
1/28 

Title: Microbial residence time is a controlling parameter of the taxonomic composition and 
functional profile of microbial communities 

1 

Running Title : Microbial residence time effects on community 2 

3 

Authors: Cresten Mansfeldt1*, Stefan Achermann1,2*, Yujie Men3, Jean-Claude Walser4, Kris Villez5, 4 

Adriano Joss5, David R. Johnson6, Kathrin Fenner1,2,7 5 

6 

*These authors contributed equally to this work7 

8 

1. Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology,9 

Eawag, Überlandstrasse 133, 8600 Dübendorf, Switzerland 10 

2. Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland.11 

3. Department of Civil and Environmental Engineering, University of Illinois, 205 N. Mathews Ave.,12 

Urbana Illinois 61801, USA 13 

4. Department of Environmental Systems Science, Genetic Diversity Centre, ETH Zürich,14 

Universitätstrasse 16, 8006 Zürich, Switzerland 15 

5. Department of Process Engineering, Swiss Federal Institute of Aquatic Science and Technology,16 

Eawag, Überlandstrasse 133, 8600 Dübendorf, Switzerland 17 

6. Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and18 

Technology, Eawag, Überlandstrasse 133, 8600 Dübendorf, Switzerland 19 

7. Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland20 

21 

Keywords: Diversity, richness, microbial residence time, taxonomic profiling, functional profiling, RNA 22 

sequencing, Monod kinetic modelling, activated sludge 23 

24 

This document is the accepted manuscript version of the following article: 
Mansfeldt, C., Achermann, S., Men, Y., Walser, J. C., Villez, K., Joss, A., … Fenner, K. 
(2019). Microbial residence time is a controlling parameter of the taxonomic composition 
and functional profile of microbial communities. ISME Journal. 

https://doi.org/10.1038/s41396-019-0371-6



2/28 
 

Abstract: 25 

A remaining challenge within microbial ecology is to understand the determinants of richness and 26 

diversity observed in environmental microbial communities. In a range of systems, including activated 27 

sludge bioreactors, the microbial residence time (MRT) has been previously shown to shape the microbial 28 

community composition. However, the physiological and ecological mechanisms driving this influence 29 

have remained unclear. Here, this relationship is explored by analyzing an activated sludge system fed 30 

with municipal wastewater. Using a model designed in this study based on Monod-growth kinetics, longer 31 

MRTs were shown to increase the range of growth parameters that enable persistence, resulting in 32 

increased richness and diversity in the modelled community. In laboratory experiments, six sequencing 33 

batch reactors treating domestic wastewater were operated in parallel at MRTs between 1-15 d. The 34 

communities were characterized using both 16S ribosomal RNA and non-target messenger RNA 35 

sequencing (metatranscriptomic analysis), and model-predicted monotonic increases in richness were 36 

confirmed in both profiles. Accordingly, taxonomic Shannon diversity also increased with MRT. In 37 

contrast, the diversity in enzyme class annotations resulting from the metatranscriptomic analysis 38 

displayed a non-monotonic trend over the MRT gradient. Disproportionately high abundances of 39 

transcripts encoding for rarer enzymes occur at longer MRTs and contribute to the disconnect between 40 

taxonomic and functional diversity profiles. 41 

 42 

Introduction: 43 

Environmental microbial communities often house a rich and diverse set of species and expressed 44 

enzymes1,2. A remaining challenge within microbial ecology is to understand the mechanisms driving the 45 

differences in metabolic and taxonomic diversity between communities3. Of the influencing mechanisms, 46 

the microbial residence time (MRT; the average amount of time a microorganism resides in a system) has 47 

been postulated to be a key parameter influencing microbial diversity4,5. Recent investigations in 48 

engineered systems showed that as MRT increases, the diversity and richness of the community increases 49 

as well.  However, specific studies exploring the relationship between MRT and community composition 50 
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have shown opposing or more confounded trends6,7 (albeit with differing experimental setups and analysis 51 

methods), suggesting that the relationship between MRT of a system and community composition is 52 

complex. The influence of MRT is also relevant in natural8 and host-associated systems9 suggesting that 53 

more clearly identifying the influence of this parameter on community composition in engineered 54 

environments may provide insights that are also relevant to other systems.  55 

 56 

In addition to the influence on taxonomic diversity and composition, communities also express 57 

more functions at longer MRT4. In wastewater treatment, functions related to substrate transformation 58 

have been demonstrated to emerge at longer MRT, e.g., nitrification and the biotransformation of trace 59 

organics10,11. In a survey of 10 wastewater treatment plants, functional richness was positively associated 60 

with taxonomic richness, and both parameters were in turn positively associated with plant performance in 61 

terms of trace organic contaminant removal12. By contrast, additional studies have noted that expressed 62 

functional richness and diversity may not be directly related to taxonomic parameters13-15. In streams16, 63 

forests17,18, and host associated communities19, the monitored functional signals were independent of the 64 

parameters controlling the taxonomic profiles. Both the taxonomic and functional profiles must be 65 

monitored to understand further the linkage between community structure and function and to characterize 66 

more accurately the influence of an external variable (such as MRT) on the community20. 67 

 68 

In this study, the influence of the MRT on the observed taxonomic composition and functional 69 

profile of microbial communities cultivated in six parallel lab-scale sequencing batch reactors (SBR) 70 

treating domestic wastewater was explored experimentally and described using a Monod-model. 71 

Wastewater bioreactors provide a controllable experimental system21 with available established 72 

computational models22-24 that have provided previous insights into microbial ecological concepts 73 

including novel niches and community assembly13. Experimentally, the microbial communities were 74 

monitored using 16S-ribosomal RNA (rRNA) and messenger RNA (mRNA) metatranscriptomic non-75 

target sequencing. Recently, 16S-rRNA sequencing has become an established method for analyzing 76 
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bacterial communities25,26 in biotechnological applications, with detailed sample preparation and data-77 

processing pipelines available27. To complement the taxonomic survey, mRNA sequencing (RNAseq) was 78 

performed to determine the functional profiles of the communities, for which Enzyme Commission (EC) 79 

numbers were used as a proxy for an expressed function. Numerically, Monod growth kinetics were 80 

employed in a simplistic MRT-diversity model to provide a concrete mechanistic basis for the connection 81 

between the MRT and the community composition within the SBR. This model uniquely investigates the 82 

underlying available range of growth parameters that result in persistence within the community. 83 

Organisms must survive through substrate-rich and –poor conditions within the SBR, suggesting the main 84 

tradeoff in survival strategies available to the organism is the ability to capture resources versus the ability 85 

to withstand starvation. Therefore, individual distinctive combinations of the maximum growth rate (μmax) 86 

and endogenous decay rate (be) are modelled and considered to be bounded in an ecological range of 87 

permissible values. Critically, allowing be, a parameter that has been previously shown to be species-88 

specific28, to vary between community members allows for the coexistence of multiple μmax values within 89 

a given community. This novel approach permits observing how the MRT, the independent factor in the 90 

model, influences the available set of μmax and be values. This simplified view of community composition 91 

leads to a better conceptual understanding of the influence of the MRT on the richness and diversity of 92 

microbial communities in the studied system.  93 
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Materials and Methods 94 

Activated Sludge Reactor Configuration 95 

Briefly, six automated sequencing batch reactors (6 × 12 L) treating local municipal wastewater 96 

after primary clarification were operated in parallel at MRTs of 1, 3, 5, 7, 10, or 15 days (d) as detailed 97 

previously29 and summarized in Supplemental Table 1. Forty-eight days (time-point 1; TP1) and 187 days 98 

(time-point 2, TP2) after start-up, activated sludge samples were collected for DNA (at the start of the 99 

previously described biotransformation experiment29) and RNA (5 hours after the start of the experiment) 100 

extraction. 101 

 102 

Sample Collection 103 

To collect samples, culture (two 20-mL samples for TP1 and a 20-mL and 40-mL sample for TP2 104 

for DNA and RNA analysis, respectively) was withdrawn and centrifuged at 3,345 x g for 10 min at 4ºC. 105 

The supernatant was then discarded and the pellets were stored at -80ºC until further processing.  106 

 107 

DNA/RNA Isolation 108 

The total RNA and genomic DNA isolation protocol consisted of a 109 

phenol:chloroform:isoamylalcohol extraction followed by either a DNA PowerCleanup PRO Kit (Qiagen, 110 

