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Abstract 32 

Individual-level variation arising from responses to environmental gradients influences 33 

population and community dynamics. How such responses empirically relate to the mechanisms 34 

that govern species coexistence is, however, poorly understood. Previous results from lake 35 

phytoplankton communities suggested that the evenness of organismal traits in multiple 36 

dimensions increases with resource limitation, possibly due to resource partitioning at the 37 

individual level. Here we experimentally tested the emergence of this pattern by growing two 38 

phytoplankton species (Pseudokirchneriella subcapitata and Microcystis aeruginosa) under a 39 

gradient of light intensity, in monoculture and jointly. Under low light (resource) conditions, 40 

the populations diversified into a wide range of phenotypes, which were evenly distributed in 41 

multidimensional trait space (defined by four pigment-related trait dimensions), consistent with 42 

the observed field pattern. Our interpretation is that under conditions of light limitation, 43 

individual phytoplankton cells alter photosynthetic traits to reduce overlap in light acquisition, 44 

acquiring unexploited resources and thereby likely maximizing individual success. Our results 45 

provide prime experimental evidence that resource limitation increases the evenness of 46 

conspecific and heterospecific microbial phenotypes along trait axes, advancing our 47 

understanding of trait-based coexistence. 48 

49 
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Introduction 50 

Many processes that are fundamental to community assembly, such as responses to abiotic 51 

gradients, direct species interactions (e.g. predation, parasitism), and competition (inter- as well 52 

as intraspecific), act at the level of individual organisms at the smallest temporal and spatial 53 

scales (Reiss et al. 2009; Clark et al. 2011). Stabilising mechanisms of coexistence explicitly 54 

invoke the relative importance of intra- vs. interspecific competition (Chesson 2000). Recent 55 

studies have bolstered the case for the influence of individual-level trait variation on 56 

community assembly and species coexistence (Clark 2010; Jung et al. 2010; Bolnick et al. 57 

2011; Paine et al. 2011; Violle et al. 2012; De Laender et al. 2014; Barabás & D’Andrea 2016; 58 

Turcotte & Levine 2016). 59 

Individual-level variation in traits is a feature common to all species, including clonal and 60 

microbial populations (Ackermann 2015). Limitation and fluctuations in resources are 61 

important drivers of intraspecific phenotypic heterogeneity, which favours population fitness 62 

(Ackermann 2015; Schreiber et al. 2016; Zimmermann et al. 2018). For example, NH4
+ 63 

limitation can trigger an increase in phenotypic heterogeneity in the N2-fixing bacterium 64 

Klebsiella oxytoca, which proves beneficial under resource fluctuations (Schreiber et al. 2016). 65 

A decrease in availability of resources like phosphorus and light in lakes was also shown to 66 

induce greater evenness (i.e. regularity) of phytoplankton cells’ traits, possibly to minimise 67 

competition for limiting resources (Fontana et al. 2018). The latter community-wide pattern 68 

observed in nature is probably a consequence of phenotypic changes induced by plasticity 69 

and/or selection that stabilise coexistence by allowing for resource partitioning among 70 

individuals and species. For instance, the relative composition and amount of pigments may 71 

allow phytoplankton species to partition the light spectrum; different wavelengths can be 72 

absorbed in different proportions depending on pigmentation (Stomp et al. 2004; Stomp et al. 73 

2008).  74 
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In this study, we experimentally tested the hypothesis that limitation in resource supply, 75 

specifically light availability, increases phenotypic heterogeneity (i.e. the evenness of the 76 

photosynthetic trait distribution measured by scanning flow-cytometry) among individual cells. 77 

Under competition for light, individual organisms should adjust pigment composition to capture 78 

different wavelengths of the light spectrum and reduce niche overlap. This has been observed at 79 

the species level (Stomp et al. 2008), and should emerge from both intra- and interspecific 80 

competition. Here we exposed two phytoplankton species belonging to different functional 81 

groups (the green alga Pseudokirchneriella subcapitata and the cyanobacterium Microcystis 82 

aeruginosa) to six different light intensities (Fig. 1), and quantified cell density and trait 83 

evenness over time and after reaching carrying capacity. The two species utilise the light 84 

spectrum in different ways: both possess chlorophyll (which captures light in the blue and red 85 

portions of the visible spectrum), while M. aeruginosa also possesses the accessory pigment 86 

phycocyanin (which captures light in the green-yellow portion, for the most part inaccessible to 87 

