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Abstract
In addition to high temperature, highhumidity canhave significant consequences on thermal comfort
of humanbeings. The co-occurrence of high temperature andhighhumidity (so-called ‘oppressive hot
days’)often results in heat stress events, but the extent towhich it is affectedbypreceding surface
moisture has not been fully understood todate. In this study,we examine the relations between
preceding 3-month standardized precipitation index (SPI) and the number of hot days indicatedby the
surface air temperature (NHD-Tx) and thewet-bulb globe temperature (NHD-Wx) that combines both
temperature andhumidity in the hottestmonth in low latitudes. Results show that, in contrast with the
negative correlations between SPI andNHD-Tx,which are associatedwith the previously reported
precipitationdeficit-temperature feedback, significant positive correlations between SPI andNHD-Wx
are found in some low latitude areas. Theprobability of above-averageNHD-Wx could be∼30%higher
afterwet conditions than that after dry conditions in areas like southern SouthAmerica, someparts of
Africa, andWestAsia.Hotspot analyses further show that abundant preceding rainfall has an
asymmetric impact onoppressive hot days by favoringmore above-averageNHD-Wx.Our analyses
imply that a local feedbackmay exist between surfacemoisture andoppressive hot extremes, viawhich
theunbearable heat stress over someparts of the tropics ismodulated, controlled, and/or caused by
changes in the precedingnear-surface humidity/soilmoisture. The spatially heterogeneous patterns of
the relations betweenpreceding rainfall and heat stress confirm the precipitationdeficit-temperature
feedback inmany areas and reveal the coexistence of surfacemoisture-oppressive heat stress in several
low latitude areas.We emphasize the necessity of considering both feedbacks for a better understanding
of the distinct roles of preceding rainfall in the consequent development of heat stress in low latitudes.

1. Introduction

Heat stress occurs when the human body feels thermal
discomfort or heat injury due to exposure to the

ambient air. Intensifying heat stress events have been
widely reported in many regions of the world during
the past decades (Tang et al 2012, 2014, Sun et al 2014,
Michael et al 2018). They are projected to be more
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frequent and intense in the future (Meehl and
Tebaldi 2004, Schubert et al 2014, Dong et al 2015,
Leng et al 2016, Mora et al 2017). Heat stress from
temperature extremes may result in severe problems
of human health and ecosystem function and cause
dramatic economic losses (Ciais et al 2005, Gasparrini
and Armstrong 2011, Sheridan and Allen 2018), espe-
cially in regions where adaptive capacity of society is
limited (IPCC 2012,Miralles et al 2012, Lee et al 2016).
Increased high temperature extremes in the past have
been found to be associated with the strong local
feedback of soil moisture-temperature at worldwide
regions (Hirschi et al 2011, Mueller and Seneviratne
2012, Hauser et al 2016, Herold et al 2016). The
feedback shows that preceding soil moisture deficit
can result inmore frequent high temperature extremes
and consequently persistent heat stress than under
normal or wetter conditions (Seneviratne et al 2010,
Alexander 2011, Miralles et al 2012, 2014). As shown
by Mueller and Seneviratne (2012), the impact of
moisture deficits on the number of high temperature
days is asymmetric, i.e. high frequency of hot days is
most strongly influenced by the moisture conditions,
while the influence on the smaller numbers of hot days
ismuchweaker.

Regarding the heat stress events, most of the
previous studies mainly focused on the high temper-
ature extremes and their relationships with soil
dryness (Schubert et al 2014, Mazdiyasni and Agha-
Kouchak 2015). However, the thermal comfort of
human bodies depends not only on surface air temper-
ature but also on humidity. Recently, oppressive heat
stress (i.e. bodily thermal comfort), indicated by the
combination of temperature and humidity (e.g. Stead-
man 1984), and its impact on human beings have been
assessed for the past (Willett and Sherwood2012, Sippel
et al 2016, Wehner et al 2016) and the future (Im et al
2017, Lee and Min 2018, Li et al 2018). Such assess-
ments of oppressive heat stress demonstrated a nar-
rower adaptation space for humans under future
climate change than the assessments based on high
temperature criteria alone (Sherwood andHuber 2010,
Liu et al 2018). Thus, understanding oppressive heat
stress would have significant implications for human
adaptation to awarmingworld.