Venlo, Netherlands) or MoBIO RNA Pro Clean-Up Kit (MoBio, Carlsbad, CA, USA) and purification 111 

with a TURBO DNase step (ThermoFisher Scientific, Waltham, MA, USA) as detailed in the 112 

Supplemental Materials and modified from Johnson et al. 2015. The RNA pellet was re-suspended with 113 

diethyl pyrocarbonate (DEPC) treated RNase-free water to a total volume of 50 μl. DNA samples were 114 

quantified on a Qubit (Invitrogen, Waltham, MA, USA) analyzer following the manufacturer’s 115 

instructions, whereas RNA samples were quantified on a Nanodrop (Invitrogen) and quality-checked on a 116 

Bioanalyzer 2000 (RNA 6000 kit; Agilent Technologies, Santa Clara, CA, USA). 117 

 118 

 119 
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16S Library Preparation and Sequencing 120 

In preparation for the 16S sequencing, The total RNA was reverse transcribed into complementary 121 

DNA (cDNA) using the Superscript III Kit (Invitrogen) with random hexamer primers following the 122 

manufacturer’s instructions. The genomic DNA (gDNA) was used directly after the purification described 123 

above. 124 

 125 

The 16S-rRNA or -rDNA amplicon library preparation followed a standard procedure for the 126 

Illumina MiSeq platform (Illumina, San Diego, CA) that is detailed in Supplemental Materials 1. Two sets 127 

of 16S-rRNA primers (Integrated DNA Technologies, Inc., Skokie, Illinois, USA) were used in this 128 

analysis to amplify the sample cDNA and gDNA to account for the potential for the bias of a single 129 

primer-set30. The details of primers B1 and B2 are provided in Supplemental Table 2. The samples were 130 

sequenced using the PE 300 method on a MiSeq platform (Illumina) at the Genomics Diversity Centre at 131 

ETH Zurich, Switzerland. The raw data is publically available at EMBL-EBI under the study number 132 

PRJEB22087. The read count per sample and associated rarefaction curves are presented in Supplemental 133 

Figures 1 and 2, respectively. 134 

 135 

16S rRNA and rDNA Sequencing Data Processing and Analysis 136 

The raw data was checked for quality using FastQC31 v0.11.2. The reported nucleic sequence of 137 

the reads was then trimmed using PRINSEQ-lite32 v0.20.4 to a length of 295 bp and merged using 138 

USEARCH33 v8.1.1756 (with a minimum overlap of 15 bp, minimum merge-length of 100, and a 139 

maximum error of 5 bp). The primers were trimmed from the merged read using cutadapt34 v1.5 with 140 

wildcards allowed, a full-length overlap, and an error rate of 0.01. The reads were then filtered using 141 

PRINSEQ-lite with an amplicon range of 431-506 and 252-254 for B1 and B2, respectively, a minimum 142 

quality mean of 15, and no ambiguous nucleotides allowed. USEARCH was employed to denoise the 143 

reads into exact sequence variants (ESVs; zero-level operational taxonomical units, ZOTUs using 144 

UNOISE3) and assign taxonomic origin (using usearch_global, 70% identity against the SILVA 16S 145 
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database (release 128), followed by sintax with a 70% identity cutoff). The total number of raw and 146 

cleaned reads per sample for the B2 primer ranged from 59,311-191,897 with a median of 113,347 and 147 

54,864-185,331 with a median of 104,537, respectively (the details for every sample are provided for 148 

primers B1 and B2 in Supplemental Tables 3 and 4, respectively). In total, 99.3% of these reads were 149 

binned into 10,644 ESVs, with 2,918 ESVs displaying more than 10 reads in at least one sample. Primer 150 

B2 is considered in the main text because more positive and negative controls were analyzed for B2 than 151 

B1. 152 

 153 

The resulting data was then analyzed in R v3.5.1 using phyloseq35 v1.24.2 as detailed in 154 

Supplemental File 1. The bacterial 16S richness (0D; on rarefied data to remove potential sampling effort 155 

effects) and Shannon diversity index (ln(1D); on non-rarefied data) were calculated as n and 156 

exp (−∑ 𝑝𝑝𝑖𝑖 ∗ ln (𝑝𝑝𝑖𝑖)𝑛𝑛
𝑖𝑖=1 ), respectively, where n is the number of ESVs and pi is the abundance-weighted 157 

proportion of ESV i  36-38. When relating metrics throughout this study, Spearman rank-correlation 158 

(denoted as r) analyses were employed to avoid imposing assumptions of linearity. 159 

 160 

RNAseq Library Preparation and Sequencing 161 

The RNA samples were processed into libraries and sequenced following the Illumina TruSeq 162 

Single-End-Read 150 bp pipeline of the Genomics Facility at the University of Basel. In brief, the 163 

abundant ribosomal sequences in the samples were degraded to enhance the mRNA fraction using the 164 

Ribo-Zero Gold Epidemiology Kit (Illumina) to target Eukaryotic, Bacterial, and Archaeal sequences. 165 

During testing, this Epidemiology Kit was found to outperform a sequential application of the Ribo-Zero 166 

Gold Bacterial and Eukaryotic Kits (Illumina) on the activated sludge samples (81.3±5.2% versus 167 

15.4±1.8% of resulting reads of non-rRNA origin). The adapter addition, sample cleanup, and fragment 168 

selection were performed as outlined in the Illumina TruSeq protocol. The samples were then sequenced 169 

on a NextSeq 500 Platform (Illumina pipeline 2.4.11). The raw data are publically available at EMBL-EBI 170 
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under the study number PRJEB22087. The quality of the RNA as extracted, RNA after depletion, and 171 

resulting fragments are provided in Supplemental Figures 3-5. 172 

 173 

RNAseq Data Processing, Normalization, and Analysis 174 

The raw read files were trimmed of adapter sequences, index sequences, and low quality reads 175 

using Trimmomatic39 v0.33. The raw and trimmed reads were also checked for quality using FastQC31 176 

(Supplemental Figure 6-9). To remove contaminating rRNA reads in silico, the trimmed reads were 177 

compared against rRNA databases (Silva version 119 (Bacteria 16S & 23S, Archaea 16S & 23S, 178 

Eukaryote 18S & 28S) and RFAM (5S & 5.8S)) and filtered using SortMeRNA40. Sequences passing the 179 

quality control were annotated with the descriptors provided in the Enzyme Commission (EC) Number 180 

Uniprot database using DIAMOND41 v0.2.1 with the blastx command and a minimum bitscore cutoff of 181 

50 (all other parameters set to their default). Because we are primarily investigating EC annotation that 182 

can be shared across taxa and not specific genes from individual species, only the best annotation per read 183 

was recorded. The full Uniprot-TrEMBL database was created by downloading the database on March 6th, 184 

2018 (36.8 billion amino acids in 109 million sequences). The narrower Uniprot-EC database was created 185 

by searching for ec:* and downloading all matching hits on March 6th, 2018 (5.8 billion amino acids in 186 

14.9 million sequences). The script required to process the raw RNAseq files, generate the database, 187 

annotate the reads, and extract the taxonomic Uniprot identifiers is provided as Supplemental File 2. The 188 

resulting raw sequencing files contained 41.8-54.4 million reads, of which 72.5-87.7% remained in the 189 

dataset after quality and rRNA filtering. In total, 32.8-47.7 million reads per sample were submitted for 190 

annotation, resulting in 5.1-9.8 million reads being annotated per sample (Supplemental Table 5; 191 

Supplemental Figures 10-11). 192 

 193 

The read counts were aggregated per EC number, and these EC numbers were used as a proxy of 194 

the functional profile in this study. When the Uniprot entry that provided the annotation of a read 195 

maintained multiple EC numbers, the read was assigned equally to each EC number (<5% of all 196 
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annotations maintained multiple EC designations). The rarefaction curves showed that the richness of EC 197 

numbers saturated within the library’s sequencing depth (Supplemental Figure 12). For normalization, the 198 

count data was treated compositionally in that the abundance of a specific EC number was divided by the 199 

total number of reads identified to encode a protein. The total number of protein encoding reads was 200 

determined by first using 500 k reads from each library to search against the full Uniprot-TrEMBL 201 

database and then multiplying the fraction annotated with the total number of reads submitted to the 202 