P. subcapitata) (Reynolds 2006). Monocultures were tested under direct light and under light 88 

passing through a culture of the competing species (hereafter indirect light). In this way, we 89 

simulated the effects of competition for light intensity and different parts of the spectrum, while 90 

excluding direct interspecific interactions (such as through allelopathy). Additionally, we also 91 

tested a mixture of the two species (under direct light only) to account for direct interactions 92 

between cells. 93 

If competitive interactions between individual organisms are the driving force of even spacing 94 

in acclimating phenotypes, we expect that the rate of change in trait evenness will range from 95 

positive to increasingly negative values as light intensity increases (Fig. 2). Under high levels of 96 

light, organisms should be freely distributed in multidimensional trait space or shift towards a 97 

few optimal trait combinations, leading to a decrease in trait evenness over time. Trait evenness 98 

has a maximum possible value (Fig. 2, dotted black line tending to a horizontal asymptote) and 99 
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should reach a minimum as cell densities eventually induce resource limitation and 100 

competition, and therefore an increase in trait evenness (Fig. 2, blue and orange bands 101 

indicating a possible reversal of the curves). Our experiment examined the initial response, 102 

which can be approximated by a straight line (Fig. 2). Trait evenness values at carrying capacity 103 

should also be inversely proportional to light intensity. 104 

105 
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Materials and Methods 106 

Experimental conditions and culture acclimation 107 

In a climate-controlled room with constant temperature of 20°C, we set up six different light 108 

regimes. Osram T8 L De Luxe 36W 954 G13 Lumilux lights were placed under Plexiglas 109 

supports of varying height. The support elevation and several meshes (black and white) were 110 

used to vary light intensity (more details on experimental setup in Supplementary Table S1). 111 

The ranges of the resulting light intensities (in μE.m-2.s-1) at the culture bottles over multiple 112 

measurements are presented here: 380-430 (midpoint=405), 173-290 (231.5), 95-155 (125), 60-113 

90 (75), 25-40 (32.5), 0.4-3 (1.7). All treatments followed a 14:10 hours light-dark cycle. 114 

P. subcapitata strain SAG 12.81 (from the SAG Culture Collection of Algae, University of 115 

Göttingen, Germany) and M. aeruginosa strain PCC 7806 (toxic wild type obtained from Brett 116 

A. Neilan, UNSW, Sydney, Australia) were maintained as batch cultures in a separate culturing 117 

room under identical environmental conditions. Cultures were maintained in exponential 118 

growth phase at 20°C and a light intensity of approximately 20-25 μE m-2 s-1 (intermediate 119 

between the two lowest light intensity treatments). The initial trait evenness of our test cultures 120 

was therefore supposed to be similar at the beginning of the experiment (Fig. 2, dashed green 121 

baseline). Replicated cultures were transferred to the different experimental light regimes 10 122 

days before starting the experiment. 123 

We diluted with WC-medium the content of the Erlenmeyer flasks (batch cultures) into cell 124 

culture bottles (Faust Lab Science, product number TPP90301) closed with filter caps that 125 

allow gas transfer. We applied a 1:20 dilution of the original cultures for all but the two lowest 126 

light intensities (1:10 in this case, as we expected a much slower growth under low light 127 

regimes), with mixed cultures having equal volumes of the two species, and obtained a final 128 

volume of 200 ml in each cell culture bottle.  129 
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Experimental design 130 

We obtained a total of six units in every light treatment compartment: cultures placed on top of 131 

each other (P. subcapitata above – and shaded by – M. aeruginosa, plus M. aeruginosa above 132 

