the identification of cri-
tically affected areas and damage from hurricanes.

In parallel with the developments of the three types of methods mentioned above, there is also growing
interest in integrating various crowdsourced data, typically aimed to improve data coverage or to enable data
cross-validation. As shown in Table 2, these can involve both categories of data-generation agents and both
categories of data types. Examples include the development of accessibility mapping for people with disabil-
ities, water quantity estimation, and estimation of inundated areas. An example where citizens are used as
the only data generation agent but both data types are used is where citizen observations transmitted
through a dedicated mobile app and Twitter are integrated to show flood extent and water level to assist
with disaster management (Wang et al., 2018).

As discussed in sections 4.1 to 4.7, these crowdsourcing methods can be also integrated with data from
authoritative databases or with models to further improve the spatiotemporal resolution of the data being
collected. Another aim of such hybrid approaches is to enable the crowdsourcing data to be validated.
Examples include gauged rainfall data integrated with data estimated from microwave links (Fencl et al.,
2017; Haese et al., 2017), stream mapping through combining mobile app data and satellite remote sensing
data (Kampf et al., 2018), and the validation of the quality of water level data derived from tweets using
authoritative data (de Albuquerque et al., 2015).

5. Review of Issues Associated With Crowdsourcing Applications
5.1. Management of Crowdsourcing Projects
5.1.1. Background
The managerial, organizational, and social aspects of crowdsourced applications are as important and chal-
lenging as the development of data processing and modeling technologies that ingest the resulting data.
Hence, there is a growing body of literature on how to design, implement, and manage crowdsourcing pro-
jects. As the core component in crowdsourcing projects is the participation of the crowd, engaging and moti-
vating the public has become a primary consideration in the management of crowdsourcing applications,
and a range of strategies is emerging to address this aspect of project design. At the same time, many
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authors argue that the design of crowdsourcing efforts, in terms of spatial scale and participant selection, is a
trade-off between cost, time, accuracy, and research objectives. Another key set of methods related to project
design revolves around data collection, that is, data protocols and standards, as well as the development of
optimal spatial-temporal sampling strategies for a given application. When using low-cost sensors and
smartphones, additional methods are needed to address calibration and environmental conditions. Finally,
we consider methods for the integration of various crowdsourced data into further applications, which is
one of the main categories of crowdsourcing methods that emerged from the review (see Table 2) but
warrants further consideration related to the management of crowdsourcing projects.
5.1.2. Current Status
There are four main categories of methods associated with the management of crowdsourcing applications
as outlined in Table 3. A number of studies have been conducted to help understand what methods are effec-
tive in the engagement and motivation of participation in crowdsourcing applications, particularly as many
crowdsourcing applications need to attract a large number of participants (Alfonso et al., 2015; Buytaert et al.,
2014). Groom et al. (2017) argue that the users of crowdsourced data should acknowledge the citizens who
were involved in the data collection in ways that matter to them. If the monitoring is over a long time period,
crowdsourcing methods must be put in place to ensure sustainable participation (Theobald et al., 2015),
potentially resulting in challenges for the implementation of crowdsourcing projects. In other words, many
crowdsourcing projects are applicable in cases where continuous data gathering is not the main objective.

Considerable experience has been gained in setting up successful citizen science projects for biodiversity
monitoring in Ireland, which can inform crowdsourcing project design and implementation. Donnelly et al.
(2014) provide a checklist of criteria, including the need to devise a plan for participant recruitment and
retention. They also recognize that training needs must be assessed and the necessary resources provided,
for example, through workshops, training videos, and so forth. To sustain participation, they provide compre-
hensive newsletters to their volunteers, as well as regular workshops to further train and engage participants.
Involving schools is also a way to improve participation, particularly when data become a required element to
enable the desired scientific activities, for example, save tigers (Can et al., 2017; Donnelly et al., 2014; Roy
et al., 2016). Other experiences can be found in Japan, United Kingdom, and United States by Kobori et al.
(2015), who suggested that existing communities with interest in the application area should be targeted,
some form of volunteer recognition system should be implemented, and tools for facilitating positive social
interaction between the volunteers should be used. They also suggest that front-end evaluation involving

Table 3
Methods Associated With the Management of Crowdsourcing Applications

Methods Typical references Key comments

Engagement
strategies
for motivating
participation
in crowdsourcing

Buytaert et al. (2014), Alfonso et al. (2015),
Groom et al. (2017), Theobald et al. (2015),
Donnelly et al. (2014), Kobori et al. (2015),
Roy et al. (2016), Can et al. (2017),
Elmore et al. (2014), Vogt and
Fischer (2014), Fritz et al. (2017)

• Understanding of the motivations of citizens to guide the design of
crowdsourcing projects

• Adoption of the best practice in various projects across multiple domains,
for example, training, good communication and feedback, targeting existing
communities, volunteer recognition systems, social interaction, etc.

• Incentives, for example, micropayments, gamification
Data collection
protocols
and standards

Kobori et al. (2015), Vogt and Fischer (2014),
Honicky et al. (2008), Anderson et al. (2012),
Wolters and Brandsma, (2012),
Overeem, Robinson, et al. (2013),
Majethia et al. (2015), Buytaert et al. (2014)

• Simple, usable data collection protocols
• Better protocols and methods for the deployment of low-cost and vehicle sensors
• Data standards and interoperability, for example, OGC Sensor Observation Service

Sample design
for data collection

Doesken and Weaver (2000), De Vos et al. (2017),
Chacon-Hurtado et al. (2017),
Davids et al. (2017)

• Sampling design strategies, for example, for precipitation and streamflow
monitoring, that is, spatial distribution and temporal frequency

• Adapting existing sample design frameworks to crowdsourced data
Assimilation and
integration of
crowdsourced data

Mazzoleni et al. (2017), Schneider et al. (2017),
Panteras and Cervone (2018), Bell et al. (2013),

Muller (2013), Haese et al. (2017),
Chapman et al. (2015), Liberman et al. (2014),
Doumounia et al. (2014), Allamano et al. (2015),
Overeem et al. (2016)

• Assimilation of crowdsourced data in flood forecasting models, flood and air
quality mapping, numerical weather prediction, simulation of precipitation fields

• Dense urban monitoring networks for assessment of crowdsourced data,
integration into smart city applications

• Methods for working with existing infrastructure for data collection
and transmission

Note. OGC = Open Geospatial Consortium.
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interviews and focus groups with the target audience can be useful for understanding the research interests
and motivations of the participants, which can be used in application design. Experiences in the collection of
precipitation data through the mPING mobile app have shown that the simplicity of the application and
immediate feedback to the user were key elements of success in attracting large numbers of volunteers
(Elmore et al., 2014). This more general element of the need to communicate with volunteers has been
touched upon by several researchers (e.g., Donnelly et al., 2014; Kobori et al., 2015; Vogt & Fischer, 2014).
Finally, different incentives should be considered as a way to increase volunteer participation from the addi-
tion of gamification or competitive elements to micropayments, for example, though the use of platforms
such as Amazon Mechanical Turk, where appropriate (Fritz et al., 2017).