Uniprot-EC database (Supplemental Table 5; Supplemental Figure 13). 203 

 204 

MRT-Diversity Model Construction 205 

i. MRT-Diversity Model Approach, Assumptions, and Limitations 206 

In the MRT-diversity model, Monod-type bacterial growth mathematics42 were employed 207 

dynamically to approximate the linkage between the MRT and community composition in the 208 

experimental reactor (Figure 1.a). Monod-kinetics use the μmax, be, substrate affinity (Ks), and yield (Y) to 209 

describe the growth of an organism’s biomass (X) on a given substrate (S).  The approach presented here 210 

utilizes these parameters in a novel manner by exploring the range of their combined values (an 211 

approximation of community diversity) that leads to persistence over a MRT gradient. 212 

 213 

In our approach, we apply a number of simplifications to typical considerations employed in other 214 

Monod-growth based dynamic models24 to determine the range of growth parameters leading to 215 

persistence. Specifically, the wastewater is considered a single substrate (e.g., no distinction of 216 

carbonaceous or nitrogenous compounds), growth limitations resulting from sources other than substrate 217 

availability are considered constant (e.g., mass transfer, toxic product formation, additional substrates), 218 

and competition is allowed only for this single substrate. When triggered, assigned flow rates and influent 219 

composition are also assumed to be temporally stable to remove variability resulting from other 220 

independent variables, and mixing within the reactors is considered perfect (except during the settle 221 

phase). Changes in steady-state growth depend only on the maximal gene expression and enzyme kinetics, 222 
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and the availability of the enzyme pool is considered temporally stable thereby neglecting evolution. In 223 

turn, this stability is assumed to allow instantaneous adjustments of the growth rate to the change in the 224 

substrate concentrations (i.e., time lags have elapsed).  225 

 226 

To capture competition over both substrate-rich and –poor phases, individuals within this model 227 

are allowed to be distinct in two growth parameters only: μmax and be. Both internal (consumption of stored 228 

substrate) and external (adverse environmental conditions, cell programmed death, and viral attack) decay 229 

are considered incorporated in the be parameter43; higher order ecological considerations dependent on the 230 

consideration of additional substrates such as predation and growth on lysis products are excluded from 231 

the model. The maximum and minimum μmax and be values are bounded by ecological limits, and a 232 

constraining combination of growth parameters must be satisfied by the range. In summary, the main 233 

uncertainties in the model include the appropriateness of restricting the analysis to a single substrate, the 234 

placement of the constraining growth parameters, the uncertain assignment of the ecological constraints, 235 

and the exclusion of other contributors to diversity such as population oscillation and the time to reach 236 

equilibrium44. 237 

 238 

ii. Role of μmax and be in the MRT-Diversity Model 239 

To conceptualize the interaction of the μmax, be, and MRT within the MRT-Diversity model of a 240 

SBR, the solution for the minimum substrate concentration (S*
min) that leads to persistence in a 241 

continuously stirred tank reactor45 (Supplemental Materials 2) provides a simplified analogy that can be 242 

written without including differential equations: 243 

𝑆𝑆𝑚𝑚𝑖𝑖𝑛𝑛
∗ = (1+𝑏𝑏𝑒𝑒∗𝑀𝑀𝑀𝑀𝑀𝑀)

(𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚−𝑏𝑏𝑒𝑒)∗𝑀𝑀𝑀𝑀𝑀𝑀−1
𝐾𝐾𝑠𝑠          Eq. 1 244 

where all parameters were defined previously. Organisms with the lowest calculated S*
min values will 245 

persist in the reactor because they will outcompete other community members for the sole resource. In 246 

previous models, a single surviving species would be selected because of the hypothesized inability of 247 

other organisms to exactly match the μmax, Ks, and be combination required for persistence in the reactor45. 248 
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Notably, we relax this constraint and allow multiple organisms to grow on a single substrate. Modelling 249 

co-existing combinations of growth parameters explores whether we can predict richness and diversity 250 

values similar to the experimentally observed values over a MRT gradient. 251 

 252 

In developing this Monod-kinetics model of multiple organisms for the investigated SBR (Figure 253 

1.a), the combination of growth parameters that are allowed at a given MRT is simply given by the 254 

maximum and minimum μmax and be values that persist in the reactor to represent competition in both the 255 

resource-rich and –poor operating phases (Figure 1.b). The Ks influences the μmax values leading to 256 

persistence in the reactor less than be (Supplemental Figure 14) because it represents another component 257 

of resource capture rather than variations in survival during low or no production. Ks was therefore held 258 

constant to minimize model complexity. The line of growth parameter combinations that results in 259 

persistence (and determined by the equations detailed below) is required to fall within a roughly set 260 

ecological range and to pass through constraining growth parameters (μmax,constrain and be,constrain; values that 261 

are initially assumed to remain unchanged between reactors, arbitrarily set to the center of the range, and 262 

explored further in Supplemental Figure 15). To establish the permissible ecological values of be, the 263 

extremes of previously reported observations (from ~0.02 47,48 to ~0.2 d-1 49) were used as approximate 264 

boundaries (be,eco; 0.02 to 0.2 d-1), and an average value (0.11 d-1) was selected as the be,contrain (Table 1). 265 

The μmax,eco boundaries (0.2 to 9.8 d-1) were set to exceed the range of values reported for a previous MRT 266 

gradient50, and an average value of 5 d-1 was selected as the μmax,contrain (Table 1). The model was found to 267 

be rather insensitive to the selection of these constraining points (Supplemental Figure 15). 268 

 269 

iii. SBR Differential Equations 270 

The combination of growth parameter values resulting in persistence (i.e., non-zero steady-state 271 

concentrations) across the ecological range were determined with the following system of differential 272 

equations that describes the flow, biomass, and substrate concentrations within the SBR (Figure 1.a): 273 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑄𝑄𝑖𝑖𝑛𝑛 − 𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑖𝑖𝑐𝑐𝑑𝑑 𝑑𝑑𝑐𝑐𝑐𝑐𝑖𝑖𝑛𝑛 − 𝑄𝑄𝑚𝑚𝑖𝑖𝑚𝑚𝑐𝑐𝑑𝑑  𝑑𝑑𝑐𝑐𝑐𝑐𝑖𝑖𝑛𝑛        Eq. 2 274 
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𝑑𝑑𝑋𝑋𝑖𝑖
𝑑𝑑𝑑𝑑

= �−𝑋𝑋𝑖𝑖(𝑡𝑡) ∗ 𝑄𝑄𝑚𝑚𝑖𝑖𝑚𝑚𝑐𝑐𝑑𝑑 𝑑𝑑𝑐𝑐𝑐𝑐𝑖𝑖𝑛𝑛/𝑉𝑉(𝑡𝑡) + �𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖∗𝑆𝑆(𝑑𝑑)
𝐾𝐾𝑠𝑠+𝑆𝑆(𝑑𝑑)

− 𝑏𝑏𝑐𝑐,𝑖𝑖� ∗ 𝑋𝑋𝑖𝑖(𝑡𝑡)� �
𝑛𝑛
𝑖𝑖=1     Eq. 3 275 

𝑑𝑑𝑆𝑆
𝑑𝑑𝑑𝑑

= �𝑆𝑆𝑖𝑖𝑛𝑛 ∗
𝑄𝑄𝑖𝑖𝑖𝑖
𝑑𝑑(𝑑𝑑)

− (𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑖𝑖𝑐𝑐𝑑𝑑 𝑑𝑑𝑐𝑐𝑐𝑐𝑖𝑖𝑛𝑛 + 𝑄𝑄𝑚𝑚𝑖𝑖𝑚𝑚𝑐𝑐𝑑𝑑 𝑑𝑑𝑐𝑐𝑐𝑐𝑖𝑖𝑛𝑛) ∗ 𝑆𝑆(𝑡𝑡)/𝑉𝑉(𝑡𝑡) − ∑ �𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖∗𝑆𝑆(𝑑𝑑)
𝐾𝐾𝑠𝑠+𝑆𝑆(𝑑𝑑)

� ∗ 𝑋𝑋𝑖𝑖(𝑑𝑑)
𝑌𝑌

𝑛𝑛
𝑖𝑖=1 �  Eq. 4 276 

where the flowrates are triggered during their respective cycles (and are zero otherwise); the i subscript 277 

indicates parameters and biomass for the ith combination of growth parameters (ranging from 1 to n) that 278 

were modelled simultaneously; and all other parameters are defined in Table 1 and further described in 279 

Supplemental File 3. To ensure flow balance across the SBR cycle (Figure 1.a), the Qclarified drain is 280 

calculated to offset the Qin and Qmixed drain (outflow of suspended biomass): 281 

𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑖𝑖𝑐𝑐𝑑𝑑 𝑑𝑑𝑐𝑐𝑐𝑐𝑖𝑖𝑛𝑛 =  𝑄𝑄𝑖𝑖𝑖𝑖∗𝑑𝑑𝑖𝑖𝑖𝑖− 𝑄𝑄𝑚𝑚𝑖𝑖𝑚𝑚𝑒𝑒𝑚𝑚 𝑚𝑚𝑑𝑑𝑚𝑚𝑖𝑖𝑖𝑖∗𝑑𝑑𝑚𝑚𝑖𝑖𝑚𝑚𝑒𝑒𝑚𝑚 𝑚𝑚𝑑𝑑𝑚𝑚𝑖𝑖𝑖𝑖
𝑑𝑑𝑐𝑐𝑐𝑐𝑚𝑚𝑑𝑑𝑖𝑖𝑐𝑐𝑖𝑖𝑒𝑒𝑚𝑚 𝑚𝑚𝑑𝑑𝑚𝑚𝑖𝑖𝑖𝑖

      Eq. 5 282 

where all parameters are defined in Table 1. Notably, the MRT is determined as the full volume of the 283 

reactor divided by the total volume of suspended biomass removed (Qmixed drain*tmixed drain) per six cycles 284 

(one day). 285 

 286 

An iterative approach was used to calculate the μmax values resulting in persistence for nine be 287 

values distributed across the ecological range. A full solution line was then fit to these nine points (Figure 288 

1.b). This solution line was found to depend only on those parameters directly influencing μmax, be, and 289 

MRT and was insensitive to changes in other global parameters such as the Sin, Y, and Ks. All differential 290 

equations mentioned in this study were analyzed using deSolve51 v1.21, and all calculations were 291 

performed in R v3.5.1 (Supplemental File 3). 292 

 293 

iv. MRT-Diversity Model Alpha Diversity Calculation 294 

After determining the solution (Figure 1.b), the length of the line representing all combinations of 295 

μmax and be leading to survival within the reactor was then calculated: 296 

Growth Parameter Solution Length = �� 𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚,𝒎𝒎𝒎𝒎𝒎𝒎−𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚,𝒎𝒎𝒎𝒎𝒎𝒎

𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚,𝑒𝑒𝑐𝑐𝑒𝑒,𝒎𝒎𝒎𝒎𝒎𝒎−𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚,𝑒𝑒𝑐𝑐𝑒𝑒,𝒎𝒎𝒎𝒎𝒎𝒎
�
2

+ � 𝑏𝑏𝑒𝑒,𝒎𝒎𝒎𝒎𝒎𝒎−𝑏𝑏𝑒𝑒,𝒎𝒎𝒎𝒎𝒎𝒎

𝑏𝑏𝑒𝑒,𝑒𝑒𝑐𝑐𝑒𝑒,𝒎𝒎𝒎𝒎𝒎𝒎−𝑏𝑏𝑒𝑒,𝑒𝑒𝑐𝑐𝑒𝑒,𝒎𝒎𝒎𝒎𝒎𝒎
∗ Scaling Factor�

2
 Eq. 6 297 

where the Scaling Factor is set to 0.25 to represent a case when the μmax range contributes more to the 298 

length than the be (emphasizing the fact that be serves more to allow the coexistence of different μmax 299 
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values rather than contribute to diversity directly; see Supplemental File 3). The growth parameter 300 

solution length is utilized as a proxy for the richness of a community; this length will most likely be an 301 

underestimate of true richness as a result of binning organisms (or ESVs when comparing to 16S data) that 302 

display the identical combination of growth parameters. The Shannon diversity index was determined by 303 

numerically solving differential equations for the steady-state biomasses (Xi(steady-state)) when 304 

considering the number of distinct combinations of growth parameters within the community to be the 305 

length of the range multiplied by a constant value (n = 50; discretionarily set to achieve an integer value 306 

representative of community size and a timely computation of the differential equations). The 307 

instantaneous substrate utilization rate (ktheo) was calculated as the maximum substrate utilization rate 308 

determined at the beginning of one cycle.   309 
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Results and Discussion: 310 

Observed Taxonomic Richness and Diversity Increases with MRT 311 

The ESV richness increases monotonically across the MRT gradient for the active community 312 

members, i.e., the 16S rRNA (Spearman rank correlation r = 0.98 and 0.89 for TP1 and TP2, 313 

respectively), but displays a lower correlation to a monotonic trend for the present community members, 314 

i.e., the 16S rDNA (r = 0.81 and 0.77 for TP1 and TP2, respectively)(Figure 2.a & b). Additionally, the 315 

abundance weighted diversity metric, the Shannon diversity index, shows a decelerating increase in the 316 

rRNA transcripts which levels off above 5.1. Overall, the observed increase in the Shannon diversity value 317 

between 3 to 10 d (i.e., a mean±s.d. of 4.6±0.27 to 5.3±0.20, respectively) agrees with a previous study 318 

investigating lab-scale synthetic wastewater-treating membrane bioreactors (MBRs)52. Other studies 319 

utilizing synthetic wastewater indicated no substantial difference between the community diversity metrics 320 

at ~2 and 10 d MRT in a MBR system6,7, or a decrease in diversity from 3 to 8 d MRT in a SBR system53. 321 

These studies also employed other sequencing techniques such as denaturing gel gradient electrophoresis7 322 

and terminal restriction length polymorphism analysis53 that can affect the exact quantified values, but are 323 

not expected to affect the reported trends of stable or decreasing diversity metrics. By contrast, 324 

investigations of full-scale WWTPs reported a comparable increase in diversity metrics at longer 325 

MRT4,5,54, suggesting that real wastewater is required to consistently display a direct MRT-diversity 326 

relationship as also observed here. 327 

 328 

 Of the fifteen highlighted orders (Figure 2.c & d), six (Burkholderiales, Rhodocyclales, 329 

Myxococcales, Sphingobacteriales, Rhodobacteriales, and Pseudomonadales) were previously 330 

demonstrated to be commonly shared by a wide variety of activated sludge55,56. Across a set of 13 Danish 331 

WWTPs, genera of the Thiotrichales order were abundantly observed in only two WWTPs, highlighting 332 

the potential transient nature of this population in WWTPs56. At both time-points, the relative 16S rRNA 333 

transcript abundance of Burkholderiales decreases by nearly a factor of two with increasing MRT (from 334 

41.3±0.30% to 19.6±0.23% and 37.5±0.60% to 21.1±0.15% of the community for TP1 and TP2, 335 
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respectively) consistent with a previous study4, whereas Rhodocyclales (from 21.2±0.44% to 41.3±0.20% 336 

and 12.3±0.21% to 19.6±0.59%) and Myxococcales (from 0.11±0.30% to 12.2±0.38% and 0.14±0.01% to 337 

5.7±0.12%) show increasing abundances. Additionally, a low abundance subpopulation capable of 338 

oxidizing ammonia to nitrate, the Nitrosomonadales, established at longer MRT when nitrification was 339 

noted28 and expected57.  340 

 341 

The relative distribution of the orders are maintained in both the TP2 16S rRNA and rDNA 342 

profiles (Spearman r for the top 50 orders of 0.90, 0.88, 0.80, 0.74, 0.72, and 0.60 for 1, 3, 5, 7, 10, 15 d 343 

MRT, respectively). However, the profile in TP1 was substantially more variable (r = 0.27, 0.33, 0.47, 344 

0.47, 0.38, and 0.25, respectively). This divergence is attributed to the detection of unique orders 345 

(Caldilineales, Lactobacillales, Micrococcales) and to the over-abundance of members within the 346 

Thiotrichales order in the TP1 rDNA profile (Figure 2.c). This over-abundance suggests that the 347 

filamentous Thiotrichales in TP1 causes a negative selection event in those reactors in which the most 348 

dominant organism by biomass (rDNA) is not the most active or productive (rRNA)58. This more variable 349 

signal also results in the Nitrosomonadales order displaying a 10- to 100-fold lower rDNA than rRNA 350 

signal (Figure 2.c and d), obscuring the ability to detect the known MRT-dependent emergence of this 351 

organism and its causal relationship to nitrification59. Overall, the 16S results suggest that the expression 352 

of 16S rRNA is more reflective of activity than the detection of an organism (16S rDNA) in the activated 353 

sludge experiments, supporting previous findings in surveys of other aerobic systems60. 354 

