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Abstract 13 

Biotransformation of chemical pollutants is an ecological process requiring multifunctionality 14 
(multiple metabolic pathways) and, potentially, high biodiversity. Phytoplankton communities 15 
are highly diverse functionally and taxonomically, and co-occur with complex mixtures of 16 
organic pollutants in aquatic environments. Here, we investigated how phytoplankton species 17 
richness (SR) and class richness (CR) determine the biotransformation of a mixture of 37 18 
structurally diverse pollutants using laboratory experiments and analysis of high-resolution 19 
mass-spectrometry data. Laboratory phytoplankton communities were assembled from pure 20 
cultures by creating a gradient from one to five taxonomic groups, and 5 to 11 total species, in 21 
defined medium. The biotransformation of pollutants over 6 days and the total number of 22 
transformed chemicals increased with CR for 13 considerably transformed compounds. The 23 
total number of transformation products (TPs, up to 42) was positively affected by both CR and 24 
SR: CR had a positive effect on stable TPs found, SR led to more transient TPs. Our data 25 
indicate that both taxonomic and functional diversity are important for biotransformation of 26 
anthropogenic chemicals in phytoplankton and suggest that plankton biodiversity could play a 27 
role in the remediation of pollutant loads in aquatic ecosystems. 28 
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Introduction 30 

The environmental fate of anthropogenic chemical pollutants is of preeminent research interest 31 
as they can affect flora and fauna, and ultimately also human health. Surface waters receive 32 
inputs of organic pollutants from agricultural sources, e.g., pesticides, as well as from urban 33 
areas, e.g., pharmaceuticals and personal care products, which are not degraded in 34 
wastewater treatment plants. The fate of these micropollutants in aquatic ecosystems is 35 
governed by sorption to abiotic material, abiotic transformation, bioconcentration in organisms, 36 
and biotransformation. Biotransformation processes can lead to the complete degradation of a 37 
compound to CO2 (mineralization) or to the formation of transformation products (TPs). The 38 
latter can have properties (persistence, toxicity, sorption potential) distinct from their parent 39 
compounds, and the study of biotransformation is essential for understanding the 40 
environmental fate of micropollutants 1,2. 41 

Phytoplankton are primary producers at the basis of aquatic food-webs and have recently been 42 
studied as a potential driver of biotransformation processes. Thomas and Hand presented 43 
evidence that degradation of different micropollutants is influenced by the presence of 44 
phytoplankton 3 and showed, for example, that a number of cyanobacteria and green 45 
microalgae are competent in the degradation of the fungicide fludioxonil 4. Further, the 46 
biotransformation of selected estrogens, industrial chemicals, and herbicides by phytoplankton 47 
has been investigated in different studies 5–8. We recently elucidated the transformation of 24 48 
micropollutants by two cyanobacterial species and the green alga Chlamydomonas reinhardtii. 49 
For 10 micropollutants, we could observe 14 transformation products formed by oxidation, 50 
reduction, and conjugation reactions 9. Phytoplankton is however a highly diverse, polyphyletic 51 
group of organisms, spanning the domains of bacteria and eukaryotes, and within the latter, 52 
distributed across different phyla 10. Major groups are the Cyanobacteria (prokaryotic), 53 
Chlorophyta, Chrysophyta, Cryptophyta, and the Bacillariophyta (or diatoms; all eukaryotic). 54 
Whereas heterotrophic nutrition is observed in isolated cases for all listed groups, mixotrophy 55 
is common only in chrysophytes and cryptophytes 11. The community composition of 56 
phytoplankton is very dynamic and continuously driven by fluctuations in abiotic and biotic 57 
variables 12,13. 58 

Given the breadth of organisms that make up the phytoplankton, it is of immediate interest how 59 
biotransformation processes of micropollutants in aquatic ecosystems might depend on 60 
phytoplankton community diversity and composition. Higher biodiversity is generally agreed to 61 
improve efficiency and stability in performed community functions and can contribute to 62 
enhanced provision of services 14. The relationship between diversity and ecosystem 63 
functioning is however not trivial. Recent analyses suggest a saturating relationship, as at high 64 
diversity new species introduce increasingly redundant functions (but can contribute to 65 
stability) 14. When multiple functions or services are considered, the influence of biodiversity is 66 
larger, i.e., higher biodiversity is required to provide multiple functions or services 67 
simultaneously (multifunctionality) 14,15. In phytoplankton communities, species richness (SR) 68 
and trait diversity have been shown to improve the productivity and resource use efficiency in 69 
observational studies 16,17. Regarding micropollutant degradation,  a positive effect of bacterial 70 
diversity was observed in wastewater treatment plants on degradation rates of individual 71 
micropollutants, with the highest effect seen for multifunctionality (i.e., the composite 72 
biotransformation of multiple micropollutants) 18. 73 