Strong links between preceding precipitation and
oppressive heat stress have been found in Illinois of the
USA (Ford and Schoof 2016, 2017) and Eastern China
(Liu et al 2017). To date, however, the influence of pre-
ceding wet soil conditions on the development of
heat stress is insufficiently well understood in lower
latitudes where about 5 billion people live, although
considerable heat stress events caused by high temper-
ature and humidity have been reported in these
regions (Dunne et al 2013, Im et al 2017). Thus, further
investigations are needed to understand the land-
atmosphere coupling during heat stress events, which
would be instrumental for better predictions of the

occurrence of future heat stress events by climate
models.

This study investigates the relations between pre-
ceding rainfall and heat stress in the hottest month in
low latitudes (40S to 40N) based on in situ observa-
tions and reanalysis datasets. Following the work of
Mueller and Seneviratne (2012), we aim to find gen-
erally prevalent relationships regarding preceding sur-
face moisture and the two types of heat stress events in
low latitudes. The relationships can provide primary
information of the land-atmosphere interaction in
these regions. We organize this paper as follows. The
methods and data used in this study are presented in
section 2, results are shown in section 3, and discus-
sion and conclusions are presented in section 4.

2.Methods and data

We examine the correlations between preceding
standardized precipitation index (SPI), which is a
proxy of soil moisture conditions, and heat stress
events in the hottest month for the period of
1979–2016. The number of hot days (NHD, defined in
the Methods section) based on daily maximum wet-
bulb globe temperature (WBGT) (Wx) is calculated as
ameasure of oppressive heat stress events in the hottest
month. Using correlation analysis and quantile regres-
sion methods, we reveal the links between the
probability of oppressive heat stress occurrence and
preceding SPI, and identify hotspot regions with a
strong local feedback for further in-depth analysis. For
comparison, the same analyses are also performed for
the NHD based on only daily maximum temper-
ature (Tx).

2.1. Climate data
We used sub-daily (hourly or 3-hourly) records of
surface air temperature and WBGT from the quality-
controlled integrated surface database (ISD) provided
by the UK Met Office Hadley Centre (HadISD).
HadISD is a global and long-term dataset based on the
station data archived in the ISD at National Oceanic
and Atmospheric Administration’s National Centers
for Environmental Information (Smith et al 2011,
Dunn et al 2012, 2014, 2016). From 7877 stations of
the HadISD version 2.0.1.2016f, we selected for our
analysis only stations with recording period of more
than 20 years during the 1979–2016 period. The
selection gave us 2429 and 2038 stations for the surface
air temperature andWBGT, respectively (see figure S1
is available online at stacks.iop.org/ERL/14/044010/
mmedia).

We used global gridded monthly precipitation
from the Climatic Research Unit (CRU) TS dataset
version 4.01 (Harris et al 2014) to estimate the
3-month SPIs during the period of 1979–2016. For the
same period, we retrieved several land surface vari-
ables, including precipitation, temperature, dew point
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temperature, surface pressure, and latent heat fluxes
(evapotranspiration), from the ECMWF ERA-Interim
reanalysis (ERA, Dee et al 2011). To demonstrate that
the result is independent of dataset, the National Cen-
ters for Environmental Prediction reanalysis 2 dataset
(NCEP, Kanamitsu et al 2002)with a spatial resolution
of around 0.95° is also used to estimate the correla-
tions between SPI andNHD. The ERA reanalysis data-
set has a full coverage of low latitudes with a spatial
resolution of 0.75° and is used for a better illustration
of spatial characteristics of heat stress events and
insights into the land-atmosphere coupling.