A second set of methods related to the management of crowdsourcing applications revolves around data
collection protocols and data standards. Kobori et al. (2015) recognize that complex data collection protocols
or inconvenient locations for sampling can be barriers to citizen participation and hence they suggest that
data protocols should be simple. Vogt and Fischer (2014) have similarly noted that the usability of their pro-
tocol in monitoring of urban trees is an important element of the project. Clear protocols are also needed for
collecting data from vehicles, low-cost sensors, and smartphones in order to deal with inconsistencies in the
conditions of the equipment, such as the running speed of the vehicles, the operating system version of the
smartphones, the conditions of batteries, the sensor environments, that is, whether they are indoors or out-
doors or if a smartphone is carried in a pocket or handbag, and a lack of calibration or modifications for sensor
drift (Anderson et al., 2012; Honicky et al., 2008; Majethia et al., 2015; Overeem, Leijnse, et al., 2013; Wolters &
Brandsma, 2012). Hence, the quality of crowdsourced atmospheric data is highly susceptible to various dis-
turbances caused by user behavior, their movements, and other interference factors. An approach for tack-
ling these problems would be to record the environmental conditions along with the sensor
measurements, which could then be used to correct the observations. Finally, data standards and interoper-
ability are important considerations, which are discussed by Buytaert et al. (2014) in relation to sensors. The
Open Geospatial Consortium Sensor Observation Service is one example where work is progressing on sen-
sor data standards.

Another set of methods that needs to be considered in the design of a crowdsourcing application is the iden-
tification of an appropriate sample design for the data collection. For example, methods have been devel-
oped for determining the optimal spatial density and locations for precipitation monitoring (Doesken &
Weaver, 2000). Although a precipitation observation network with a higher density is more likely to capture
the underlying characteristics of the precipitation field, it comes with significantly increased efforts needed to
organize and maintain such a large volunteer network (De Vos et al., 2017). Hence, the sample design and
corresponding trade-off needs to be considered in the design of crowdsourcing applications. Chacon-
Hurtado et al. (2017) present a generic framework for designing a rainfall and streamflow sensor network
including the use of model outputs. Such a framework could be extended to include crowdsourced precipi-
tation and streamflow data. The temporal frequency of sampling also needs to be considered in crowdsour-
cing applications. Davids et al. (2017) investigated the effect of lower frequency sampling of streamflow,
which could be similar to that produced by citizen monitors. By subsampling 7 years of data from 50 stations
in California, they found that even with lower temporal frequency, the information would be useful for mon-
itoring, with reliability increasing for less flashy catchments.

The final set of methods that needs to be considered when developing and implementing a crowdsourcing
application is how the crowdsourced data will be used, that is, integrated or assimilated into monitoring and
forecasting systems. For example, Mazzoleni et al. (2017) investigated the assimilation of crowdsourced data
directly into flood forecasting models. They developed a method that deals specifically with the heteroge-
neous nature of the data by updating the model states and covariance matrices as the crowdsourced data
became available. Their results showed that model performance increased with the addition of crowd-
sourced observations, highlighting the benefits of this data stream. In the area of air quality, Schneider
et al. (2017) used a data fusion method to assimilate NO2 measurements from low-cost sensors with spatial
outputs from an air quality model. Although the results were generally good, the accuracy varied based on a
number of factors including uncertainties in the low-cost sensor measurements. Other methods are needed
for integrating crowdsourced data with ground-based station data and remote sensing since these different
data inputs have varying spatiotemporal resolutions. An example is provided by Panteras and Cervone
(2018), who combined Twitter data with satellite imagery to improve the temporal and spatial resolution
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of probability maps of surface flooding produced during four phases of a flooding event in Charleston, South
Carolina. The value of the crowdsourced data was demonstrated during the peak of the flood in phase two
when no satellite imagery was available.

Another area of ongoing research is assimilation of data from amateur weather stations in numerical weather
prediction, providing both high resolution data for initial surface conditions and correction of outputs locally.
For example, Bell et al. (2013) compared crowdsourced data from amateur weather stations with official
meteorological stations in the United Kingdom and found good correspondence for some variables, indicat-
ing assimilation was possible. Muller (2013) showed how crowdsourced snow depth interpolated for 1 day
appeared to correlate well with a radar map, while Haese et al. (2017) showed that by merging data collected
from existing weather observation networks with crowdsourced data from CMLs, a more complete under-
standing of the weather conditions could be obtained. Both clearly have potential value for forecasting mod-
els. Finally, Chapman et al. (2015) presented the details of a high resolution urban monitoring network in
Birmingham, describing many potential applications from assimilation of the data into numerical weather
prediction models, acting as a test bed to assess crowdsourced atmospheric data and linking to various smart
city applications, among others.

Some crowdsourcing methods depend upon existing infrastructure or facilities for data collection, as well as
infrastructure for data transmission (Liberman et al., 2014). For example, the utilization of microwave links for
rainfall estimation is greatly affected by the frequency and length of available links (Leijnse et al., 2007;
Zinevich et al., 2009), and the moving-car and low-cost sensor-based methods are heavily influenced by
the availability of such cars and sensors (Allamano et al., 2015). An ad hoc method for tackling this issue is
the development of hybrid crowdsourcing methods that can integrate multiple existing crowdsourcing
approaches to provide precipitation data with improved reliability (Liberman et al., 2014; P. Yang & Ng, 2017).
5.1.3. Challenges and Future Directions
There is considerable experience being amassed from crowdsourcing applications across multiple domains
in geophysics. This collective best practice in the design, implementation, and management of crowdsour-
cing applications should be harnessed and shared between disciplines rather than duplicating efforts. In
many ways, this review paper represents a way of signposting important developments in this field for the
benefit of multiple research communities. Moreover, new conferences and journals focused on crowdsour-
cing and citizen science will facilitate a more integrated approach to solving problems of a similar nature
experienced within different disciplines. Engagement and motivation will continue to be a key challenge.
In particular, it is important to recognize that participation will always be biased, that is, subject to the
90:9:1 rule, which states that 90% of the participants will simply view the data generated, 9% will provide
some data from time to time while the majority of the data will be collected by 1% of the volunteers.
Although different crowdsourcing applications will have different percentages and degrees of success in
mitigating this bias, it is critical to gain a better understanding of participant motivations and then design
projects that meet these motivations. Ongoing research in the field of governance can help to identify bottle-
necks in the operational implementation of crowdsourcing projects, by evaluating citizen participation
mechanisms (Wehn et al., 2015).