Ecosystem effects are mediated by functions performed by assemblages of organisms and by 74 
the diversity of species and functional groups within; in many cases, the richness of broad 75 
taxonomic groups, like classes, which represents the diversity of phylogenetically conserved 76 
functional traits (e.g. metabolic pathways, pigments), is a more powerful measure than SR for 77 
diversity when attempting to predict ecosystem processes 17,19. Therefore, association of 78 



species into classes (e.g., green algae, cyanobacteria) allows accounting for important 79 
ecological, physiological and genetic differences among phytoplankton species 12,20,21. Here, 80 
we assume that phytoplankton classes as defined above differ in the physiological and genetic 81 
basis that reflect functional diversity for co-metabolic or metabolic biotransformation of 82 
micropollutants. Therefore, we hypothesize that both class richness (CR) and independently 83 
SR can influence biotransformation processes22.  84 

This paper aims to test these hypotheses. To this end, we conducted experiments to 85 
determine the biotransformation potential of assembled communities of different CR (1-5 86 
groups) and SR (5-11 species) on a mixture of 37 environmentally relevant micropollutants 87 
with a wide range of chemical structural features. Transformation of compounds as well as 88 
formation of TPs was assessed using liquid chromatography coupled to high-resolution mass 89 
spectrometry. 90 

 91 

Materials and Methods 92 

Chemical mixture 93 

A mixture of 37 compounds (16 pharmaceuticals, 10 fungicides, 6 insecticides, and 4 94 
additional chemicals) with a wide range of chemical structural features (therefore, potentially 95 
subject to different transformation pathways), molecular weight (120 to 792 Da), and 96 
hydrophobicity (log Kow -2.5 to 5.8) was prepared from stock solutions of analytical grade 97 
(95%+) reference standards (Table S3). Chemicals were obtained from Sigma-Aldrich, Fluka 98 
(now Sigma-Aldrich), Dr. Ehrenstorfer (now LGC Standards), TRC Canada, Lipomed AG, or 99 
Riedel-de Haën (see Table S3). In preliminary tests (see SI S1.1 and Figure S2), the mixture 100 
did not inhibit growth at a concentration of 2.5 µg/mL for one species per taxonomic class. 101 

Growth conditions  102 

Twenty-two cultures from five algal taxonomic classes were obtained from different sources 103 
(see Table S2) and were maintained in ca. 50 mL volume in Woods Hole Combo medium 104 
(WC), WC with added silicate (WC+Si) or WC with added heat-killed bacteria (WC+Bac; 105 
details see Supporting Information (SI)) in 100-mL Erlenmeyer flasks under a 8 h / 16 h 106 
day/night cycle in a temperature-controlled room at 20°C. Sub-culturing occurred under sterile 107 
conditions (laminar flow cabinet) every 1 to 4 weeks depending on growth. 108 

Experiment 109 

Twenty-two algal species, belonging to one of 5 taxonomic classes (Chlorophyceans CHL, 110 
Cyanobacteria CYA, Chrysophytes CHR, Cryptophytes CRY, and diatoms DIA) were 111 
precultured as described above. These species were arranged into 27 communities with 112 
different CR and SR: one experimental block with constant SR (SR 5) but varying CR (CR 1, 3 113 
or 5) and one experimental block with constant CR (all classes present, CR 5) and varying SR 114 
(SR 5, 8 or 11; see Table S1 for experimental design). Five communities per SR/CR 115 
combinations were drawn. The SR 5 / CR 5 combination was shared between the 116 
experimental blocks. Note that the 5 communities for the special case SR 5 / CR 1 consisted in 117 
all the available species for the respective taxonomic group. While a number of cultures were 118 
examined, 5 species that grew in the selected medium could not be found for all classes. 119 
Therefore, only 3 species for CHR and 4 species for CRY could be used. In addition, a 120 
selection of SR 3 was performed for the classes CHL and CYA. The random selections were 121 
adjusted such that all taxonomic groups were evenly represented in SR 5 / CR 3 experiments 122 



and such that overall species representation was approximately even. All selections are listed 123 
in Table S4. 124 