2.2. Standardized precipitation index
The SPI (McKee et al 1993) is widely used as a proxy of
soil moisture conditions (e.g. Hirschi et al 2011, Liu
et al 2017). Global soil moisture products are also
available (e.g. AMSR2, Jackson et al 2018), although
their spatial and temporal coverage is limited and the
temporal hydrological variability is less pronounced
compared to the proxy (Hirschi et al 2014). SPI can be
estimated from observations and can be easily com-
puted nearly everywhere over the global land areas,
which makes it useful as a climate predictor. The
3-month SPIs were found to be closely correlated with
temperature extremes in previous studies (Hirschi et al
2011, Mueller and Seneviratne 2012). In this study,
the 3-month SPIs preceding the hottest month (here-
after referred to as CRU SPI) are calculated based on
CRU monthly precipitation at the grid cells deter-
mined by the latitudes and longitudes of HadISD
stations. The half-degree CRU SPIs are regridded at
the resolution of 0.75° by averaging the values of the
nearest half-degree cells for calculating correlations
between CRU SPI and ERA NHD. Correlations
between SPIs and NHDs based on ERA and NCEP
datasets are also calculated at their original spatial
resolution. Following Hirschi et al (2011), the dry and
wet conditions (years) are identified when the SPI
values are below−0.5 and above 0.5, respectively.

2.3.Heat stress index
For each station, we calculate daily maximum air
temperature (Tx) andWBGT (Wx) using the sub-daily
records from HadISD. WBGT is an integrated heat
stress indicator that combines dry-bulb temperature
and humidity (Budd 2008). It has been widely used for
assessing the risk to human health under heat stress
and adaptation to climate change (e.g. Sherwood and
Huber 2010, Im et al 2017). We estimate WBGT from
ERA and NCEP using the same equation as Liu et al
(2017): WBGT=0.567T+0.393e+3.94, where T
is temperature (°C), and e is simultaneous water vapor
pressure (hPa) estimated from temperature and dew
point temperature in ERA and from specific humidity
and surface pressure inNCEP.

Our analyses focus on the hottest month (usually
in the mid-summer) for calculation of Tx andWx (see

figure S1 in SI for the hottest month indicated by Tx
and Wx). The number of hot days (NHD) per month,
which is defined here as the number of days with Tx
(referred to as NHD-Tx) or Wx (referred to as NHD-
Wx) exceeding the 90th percentile in the month, were
used as the measure of heat stress at the monthly time
scale. NHD-Wx represents oppressive hot days with
hot and wet weather and NHD-Tx indicates hot days
without the constraint of atmospheric humidity. Here
we term the NHD-Wx as ‘oppressive hot days’ to dif-
ferentiate it from the ‘hot days’ as indicated by NHD-
Tx. A time-window of 5 d centered on each day of the
month is applied for the study period (38 years).
Therefore, more robust estimates of the 90th percen-
tile can be obtained from the 190 (5×38) daily
values. An above-average NHD is identified when
the NHD of a year is larger than the average NHD of
all years. The probability of occurrence of an above-
average NHD after dry (wet) conditions is estimated as
the ratio (in %) of the number of years with above-
average NHD after dry (wet) conditions to the total
numbers of dry (wet) years.

2.4.Quantile regression
We used quantile regression to examine the influence
of preceding rainfall on heat stress. Previous studies
(e.g. Hirschi et al 2011, Mueller and Seneviratne 2012)
have found that the impact of SPI on NHD is
asymmetric therefore quantile regression can offer a
more complete picture of this relationship. The
quantile regression was introduced by Koenker and
Bassett (1978) and can be viewed as an extension of the
ordinary least-square regression to a set of quantiles,
which can better represent how the response variable
is related to the independent variable (Koenker and
Hallock 2001). It has been increasingly used to
characterize the asymmetrical relationships between
hydroclimate extremes and climate change (see,
Hirschi et al 2011, Herold et al 2016, Ford and
Schoof 2016). In this study, the SPI and NHD-Tx/
NHD-Wx relationships are assessed using quantile
regression models by fitting the 0.1, 0.3, 0.5, 0.7 and
0.9 quantiles, which basically profile the data distribu-
tion, ofNHD-Tx/NHD-Wx to the SPI values.