 355 

MRT is a Driver of Modeled Taxonomic Richness and Diversity 356 

In the constructed MRT-diversity model, increasing the MRT expands the range of combinations 357 

of μmax and be values that lead to persistence (Figure 1.b; Supplemental Table 6). Strikingly, the increase in 358 

the range of growth parameters (Figure 3.a) strongly correlates with the 16S rRNA observed richness 359 

(Figure 2.a and b) with r-values of 0.98 and 0.89 for TP1 and TP2, respectively (Figure 3.a inset). In terms 360 

of previously developed theories of microbial ecology, reducing the community complexity into tradeoffs 361 
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between parameters that describe resource capture and represent survival during low-production (μmax and 362 

be, respectively; components of the Competition-Stress-Ruderal continuum61,62) recaptures the trend of 363 

increasing richness across the MRT range for the SBR. When utilizing a variable parameter that is 364 

independent of the substrate concentration (be), the maximum effect resulting from the difference in ability 365 

to withstand low-production occurs when no substrate is present, a critical component to capture in the 366 

dynamic model of SBRs. By comparison, when considering only variation in the parameters describing 367 

resource capture (μmax and Ks; components of the r/k-specialist model63; Supplemental Figure 14), the 368 

influence of both μmax and Ks diminishes as the substrate concentration approaches zero, challenging the 369 

applicability of the resource-capture-only framework in SBR systems with extended react phases. 370 

 371 

Although a range of growth parameters will persist (Figure 1.b), the organisms they represent will 372 

be present at various abundances at steady-state (Xi in Figure 1.c). The Shannon diversity for the SBR 373 

shows a decelerating increase with MRT (Figure 3.b), matching the 16S rRNA observed data (r = 0.97 and 374 

0.74 for TP1 and TP2, respectively (Figure 3.b inset)). An underlying assumption in this comparison is 375 

that the ratio of the biomass resulting from a given combination of growth parameters to the number of 376 

representative rRNA transcripts is constant; however, this ratio varies even at the gene copy per genome 377 

level64. Therefore, the general trend of the curve is informative of whether the MRT influences the 378 

diversity, but the magnitude of the shifts would be substantially affected by this rRNA-to-biomass ratio. 379 

 380 

 The substrate consumption rate of the entire activated sludge community is often monitored 381 

through respirogram bulk tests (i.e., biomass normalized maximal oxygen uptake rate (OUR) analyses)65 382 

and has been previously reported to slow with increasing MRT50,66, suggesting an adaptation of the 383 

community. Our model allows predicting the instantaneous substrate utilization rate (ktheo), and the 384 

previously published slowing trend is not observed from the initial default parameters (modelled ktheo of 385 

5.0 and 5.8 d-1 at 1 and 15 d, respectively). This disconnect likely stems from underlying assumptions of 386 

our model, most notably fixing constraining central growth parameters (μmax,constrain and be,constrain). 387 
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However, when using be,ecomax as be,constrain instead, the decreasing trend in the previously reported empirical 388 

values is successfully mirrored (ktheo of 4.8 and 4.1 d-1 at 1 and 15 d, respectively) while the diversity 389 

profiles are conserved. Therefore, ambiguity remains regarding the accurate placement of these 390 

controlling parameters as well as the ecological range parameter values.  391 

 392 

Overall, these observed and modelled results complement a previous study monitoring an 393 

activated sludge reactor for 313 days in a 30, 12, 3, 30 d MRT disturbance cycle, in which an increased 394 

diversity was noted for the higher MRT values4,67. In that study, two mechanisms were proposed that 395 

contribute to the higher richness and diversity: decreases in unconsumed resources (analogous to 396 

decreases in the S*
min in Eq. 1 or an increase in the length of the starvation phase in the SBR) and increases 397 

in niche space (represented by the range of growth parameters and assumed to represent the richness in the 398 

MRT-diversity model). Our model uses the MRT and growth parameters to represent these two 399 

mechanisms in separate equations and predicts that the richness increases as the availability of 400 

unconsumed resources decreases across the observed MRT range (Figure 3). Notably, the MRT-richness 401 

profile can display a non-monotonic trend at higher MRT or by placing the constraining growth 402 

parameters (μmax,constrain or be,constrain) close to the ecological limits. By contrast, the availability of 403 

unconsumed resources will consistently decrease with increasing MRT. Notably, observing a non-404 

monotonic MRT-richness relationship would suggest that niche space contributes more to diversity. In 405 

future studies, the potential for this non-monotonic profile should be tested by establishing reactors 406 

exceeding the maximum MRT observed here (Figure 2.a and b). Additionally, uncovering a transition 407 

from a monotonic to non-monotonic MRT-richness relationship would assist in testing the underlying 408 

assumptions of the model and more accurately estimating the ecological ranges and constraining growth 409 

parameters. 410 

 411 

Observed Functional Richness, but not Diversity, Increases with MRT 412 
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With increasing MRT, conceptually either an organism absent at lower MRT may occupy the 413 

additional growth parameter space or a shared microorganism across MRT expresses different functional 414 

enzymes. To test for shifts in the functional profile, the metatranscriptomes of the experimental 415 

communities were sequenced, annotated as EC numbers, and analyzed using alpha diversity indicators of 416 

the number of unique (richness) and evenness of the relative abundance (Shannon diversity index) of the 417 

EC sub-subclasses and numbers (Figure 4). Similar to what was noted in a previous study, the 16S rRNA 418 

taxonomic and EC number richness of both time-points display a strong correlation (r = 0.98 and 0.97 for 419 

the TP1 and TP2 samples, respectively)12 and a nearly monotonic increase with MRT in richness (Figure 420 

2.a and b; Figure 4). This relationship between the taxonomic and functional richness is not as consistently 421 

strong with the 16S rDNA (r = 0.81 and 0.94, respectively). These results again highlight that a measure 422 

more reflective of current activity within the cell (16S rRNA) links better with the overall functional 423 

profile (mRNA) than a survey of presence alone (16S rDNA). When considering the relative abundances 424 

of a given EC sub-subclass or number, the Shannon diversity displays a non-monotonic profile, 425 

contrasting the taxonomic profiles and the EC sub-subclass or number richness. This disconnect between 426 

taxonomic and functional diversity has been previously demonstrated in model wastewater reactors13, 427 

suggesting that this result represents a true signal beyond simple limitations with the 16S rRNA measure 428 

(e.g., abundance not always correlating with growth rate, inter-species differences in copy numbers per 429 

cell68, steep ecological gradients across the SBR cycle). However, the disconnect between the functional 430 

richness and Shannon diversity indicates that although the quantity of EC sub-subclasses or numbers 431 

increases across the gradient, specific categories increase in dominance at longer MRTs, offsetting the 432 

increased richness (Figure 4). 433 

 434 

The Relative Abundance Shifts of “Rare” Enzyme Classes Drive the Functional Diversity Profile 435 

Several overrepresented EC sub-subclasses in terms of observed abundance (Figure 5.a), e.g., the 436 

2.7.7 nucleotidyltransferase (containing 2.7.7.6 RNA-polymerase, RpoB) and 5.99.1 other-isomerase 437 

(containing 5.99.1.2 DNA topoisomerase) EC sub-subclass, decrease in their fractional share of the 438 
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metatranscriptome as the MRT increases (Figure 5.b). Simultaneously, the fractional share of sub-439 

subclasses that include oxidoreductases and nitrogen-processing related enzymes that are linked to the 440 

emergence of nitrification over the MRT gradient (e.g., nitrogenous oxidoreductase with [1.7.2] and 441 

without [1.7.99] cytochrome) increase (Figure 5.a and b). The over-abundance of nitrogen metabolism-442 

related gene transcripts has been previously noted in activated sludge even when nitrifiers are a minor 443 

fraction of the community69. Notably, these EC sub-subclasses and associated numbers that markedly 444 

increase in abundance over the MRT induced the non-monotonic functional diversity profile, indicating 445 

that substantially different abundances of mRNAs encoding for specific enzymes are likely required to 446 

achieve those growth parameters resulting in persistence. The discrepancy between the non-monotonic 447 

functional diversity profile of all EC numbers and the monotonic taxonomic diversity profile for a single 448 

targeted transcript (e.g., 16S-rRNA) results from enzymes displaying additional properties70 such as 449 

specific substrates affinities, product turnover rates71, and protein-to-transcript ratios72,73 that affect their 450 

relative fractional abundances.  451 

  452 

To compare the observed diversities within each EC sub-subclass (similar to the 16S-rRNA 453 

analysis), specific taxonomic richness and diversity values were calculated based on the putative genus-454 

level organism-origin annotation that each mRNA read is assigned (Figure 5.c and d, respectively). 455 