One week before the experiment, an aliquot of each species was diluted with fresh medium 125 
and incubated in an incubation shaker (Multitron II, Infors HT) at 20°C, 90 rpm, and 126 
approximately 100 µEinstein light irradiation from fluorescent tubes. The fluorescent tubes 127 
were shielded by UV protection tubes (METOLIGHT ASR-UV-400-60-T8, Asmetec), and UV 128 
protection foil (METOLIGHT SFC-10, Asmetec) was used to cover the shaker window, to 129 
reduce possible photodegradation of chemicals by UV light during the subsequent experiment. 130 

Before the experiment, the biovolume of each strain was determined from flow cytometry 131 
measurements of single cultures (see SI) using a formula for biovolume estimation from Total 132 
Forward Scattering per particle 23,24 . For each selection, volumes of different species were 133 
calculated such that the total biovolume of all species combined was constant (3.3 × 105 µg/L). 134 
Species evenness was not necessarily constant, since not all species were available in the 135 
same density; in isolated cases, the total biovolume could not be attained from the present 136 
culture densities. Biovolumes for each culture are listed in Table S5. For each selection, the 137 
specified volumes of each species were combined into a sterilized 20-mL glass vial and 138 
adjusted with WC+0.5Si medium to a total volume of 6 mL. Additionally, the 5 “CR 1/SR 5” 139 
selections were prepared in duplicate for use as chemical-negative controls (see below). In 140 
addition, two bacterial control selections were prepared: a constant volume of all CHL and 141 
CYA species except Synechococus (9 total, BAC 1) and all CHR, CRY, and DIA species (12 142 
total, BAC 2) was pooled and filtered through a 1 µm track-etched polycarbonate filter 143 
(Whatman Nuclepore, cat. no. 111110, Sigma-Aldrich). The filtrate, which contained only 144 
particles <1 µm, represented the bacterial contaminations of all species. Because of their small 145 
size, Synechococcus was excluded from this control mixture. The filtrate was collected and 146 
adjusted with WC+0.5Si to 6 mL. Two medium controls of WC+0.5Si were also prepared. This 147 
resulted in 36 total samples (5x5 + 2 selections, 5 chemical-negative controls, 2 bacterial 148 
controls, 2 medium controls.) The vials were covered loosely with a plastic cover and 149 
incubated as above. 150 

After 1 day of acclimation, 100 µL of spike solution (150 µg/L per compound in 7.5 % EtOH / 151 
H2O) was added to each vial except the chemical-negative controls to a final concentration of 152 
2.5 µg/L for each compound. To the chemical-negative controls, 100 µL 7.5% EtOH in H2O 153 
was added. Immediately, samples were withdrawn for chemical analysis and growth 154 
determination: 200 µL were sampled into a 96-well plate and the optical density at 750 nm 155 
(OD750) was determined (Cytation 5, Biotek). 550 µL were diluted 1:1 with MeOH in 2 mL 156 
HPLC vials, mixed well, and incubated in an ultrasonic bath for 10 minutes at 37°C. 157 
Subsequently, 350 µL were transferred into flat-bottom glass inserts (SUPELCO, cat. no. 158 
29441-U, Sigma-Aldrich) in Eppendorf tubes and centrifuged for 4 min at 9000 rpm. The 159 
supernatant was recovered into a 2 mL HPLC vial and stored at -20°C until analysis. After the 160 
initial (t0) sampling, the experimental vials were incubated as above. After 1, 2, 4, and 6 days, 161 
samples for chemical analysis and growth determination were taken as described above. The 162 
entire experiment was repeated after two weeks for replication, and both experiments were 163 
analyzed in common. Additionally, a sample was taken at 4 days (first replicate experiment) 164 
and 6 days (second replicate experiment) for bacterial counting by flow cytometry. 500 µL were 165 
sampled into a 2 mL HPLC vial, and fixed with 0.01% paraformaldehyde and 0.1% 166 
glutaraldehyde. These samples were stored at 4°C until measurement. 167 