Below, we briefly describe the calculation of quan-
tile regressionwhichwas detailed byKoenker andHal-
lock (2001). For a classical linear regression, the mean
of a response variable Y is linearly related to a random
variableX by

= b g[ ∣ ] ( ) ( )( )E Y X f X , 1,

where β is slope and γ is intercept. In a quantile
regression, the E[Y|X] is replaced by a conditional
quantile t Î( [ ])[ ∣ ]Q 0, 1Y X and the regression can be
expressed as

= b gt t
( ) ( )[ ∣ ]Q f X . 2Y X ,

The slopeβτ and intercept γτ of the quantile regres-
sion can be obtained by solving the asymmetrically
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weighted absolute residuals:

åb g r= -t t t b gt t
ˆ ˆ ( ( )) ( )y f x, arg min , 3

i
i i,

where argmin denotes argument of minimum, the
points at which the function values are minimized. rt
is the titled absolute value function that gives different
weights to positive and negative residuals (Koenker
andHallock 2001):

r t t= + - -t ( ) ( ) ( ) ( ) ( )r r rmax , 0 1 max , 0 . 4

3. Results

Figure 1 shows the correlations between the NHD in
the hottest month and the preceding 3-month SPI for
both HadISD stations and ERA grid cells. NHD-Tx
and preceding CRU SPI shows statistically significant
(at the 90% confidence level, the same hereafter) and
negative correlations over large areas for both HadISD
stations (figure 1(a)) and ERA grids (figure 1(b)),
including 60% of HadISD stations and 49% of ERA
land areas (see table S1). The dominant negative
correlations indicate that the link between preceding
rainfall deficit and temperature extremes is wide-
spread over the study area. Significant correlations
betweenNHD-Wx and preceding SPI are less apparent
and show heterogeneous spatial patterns for both
HadISD (figure 1(c)) and ERA (figure 1(d)). Overall,
there are about 28% of HadISD stations and 21% of
ERA land areas showing significant correlations
between SPI and NHD-Wx. The proportion of
stations (land areas) showing negative correlations is
larger than that of positive correlations. However, in

contrast to NDH-Tx, positive, significant correlations
account for a much larger proportion (27% and 40%
for figures 1(c) and (d), respectively) of the stations
(land areas). The pattern of these statistically signifi-
cant correlations is remarkably distinct from that
between NHD-Tx and preceding SPI in figures 1(a)
and (b), which are characterized by predominantly
negative correlations. Similar patterns are found
between NHD-Wx and SPI based on the ERA-Interim
(figure 1(e)) and NCEP (figure 1(f)) datasets, and
significant positive correlations between NHD-Wx
and SPI account for more than a half of the total land
area with significant correlations (66% and 63%,
respectively). It should be noted that the correlations
in figures 1(a) and (c)may be not fully revealed due to
the relatively sparse station network (see figure S1).
These results imply different links between preceding
rainfall and the consequential heat stress events
indicated by Tx andWx.