On the data collection side, some of the challenges related to the deployment of low-cost andmobile sensors
may be solved through improving the reliability of the sensors in the future (McKercher et al., 2017). However,
an ongoing challenge that hinders the wider collection of atmospheric observations from the public is that
outdoor measurement facilities are often vulnerable to environmental damage (Chapman et al., 2016;
Melhuish & Pedder, 2012). There are technical challenges arising from the lack of data standards and intero-
perability for data sharing (Panteras & Cervone, 2018), particularly in domains where multiple types of data
are collected and integrated within a single application. This will continue to be a future challenge, but there
are several open data standards emerging that could be used for integrating data from multiple sources and
sensors, for example, WaterML or SWE (Sensor Web Enablement), which are being championed by the Open
Geospatial Consortium.

Another key future direction will be the development of more operational systems that integrate intentional
and unintentional crowdsourcing, particularly as the value of such data to enhance existing authoritative
databases becomesmore andmore evident. Much of the research reported in this review presents the results
of dedicated, one-time-only experiments that, as discussed in section 3, are in most cases restricted to
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research projects and the academic environment. Even in research projects dedicated to citizen observa-
tories that include local partnerships, there is limited demonstration of changes in management procedures
and structures, and little technological uptake. Hence, crowdsourcing needs to be operationalized, and there
are many challenges associated with this. For example, amateur weather stations are often clustered in urban
areas or areas with a higher population density, they have not necessarily been calibrated or recalibrated for
drift, they are not always placed in optimal locations at a particular site, and they often lack metadata (Bell
et al., 2013). Chapman et al. (2015) touched upon a wide range of issues related to the urban monitoring
network in Birmingham from site discontinuation due to lack of engagement to more technical problems
associated with connectivity, signal strength, and battery life. Use of more unintentional sensing through
cars, wearable technologies, and the IoT may be one solution for gathering data in ways that will become less
intrusive and less effort for citizens in the future. There are difficult challenges associated with data assimila-
tion but this will clearly be an area of continued research focus. Hydrological model updating, both offline
and real-time, which has not been possible due to lack of gauging stations, could have a bigger role in the
future due to the availability of new data sources, while the development of newmethods for handling noisy
data will most likely result in significant improvements in meteorological forecasting.

5.2. Data Quality
5.2.1. Background
Concerns about the uncertain quality of the data obtained from crowdsourcing and their rate of acceptability
is one of the primary issues raised by potential users (Foody et al., 2013; Steger et al., 2017; Walker et al., 2016).
These include not only scientists, but natural resource managers, local and regional authorities, communities,
and businesses, among others. Given the large quantities of crowdsourced data that are currently available
(and will continue to come from crowdsourcing in the future), it is important to document the quality of
the data so that users can decide if the available crowdsourced data are fit-for-purpose, similar to the way
that users would judge data coming from professional sources. Crowdsourced data are subject to the same
types of errors as professional data, each of which require methods for quality assessment. These errors
include observational and sampling errors, lack of completeness, for example, only 1% to 2% of Twitter data
are currently geotagged (Das & Kim, 2015; Middleton et al., 2014; Morstatter et al., 2013; Palen & Anderson,
2016), and issues related to trust and credibility, for example, for data from social media (Schmierbach &
OeldorfHirsh, 2012; Sutton et al., 2008), where information may be deliberately or even unintentionally erro-
neous, potentially endangering lives when used in a disaster response context (Akhgar et al., 2017). In addi-
tion, there are social and political challenges, such as the initial lack of trust in crowdsourced data (Buytaert
et al., 2014; McCray, 2006). For governmental organizations, the driver could be fear of having current data
collections invalidated or the need to process overwhelming amounts of varying quality data (McCray,
2006). It could also be driven by cultural characteristics that inhibit public participation.
5.2.2. Current Status
From the literature, it is clear that research on finding optimal ways to improve the accuracy of crowdsourced
data is taking place in different disciplines within geophysics and beyond, yet there are clear similarities in the
approaches used, as outlined in Table 4. Seven different types of approaches have been identified, while the
eighth type refers to methods of uncertainty more generally. Typical references that demonstrate these dif-
ferent methods are also provided.

The first method in Table 4 involves the comparison of crowdsourced data with data collected by experts or
existing authoritative databases; this is referred to as a comparison with a gold standard data set. This is also
one of seven different methods that comprise the Citizen Observatory WEB (COBWEB) quality assurance sys-
tem (Leibovici et al., 2015). An example is the gold standard data set collected by experts using the Geo-Wiki
crowdsourcing system (Fritz et al., 2012). In the postprocessing of data collected through a Geo-Wiki crowd-
sourcing campaign, See et al. (2013) showed that volunteers with some background in the topic (i.e., remote
sensing or geospatial sciences) outperformed volunteers with no background when classifying land cover
but that this difference in performance decreased over time as less experienced volunteers improved.
Using this same data set, Comber et al. (2013) employed geographically weighted regression to produce sur-
faces of crowdsourced reliability statistics for Western and Central Africa. Other examples include the use of a
gold standard data set in crowdsourcing via the Amazon Mechanical Turk system (Kazai et al., 2013), to exam-
ine various drivers of performance, in species identification in East Africa (Steger et al., 2017), in hydrological
(Walker et al., 2016) and water quality monitoring (Jollymore et al., 2017), and to show how rainfall can be
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enhanced with CMLs (Pastorek et al., 2017). Although this is clearly one of the most frequently used methods,
Goodchild and Li (2012) argue that some authoritative data, for example, topographic databases, may be out
of date so other methods should be used to complement this gold standard approach.

The second category in Table 4 is the comparison of crowdsourced data with alternative sources of data,
which is referred to as model-based validation in the COBWEB system (Leibovici et al., 2015). An illustration
of this approach is given in Walker et al. (2016), who examined the correlation and bias between rainfall data
collected by the community with satellite-based rainfall and reanalysis products as one form of quality check
among several. Combining multiple observations at the same location is another approach for improving the
quality of crowdsourced data. Having consensus at a given location is similar to the idea of replicability, which
is a key characteristic of data quality. Crowdsourced data collected at the same location can be combined
using a consensus-based approach such as majority weighting (Kazai et al., 2013; See et al., 2013) or latent
analysis can be used to determine the relative performance of different individuals using such a data set
(Foody et al., 2013). Other methods have been developed for crowdsourced data being collected on species
occurrence. In the Snapshot Serengeti project, citizens identified species from more than 1.5 million photo-
graphs taken by camera traps. Using bootstrapping and comparison of accuracy from a subset of the data
with a gold standard data set, researchers determined that 90% accuracy could be reached with five volun-
teers per photograph, while this number increased to 95% accuracy with 10 people (Swanson et al., 2016).

