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Abstract Relatively smallfluctuations in the surface energybalance andevapotranspiration in semiarid and
arid regions can be indicative of significant changes to ecosystem health. Therefore, it is imperative to have
approaches for monitoring surface fluxes in these regions. The remote sensing-based two-source energy
balance (TSEB) model is a suitable method for flux estimation over sparsely vegetated semiarid and arid
landscapes since it explicitly considers surface energy flux contributions from soil and vegetation. However,
previous studies indicate that TSEB generally underestimates sensible heat flux (H) and hence overestimates
latent heat flux (LE) or evapotranspiration for these regions unless soil resistance coefficients are modified
based on additional ground information. In this study, TSEB is applied over semiarid and arid regions on three
continents using the original soil resistance formulation with modified coefficients and a recently developed
physically based soil resistance formulation. Model sensitivity analysis demonstrates the high sensitivity of
TSEB with original soil resistance formulation to soil resistance coefficients, while TSEB with the new soil
resistance formulation has relatively low sensitivity to uncertainties in all coefficients. The performance of TSEB
using different soil resistance formulations is evaluated by comparing modeled H against eddy covariance
measurements in six semiarid and arid study sites and ranking the error statistics. Our results indicate that
incorporating the new soil resistance formulation into TSEB would enhance its utility in flux estimation over
heterogeneous landscapes by obviating its reliance on semiempirical coefficients and thus provide more
robust fluxes over sparsely vegetated regions without model calibration and/or parameter tuning.

1. Introduction

Semiarid and arid regions occupy approximately 25% of Earth’s land surface. These regions are characterized
by limited water resources, sparse vegetation, and fragile ecosystems (Fensholt et al., 2012). In these regions,
more than 90% of annual rainfall returns to the atmosphere as evapotranspiration (ET; Garcia et al., 2013;
Wilcox et al., 2003). Accurately estimating the spatial and temporal distribution of ET or the latent heat flux
(LE) is critical for monitoring ecosystem health (Moran, 2004) and improving water resources management
(Dinpashoh, 2006) in these regions. Remote sensing can provide estimates of ET over a wide range of tem-
poral and spatial scales by providing spatially distributed surface information related to water and energy
fluxes, which include land surface temperature, soil moisture, and vegetation cover (Huang et al., 2015).
Over the last few decades, several methods have been proposed for estimating ET and surface fluxes based
on remotely sensed data, which can be divided into four main categories (Li et al., 2017): (1) empirical and
semiempirical approaches, (2) surface energy balance (SEB) models, (3) traditional ET approaches (i.e., the
Penman-Monteith and Priestley-Taylor [PT] approaches) combined with remotely sensed data, and (4) data
assimilation combined with land surface models and remote sensing observations.
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This study focuses on SEB modeling, in which LE is calculated as the residual of available energy (i.e., the dif-
ference between net radiation and soil heat flux) minus sensible heat flux (H), which is estimated via surface-
to-air temperature gradient (Kustas & Anderson, 2009). SEBmodels can be classified into twomain categories:
single-source models that do not distinguish energy fluxes from soil and vegetation elements and two-
source models that explicitly treat soil and vegetation canopy energy exchanges with the lower atmosphere
(Kalma et al., 2008). Single-source modeling has been used to estimate ET and surface energy fluxes over a
wide range of scales, climate conditions, and land cover types and has performed reasonably well, especially
for irrigated cropland covered by dense vegetation (Elhag et al., 2011; Huang et al., 2015; Li et al., 2017; Van
der Kwast et al., 2009). However, for sparsely vegetated surfaces in semiarid and arid regions, single-source
models can produce large errors in surface energy fluxes (Cleugh et al., 2007). Flux estimates from single-
source models can be improved with a prior calibration of resistance parameters based on in situ flux mea-
surements (Gokmen et al., 2012; Huang et al., 2015; Kustas et al., 2016; Kustas & Anderson, 2009). However,
the need to perform a calibration limits the utility of single-source models applied to sparsely vegetated com-
plex landscapes located in semiarid and arid climates.