Figure 2 shows the probability of occurrence of an
above-average NHD-Tx/NHD-Wx in the hottest
month after dry and wet conditions. More than half of
the years show above-average NHD-Tx values after dry
conditions (figure 2(a)), while much fewer years show
above-average NHD-Tx values after wet conditions
(figure 2(c)). Overall, larger probabilities of above-
average NHD-Tx occurrence are observed after dry
conditions (figure 2(e)). In contrast with NHD-Tx, less
probabilities of above-average NHD-Wx are found
after dry conditions (figure 2(b)), while more than 60%
of the years showan above-averageNHD-Wx following
wet conditions in parts of South America, Africa, and
West Asia (figure 2(d)). Figure 2(f) indicates that high
NHD-Wx is more likely to occur after wet than dry

Figure 1.Pearson correlations betweenNHD in the hottestmonth and preceding 3months SPI. Correlations between SPI andNHD
indicated by Tx (NHD-Tx, (a)) andNHD indicated byWx (NHD-Wx, (c)), respectively, employingHadISD forNHDandCRU
dataset for SPI, correlations between SPI, NHD-Tx (b) andNHD-Wx (d) employing ERA-Interim reanalysis forNHDandCRU
dataset for SPI; correlations between SPI andNHD-Wx employing ERA-Interim reanalysis (e) andNCEP reanalysis (f) for bothNHD
and SPI. Stations with non-significant correlations are not displayed in (a) and (c) for a better view. Statistically significant correlations
(at the 90% confidence level) in (b) and (d) are indicated by stippling areas. The numbers beside ‘Neg’ (‘Pos’) show the ratio of the
stations/areas with significant negative (positive) correlations to the total stations/areas with significant correlations. The hotspot
region in SouthAmerica (24S-35S, 52W-63W) is identified by black rectangle in themaps.
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conditions in some low latitude areas. In some parts of
South America, Africa, and West Asia, wet years with
above-averageNHD-Wxoutnumber dry years bymore
than 30%. However, there is a prominent spatial
heterogeneity of the probabilities of above-average
NHD-Wx. It is also noted that higher probabilities of
above-averageNHD-Wx after dry conditions are found
in some areas of southern Brazil, northern India, and
Indochina Peninsula. In the tropical zone, the results
based on ERA SPIs and above-average NHD-Wx indi-
cate even more significant prevalence of wet years over
dry years (seefigure S2).

In order to further understand the underlying
links between preceding rainfall and oppressive heat
stress, we performed a hotspot analysis by choosing a
region with a typical wet-warm climate in South
America based on the significant and positive correla-
tion (figures 1(c) and (d)) and prominent high prob-
abilities of above-average NHD-Wx (figure 2(d) and
(f)). Figure 3 shows the scatter plots of NHD-Tx and
NHD-Wx from both HadISD and ERA dataset versus
CRU SPI over the hotspot region (24S-35S, 52W-
63W) in South America (see figure 1). There are 51
HadISD stations in total, amongwhich 16 (21) stations
show statistically significant correlations between SPI
and NHD-Tx (NHD-Wx) within the hotspot region.
For the ERA dataset, about 72% (41%) of the hotspot
area show statistically significant correlations between
SPI and NHD-Tx (NHD-Wx) (see table S2). In these
panels, histograms of the relative frequency of NHD
are shown for the wet and dry conditions, respectively,
along with regression lines for the 0.1, 0.3, 0.5, 0.7, and
0.9 quantiles. The quantile regression slopes are nega-
tive (positive) and the magnitudes often increase with
quantiles for NHD-Tx (NHD-Wx) (see table S3 for the
regression coefficients). The regressions for quantile
0.9 are statistically significant for NHD-Wx for both

the HadISD and ERA datasets (see table S3). The rela-
tive frequency shows that a larger NHD-Tx (NHD-
Wx) often follows dry (wet) conditions, while a smaller
NHD-Tx (NHD-Wx) is expected after wet (dry) con-
ditions. The widening distributions of NHD-Tx
(NHD-Wx) after drier (wetter) conditions and the gra-
dually increasing slope magnitudes of the quantile
regression lines indicate that dry (wet) conditions tend
to have larger influences on oppressive heat stress in
the hotspot region. The regression slopes of the selec-
ted quantiles are also estimated for each grid cell in the
low latitudes and similar findings are obtained in
many land areas (see figure S3).