Chemical analysis 168 

Compound concentrations were determined using online solid phase extraction coupled to LC-169 
HRMS based on a previously published method 9. Briefly: 150 µL of supernatant sample was 170 



diluted to 20 mL with nanopure water and fortified with internal standard (IS) solution (absolute 171 
quantity 187.5 pg per IS compound per sample). The 20 mL sample was enriched on a custom 172 
multilayer online SPE cartridge (see SI) and eluted with MeOH / 0.1% formic acid (FA) onto the 173 
analytical column (Atlantis T3, 3 µm, 150 mm) after predilution with H2O / 0.1% FA. 174 
Chromatography was performed with a 13.3-95% MeOH / 0.1% FA in H2O / 0.1% FA gradient 175 
over 32 min. A quadrupole-Orbitrap mass spectrometer (Q-Exactive, Thermo Scientific) with a 176 
heated-electrospray source was used for detection. Measurements were performed in MS1 177 
and data-independent MS2 in polarity switching mode. Analytes were quantified using the 178 
internal standard method with TraceFinder EFS (version 3.2.368.22, Thermo Scientific). 179 
Details are listed in the SI. The raw calculated amounts were exported in csv format. 180 

Transformation product screening 181 

For 13 compounds with quantifiable biotransformation a list of potential TPs was generated. 182 
Using the open-source workflow RMassScreening (https://github.org/meowcat/ 183 
RMassScreening), the sample time series were screened for potential TPs occurring in culture 184 
samples, not in bacterial controls, chemical-negative controls, or the t0 samples. Details are 185 
listed in the SI. 186 

Data evaluation and transformation assessment 187 

All data processing and statistical evaluation was performed in R. Three compounds were 188 
persistent in all samples (thiamethoxam, hydrochlorothiazide, sucralose), and all 189 
concentrations were divided by the mean of these compounds to correct for evaporation in the 190 
samples, sampling inaccuracies, etc. This resulted in a time series for 37 compounds in 72 191 
experiments. Values for two missing samples (out of 288 total) were imputed from the 192 
preceding time point. Exemplar time series plots are shown in Fig. S3. 193 

For each compound, two measures of the transformation rate were fitted to each time series 194 
(transformation integral %deg and transformation rate k). The transformation integral %deg 195 
was determined as the area under the curve of the relative amount of compound removed 196 
since the start of the experiment: 197 

%deg 	
1

	6 	
	

	

 198 

as described in SI S1.3 and illustrated in Fig. S1. This resulted in a value roughly in the [0,1] 199 
range where 0 means no transformation and 1 means total transformation. The transformation 200 
rate k (in d-1) was determined by nonlinear fitting of the equation 	 , where C0 was set 201 
as the mean of all t0 concentrations for the compound. k is a value roughly in the [0,infinity] 202 
range where 0 means no transformation (and 1 corresponds to one natural logarithm unit 203 
attenuation per day). Not all compounds showed transformation trends that qualitatively fit first-204 
order kinetics, likely because of community dynamics effects; notwithstanding, the obtained 205 
values for k qualitatively appear to describe the extent and speed of transformation well. 206 

In Fig. S4, %deg and k corresponded well for all compounds, and the relationship was linear 207 
except for rare samples for which transformation integrals were near 1, since they cannot 208 
capture differences in extremely fast transformation processes. (e.g., for kresoxim-methyl). For 209 
further analysis, compounds were classified as “transforming” when they showed a maximum 210 
%deg of 0.2 and above, and significant number of samples with transformation stronger than 211 
the bacterial control (see SI). The bacterial control was preferred over medium control since it 212 
reflects sample conditions closer; in addition, medium controls without biomass appeared 213 
susceptible to abiotic transformation, possibly through indirect photolysis.  214 



OD750 minus background was used as a proxy to correct for biomass effects. All %deg and k 215 
values were divided by the biomass integral for each sample, computed from OD750 in analogy 216 
to %deg (see SI). For each compound, the corrected rates were centered to zero mean and 217 
scaled to unit standard deviation to examine diversity effects on each compound equally, 218 
independent of the total average transformation rate of the compound. 219 