P. subcapitata, two replicates each) and mixed cultures (two replicates) (Fig. 1). In this way, 133 

monocultures of P. subcapitata and M. aeruginosa were subjected to both direct and indirect 134 

light (cell culture bottles were narrow and so did not totally block incoming light), while mixed 135 

cultures always experienced direct light. The position of these units within the light treatment 136 

compartments was randomised and shuffled regularly. The experimental design is illustrated in 137 

Fig. 1. 138 

Logistic growth and carrying capacity 139 

Cell counts from SFC were used to derive cell density of each sample. We fitted a logistic 140 

growth curve to cell density data from each of the replicates using the function gcFitModel 141 

(grofit package, R-Core-Team 2013) to obtain carrying capacity estimates (details in 142 

Supplementary Table S2). gcFitModel fits several parametric models to growth data, and 143 

automatically select the most parsimonious one. Here are the equations of the models in our 144 

study: 145 

Logistic function: f(t)=A/(1+exp((4.mu/A)(lambda-t)+2)) 146 

Gompertz function: f(t)=A.exp[-exp(mu exp(1)/A(lambda-t)+1)] 147 

Richards function: f(t)=A.[1+nu.exp(1+nu+mu/A.(1+nu)^(1+1/nu)(lambda-t))^(-1/nu)] 148 

where A is the carrying capacity, mu is the maximum slope, lambda is the lag-phase, nu is the 149 

degree of asymmetry, and t is time. 150 

R2 values, calculated regressing observed against fitted values, ranged from 0.845 and 0.996 151 

(Supplementary Table S2). In each replicated growth curve (Supplementary Fig. S1-S6) we 152 
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identified the first time point with density equal to or greater than the carrying capacity 153 

estimate. We defined all time points after reaching carrying capacity as the period of maximum 154 

competition for resources among individuals, which allowed a meaningful comparison of trait 155 

evenness across treatments, independent of the different temporal trajectories, by controlling for 156 

the effect of population-specific growth over time. 157 

Culture maintenance and sampling protocol 158 

Each culture was manually shaken once a day from Monday to Friday to avoid the formation of 159 

a biofilm on the flasks’ bottom. The three highest light intensity treatments (405, 231.5 and 125 160 

μE m-2 s-1) were sampled 10 times between the 9th of March (start of the experiment) and the 1st 161 

of April 2016 (every 2-3 days for 24 days), when they had already reached carrying capacity 162 

and showed an accumulation of dead cells (based on colour change). The three lowest light 163 

treatments (75, 32.5 and 1.7 μE m-2 s-1) were additionally sampled on the 4th, 6th and 14th of 164 

April, and the very lowest also on the 29th of April and on the 11th of May. These additional 165 

sampling dates allowed all treatments but the lowest to reach carrying capacity (as defined in 166 

the paragraph “Logistic growth and carrying capacity”). At each sampling date we collected 1.5 167 

ml from all cultures in Eppendorf tubes and fixed it with 0.01% paraformaldehyde and 0.1% 168 

glutaraldehyde for SFC analyses. 169 

SFC measurements 170 

We characterized the fluorescence profile (related to light acquisition strategy) of individual 171 

cells in each population / community using SFC. The instrument we used (www.cytobuoy.com, 172 

Woerden, The Netherlands) is able to capture scattering and pigment fluorescence of algal cells 173 

in a time resolved mode (scanning) (Dubelaar, Geerders & Jonker 2004; Pomati et al. 2013; 174 

Fontana, Jokela & Pomati 2014). The instrument is specifically designed for high resolution 175 

scanning of freshwater phytoplankton pigment fluorescence emission. The scanning flow-176 
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cytometer was equipped with two laser beams (coherent solid-state sapphire) with excitation 177 

wavelengths of 488 nm (blue light) and 635 nm (red light), which can excite both the primary 178 

and some accessory algal pigments. Four detectors captured emitted pigment fluorescence in 179 

the red (677–700 nm, mainly chlorophyll-a), orange (650–677 nm, for phycocyanin), yellow 180 