Focusing on the aforementioned 2.7.7 and 1.7.99 sub-subclasses to highlight categories demonstrated to 456 

be common and rare, respectively (Figure 5.c), the diversity profile of the common EC sub-subclass 2.7.7 457 

displays a positive relationship with that of the 16S rRNA (Figure 2; r = 0.89 and 0.59 for TP1 and TP2 458 

Shannon indices, respectively). In contrast, a divergent profile is seen for the taxonomic diversity of the 459 

rare 1.7.99 sub-subclass (r = -0.65 and -0.76 for TP1 and TP2, respectively), indicating that select 460 

organisms dominate the origin of the reads within this category at higher MRTs. Notably, reads from the 461 

nitrifying Nitrospira74 dominate the 1.7.99 sub-subclass. The nitrification rate intensifies across the MRT 462 

gradient, suggesting that Nitrospira expressed the proper bulk-growth parameters to persist and thrive 463 

within the community. The greater share of the overall reads transcribed resulting from a single, 464 
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nitrification-related organism contributed to the noted decrease in functional diversity of the overall 465 

community (Figure 4) . 466 

 467 

When further binning reads into Domain-level taxonomic origin, a substantial fraction of 468 

annotations originating from Eukaryotic organisms (Figure 5.e) were noted for certain EC sub-subclasses 469 

increasing in abundance over the MRT gradient (Figure 5.a). In activated sludge, increasing MRT over the 470 

studied range have been reported to promote a higher abundance of Protozoa75, organisms that are 471 

overlooked in bacterial-targeted taxonomic surveys of WWTPs. This signal in the mRNA data could 472 

confound the previous comparison between the taxonomic and functional diversity metrics. However, 473 

when reanalyzing the functional diversity metrics (Figure 4) for the Bacterial portion (Eukaryotic filtered), 474 

a similar profile is obtained (Supplemental Figure 19), supporting the detection of a true distinction 475 

between the taxonomic composition and the functional profile. 476 

 477 

Conclusions 478 

As demonstrated experimentally, increasing the MRT positively affects the taxonomic richness 479 

and diversity as well as functional richness of the monitored activated sludge community. To 480 

conceptualize these findings, a naïve model was constructed that utilized Monod-kinetics in a novel 481 

manner by considering wastewater as a single substrate and the community as a collection of growth 482 

parameter combinations. Combinations of μmax and be values were selected to represent the tradeoff 483 

between resource capture and survival during low production, reflecting considerations within the C-S-R 484 

description of microbial ecology. This MRT-diversity model predicted that the range of μmax and be values 485 

expands with increasing MRT for the studied system, suggesting a new, kinetic parameter-driven metric 486 

that correlates strikingly well with the observed taxonomic profile and the functional richness across the 487 

MRT gradient. For a new community member to occupy these opened growth parameter combinations 488 

and thereby increase the taxonomic richness, previously unobserved EC numbers are likely required 489 

because of the noted increases in functional richness. In contrast to the taxonomic abundance-weighted 490 
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diversity, the functional diversity displayed a non-monotonic trend over the MRT range. Whereas more 491 

EC sub-subclasses and numbers are detected at higher MRTs, their fractional share of the overall activity 492 

of the community varies depending on the expressed function. For example, rare sub-subclasses related to 493 

nitrification substantially increase in dominance at longer MRTs in this system. Although the complexity 494 

of the relationship between EC numbers is not successfully captured, the simplification of the community 495 

into combinations of μmax and be values appears to be a useful approximation for predicting changes in 496 

taxonomic richness and diversity as well as functional richness over a MRT gradient in this system. 497 

Because this study is the first to employ Monod-kinetics in this manner, future work should determine 498 

whether the approach and assumptions introduced here are valid when used to describe other systems, 499 

explore the concepts of the constraining growth-parameter combination and ecological boundary values, 500 

and subdivide influent resources into individual substrate types (e.g., nitrogen-containing compounds). 501 

 502 

Conflict of Interest: 503 

The authors declare no conflicts of interest. 504 

 505 

Acknowledgements: 506 

Data produced and analyzed in this paper were generated in collaboration with the Genetic 507 

Diversity Centre (GDC), ETH Zurich, Switzerland and the Genomics Facility at the University of Basel, 508 

Switzerland. We thank the operators and the staff of the WWTP ARA Niederglatt for providing activated 509 

sludge. We acknowledge financial support from the European Research Council under the European 510 

Union’s Seventh Framework Programme (ERC grant agreement no. 614768, PROduCTS). We also thank 511 

Dr. Paola Meynet for assistance in the preparation of the 16S control libraries. 512 

513 



22/28 
 

References: 514 
1. Curtis, T. P., Sloan, W. T., and Scannell, J. W. (2002). Estimating prokaryotic diversity and its limits. Proceedings of 515 

the National Academy of Sciences, 99(16), 10494-10499. 516 

2. Locey, K. J., and Lennon, J. T. (2016). Scaling laws predict global microbial diversity. Proceedings of the National 517 

Academy of Sciences, 113(21), 5970-5975. 518 

3. Antwis, R. E., Griffiths, S. M., Harrison, X. A., Aranega-Bou, P., Arce, A., Bettridge, A. S., et al. (2017). Fifty 519 

important research questions in microbial ecology. FEMS Microbiology Ecology, 93(5). 520 

4. Vuono, D. C., Benecke, J., Henkel, J., Navidi, W. C., Cath, T. Y., Munakata-Marr, J., et al. (2015). Disturbance and 521 

temporal partitioning of the activated sludge metacommunity. The ISME Journal, 9(2), 425-435. 522 

5. Meerburg, F. A., Vlaeminck, S. E., Roume, H., Seuntjens, D., Pieper, D. H., Jauregui, R., et al. (2016). High-rate 523 

activated sludge communities have a distinctly different structure compared to low-rate sludge communities, and are 524 

less sensitive towards environmental and operational variables. Water Research, 100, 137-145. 525 

6. Bagchi, S., Tellez, B. G., Rao, H. A., Lamendella, R., and Saikaly, P. E. (2015). Diversity and dynamics of dominant 526 

and rare bacterial taxa in replicate sequencing batch reactors operated under different solids retention time. Applied 527 

Microbiology and Biotechnology, 99(5), 2361-2370. 528 

7. Akarsubasi, A. T., Eyice, O., Miskin, I., Head, I. M., and Curtis, T. P. (2009). Effect of sludge age on the bacterial 529 

diversity of bench scale sequencing batch reactors. Environmental Science & Technology, 43(8), 2950-2956. 530 

8. Fang, H., Chen, Y., Huang, L., and He, G. (2017). Analysis of biofilm bacterial communities under different shear 531 

stresses using size-fractionated sediment. Scientific Reports, 7(1), 1299. 532 

9. Roager, H. M., Hansen, L. B., Bahl, M. I., Frandsen, H. L., Carvalho, V., Gøbel, R. J., et al. (2016). Colonic transit time 533 

is related to bacterial metabolism and mucosal turnover in the gut. Nature Microbiology, 1(9), 16093. 534 

10. Kreuzinger, N., Clara, M., Strenn, B., and Kroiss, H. (2004). Relevance of the sludge retention time (SRT) as design 535 

criteria for wastewater treatment plants for the removal of endocrine disruptors and pharmaceuticals from wastewater. 536 

Water Science and Technology, 50(5), 149-156. 537 

11. Falås, P., Andersen, H. R., Ledin, A., and la Cour Jansen, J. (2012). Impact of solid retention time and nitrification 538 

capacity on the ability of activated sludge to remove pharmaceuticals. Environmental Technology, 33(8), 865-872. 539 

12. Johnson, D. R., Lee, T. K., Park, J., Fenner, K., and Helbling, D. E. (2015). The functional and taxonomic richness of 540 

wastewater treatment plant microbial communities are associated with each other and with ambient nitrogen and carbon 541 

availability. Environmental Microbiology, 17(12), 4851-4860. 542 

13. Pholchan, M. K., Baptista, J. D. C., Davenport, R. J., Sloan, W. T., and Curtis, T. P. (2013). Microbial community 543 

assembly, theory and rare functions. Frontiers in Microbiology, 4. 544 



23/28 
 

14. Louca, S., Parfrey, L. W., and Doebeli, M. (2016). Decoupling function and taxonomy in the global ocean microbiome. 545 