Statistical analysis 220 

The number of transformed compounds (#TC) was computed for each sample. For #TC 221 
determination, biomass-corrected %deg or k were scaled to a maximum of 1, where 0 was the 222 
maximal transformation rate observed in a control sample and 1 the maximal overall 223 
transformation rate. For each sample, the number of substances exceeding a cutoff relative to 224 
the maximal transformation rate were counted. 225 

The micropollutant multifunctionality (MPMF) was computed as proposed by Johnson et al. 18. 226 
For each compound, transformation rates were centered and scaled to a mean of zero and a 227 
standard deviation of one. For each sample, the normalized transformation rates for all 228 
compounds were averaged. 229 

The influence of CR and SR on individual compound transformation, #TC, MPMF, or 230 
biotransformation products observed was determined with a one-sided Pearson correlation test 231 
of CR or SR, respectively, to the examined value.  232 

For visualization of compound correlations, the Pearson correlation matrix of k or %deg values 233 
was ordered by hierarchical clustering using Euclidean distances and complete cluster linkage. 234 

Results and Discussion 235 

Overall extent of transformation 236 

Of the 37 tested compounds, 13 showed measureable transformation in polyculture samples: 237 
atenolol, azoxystrobin, benzotriazole, carbendazim, climbazole, cyprodinil, kresoxim-methyl, 238 
mefenamic acid, metoprolol, tebuconazole, venlafaxine, fipronil and fludioxonil (see Table S8). 239 
Transformation integrals for these compounds ranged from partial (%deg 0.2, or k=0.06 d-1 for 240 
venlafaxine) to complete (%deg 1.09, or k=1.37 d-1 for atenolol). From the remaining 241 
compounds, sulfamethoxazole also showed fast transformation in a number of samples, but 242 
was degraded in one bacterial control (no phytoplankton, BAC 2) for both experimental 243 
replicates and therefore discarded from further evaluation.  244 

Thirteen compounds were stable, i.e., were not transformed in any sample, and one 245 
(methoxyfenozide) degraded only in medium controls (no phytoplankton or bacteria), possibly 246 
by indirect photolysis. For the remaining 9 compounds, quantification was inaccurate because 247 
of interferences or too low concentrations; higher concentrations were not used to avoid 248 
toxicity. These compounds were not further evaluated, and only a tentative classification of the 249 
transformation behaviour was given. Details for all 37 compounds are shown in Table S8.  250 

Influence of class and species richness on single compound transformation 251 

In Fig. 1, the biomass corrected and scaled biotransformation integrals (%deg, see Methods) 252 
are shown separated by CR and SR for each of the 13 compounds with quantifiable 253 
biotransformation. On top, the Pearson correlation coefficients are shown for each compound 254 
for %deg against CR in all SR≤5 experiments (influence of CR, n=34 for each compound), and 255 
against SR in all CR=5 experiments (influence of SR, n=30 for each compound). The overall 256 
effect is given by the distribution of CR and SR effects on each compound (n=13). Fig. S5 257 
shows the identical metrics calculated on the transformation rate k.  258 



As a general trend, biodiversity had a positive influence on biotransformation (Fig. 1). The 259 
influence of CR is significant for both %deg and k (%deg: p < 0.001; k: p = 0.015, n=13), 260 
whereas the SR effect is not significant for either measure (%deg: p = 0.25, k: p = 0.35, n=13). 261 
It is apparent that different compounds show different trends in their transformation patterns. 262 
For example, the transformation of benzotriazole and climbazole depends strongly on the CR 263 
but not on SR; whereas for azoxystrobin, imidacloprid, or kresoxim-methyl, transformation is 264 
more strongly related to SR and hardly affected by CR. For all compounds except atenolol, 265 
either CR, SR, or both effects were positive. If only statistically significant slopes (p < 0.05, 266 
one-sided Pearson correlation test) for each compound are considered, then 4 positive CR 267 
effects are observed for %deg (3 positive effects for k) and no significant SR effect is found.  268 

The same analysis was conducted without biomass correction. For this case, the CR effect is 269 
significant only for %deg (p=0.04) but not for k (p=0.27, both n=13). This is because of a 270 
specific CR=1 experiment (CHR class), which exhibited fast growth and concomitantly fast 271 
transformation of multiple compounds (carbendazim, azoxystrobin, cyprodinil, kresoxim-272 
methyl), reducing the net CR effect as a result. As expected, a model using robust linear 273 
regression excludes this effect and gives a stable relationship (p=0.009 for %deg, 0.03 for k, 274 
n=13.)  275 