The fourth category is crowdsourced peer review or what Goodchild and Li (2012) refer to as the crowdsour-
cing approach. They argue that the crowd can be used to validate data from individuals and even correct any

Table 4
Methods of Crowdsourced Data Quality Assurance

Methods Typical references Key comments

Comparison with an expert or
gold standard data set

Goodchild and Li (2012), Comber et al. (2013),
Foody et al. (2013), Kazai et al. (2013),
See et al. (2013), Leibovici et al. (2015),
Jollymore et al. (2017), Steger et al. (2017),
Walker et al. (2016)

• Direct comparison of professionally collected data with
crowdsourced data to assess quality using different
quantitative metrics

Comparison against an
alternative source of data

Leibovici et al. (2015), Walker et al. (2016) • Use of another data set as a proxy for expert data, for example,
rainfall from satellites for comparison with crowdsourced
rainfall measurements

• Model-based validation, that is, validation of crowdsourced
data against model outputs

Combining multiple
observations

Comber et al. (2013), Foody et al. (2013),
Kazai et al. (2013), See et al. (2013),
Swanson et al. (2016)

• Use of majority voting or another consensus-based method to
combine multiple observations of crowdsourced data

• Latent class analysis to look at relative performance of individuals
• Use of certainty metrics and bootstrapping to determine the
number of volunteers needed to reach a given accuracy

Crowdsourced peer review Goodchild and Li (2012) • Use of citizens to crowdsource information about the quality of
other citizen contributions

Automated checking Leibovici et al. (2015), Walker et al. (2016),
Castillo et al. (2011)

• Look for errors in formatting, consistency, and assess whether the
data are within acceptable limits (numerically or spatially)

• Train a classifier to determine the level of credibility of
information from Twitter

Methods from
different disciplines

Leibovici et al. (2015), Walker et al. (2016),
Fonte et al. (2017)

• Quality control procedures from the World Meteorological
Organization (WMO)

• Double mass check• ISO 19157 standard for assessing spatial
data quality

• Bespoke systems such as the COBWEB quality assurance system
Measures of credibility
(of information and users)

Castillo et al. (2011), Westerman et al. (2012),
Kongthon et al. (2012)

• Credibility measures based on different features, for example,
user-based features such as number of followers, message-based
features such as length of messages, sentiments,
propagation-based features such as retweets etc.

Quantification of uncertainty
of data and model predictions

Rieckermann (2016) • Identify potential sources of uncertainty in crowdsourced data and
construct credible measures of uncertainty to improve scientific
analysis and practical decision making

Note. COBWEB = Citizen Observatory WEB.
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errors. Trusted individuals in a self-organizing hierarchy may also take on this role of data validation and cor-
rection in what Goodchild and Li (2012) refer to as the social approach. Examples of this hierarchy of trusted
individuals already exist in applications such as OSM and Wikipedia. Automated checking of the data, which
is the fifth category of approaches, can be undertaken in numerous ways and is part of two different valida-
tion routines in the COBWEB system (Leibovici et al., 2015), one that looks for simple errors or mistakes in the
data entry and a second routine that carries out further checks based on validity. In the analysis by Walker
et al. (2016), the crowdsourced data undergo a number of tests for formatting errors, application of different
consistency tests, for example, are observations consistent with previous observations recorded in time, and
tests for tolerance, that is, are the data within acceptable upper and lower limits. Simple checks like these can
easily be automated.

The next method in Table 4 refers to a general set of approaches that are derived from different disci-
plines. For example, Walker et al. (2016) use the quality procedures suggested by the World
Meteorological Organization to quality assess crowdsourced data, many of which also fall under the types
of automated approaches available for data quality checking. World Meteorological Organization also
recommends a completeness test, that is, are there missing data that may potentially affect any further
processing of the data, which is clearly context-dependent. Another test that is specific to streamflow
and rainfall is the double mass check (Walker et al., 2016), whereby cumulative values are compared with
those from a nearby station to look for consistency. Within VGI and geography, there are international
standards for assessing spatial data quality (ISO 19157), which break down quality into several components
such as positional accuracy, thematic accuracy, completeness, and so forth as outlined in Fonte et al.
(2017). In addition, other VGI-specific quality indicators are discussed such as the quality of the contribu-
tors or consideration of the socioeconomics of the areas being mapped. Finally, the COBWEB system
described by Leibovici et al. (2015) is another example that has several generic elements, but also some
that are specific to VGI, for example, the use of spatial relationships to assess the accuracy of the position
using the mobile device.

When dealing with data from social media, for example, Twitter, methods have been proposed for determin-
ing the credibility (or believability) in the information. Castillo et al. (2011) developed an automated approach
for determining the credibility of tweets by testing different message-based (e.g., length of the message),
user-based (e.g., number of followers), topic-based (e.g., number and average length of tweets associated
with a given topic), and propagation-based (i.e., retweeting) features. Using a supervised classifier, an overall
accuracy of 86% was achieved. Westerman et al. (2012) examined the relationship between credibility and
the number of followers on Twitter and found an inverted U-shaped pattern, that is, having too few or too
many followers decreases credibility, while credibility increased as the gap between the number of followers
and the number followed by a given source decreased. Kongthon et al. (2012) applied the measures of
Westerman et al. (2012) but found that retweets were a better indicator of credibility than the number of fol-
lowers. Quantifying these types of relationships can help to determine the quality of information derived
from social media. The final approach listed in Table 1 is the quantification of uncertainty, although the meth-
ods summarized in Rieckermann (2016) are not specifically focused on crowdsourced data. Instead, the
author advocates the importance of reporting a reliable measure of uncertainty, of either observations or pre-
dictions of a computer model, to improve scientific analysis, such as parameter estimation, or decision mak-
ing in practical applications.
5.2.3. Challenges and Future Directions
Handling concerns over crowdsourced data quality will continue to remain a major challenge in the near
future. Walker et al. (2016) highlight the lack of examples of the rigorous validation of crowdsourced data
from community-based hydrological monitoring programs. In the area of wildlife ecology, the quality of
the crowdsourced data varies considerably by species and ecosystem (Steger et al., 2017), while experiences
of crowd-based visual interpretation of very high resolution satellite imagery show there is still room for
improvement (See et al., 2013). To make progress on this front, more studies are needed that continue to
evaluate the quality of crowdsourced data, in particular how to make improvements, for example, through
additional training and the use of stricter protocols, which is also closely related to the management of
crowdsourcing projects (section 5.1). Quality assurance systems such as those developed in COBWEB may
also provide tools that facilitate quality control across multiple disciplines. More of these types of tools will
undoubtedly be developed in the near future.
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Another concern with crowdsourcing data collection is the irregular intervals in time and space at which the
data are gathered. To collect continuous records of data, volunteers must be willing to provide suchmeasure-
ments at specific locations, for example, every monitoring station, which may not be possible. Moreover,
measurements during extreme events, for example, during a storm, may not be available as there are fewer
volunteers willing to undertake these tasks. However, studies show that even incidental and opportunistic
observations can be invaluable when regular monitoring at large spatial scales is infeasible (Hochachka
et al., 2012).