Figure 4 shows the relative frequency (normalized
by the total number of NHD) of NHD-Tx/NHD-Wx
in the hotspot region from both the HadISD and ERA
datasets for all, dry (SPI<−0.5) and wet (SPI>0.5)
years, with the 90th percentile of NHD-Tx and NHD-
Wxdenoted by vertical dashed lines. For both datasets,
the relative frequency distribution of NHD-Tx gen-
erally has a small and short right tail for wet years and
large right tail for dry years (figures 4(a) and (c)), while
NHD-Wx has a longer right tail for wet years and a
small right tail for dry years (figures 4(b) and (d)). The
90th percentiles of NHD-Tx are larger for dry years
than those for wet years, while the opposite is found
for NHD-Wx distributions. These results further
demonstrate that the preceding rainfall (soil moisture)
conditions have asymmetrical impacts on the distribu-
tions of NHD-Tx and NHD-Wx, resulting in larger
influence on their high values.

4.Discussion and conclusions

Our analyses show statistically significant and positive
correlations between preceding 3-month SPI and

Figure 2.Probability of occurrence (%) of hot days after dry versus wet conditions forNHD-Tx (left panels) andNHD-Wx (right
panels). The probability of occurrence for an above-average number of hot days in the respective hottestmonth of each year after dry
conditions (SPI<−0.5, (a) and (b)), andwet conditions (SPI>0.5, (c) and (d)), and their differences ((e) and (f)). Themaps in this
figure are smoothedwith amoving box of 3×3 pixels for a better visual view.Grid cells with less than 4wet/dry years aremasked by
grey color. Dry andwet conditions are defined byCRUSPI.
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oppressive heat stress in the hottest month in several
low latitude areas. It is generally consistent with
previous studies in Eastern China (Liu et al 2017) and
Illinois of the USA (Ford and Schoof 2016). The larger
probability of occurrence of oppressive hot days
(above-average NHD-Wx) after wet conditions than
that after dry conditions indicates that abundant
preceding rainfall favors oppressive hot days in the
following month. This relationship has a paradoxical
sign, when more preceding precipitation/cooling
leads to more oppressive heat stress. On the other
hand, the strong coupling between preceding rainfall
deficit and extreme hot days is confirmed by the
statistically significant negative correlations between
preceding 3-month SPI and NHD-Tx in the hottest
month, which is generally consistent with previous
studies (e.g. Mueller and Seneviratne 2012). These
suggest complex links between preceding rainfall and
heat stress in these regions.

For the feedback between precipitation deficit and
temperature, humidity has little effect on modulating

heat stress of high temperature. High temperatures
often make the soil drier and thus the following heat
stress event could be more persistent or extended
(Alexander 2011, Koster et al 2016). Moisture deficit
results in less evapotranspiration (latent heat flux) and
consequently larger sensible heat flux that elevates sur-
face temperature, while abundant rainfall may pro-
duce larger evapotranspiration, thus enhance the
evaporative cooling effect on the land surface.

However, the strong feedback between precipita-
tion and oppressive heat stressmay have different con-
sequences in some humid areas where the interaction
is dominated by evapotranspiration (latent heat flux),
and humidity would become an influential factor for
oppressive heat stress. Our analyses, following those of
Mueller and Seneviratne (2012), show that abundant
moisture could probably induce relatively lowered
temperature but high humidity, i.e. more oppressive
days in warm and wet regions. We infer that the ele-
vated evapotranspiration resulting from abundant
rainfall may have a limited cooling effect, which can

Figure 3.Heat stress versus preceding 3-month SPI in the hotspot region in SouthAmerica. (a)HadISDNHD-Tx versusCRUSPI,
(b)HadISDNHD-Wx versus CRUSPI, (c)ERANHD-Tx versusCRU SPI, (d)ERANHD-Wx versusCRU SPI. The data points
(N=38 for each plot) are domain-averages of all stations or grid cells within the hotspot region for each year.NHDs in (a) and (b) are
estimated fromHadISD, andNHDs in (c) and (d) are estimated fromERAdataset. SPI is estimated fromCRUdataset. The bars show
the frequency ofNHD (normalized by the number of data points within shade areas) after dry condition (tan) andwet conditions
(blue), respectively.
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hardly counteract the intensified oppressive heat stress
arising from the combined effect of high temperature
and humidity.