(590–620 nm, for phycoerythrin), and green (550–570 nm, for carotenoids) ranges. Data 181 

acquisition during this study was triggered by sideward scattering (SWS signal, trigger 182 

threshold 30 mV), and the flow speed was set to 1.05 μL s-1. We measured approximately 183 

between 6,000 and 99,000 cells depending on cell densities. 184 

Applying a clustering algorithm (flowPeaks package, R-Core-Team 2013) to a subset of 185 

100,000 particles built by randomly sampling an equal number of particles from all 186 

experimental samples, we were able to define distinct clusters of organic debris / suspended 187 

solids (characterized by low FL), P. subcapitata and M. aeruginosa (the second having a lower 188 

red to orange fluorescence ratio). Using this sample dataset, we trained a random forest 189 

classifying algorithm (Breiman 2001; Liaw & Wiener 2002) and assigned every particle in the 190 

whole dataset to one of the three abovementioned categories. The data cleaning and clustering 191 

procedure is described in detail in Thomas et al. (2018). 192 

Individual-based trait distribution 193 

The regularity in the distribution of individual cells in multidimensional trait space was 194 

quantified for all samples using the TED index (‘trait even distribution’; Fontana, Petchey & 195 

Pomati 2016), which compares the probability density function (kernel density estimation) of 196 

pairwise distances between individuals in a target population or community and in a perfectly 197 

even reference trait distribution. For the calculation of this multivariate index four SFC-derived 198 

traits were used, which should reflect ability to compete for light: total fluorescence in each of 199 

the red, orange, yellow and green channels. These traits are associated with pigment quantity 200 

and activity, and are therefore indicators of relative investment of individual cells in capturing 201 
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different portions of the light spectrum (Stomp et al. 2007; Pomati et al. 2013; Fontana et al. 202 

2018). A subset of 5,000 randomly selected cells was used to calculate TED. For mixed 203 

cultures, we additionally calculated species-specific TED indices with a random subset of 1,000 204 

cells for each species. To better understand and interpret complex changes in multidimensional 205 

trait distributions, we also calculated the TOP index of trait richness (‘trait onion peeling’; 206 

Fontana, Petchey & Pomati 2016) using the same subsets of cells used for TED. TOP is a 207 

measure that takes into account all individual phenotypes (including intermediate ones), and 208 

thus does not simply represent a multidimensional range but rather an estimation of the trait 209 

space effectively covered by individuals (Fontana, Petchey & Pomati 2016). The area of the 210 

convex hull containing all phenotypes in multidimensional trait space is determined, and the 211 

successive area is calculated upon removal of the previous convex hull’s vertices. This 212 

procedure continues until all phenotypes are included, and the sum of all areas obtained is the 213 

TOP index. A visual explanation of TED and TOP index is provided in Supplementary Fig. S7. 214 

Statistical analyses 215 

Our experiment covered a time interval insufficient to detect clear curvilinear trends, and we 216 

expected the response to be approximately linear at the beginning (Fig. 2). Therefore, we used 217 

simple linear regressions as the most parsimonious common approach for all analyses (after 218 

checking model assumptions visually). 219 

To test whether trait evenness represented a response to light limitation, we performed two 220 

different analyses considering P. subcapitata and M. aeruginosa separately. First, we fitted 221 

linear regressions for each treatment combination (of light intensity and shading) separately 222 

(Fig. 3), with date of sampling as predictor and TED as response variable. All slope estimates 223 

were then included as response variable in linear models, using least squares. Points were 224 

weighted by the inverse of their standard errors (to account for uncertainty in the slope 225 

estimates) and light intensity midpoint (mean value of minimum and maximum measured for 226 
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each treatment) used as predictor. Second, using the time points at carrying capacity detected in 227 

replicates (as defined in the paragraph “Logistic growth and carrying capacity”), we fitted linear 228 

models to test the relationship between light intensity midpoint (predictor) and TED at carrying 229 

capacity. Replicates of the lowest light treatment did not reach carrying capacity and 230 

consequently were omitted from these linear models. This analysis aimed at testing the 231 

influence of light intensity on TED by correcting for its temporal change, which varied among 232 

different cultures. Analysis of covariance (ANCOVA) was used to test whether competition 233 

treatments (“direct light”, “indirect light” and “mixed cultures”) influenced the effect of light 234 

intensity on the rate of change of TED and TED at carrying capacity in the two above-235 

mentioned analyses. To this end, using the function aov (R-Core-Team 2013) we included the 236 

interaction between shading and light intensity in the global models. We calculated type-III 237 

analysis-of-variance tables (orthogonal contrasts setting) with the function Anova (car package, 238 