Another important factor in crowdsourcing environmental data, which is also a requirement for data sharing
systems, is data heterogeneity. Granell et al. (2016) highlight two general approaches for homogenizing
environmental data: (i) standardization to define common specifications for interfaces, metadata, and data
models, which is also discussed briefly in section 5.1, and (ii) mediation to adapt and harmonize heteroge-
neous interfaces, meta-models, and data models. The authors also call for reusable Specific Enablers in the
environmental informatics domain as possible solutions to share and mediate collected data in environmen-
tal and geospatial fields. Such Specific Enablers include geo-referenced data collection applications, tagging
tools, mediation tools (mediators and harvesters), fusion applications for heterogeneous data sources, event
detection and notification, and geospatial services. Moreover, test beds are also important for enabling gen-
eric applications of crowdsourcing methods. For instance, regions with good reference data (e.g., dedicated
Urban Meteorological Networks) can be used to optimize and validate retrieval algorithms for crowdsourced
data. Ideally, these test beds would be available for different climates, so that improved algorithms can sub-
sequently be applied to other regions with similar climates but where there is a lack of good reference data.

5.3. Data Processing
5.3.1. Background
In the 1970s, an automated flood detection system was installed in Boulder County, consisting of around 20
stream and rain gauges following a catastrophic flood event that resulted in 145 fatalities and considerable
damage. After that, the Automated Local Evaluation in Real-Time system spread to larger geographical
regions with more instrumentation (of around 145 stations) and internet access was added in 1998
(Stewart, 1999). Now two decades later, we have entered an entirely new era of big data, including novel
sources of information such as crowdsourcing. This has necessitated the development of new and innovative
data processing methods (Vatsavai et al., 2012). Crowdsourced data, in particular, can be noisy and unstruc-
tured, thus requiring specializedmethods that turn these data sources into useful information. For example, it
can be difficult to find relevant information in a timely manner due to the large volumes of data such as
Twitter (Barbier et al., 2012; Goolsby, 2009). Processing methods are also needed that are specifically
designed to handle spatial and temporal autocorrelation since some of these data are collected over space
and time, often in large volumes over short periods (Vatsavai et al., 2012), as well as at varying spatial scales,
which can vary considerably between applications, for example, from a single lake to monitoring at the
national level. The need to record background environmental conditions along with data observations can
also result in issues related to increased data volumes. The next section provides an overview of different pro-
cessing methods that are being used to handle these new data streams.
5.3.2. Current Status
The different processing methods that have been used with crowdsourced data are summarized in Table 5
along with typical examples from the literature. As the data are often unstructured and incomplete, crowd-
sourced data are often processed using a range of different methods in a single workflow, from initial filtering
(preprocessing methods) to data mining (postprocessing methods).

One increasingly used source of unintentional crowdsourced data is Twitter, particularly in a disaster-related
context. Houston et al. (2015) undertook a comprehensive literature review of social media and disasters in
order to understand how the data are used and in what phase of the event. Fifteen distinct functions were
identified from the literature and described in more detail, for example, sending and receiving requests for
help and documenting and learning about an event. Some simple methods mentioned within these different
functions included mapping the evolution of tweets over an event or the use of heat maps and building a
Twitter listening tool that can be used to dispatch responders to a person in need. The latter tool requires
reasonably sophisticated methods for filtering the data, which are described in detail in papers by Barbier
et al. (2012) and Imran et al. (2015). For example, both papers describe different methods for data
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preprocessing. Stop word removal, filtering for duplication and messages that are off topic, feature
extraction, and geotagging are examples of common techniques used for working with Twitter (or other
text-based) information. Once the data are preprocessed, there is a series of other data mining methods
that can be applied. For example, there is a variety of hard and soft clustering techniques, as well as
different classification methods and Markov models. These methods can be used, for example, to
categorize the data, detect new events, or examine the evolution of an event over time.

An example that puts these different methods into practice is provided by Cervone et al. (2016), who show
how Twitter can be used to identify hotspots of flooding. The hotspots are then used to task the acquisition
of very high resolution satellite imagery from Digital Globe. By adding the imagery with other sources of
information such as the road network and the classification of satellite and aerial imagery for flooded areas,
it was possible to provide a damage assessment of the transport infrastructure and determine which roads
are impassable due to flooding. A different flooding example is described by Rosser et al. (2017), who used
a different source of social media, that is, geotagged photographs from Flickr. These photographs are used
with a very high resolution digital terrain model to create cumulative viewsheds. These are then fused with
classified Landsat images for areas of water using a Bayesian probabilistic method to create a map with areas
of likely inundation. Even when data come from citizen observations and instruments intentionally, the type
of data being collected may require additional processing, which is the case for velocity, where velocimetry-
based methods are usually applied in the context of videos (Braud et al., 2014; Le Coz et al., 2016; Tauro &
Salvatori, 2017).

The review by Granell and Ostermann (2016) also focuses on the area of disasters, but they undertook a com-
prehensive review of papers that have used any types of VGI (both intentional and unintentional) in a disaster
context. Of the processing methods used, they identified six key types, including descriptive, explanatory,
methodological, inferential, predictive, and causal. Of the 59 papers reviewed, the majority used descriptive
and explanatory methods. The authors argue that much of the work in this area is technology or data driven,
rather than human or application centric, both of which require more complex analytical methods.