Our analyses suggest that the precipitation deficit-
high temperature feedback and the abundant rainfall-
oppressive heat stress feedback may coexist in some
low latitude areas. Evapotranspiration may increase
after both dry heat and wet heat weather conditions
(see figure S4) and consequently results in drier soil
(Teuling et al 2013) or probably more rainfall (Schär
et al 1999), depending on soil moisture conditions.
Thus, it is likely that soil moisture availability for eva-
potranspiration plays an important role in the devel-
opment of heat stress events, that is, to be dry hot days
or oppressive hot days (Ford and Schoof 2017).

Relative humidity in the hottest month is strongly
related to the preceding 3-month SPI (see figures S5(a)
and (c)), which may contribute to the positive correla-
tions between SPI and NHD-Wx. The hottest month
after wet conditions often has an elevated relative
humidity except for some regions like the Amazon
River and Congo River where humidity is always high
(figures S5(b) and (d)). The elevated atmospheric

moisture may not contribute much water vapor to
local rainfall directly but can increase precipitation
efficiency (Schär et al 1999) and consequently produce
persistent wet weather conditions. Thus, the feedback
between oppressive heat stress and abundant preced-
ing rainfall seem to be partly driven by the strong cou-
pling between soil moisture and precipitation (Koster
et al 2004). In fact, a few regions (e.g. eastern China
and West Asia) with that coupling shown by Koster
et al (2004) are overlapped with the hotspot regions
suggested by our analyses (figures 1(c) and (d)). How-
ever, it remains a challenge to fully understand the
coupling between soil moisture, precipitation and
temperature extremes (Lorenz et al 2016, Liu et al
2017), which calls for further investigations withmod-
els and high-quality observations such as well-
developed soil moisture data and high-density net-
work ofmeteorological stations.

This study confirms the previously reported soil
moisture-high temperature feedback (Mueller and
Seneviratne 2012) and highlights the distinct roles of
preceding rainfall in regulating heat stress and identi-
fies hot spots with strong links between abundant

Figure 4.Relative frequency distribution ofNHD in the hotspot region in SouthAmerica for all, dry andwet years. Distributions of
NHD-Tx (a) andNHD-Wx (b) are estimated from theHadISD dataset, and distributions ofNHD-Tx (c) andNHD-Wx (d) are
estimated from the ERAdataset. Locations of the 90th percentile of theNHDdistributions are identified for all (green dashed lines),
dry (SPI<−0.5, red dashed lines) andwet (SPI>0.5, blue dashed lines) years, respectively. Dry andwet years are defined byCRU
SPI.
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rainfall and oppressive heat stress in low latitudes. We
emphasize that both soil moisture—heat stress feed-
backs need to be considered for the prediction of heat
stress events in some low latitude regions. The land-
atmosphere coupling may become stronger as ‘wet
may get wetter and dry may get dryer’ (Greve et al
2014) in a warming world. Therefore, in the humid
areas, the land-atmosphere interaction would result in
high humidity and oppressive heat stress, whichwould
be further intensified in the future due to the weaken-
ing constraint of soil moisture on air temperature
(Rasmijn et al 2018). In the dry areas, the precipitation
deficit-temperature feedback would be strengthened
and result in more heat stress of high temperature. By
extending the understanding of the land-atmosphere
coupling in heat stress events, our findings could be
used for the seasonal forecast and projection of heat
stress occurrences in low latitudes.
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