R-Core-Team 2013) to perform F-tests on the explanatory variables.  239 

240 
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Results 241 

All results were consistent with the expectation that decreasing light intensity induces an 242 

increase in the evenness of individual phytoplankton in multidimensional photosynthetic trait 243 

space. 244 

Trait evenness (characterised by the TED index) decreased over time at all but the lowest light 245 

intensity, where it increased instead (Fig. 3). Trait evenness decreased more rapidly over time 246 

with increasing light intensity. Moreover, the rate of change in evenness over time was a nearly 247 

linear function of light intensity in both species (Fig. 4, top panels), consistent with our 248 

predictions. However, trait evenness decreased faster in M. aeruginosa, which also showed a 249 

much broader range of TED values compared to P. subcapitata, especially under direct light 250 

(Fig. 3; Fig. 4, bottom panels).  251 

Linear models of the rate of change in trait evenness explained between 75% and 93% of the 252 

variance (p<0.01) in both P. subcapitata and M. aeruginosa (Table 1A). Both P. subcapitata 253 

and M. aeruginosa displayed curves that appeared to be steeper under direct than under indirect 254 

light (Fig. 4, top panels). However, the slopes of the three competition treatments (including 255 

mixed cultures) did not differ significantly, as indicated by the addition of the interaction 256 

between light intensity and shading in the global model (P. subcapitata: p = 0.10; M. 257 

aeruginosa: p = 0.41).  258 

Trait evenness at carrying capacity also decreased with increasing light intensity (Fig. 4, bottom 259 

panels); this decrease was statistically significant in all linear models with the exception of P. 260 

subcapitata in mixed cultures (Table 1B). Explained variance ranged between 12% and 81% 261 

(Table 1B). The slopes of the three competition treatments were not significantly different for 262 

M. aeruginosa (interaction between light intensity and shading: p = 0.10). On the contrary, in P. 263 

subcapitata, trait evenness at carrying capacity showed a more negative slope under direct than 264 
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indirect light (Fig. 4, bottom panels), as shown by the significant interaction (p = 0.01) between 265 

light intensity and shading in the global model. 266 

267 
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Discussion 268 

Our data show strong experimental evidence that 1) variation in resource availability leads to 269 

changes in phenotypic trait combinations in phytoplankton that are detectable at both inter- and 270 

intraspecific levels and, 2) under limited resource (light) supply, trait similarity among cells 271 

tends to be minimised. Phytoplankton increased their phenotypic heterogeneity concomitantly 272 

reducing their trait similarity with hetero- or conspecific individuals. We interpret this to mean 273 

that under conditions of light limitation, individual phytoplankton cells alter their phenotype in 274 

a manner that reduces overlap in photosynthetic traits, thereby increasing light acquisition and 275 

maximizing individual success. This leads to an increase in trait evenness when light intensity 276 

is low. 277 

It has been suggested that considering several components of trait diversity can help 278 

characterize complex changes in multidimensional trait space and effectively link phenotypic 279 

variation to community structural and functional properties (Mouillot et al. 2013; Fontana et al. 280 

2016; Fontana et al. 2018). In this study, we used different light regimes to manipulate resource 281 

limitation and competition, although one could argue that light limitation represents an 282 

environmental factor that typically constrains the number of viable trait combinations, thus 283 

reducing trait range and consequently increasing phenotypic similarity (Weiher & Keddy 1995; 284 