Web-based technologies are being employed increasingly for processing of environmental big data, includ-
ing crowdsourced information (Vitolo et al., 2015), for example, using web services such as SOAP, which
sends data encoded in XML, and Representational State Transfer, where resources have Universal Resource
Identifiers. Data processing is then undertaken through Web Processing Services with different frameworks
available that can apply existing or bespoke data processing operations. These types of Environmental
Virtual Observatories promote the idea of workflows that chain together processes and facilitate the imple-
mentation of scientific reproducibility and traceability. An example is provided in the paper of an

Table 5
Methods of Processing Crowdsourced Data

Methods Typical references Key comments

Passive crowdsourced data processing
methods, for example, Twitter, Flickr

Houston et al. (2015), Barbier et al. (2012), Imran et al. (2015),
Granell and Ostermann (2016), Rosser et al. (2017),
Cervone et al. (2016), Braud et al. (2014), Le Coz et al. (2016),
Tauro and Salvatori (2017)

• Methods for acquiring the data (through APIs)
•Methods for filtering the data, for example, natural
language processing, stop word removal, filtering
for duplication and irrelevant information, feature
extraction and geotagging

•Processing crowdsourced videos through
velocimetry techniques

Web-based technologies Vitolo et al. (2015) • Use of web services to process environmental
big data, that is, SOAP, REST

• Web Processing Services (WPS) to create
data processing workflows

Spatiotemporal data mining algorithms
and geospatial methods

Hochachka et al. (2012), Sun and Mobasheri (2017),
Cervone et al. (2016), Granell and Oostermann (2016),
Barbier et al. (2012), Imran et al. (2015), Vatsavai et al. (2012)

• Spatial autoregressive models, Markov
random field classifiers and mixture models

• Different soft and hard classifiers
• Spatial clustering for hotspot analysis

Enhanced tools for data collection Kim et al. (2013) • New generation of mobile app authoring tools to
simplify the technical process, for example, the
Sensr system
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Environmental Virtual Observatory that supports the development of different hydrological models, from
ingesting the data to producing maps and graphics of the model outputs, where crowdsourced data could
easily fit into this framework (Hill et al., 2011).

Other crowdsourcing projects such as eBird contain millions of bird observations over space and time, which
requires methods that can handle nonstationarity in both dimensions. Hochachka et al. (2012) have devel-
oped a spatiotemporal exploratory model for species prediction, which integrates randomized mixture mod-
els capturing local effects, which are then scaled up to larger areas. They have also developed semiparametric
approaches to occupancy detection models, which represents the true occupancy status of a species at a
given location. Combining standard site occupancy models with boosted regression trees, this semipara-
metric approach produced better probabilities of occupancy than traditional models. Vatsavai et al. (2012)
also recognize the need for spatiotemporal data mining algorithms for handling big data. They outline three
different types of models that could be used for crowdsourced data, including spatial autoregressive models,
Markov random field classifiers, and mixture models like those used by Hochachka et al. (2012). They then
show how different models can be used across a variety of domains in geophysics and informatics, touching
upon challenges related to the use of crowdsourced data from social media andmobility applications, includ-
ing GPS traces and cars as sensors.

When working with GPS traces, other types of data processing methods are needed. Using cycling data from
Strava, a website and mobile app that citizens use to upload their cycling and running routes, Sun and
Mobasheri (2017) examined exposure to air pollution on cycling journeys in Glasgow. Using a spatial cluster-
ing algorithm (A Multidirectional Optimum Ecotope-Based Algorithm) for displaying hotspots of cycle
journeys in combination with calculations of instantaneous exposure to particulate matter (PM2.5 and
PM10), they were able to show that cycle journeys for noncommuting purposes had less exposure to harmful
pollutants than those used for commuting. Finally, there are new methods for helping to simplify the data
collection process through mobile devices. The Sensr system is an example of a new generation of mobile
application authoring tools that allows users to build a simple data collection app without requiring any
programming skills (Kim et al., 2013). The authors then demonstrate how such an app was successfully built
for air quality monitoring, documenting illegal dumping in catchments, and detecting invasive species,
illustrating the generic nature of such a solution to process crowdsourcing data.
5.3.3. Challenges and Future Directions
Tulloch (2013) argued that one of the main challenges of crowdsourcing was not the recruitment of
participants but rather handling and making sense of the large volumes of data coming from this new
information stream. Hence, the challenges associated with processing crowdsourced data are similar to
those of big data. Although crowdsourced data may not always be big in terms of volume, they have the
potential to be with the proliferation of mobile phones and social media for capturing videos and images.
Crowdsourced data are also heterogeneous in nature and therefore require methods that can handle very
noisy data in such a way as to produce useful information for different applications, where the utility for
disaster-related applications is clearly evident. Much of the data are georeferenced and temporally dynamic,
which requires methods that can handle spatial and temporal autocorrelation, or correct for biases in
observations in both space and time. Since 2003, there have been advances in data mining, in particular
in the realm of deep learning (Najafabadi et al., 2015), which should help solve some of these data issues.
From the literature, it is clear that much attention is being paid to developing new or modified methods
to handle all of these different types of data-relevant challenges, which will undoubtedly dominate much
of future research in this area.

At the same time, we should ensure that the time and efforts of volunteers are used optimally. For exam-
ple, where relevant, the data being collected by citizens should be used to train deep learning algorithms,
for example, to recognize features in images. Hence, parallel developments should be encouraged, that is,
train algorithms to learn what humans can do from the crowdsourced data collected and use humans for
tasks that algorithms cannot yet solve. However, training algorithms still require a sufficiently large
training data set, which can be quite laborious to generate. Rai et al. (2018) showed how distributed
intelligence (Level 2 of Figure 4), recruited using Amazon Mechanical Turk, can be used for generating
a large training data set for identifying green storm water infrastructure in Flickr and Instagram images.
More widespread use of such tools will be needed to enable rapid processing of large crowdsourced
image and video data sets.
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5.4. Data Privacy
5.4.1. Background
The guiding principle of privacy protection is to collect as little private data as possible (Mooney et al., 2017).
However, advances in information and communication technologies in the late 20th and early 21st century
have created the technological basis for an unprecedented increase in the types and amounts of data col-
lected, particularly those obtained through crowdsourcing. Furthermore, there is a strong push by various
governments to open data for the benefit of society. These developments have also raised many privacy,
legal, and ethical issues (Mooney et al., 2017). For example, in addition to participatory (volunteered) crowd-
sourcing, where individuals provide their own observations and can choose what they want to report, meth-
ods for nonvolunteered (opportunistic) data harvesting from sensors on their mobile phones can raise
serious privacy concerns. Themain worry is that without appropriate suitable protectionmechanisms, mobile
phones can be transformed into miniature spies, possibly revealing private information about their owners
(Christin et al., 2011). Johnson et al. (2017) argue that for open data, it is the government’s role to ensure that
methods are in place for the anonymization or aggregation of data to protect privacy, as well as to conduct
the necessary privacy, security, and risk assessments. The key concern for individuals is the limited control
over personal data, which can open up the possibility of a range of negative or unintended consequences
(Bowser et al., 2015).