Influence of class and species richness on overall compound transformation 276 

To complement these results, the biotransformation potential of communities was also 277 
assessed as the number of transformed compounds (#TC). The cutoff value for compound 278 
transformation was determined to maximize the range of #TC values over the cultures. We 279 
calculated micropollutant multifunctionality (MPMF) using centered, scaled rates of change for 280 
all compounds that were averaged per experiment, such that the resulting average represents 281 
a normalized relative biotransformation potential for each community, as suggested by 282 
Johnson et al.18. For both #TC and MPMF, significantly positive effects of CR and non-283 
significant effects of SR were found when analyzed with either transformation integrals (Fig. 2) 284 
or rates (Fig. S6). 285 

This suggests that the overall transformation potential of a phytoplankton community is mainly 286 
dependent on the number of taxonomic classes that can potentially be active; whereas once all 287 
taxonomic groups are present, additional species have a small effect. This would correspond 288 
to what is expected when the metabolic / genetic basis for biotransformation are similar within 289 
taxonomic groups. In this case, the diversity of enzymes potentially active in transformation is, 290 
as a first approximation, determined by the identity or total number of taxonomic classes 291 
present.  292 

Further analyses were conducted to verify that the observed effects of CR, both for single 293 
compounds and overall transformation, are indeed caused by overall diversity rather than a 294 
single taxonomic class (sampling effect; SI S2.5, Tables S9-11). In summary, it was found that 295 
for some compounds individual taxonomic classes were significantly important, but that no 296 
single group dominated the total community effect. Notably, diatoms presence showed only 297 
negative effects, possibly due to slow growth of these strains in the communities.  298 

Finally, to verify that bacterial growth did not influence the results, bacterial counts were 299 
assessed after 6 days (first experiment) or 4 days (second experiment) using staining and flow 300 
cytometry. All corresponding gated samples are shown in Figure S10. The results showed that 301 
bacterial growth was minor; in fact, most counts in the gate corresponding to bacteria can be 302 
attributed to cyanobacteria that are not clearly separated from bacteria but have their center 303 
outside the counted gate. From this, we conclude that bacterial growth was not a driver behind 304 
biotransformation in the experiment. 305 

  306 



 307 

Figure 1. Top left: Distribution of class richness (CR) effect and species richness (SR) effect 308 
slopes for all compounds for %deg values. Red line indicates the zero effect line. Top right and 309 
below: Distribution of %deg values, for each compound, separated by CR and SR, and 310 
Pearson correlation coefficients for CR and SR effects (top right, illustrated example for 311 
azoxystrobin). On top Pearson correlation coefficient for CR and SR effects, respectively. *: 312 
p<0.05; **: p<0.01; ***: p<0.001. For CR=1, colors indicate the class: green, chlorophytes; 313 
blue, cyanobacteria; golden, chrysophytes; brown, diatoms; grey, cryptomonads. Boxplots 314 
represent median and first/third quartile (hinges) and the most extreme data points no more 315 
than 1.5x the interquartile range from the box (whiskers).  316 
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Figure 2. Influence of CR and SR on micropollutant multifunctionality (MPMF, left) and number 321 
of transformed compounds (#TC, right). On top Pearson correlation coefficient for CR and SR 322 
effects, respectively. *: p<0.05; **: p<0.01; ***: p<0.001. Colors for taxonomic groups, and 323 
boxplot margins are as specified in Fig. 1. 324 
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Transformation patterns of compounds 327 