Kraft, Valencia & Ackerly 2008). Our observed patterns of an increase in trait evenness are not 285 

in contradiction with a possible, simultaneous contraction of the trait space covered (which 286 

would constitute a reduction in trait richness). We note here that TED, our metric of trait 287 

evenness, measures trait regularity independent of the absolute distances between individual 288 

phenotypes (Fontana, Petchey & Pomati 2016) and reflects the tendency to maximise those 289 

distances given any trait range. Thus, trait evenness is not necessarily related to the overall trait 290 

space covered (i.e. trait richness). In our data, trait richness (TOP index) showed a pattern very 291 

similar to trait evenness (TED) in M. aeruginosa (Supplementary Fig. S8). In contrast, trait 292 
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richness in P. subcapitata did not change in a consistent way over time and across light 293 

intensity treatments (Supplementary Fig. S8). In other words, M. aeruginosa increased both 294 

trait evenness and richness as a response to low light, whereas P. subcapitata mainly 295 

maximized evenness within the available and constant trait space. This result was probably due 296 

to a lower plasticity in pigment-related traits in P. subcapitata than in M. aeruginosa. 297 

The patterns revealed by the analysis of multidimensional trait diversity indices are evident in 298 

the dynamics of the individual fluorescence distributions (Fig. 5; Supplementary Fig. S9-S13). 299 

Interestingly, these plots show substantial changes in total fluorescence over time. Observed 300 

shifts in fluorescence during the experiment were much more dramatic in M. aeruginosa than in 301 

P. subcapitata, again consistent with our interpretation of the multidimensional indices. The 302 

fluorescence distribution dynamic plots also highlight some of the reasons behind changes in 303 

trait evenness and richness across light intensities. For example, in M. aeruginosa under low 304 

light, broader bands indicate higher richness (it is important to consider the log-scale of the Y-305 

axes to correctly evaluate bandwidth), while less variation in colour suggests higher evenness 306 

(Fig. 5; Supplementary Fig. S12-S13). 307 

Although we expected increased light limitation - and consequently stronger changes in trait 308 

evenness - as a consequence of shading by another species, we were unable to detect clear 309 

differences between direct light, indirect light and mixed cultures. This might suggest that P. 310 

subcapitata and M. aeruginosa occupy distinct light niches and the patterns we observed were 311 

mainly driven by intraspecific competition. 312 

Trait evenness decreased faster and showed a broader range of values in M. aeruginosa (Fig. 3; 313 

Fig. 4) compared to P. subcapitata. M. aeruginosa also outperformed P. subcapitata in terms of 314 

growth in the mixed cultures, under all light levels (Supplementary Fig. S1-S6). These results 315 

suggest that the cyanobacterium is capable of high photosynthetic trait plasticity, as has been 316 
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previously shown for this group (e.g. Tandeau de Marsac 1991; Stomp et al. 2008). It may also 317 

benefit from faster growth rates and a broader array of available pigments compared to the 318 

green alga (Richardson, Beardall & Raven 1983; Glazer 1984). The importance of phenotypic 319 

plasticity (adjustment of pigment ratios to the prevailing light spectrum) in determining the 320 

outcome of competition for light has been demonstrated before in phytoplankton, but only at 321 

the interspecific level (Stomp et al. 2008). Most likely in our case, phenotypic changes can be 322 

ascribed to plasticity on short time scales (days to weeks) after treatments were applied (Fig. 3), 323 

while selection on standing genetic variation and evolution (in form of differential reproductive 324 

success of genotypes) could have played a role in the patterns towards the end of the 325 

experiment (Ellner, Geber & Hairston 2011). More work will be needed in the future to 326 

understand the relative importance of plasticity and evolution in shaping the patterns observed 327 

here. Similarly, the generality of our findings across other taxonomic groups, morphological 328 

and physiological traits or resource gradients needs to be confirmed by further research.  329 

This study however supports the hypothesis that the regularity in the distribution of individuals 330 

along multiple resource acquisition axes increases with decreasing resource availability. Our 331 

results reinforce previous findings that resource limitation increases phenotypic heterogeneity 332 

in microbes (Schreiber et al. 2016), and indicate that a highly restrictive abiotic environment 333 