Despite these potential consequences, there is a lack of a commonly accepted definition of privacy. Mitchell
and Draper (1983) defined the concept of privacy as the right of human beings to decide for themselves which
aspects of their lives they wish to reveal to or withhold from others. Christin et al. (2011) focused more narrowly
on the issue of information privacy and define it as the guarantee that participants maintain control over the
release of their sensitive information. He goes further to include the protection of information that can be
inferred from both the sensor readings and from the interaction of the users with the participatory sensing
system. These privacy issues could be addressed through technological solutions, legal frameworks, and
via a set of universally acceptable research ethics practices and norms (Table 6).

Crowdsourcing activities, which could encompass both VGI and harvested data, also raise a variety of legal
issues, from intellectual property to liability, defamation, and privacy (Scassa, 2013). Mooney et al. (2017)
argued that these issues are not well understood by all of the actors in VGI. Akhgar et al. (2017) also empha-
sized legal considerations relating to privacy and data protection, particularly in the application of social
media in crisis management. Social media also come with inherent problems of trust and misuse, ethical
and legal issues, as well as with potential for information overload (Andrews, 2017). Finally, in addition to
the positive side of social media, Alexander (2008) indicated the need for the awareness of their potential
for negative developments, such as disseminating rumors, undermining authority and promoting terrorist
acts. The use of crowdsourced data on commercial platforms can also raise issues of data ownership and con-
trol (Scassa, 2016). Therefore, licensing conditions for the use of crowdsourced data should be in place to

Table 6
Methods for Dealing With Data Privacy

Methods Typical references Key comments

Legal framework Rak et al. (2012) • Methods from the perspective of the operator, the contributor, and the user of the data product
• Creative Commons, General Data Protection Regulation (GDPR), INSPIRE
• Highlights the risks of accidental or unlawful destruction, loss, alteration, unauthorized disclosure

of personal data
Technological solutions Christin et al. (2011),

Calderoni et al. (2015),
Shen et al. (2016)

• Method from the perspective of sensing, transmitting, and processing• Bloom filters
• Provides tailored sensing and user control of preferences, anonymous task distribution,

anonymous and privacy-preserving data reporting, privacy-aware data processing,
and access control and audit

Ethics practices
and norms

Alexander (2008), Sula (2016) • Places special emphasis on the ethics of social media
• Involves participants more fully in the research process
• No collection of any information that should not be made public
• Informs participants of their status and provides them with opportunities to correct or remove

data about themselves
• Communicates research broadly through relevant channels
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allow sharing of data and provide not only the protection of individual privacy, but also of data products, ser-
vices, or applications that are created by crowdsourcing (Groom et al., 2017).

Ethical practices and protocols for researchers and practitioners who collect crowdsourced data are also an
important topic for discussion and debate on privacy. Bowser et al. (2017) reported on the attitudes of
researchers engaged in crowdsourcing that are dominated by an ethic of openness. This, in turn,
encourages crowdsourcing volunteers to share their information and makes them focus on the personal
and collective benefits that motivate and accompany participation. Ethical norms are often seen as soft
law, although the recognition and application of these norms can give rise to enforceable legal obligations
(Scassa et al., 2015). The same researchers also state that codes of research ethics serve as a normative
framework for the design of research projects, and compliance with research norms can shape how the
information is collected. These codes influence from whom data are collected, how they are represented
and disseminated, how crowdsourcing volunteers are engaged with the project, and where the projects
are housed.
5.4.2. Current Status
Judge and Scassa (2010) and Scassa (2013) identified a series of potential legal issues from the perspective of
the operator, the contributor, and the user of the data product, service, or application that is created using
VGI. However, the scholarly literature is mostly focused on the technology, with little attention given to legal
concerns (Cho, 2014). Cho (2014) also identified the lack of a legal framework and governance structure
whereby technology, networked governance, and provision of legal protections may be combined to miti-
gate liability. Rak et al. (2012) claimed that nontransparent, inconsistent, and producer-proprietary licenses
have often been identified as a major barrier to the sharing of data and a clear need for harmonized geo-
licences is increasingly being recognized. They gave an example of the framework used by the Creative
Commons organization, which offered flexible copyright licenses for creative works such as text articles,
music and graphics (http://creativecommons.org). A recent example of an attempt to provide a legal frame-
work for data protection and privacy for citizens is the General Data Protection Regulation (GDPR), as shown
in Table 6. The GDPR (http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2016.119.01.0001.01.
ENG) particularly highlights the risks of accidental or unlawful destruction, loss, alteration, unauthorized dis-
closure of, or access to, personal data transmitted, stored or otherwise processed, which may in particular
lead to physical, material, or nonmaterial damage. The GDPR, however, may also pose questions for another
EU directive, INSPIRE (http://inspire.ec.europa.eu/), which is designed to create infrastructure to encourage
data interoperability and sharing. The GDPR and INSPIRE seem to have opposing objectives, where the for-
mer focuses on privacy and the latter encourages interoperability and data sharing.

Technological solutions (Table 6) involve the provision of tailored sensing and user control of preferences,
anonymous task distribution, anonymous and privacy-preserving data reporting, privacy-aware data proces-
sing, as well as access control and audit (Christin et al., 2011). An example of a technological solution for con-
trolling location sharing and preserving the privacy of crowdsourcing participants is presented by Calderoni
et al. (2015). They describe a spatial Bloom filter with the ability to allow privacy-preserving location queries
by encoding into a spatial Bloom filter a list of sensitive areas and points located in a geographic region of
arbitrary size. This then can be used to detect the presence of a person within the predetermined area of
interest, or his/her proximity to points of interest, but not the exact position. Despite technological solutions
providing the necessary conditions for preserving privacy, the adoption rate of location-based services has
been lagging behind fromwhat it was expected to be. Fodor and Brem (2015) investigated how privacy influ-
ences the adoption of these services. They found that it is not sufficient to analyze user adoption through
technology-based constructs only, but that privacy concerns, the size of the crowdsourcing organization,
and perceived reputation also play a significant role. Shen et al. (2016) also employ a Bloom filter to protect
privacy while allowing controlled location sharing in mobile online social networks.