Science, 353(6305), 1272-1277. 546 

15. Louca, S., Jacques, S. M., Pires, A. P., Leal, J. S., Srivastava, D. S., Parfrey, L. W., et al. (2017). High taxonomic 547 

variability despite stable functional structure across microbial communities. Nature Ecology & Evolution, 1(1), 0015. 548 

16. Frossard, A., Gerull, L., Mutz, M., and Gessner, M. O. (2012). Disconnect of microbial structure and function: enzyme 549 

activities and bacterial communities in nascent stream corridors. The ISME Journal, 6(3), 680-691. 550 

17. Purahong, W., Schloter, M., Pecyna, M. J., Kapturska, D., Däumlich, V., Mital, S., et al. (2014). Uncoupling of 551 

microbial community structure and function in decomposing litter across beech forest ecosystems in Central Europe. 552 

Scientific Reports, 4, 7014. 553 

18. Kivlin, S. N., and Hawkes, C. V. (2016). Temporal and spatial variation of soil bacteria richness, composition, and 554 

function in a neotropical rainforest. PloS One, 11(7), e0159131. 555 

19. Burke, C., Steinberg, P., Rusch, D., Kjelleberg, S., and Thomas, T. (2011). Bacterial community assembly based on 556 

functional genes rather than species. Proceedings of the National Academy of Sciences, 108(34), 14288-14293. 557 

20. Boon, E., Meehan, C. J., Whidden, C., Wong, D. H. J., Langille, M. G., and Beiko, R. G. (2014). Interactions in the 558 

microbiome: communities of organisms and communities of genes. FEMS Microbiology Reviews, 38(1), 90-118. 559 

21. Daims, H., Taylor, M. W., and Wagner, M. (2006). Wastewater treatment: a model system for microbial ecology. 560 

Trends in Biotechnology, 24(11), 483-489. 561 

22. Downing, A. L., and Hopwood, A. P. (1964). Some observations on the kinetics of nitrifying activated-sludge plants. 562 

Schweizerische Zeitschrift für Hydrologie, 26(2), 271-288. 563 

23. Lawrence, A. W., and McCarty, P. L. (1970). Unified basis for biological treatment design and operation. Journal of the 564 

Sanitary Engineering Division, 96(3), 757-778. 565 

24. Henze, M., Gujer, W., Mino, T., and Van Loosdrecht, M. C. M. (2000). Activated sludge models ASM1, ASM2, 566 

ASM2d and ASM3. IWA publishing. 567 

25. Degnan, P. H., and Ochman, H. (2012). Illumina-based analysis of microbial community diversity. The ISME Journal, 568 

6(1), 183-194. 569 

26. Sinclair, L., Osman, O.A., Bertilsson, S., and Eiler, A. (2015) Microbial community composition and diversity via 16S 570 

rRNA Gene Amplicons: Evaluating the Illumina Platform. PLoS One 10(2): e0116955. 571 

27. Knight, R., Vrbanac, A., Taylor, B.C., Aksenov, A., Callewaert, C., Debelius, J., et al. (2018) Best practices for 572 

analysing microbiomes. Nature Reviews Microbiology, 16, 410–422. 573 

28. van Bodegom, P. (2007). Microbial maintenance: a critical review on its quantification. Microbial Ecology, 53(4), 513-574 

523. 575 



24/28 
 

29. Achermann, S., Falas, P., Joss, A., Mansfeldt, C., Men, Y., Vogler, B., et al. (2018) Trends in micropollutant 576 

biotransformation along a solids retention time gradient. Environmental Science & Technology, 52(20),11601–11611 577 

30. Guo, F., Ju, F., Cai, L., and Zhang, T. (2013). Taxonomic precision of different hypervariable regions of 16S rRNA 578 

gene and annotation methods for functional bacterial groups in biological wastewater treatment. PloS One, 8(10), 579 

e76185. 580 

31. Andrews, S. (2010). FastQC: a quality control tool for high throughput sequence data. 581 

32. Schmieder, R., & Edwards, R. (2011). Quality control and preprocessing of metagenomic datasets. Bioinformatics, 582 

27(6), 863-864. 583 

33. Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26(19), 2460-2461. 584 

34. Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet, 17(1):10. 585 

35. McMurdie, P. J., and Holmes, S. (2013). phyloseq: an R package for reproducible interactive analysis and graphics of 586 

microbiome census data. PloS One, 8(4), e61217. 587 

36. Hill, M. O. (1973). Diversity and evenness: a unifying notation and its consequences. Ecology, 54(2), 427-432. 588 

37. Chao, A., Chiu, C. H., and Jost, L. (2010). Phylogenetic diversity measures based on Hill numbers. Philosophical 589 

Transactions of the Royal Society B – Biological Sciences, 365(1558), 3599-3609. 590 

38. Chao, A., Gotelli, N. J., Hsieh, T. C., Sander, E. L., Ma, K. H., Colwell, R. K., et al. (2014). Rarefaction and 591 

extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological 592 

Monographs, 84(1), 45-67. 593 

39. Bolger, A. M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. 594 

Bioinformatics, 30(15), 2114-2120. 595 

40. Kopylova, E., Noé, L., and Touzet, H. (2012). SortMeRNA: fast and accurate filtering of ribosomal RNAs in 596 

metatranscriptomic data. Bioinformatics, 28(24), 3211-3217. 597 

41. Buchfink, B., Xie, C., and Huson, D. H. (2015). Fast and sensitive protein alignment using DIAMOND. Nature 598 

Methods, 12(1), 59-60. 599 

42. Monod, J. (1949). The growth of bacterial cultures. Annual Reviews in Microbiology, 3(1), 371-394. 600 

43. Liu, G., and Wang, J. (2015). Modeling effects of DO and SRT on activated sludge decay and production. Water 601 

Research, 80, 169-178. 602 

44. Saikaly, P. E., and Oerther, D. B. (2004). Bacterial competition in activated sludge: theoretical analysis of varying 603 

solids retention times on diversity. Microbial Ecology, 48(2), 274-284. 604 

45. Hsu, S. B., Hubbell, S., and Waltman, P. (1977). A mathematical theory for single-nutrient competition in continuous 605 

cultures of micro-organisms. SIAM Journal on Applied Mathematics, 32(2), 366-383. 606 



25/28 
 

46. Saikaly, P. E., and Oerther, D. B. (2011). Diversity of dominant bacterial taxa in activated sludge promotes functional 607 

resistance following toxic shock loading. Microbial Ecology, 61(3), 557-567. 608 

47. Habermacher, J., Benetti, A. D., Derlon, N., and Morgenroth, E. (2015). The effect of different aeration conditions in 609 

activated sludge–side-stream system on sludge production, sludge degradation rates, active biomass and extracellular 610 

polymeric substances. Water Research, 85, 46-56. 611 

48. Martínez-García, C. G., Fall, C., and Olguín, M. T. (2016). Activated sludge mass reduction and biodegradability of the 612 

endogenous residues by digestion under different aerobic to anaerobic conditions: comparison and modeling. 613 

Bioresource Technology, 203, 32-41. 614 

49. Friedrich, M., and Takács, I. (2013). A new interpretation of endogenous respiration profiles for the evaluation of the 615 

endogenous decay rate of heterotrophic biomass in activated sludge. Water Research, 47(15), 5639-5646. 616 

50. Friedrich, M., Jimenez, J., Pruden, A., Miller, J. H., Metch, J., and Takács, I. (2017). Rethinking growth and decay 617 

kinetics in activated sludge–towards a new adaptive kinetics approach. Water Science and Technology, 75(3), 501-506. 618 

51. Soetaert, K. E. R., Petzoldt, T., and Setzer, R. W. (2010). Solving differential equations in R: package deSolve. Journal 619 

of Statistical Software, 33. 620 

52. Duan, L., Moreno-Andrade, I., Huang, C. L., Xia, S., and Hermanowicz, S. W. (2009). Effects of short solids retention 621 

time on microbial community in a membrane bioreactor. Bioresource Technology, 100(14), 3489-3496. 622 

53. Saikaly, P. E., Stroot, P. G., and Oerther, D. B. (2005). Use of 16S rRNA gene terminal restriction fragment analysis to 623 

assess the impact of solids retention time on the bacterial diversity of activated sludge. Applied and Environmental 624 