(i.e. low light) does not necessarily select for a reduced trait variability, as often assumed in 334 

ecology (the environmental filtering hypothesis) (Kraft et al. 2015). Instead of convergence 335 

towards an optimal phenotype, survival under low resource conditions in our experiment may 336 

have induced cellular processes increasing phenotypic variation to find new and beneficial 337 

strategies, thereby increasing inter-individual phenotypic distances in trait space. This finding is 338 

consistent with the hypothesis that high trait evenness emerges in conditions in which it is 339 

advantageous to minimise competition for a limiting resource. On the contrary, when resources 340 

are not limiting, organisms may converge towards a limited range of phenotypic profiles that 341 
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enable fast growth. This argument may also apply to other resources that are available in 342 

multiple forms (analogously to light wavelengths), as it is the case for some nutrients (e.g. 343 

Schreiber et al. 2016). In summary, we report novel empirical findings into how resource 344 

availability can shape phenotypes in a competitive environment, and demonstrate that 345 

conspecific and heterospecific phytoplankton cells tend to differentiate their pigment profile 346 

under conditions of low light intensity. Our results represent a step forward in elucidating the 347 

mechanisms that maintain coexistence in populations and communities over resource gradients. 348 

349 
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Figure legends 447 

 448 

Fig. 1. Illustration of the experimental design. For simplicity, only one out of two replicates and 449 

one out of six light treatments are reported. Green=P. subcapitata; Blue=M. aeruginosa; 450 

Red=Mixed cultures (P. subcapitata + M. aeruginosa). 451 

 452 

Fig. 2. Expected change of trait evenness over time based on the hypothesis that light limitation 453 

and competition induce higher evenness in the photosynthetic traits of individual phytoplankton 454 

cells. This arises from the need to absorb wavelengths that have not been used by competitors. 455 

The three depicted curves reflect different shifts in the light intensity regime compared to the 456 

time before the beginning of the experiment (decrease, moderate increase and strong increase). 457 

Dashed black=maximum possible value of trait evenness. Dashed green=baseline value of trait 458 

evenness, resulting from the maintenance of all cultures at the same light intensity prior to the 459 

experiment. We expect the response to be approximately linear at the beginning, whereas more 460 

uncertainty is associated with longer time scales, as indicated by coloured bands and shaded 461 

lines. 462 

 463 

Fig. 3. Change in trait evenness (TED index) over time. Lines represent independent linear 464 

model fits at each light level for each species (that we were able to distinguish also in mixed 465 

cultures, see Methods) and in each shading category. Dashed lines indicate non-significant 466 

relationships. Note that higher light intensity treatments stop earlier, as they reach carrying 467 

capacity faster and consequently show an accumulation of dead cells. 468 
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 469 

Fig. 4. Relationship between light intensity and two response variables: the rate of change in 470 

TED with time i.e. the slope of the regression between TED and time (top panels), and TED 471 

values at carrying capacity (bottom panels). Linear fit lines are indicated (dashed=mixed 472 

cultures, red=global fit). More complex models (e.g. exponential decay) did not improve the 473 

goodness of fit significantly and would not affect our conclusions. Note that in the bottom panel 474 

the number of points at each light intensity is not constant, because for each replicate we only 475 

included samples collected after reaching the carrying capacity (e.g. no samples in the lowest 476 

light treatment; Supplementary Fig. S1-S6). 477 

 478 

Fig. 5. Fluorescence distribution dynamics in M. aeruginosa under direct light. For each time 479 

point we computed a binned kernel density estimate using 1,000 random cells from each of the 480 

two replicates. Note the different X-axes, reflecting variation in experimental duration across 481 

light treatments. As Y-axes are on log-scale, changes in total fluorescence are substantial in 482 

many cases. Fluorescence reaches a maximum at the lowest light intensity in most channels. 483 

The absolute total fluorescence values of different channels are not directly comparable. 484 

 485 
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