Sula (2016) refers to the The Ethics of Fieldwork, which identifies over 30 ethical questions that arise in
research, such as prediction of possible harms, leading questions, and the availability of raw materials, to
other researchers. Through these questions, he examines ethical issues concerning crowdsourcing and Big
Data in the areas of participant selection, invasiveness, informed consent, privacy/anonymity, exploratory
research, algorithmic methods, dissemination channels, and data publication. He then concludes that Big
Data introduces big challenges for research ethics, but keeping to traditional research ethics should suffice
in crowdsourcing projects.
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5.4.3. Challenges and Future Directions
The issues of privacy, ethics, and legality in crowdsourcing have not received widespread or in-depth
treatment by the research community, thus these issues are also still not well understood. The main
challenge for going forward is to create a better understanding of privacy, ethics, and legality by all of
the actors in crowdsourcing (Mooney et al., 2017). Laws that regulate the use of technology, the governance
of crowdsourced information, and protection for all involved is undoubtedly a significant challenge for
researchers, policy makers, and governments (Cho, 2014). The recent introduction of GDPR in the EU
provides an excellent example of the effort being made in that direction. However, it may be only seen
as a significant step in harmonizing licensing of data and protecting the privacy of people who provide
crowdsourced information. Norms from traditional research ethics need to be reexamined by researchers
as they can be built into the enforceable legal obligations. Despite advances in solutions for preserving
privacy for volunteers involved in crowdsourcing, technological challenges will still be a significant direction
for future researchers (Christin et al., 2011). For example, the development of new architectures for
preserving privacy in typical sensing applications and new countermeasures to privacy threats represent
a major technological challenge.

6. Conclusions and Future Directions

This review contributes to knowledge development with regard to what crowdsourcing approaches are
applied within seven specific domains of geophysics, and where similarities and differences exist. This
was achieved by developing a new approach to categorizing the methods used in the papers reviewed
based on whether the data were acquired by citizens and/or by instruments and whether they were
obtained in an intentional and/or unintentional manner, resulting in nine different categories of data acqui-
sition methods. The results of the review indicate that methods belonging to these categories have been
used to varying degrees in the different domains of geophysics considered. For instance, within the area
of natural hazard management, six out of the nine categories have been implemented. In contrast, only
three of the categories have been used for the acquisition of ecological data based on the papers selected
for review. In addition to the articulation and categorization of different crowdsourcing data acquisition
methods in different domains of geophysics, this review also offers insights into the challenges and issues
that exist within their practical implementations by considering four issues that cut across different methods
and application domains, including crowdsourcing project management, data quality, data processing, and
data privacy.

Based on the outcomes of this review, the main conclusions and future directions are provided as follows:

1. Crowdsourcing can be considered as an important supplementary data source, complementing tradi-
tional data collection approaches, while in some developing countries, crowdsourcing may even play
the role of a traditional measuring network due to the lack of a formally established observation network
(Sahithi, 2016). This can be in the form of increased spatial and temporal distribution, which is particularly
relevant for natural hazard management, for example, for floods and earthquakes. Crowdsourcing meth-
ods are expected to develop rapidly in the near future with the aid of continuing developments in infor-
mation technology, such as smart phones, cameras, and social media as well as in response to increasing
public awareness of environment issues. In addition, the sensors used for data collection are expected to
increase in reliability and stability, as will the methods for processing noisy data coming from these sen-
sors. This in turn will further facilitate continued development and more applications of crowdsourcing
methods in the future.

2. Successful applications of crowdsourcing methods should not only rely on the developments of informa-
tion technologies, but also foster the participation of the general public through active engagement stra-
tegies, both in terms of attracting large numbers and in fostering sustained participation. This requires
improved cooperation between academics and relevant government departments for outreach activities,
awareness raising, and intensive public education to engage a broad and reliable volunteer network for
data collection. A successful example of this is the River Chief project in China, where each river is assigned
to a few local residents who take ownership and voluntarily monitor the pollution discharge from local
manufacturers and businesses (T. Zhang et al., 2016). This project has markedly increased urban water
quality, enabled the government to economize on monitoring equipment and involved citizens in a posi-
tive environmental outcome.
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3. Different types of incentives should be considered as a way of engaging more participants while poten-
tially improving the quality of data collected through various crowdsourcing methods. A small amount of
compensation or other type of benefit can significantly enhance the responsibility of participants.
However, such engagement strategies should be well designed and there should either be leadership
from government agencies in engagement or they should be thoroughly embedded in the process.

4. There are already instances where data from crowdsourcing methods fall into the category of Big Data
and therefore have the same challenges associated with data processing. Efficiency is needed in order
to enable near real-time system operation and management. Developments of data processing methods
for crowdsourced data is an area where future attention should be directed, as these will become crucial
for the successful application of crowdsourcing applications in the future.

5. Data integration and assimilation is an important future direction to improve the quality and usability of
crowdsourced data. For example, various crowdsourced data can be integrated to enable cross validation,
and crowdsourced data can also be assimilated with authorized sensors to enable successful applications,
for example, for numerical models and forecasting systems. Such an integration and assimilation not only
improves the confidence of data quality, but also enables improved spatiotemporal precision of data.

6. Data privacy is an increasingly critical issue within the implementations of crowdsourcing methods, which
has not been well recognized thus far. To avoid malicious use of the data, complaints, or even lawsuits, it is
time for governments and policy makers to consider/develop appropriate laws to regulate the use of
technology and the governance of crowdsourced information. This will provide an important basis for
the development of crowdsourcing methods in a sustainable manner.

7. Much of the research reported here falls under proof of concept, which equates to a Technology Readiness
Level (TRL) of 3 (Olechowski et al., 2015). However, there are clearly some areas in which crowdsourcing
and opportunistic sensing are currently more promising than others and already have higher TRLs. For
example, amateur weather stations are already providing data for numerical weather prediction, where
the future potential of integrating these additional crowdsourced data with nowcasting systems is
immense. Opportunistic sensing of precipitation from CMLs is also an area of intense interest as evi-
denced by the growing literature on this topic, while other crowdsourced precipitation applications tend
to be much more localized, linked to individual projects. Low-cost air quality sensing is already a growth
area with commercial exploitation and high TRLs, driven by smart city applications and the increasing
desire to measure personal health exposure to pollutants, but the accuracy of these sensors still needs
further improvement. In geography, OSM is the most successful example of sustained crowdsourcing. It
also allows commercial exploitation due to the open licensing of the data, which contributes to its suc-
cess. In combination with natural hazard management, OSM and other crowdsourced data are becoming
essential sources of information to aid in disaster response. Beyond the many proof of concept applica-
tions and research advances, operational applications are starting to appear and will become mainstream
before long. Species identification (and to a lesser extent phenology) is the most successful ecological
application of crowdsourcing, with a number of successful projects that have been in place for several
years. Unlike other areas in geosciences, there is less commercial potential in the data but success is down
to an engaged citizen science community.

8. While this paper mainly focuses on the review of crowdsourcing methods applied to the seven areas
within geophysics, the techniques, potential issues, as well as future directions derived from this paper
can be easily extended to other domains. Meanwhile, many of the issues and challenges faced by the dif-
ferent domains reviewed here are similar, indicating the need for greater multidisciplinary research and
sharing of best practices.
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