Microbiology, 71(10), 5814-5822. 625 

54. Gonzalez-Martinez, A., Rodriguez-Sanchez, A., Lotti, T., Garcia-Ruiz, M. J., Osorio, F., Gonzalez-Lopez, J., et al. 626 

(2016). Comparison of bacterial communities of conventional and A-stage activated sludge systems. Scientific Reports, 627 

6, 18786. 628 

55. Zhang, T., Shao, M. F., and Ye, L. (2011). 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 629 

sewage treatment plants. The ISME Journal, 6(6), 1137-1147. 630 

56. Saunders, A. M., Albertsen, M., Vollertsen, J., and Nielsen, P. H. (2016). The activated sludge ecosystem contains a 631 

core community of abundant organisms. The ISME Journal, 10(1), 11-20. 632 

57. Pollice, A., Tandoi, V., and Lestingi, C. (2002). Influence of aeration and sludge retention time on ammonium oxidation 633 

to nitrite and nitrate. Water Research, 36(10), 2541-2546. 634 

58. Jiang, L. (2007). Negative selection effects suppress relationships between bacterial diversity and ecosystem 635 

functioning. Ecology, 88(5), 1075-1085. 636 

59. Prosser, J. I., Head, I. M., and Stein, L. Y. (2014). The family Nitrosomonadaceae. In The Prokaryotes (pp. 901-918). 637 

Springer Berlin Heidelberg. 638 



26/28 
 

60. Vuono, D. C., Regnery, J., Li, D., Jones, Z. L., Holloway, R. W., and Drewes, J. E. (2016). rRNA gene expression of 639 

abundant and rare activated-sludge microorganisms and growth rate induced micropollutant removal. Environmental 640 

Science & Technology, 50(12), 6299-6309. 641 

61. Grime, J. P., & Pierce, S. (2012). The evolutionary strategies that shape ecosystems. John Wiley & Sons. 642 

62. Ho, A., Di Lonardo, D. P., & Bodelier, P. L. (2017). Revisiting life strategy concepts in environmental microbial 643 

ecology. FEMS Microbiology Ecology, 93(3). 644 

63. Andrews, J. H., & Harris, R. F. (1986). r-and K-selection and microbial ecology. In Advances in Microbial Ecology (pp. 645 

99-147). Springer, Boston, MA. 646 

64. Větrovský, T., and Baldrian, P. (2013). The variability of the 16S rRNA gene in bacterial genomes and its consequences 647 

for bacterial community analyses. PloS One, 8(2), e57923. 648 

65. Chandran, K., and Smets, B. F. (2001). Estimating biomass yield coefficients for autotrophic ammonia and nitrite 649 

oxidation from batch respirograms. Water Research, 35(13), 3153-3156. 650 

66. Friedrich, M., Takács, I., and Tränckner, J. (2015). Physiological adaptation of growth kinetics in activated sludge. 651 

Water Research, 85(15), 22-30. 652 

67. Vuono, D. C., Munakata‐Marr, J., Spear, J. R., and Drewes, J. E. (2016). Disturbance opens recruitment sites for 653 

bacterial colonization in activated sludge. Environmental Microbiology, 18(1), 87-99. 654 

68. Blazewicz, S. J., Barnard, R. L., Daly, R. A., and Firestone, M. K. (2013). Evaluating rRNA as an indicator of microbial 655 

activity in environmental communities: limitations and uses. The ISME Journal, 7(11), 2061-2068. 656 

69. Yu, K., and Zhang, T. (2012). Metagenomic and metatranscriptomic analysis of microbial community structure and 657 

gene expression of activated sludge. PloS One, 7(5), e38183. 658 

70. Prosser, J. I. (2015). Dispersing misconceptions and identifying opportunities for the use of omics' in soil microbial 659 

ecology. Nature Reviews Microbiology, 13(7), 439-446. 660 

71. Bar-Even, A., Noor, E., Savir, Y., Liebermeister, W., Davidi, D., Tawfik, D. S., et al. (2011). The moderately efficient 661 

enzyme: evolutionary and physicochemical trends shaping enzyme parameters. Biochemistry, 50(21), 4402-4410. 662 

72. de Sousa Abreu, R., Penalva, L. O., Marcotte, E. M., and Vogel, C. (2009). Global signatures of protein and mRNA 663 

expression levels. Molecular BioSystems, 5(12), 1512-1526. 664 

73. Vogel, C., and Marcotte, E. M. (2012). Insights into the regulation of protein abundance from proteomic and 665 

transcriptomic analyses. Nature Reviews Genetics, 13(4), 227-232. 666 

74. Daims, H., Lücker, S., and Wagner, M. (2016). A new perspective on microbes formerly known as nitrite-oxidizing 667 

bacteria. Trends in Microbiology, 24(9), 699-712. 668 

75. Salvado, H. (1994). Effect of mean cellular retention time on ciliated protozoan populations in urban wastewater 669 

treatment plants based on a proposed model. Water Research, 28(6), 1315-1321.  670 



27/28 
 

List of Figure Legends: 671 

 672 

Figure 1. (a) Schematic diagram of the SBR used when running the model. All parameters are detailed in 673 

Table 1. (b) Iteratively solved 9 point persistence curves for the maximum growth rate (µmax) and 674 

endogenous decay (be) selection range at 1, 3, 5, 7, 10, and 15 d MRT. Constraints are placed on the range 675 

of maximal growth rates (μmax eco; 0.2 to 9.8 d-1) and endogenous decay constants (be eco; 0.02 to 0.2 d-1), 676 

defining the ecological space available. The model uses controlling growth parameters (µmax constrain, be 677 

constrain) of 5 and 0.11 d-1, respectively. (c) Example of the steady-state output for the volume, substrate 678 

concentration, and two biomasses for the 1 d MRT.  679 
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 680 

Figure 2. (a,b) The calculated diversity metrics for the rarified B2-primer amplified 16S rRNA (black) 681 

and rDNA (red) data. (c,d) The abundance data distributed into taxonomic orders; the top 10 of the sums 682 

across each time-point  and source (cDNA or gDNA) were assigned a color, resulting in 15 orders being 683 

represented overall. A replicate analysis is presented for the alternate B1 primer in Supplemental Figure 684 

15.  685 
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 686 

 687 

Figure 3. Alpha diversity results from the MRT-diversity model explaining the relationship between the 688 

community composition and the MRT. (a) The range of growth parameters, a proxy for the richness, with 689 

increasing MRT. The inset displays the linear relationship between the model predicted and the observed 690 

richness data. (b) The calculated Shannon diversity index. The number of species types modelled in the 691 

Shannon diversity index calculations is set to 50 times the length of the range of growth parameters. The 692 

inset displays the linear relationship between the model predicted and the observed Shannon Index data. 693 
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 694 

Figure 4. The richness (a,c) and Shannon diversity (b,d) values for the reaction-type annotated RNA data 695 

binned into Enzyme Commission (EC) number (a,b) and sub-subclass (c,d) for TP1 (solid) and TP2 696 

(dashed) with a fractional abundance cutoff of 10-7. These diversity values were calculated for each reactor 697 

using the rtk v0.2.5.4 package in R v3.5.1 for (a,c) 10 bootstrap sub-selections of the annotations or (b,d) 698 

the full data. The lines trace the (a,c) bootstrap mean or (b,d) calculated value. 699 
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 700 

Figure 5. Summary of the sub-subclass Enzyme Commission (EC) numbers across the MRT gradient 701 

averaged between TP1 and TP2 samples that exceed 10,000 normalized reads in at least 1 reactor (n=99). 702 

The heatmaps are organized hierarchically according to a Euclidean distance and ward clustering of the 703 

scaled EC fraction across the MRT gradient. (a) Total relative abundance. (b) The 15/1d MRT abundance 704 

log ratio. The within EC sub-subclass taxonomic (c) richness and (d) Shannon diversity metrics were 705 

calculated based on the Uniport identifiers of the organism of origin at the genus level that provided the 706 

annotation to the reads. (e) The fraction of the total reads that were annotated per EC sub-subclass 707 

originating from a Eukaryotic sequence in the Uniprot database. Note: the red dashed boxes highlight the 708 

2.7.7 and 1.7.99 EC numbers. The full sub-subclass and top 50 EC numbers heatmaps for both TP1 and 709 

TP2 samples are presented in Supplemental Figure 17 and 18. 710 

 711 

  712 
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Table 1. Model nomenclature and parameter values 713 

714 
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