Given that the biotransformation of each compound was influenced by different classes, we 328 
further inquired whether there are groups of similarly behaving compounds, whose 329 
transformation is performed by similar groups of organisms. Heat maps (Fig. 3, Fig. S7) 330 
visualize the correlation matrix of all %deg and k values, respectively, across all selections by 331 
compounds, ordered by hierarchical clustering. For each compound, the effects of CR and SR, 332 
and of individual taxonomic classes presence/absence are also shown, to identify common 333 
factors driving the transformation behavior. Considering either k or %deg, three main groups 334 
are apparent: The two strobilurin fungicides (kresoxim-methyl and azoxystrobin) and 335 
carbendazim fall into group 1, venlafaxine and metoprolol, both rather polar with larger 336 
alipathic moieties, build group 2, and a larger cluster with multiple compounds with nitrogen 337 
heterocycles (climbazole, tebuconazole, benzotriazole, fipronil, mefenamic acid, and 338 
fludioxonil) belong to group 3. Atenolol shows weak correlation to any other compound. 339 
Cyprodinil is assigned to group 3, but also shows similarity to group 1. Overall, strongly 340 
correlated groups are noted, which are often associated with specific chemical moieties, but 341 
little apparent anticorrelation, suggesting that no evident tradeoffs exist between 342 
transformations of different compounds. 343 

Fig. 3 (bottom) shows the compound groups with chemical structures and associated CR, SR, 344 
and composition effects. Group 1 is characterized by positive (though non-significant) effects 345 
of SR, positive effects of CHR, and negative effects of CRY. Group 2 is associated with 346 
positive CR effects and negative SR effects, as well as positive CHR and negative CRY 347 
effects. For the broad group 3, a CR effect can be observed best since both CR and multiple 348 
individual classes show a positive influence. Whereas these interpretations have anecdotal 349 
character, they suggest that transformation mechanisms for different structural features might 350 
be unequally common, and differently distributed within algal classes. 351 

Influence of taxonomic group and species richness on transformation products 352 

TPs observed for micropollutants reflect metabolic pathways active in their respective 353 
community, but their relationship with community diversity is non-trivial. On one hand, a higher 354 
richness suggests the presence of more transformation pathways, which should lead to a 355 
higher variety of observed TPs. On the other hand, high richness can also lead to first-order 356 
TPs being (quickly) further transformed into structurally more distant, very small or polar TPs, 357 
or even mineralized. This would lead to less apparent/observable TPs (in particular first-358 
generation TPs) detectable with our LC-HRMS analysis. To shed light on this relationship, the 359 
entire dataset was screened for masses of >1000 putative TPs of selected compounds for 360 
which notable transformation in the assembled communities was observed. The search was 361 
limited to expected first-generation TPs and extended to later generations of observed first-362 
generation products (see SI). Whereas the identified chemical features are reasonably likely to 363 
be TPs, detailed structure elucidation and confirmation was outside the scope of this study. 364 
Forty two TPs were observed in total. Thereof, 15 were attributed to the parent fludioxonil, 12 365 
to metoprolol, and 5 to cyprodinil, whereas 1 to 3 TPs could be found for the remaining 366 
compounds. The observed atenolol acid is a well-known TP of both atenolol and metoprolol. 367 
To facilitate analysis, it was attributed to atenolol alone. No TPs were observed for 368 
benzotriazole, climbazole and venlafaxine. 369 

 370 

  371 



 372 

 373 

 374 

Figure 3. Top left: Hierachical clustering of Pearson correlation coefficients between 375 
compound transformation integrals (%deg) across all samples. Blue, positive correlation; 376 
white, no correlation; yellow, negative correlation. Column names are the compound name 377 
abbreviations as specified in rows. Top right: Effect of CR and SR (as from Fig. 1), and effect 378 
of presence/absence of individual taxonomic groups in CR=1 and CR=3 samples, on %deg. 379 
Green, positive effect; white, no effect; red, negative effect. *: p <0.05; **: p<0.01; ***: p<0.001. 380 
Bottom: Compounds as grouped by hierarchical clustering. 381 
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For each TP and experimental sample, the integral of peak area (total peak area) under the 383 
linearly interpolated time trend C(t) was calculated and corrected by biomass. Correlation 384 
coefficients for CR and SR influence were then calculated as above; the presence of the TPs 385 
was also checked in bacterial controls. Individually analyzed, most TPs show uncharacteristic 386 
behavior, since they appear only in certain samples (Fig. S9). However, for selected TPs, a 387 
clear trend can be observed, e.g. three putative fludioxonil TPs, four putative metoprolol TPs, 388 
and one mefenamic acid TP show a significant positive correlation with increasing CR.  389 

When considering the entirety of TPs, a count of observed different TPs per sample shows a 390 
significant positive slope for CR and SR and a net overall positive effect (Fig. 4). TPs were 391 
then separated into “transient” and “stable”: TPs were denoted “transient” when their final peak 392 
area was <50% of their maximal peak area, indicating that they are being further transformed 393 
to another product. Notably, the count of stable TPs shows a significant positive slope for CR 394 
and no effect for SR, whereas the count of transient TPs shows no effect for CR and a 395 
significant positive slope for SR (Fig. 4). 396 

 397 

 398 

Figure 4. Number of observed transformation products dependent on CR and SR. Left, all 399 
TPs; middle, transient TPs (see text); right, stable TPs (see text). BAC, bacterial control. On 400 
top, Pearson correlation coefficient for CR and SR effects, respectively (n=34 and n=30 for CR 401 
and SR effect, respectively.) *: p<0.05; **: p<0.01; ***: p<0.001. Colors for classes, and boxplot 402 
margins are as specified in Fig. 1. 403 

 404 

The results for stable TPs reflect the general findings above and are expected in light of the 405 
observed positive relationship between CR and number of compounds transformed (#TC, Fig. 406 
2). By contrast, the positive effect of SR on transient TPs unravel novel results that were 407 
hidden in the parent transformation rate analysis. The increased number of transient TPs 408 
represents additional biotransformation mechanisms, leading to further modification of TPs, or 409 
formation of the same final TP via different intermediates. These additional biotransformation 410 
pathways do not result in enhanced overall transformation of the studied compounds, but 411 
instead could contribute to the transformation of other compounds beyond those investigated 412 
in this study.  413 

In summary, our data support the hypothesis that increased biodiversity leads to more 414 
observable TPs. By contrast, a general trend towards “further biotransformation” (i.e., a shift 415 
towards structurally distant or highly polar transformation products not captured by screening, 416 
or mineralization), which should result in a negative influence of biodiversity on the number of 417 
stable TPs, is not supported by the data. However, trends matching “further biotransformation” 418 
can be observed for individual compounds including mefenamic acid and cyprodinil (see SI, 419 
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Fig. S8). These examples show that the consequences of phytoplankton biodiversity for 420 
micropollutants transformation can be more complex than just additive effects, and reinforce 421 
the need for additional future studies 14.  422 

Environmental Significance 423 

To the best of our knowledge this study reports the first evidence for phytoplankton biodiversity 424 
and composition effects on micropollutant biotransformation (37 compounds). Our work 425 
highlights the need to address the effects of biodiversity on ecosystem processes, such as the 426 
degradation of pollutants, at a comprehensive level: a study on a single compound alone 427 
would not have provided the same detailed and convincing data as reported here. In this study, 428 
results were facilitated by modern high-resolution mass spectrometry, which can be used to 429 
quantify the transformation of a large number of compounds in parallel, and further allowed to 430 
investigate TP formation at the community-level. 431 

In nature, the effects of phytoplankton community composition and richness on micropollutant 432 
biotransformation will be dependent on the complex interaction between these organisms and 433 
their fluctuating environment. For example, phytoplankton taxonomic groups have different 434 
abiotic and biotic environmental preferences and community composition follows 435 
environmental gradients over time and space (e.g., seasonal succession, trophic state of the 436 
aquatic ecosystem) 12,13. Our results suggest that meso-oligotrophic environments, generally 437 
characterized by high functional and taxonomic diversity 12,25, will perform better than eutrophic 438 
ecosystems in biotransforming micropollutants. Biotransformation can additionally be 439 
influenced by the total biomass, which peaks in summertime and in eutrophic ecosystems 26. 440 
These instances, of which an example are cyanobacterial blooms, do not coincide with a high 441 
biodiversity of the planktonic community 12,13.  442 

All the above factors influence the importance of phytoplankton in relation to other 443 
environmental fate processes of micropollutants. Importantly, the present work is concerned 444 
with the contribution of phytoplankton alone. In natural systems, phytoplankton communities 445 
occur in a complex environment, where biodegradation by heterotrophic bacteria is often the 446 
dominant process. Total biotransformation may be driven by bacterial abundance and 447 
diversity, and phytoplankton might only make a smaller contribution. In addition, abiotic 448 
processes such as photodegradation contribute to the fate of various chemicals. Therefore, 449 
experiments in more complex systems, such as mesocosm or field studies, are required to 450 
understand the relevance of phytoplankton and its diversity in micropollutant fate.  451 
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