To accommodate the effects of partially vegetated surfaces on turbulent energy exchange and radiometric
land surface temperature, Norman et al. (1995) proposed the thermal-based two-source energy balance
(TSEB) model, which considers surface energy flux contributions from soil and vegetation using component
temperatures from soil (Ts) and canopy (Tc) as well as the partitioning of radiation and heat fluxes between soil
and canopy elements. The original TSEB formulation of Norman et al. (1995) provides two different resistance
networks: a parallel approach and a series approach. Previous studies found that the series approach, which
considers interaction between soil and canopy, is more robust (Morillas et al., 2013; Song et al., 2016). TSEB
and its revisions (Anderson et al., 1997; Colaizzi et al., 2012; Kustas & Norman, 1999, 2000) have been success-
fully applied to compute surface energy fluxes and produced daily ET maps over a wide variety of fractional
vegetation cover and soil moisture conditions based on remotely sensed data (Anderson et al., 2011).
Moreover, TSEB is not only able to provide soil evaporation and canopy transpiration separately but also shown
to bemore robust than single-sourcemodels when applied to complex landscapes andmore extreme climatic
conditions (Kustas & Anderson, 2009; Tang et al., 2011; Timmermans et al., 2007; Zhan et al., 1996).

Nevertheless, the utility of TSEB in surface flux estimation over heterogeneous semiarid and arid regions is
challenging since it is characterized by low ET due to low water availability (Garcia et al., 2013; Morillas
et al., 2013). The original TSEB formulation tested by Norman et al. (1995) in semiarid desert gave good
results. However, more recently, Morillas et al. (2013) showed that TSEB significantly underestimated H over
semiarid Mediterranean tussock grassland, leading to large positive biases in LE computed as a residual by
TSEB. A follow-up analysis by Kustas et al. (2016) suggested that key vegetation inputs and the semiempirical
coefficients of the soil resistance formulation used in estimating sensible heat flux from the soil surface lead
to a large bias in estimates of H over this semiarid grassland site. Reliable results for this site were achieved
primarily by modifying the coefficients in the soil resistance formulation based on ground observations of the
soil roughness and vegetation characteristics at the field site (Kustas et al., 2016). The soil resistance coeffi-
cients beneath a canopy can be determined with heat flux measurements at the soil surface, and tempera-
ture and vapor pressure profiles from soil surface to canopy air space (Sauer et al., 1995). Such detailed
measurements are rare while ground-based information on soil roughness and vegetation distribution and
architecture are not routinely available, so that refining the soil resistance coefficients may be difficult to
implement operationally. The need for more robust model formulations to estimate soil surface fluxes has
recently been highlighted by Talsma et al. (2018) as critical for improving remote sensing-based model esti-
mates of ET partitioning between soil and vegetation.

Haghighi and Or (2015b) proposed a physically based model for simulating soil evaporative fluxes with a new
soil resistance formulation for turbulent heat transport based on fundamental fluid dynamic principles and
validated this scheme at the microscale using small laboratory wind tunnel data. The new soil resistance used
in Haghighi and Or (2015b) is appropriate for drying soil surfaces covered by bluff-body obstacles and expli-
citly considers aerodynamic interactions between adjacent bluff bodies. This new scheme has been success-
fully applied to sparsely vegetated semiarid areas, providing theoretical estimates of turbulent heat fluxes
and their partitioning (Haghighi & Kirchner, 2017). To reduce overestimates of LE in the community atmo-
sphere biosphere land exchange land surface model, Decker et al. (2017) incorporated a previous version
of this new soil resistance that explicitly accounts for subsurface viscous losses constraining soil
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evaporation fluxes (Haghighi et al., 2013; Haghighi & Or, 2015a). Results of Decker et al. (2017)’s study showed
that errors in daily H and LE tend to reduce when empirical formulations of soil resistance in community
atmosphere biosphere land exchange are replaced by this physical-based formulation. Recently, this new
physically based scheme and the original soil resistance formulation used in TSEB were compared over an
irrigated vineyard (Li et al., 2018). The results indicated that the new scheme outperformed the original for-
mulation using standard soil resistance coefficients and offered an opportunity to advance the utility of TSEB
model when applied to sparsely vegetated areas. Given these promising findings, this new formulation has
been incorporated in TSEB to enhance its utility in estimating fluxes over sparsely vegetated semiarid and
arid regions where the ground-based observations are not typically available for modifying soil resistance
coefficients and thus advance its operational capabilities by requiring minimal ground information.

The objective of this study is to assess the performance of TSEB with soil resistance formulation using typical
coefficients (Kustas & Norman, 1999), modified coefficients for semiarid clumped vegetation with rocky soil
surfaces (Kustas et al., 2016), and the new soil resistance formulation proposed by Haghighi and Or (2015b,
2015c, 2015d) over heterogeneous semiarid and arid regions. To reduce input errors in running TSEB, local
ground-based vegetation parameters and radiometric land surface temperature during daytime conditions
are used. Data used in this study are from six field sites with flux tower measurements under water-limited
conditions in natural semiarid and arid regions. Since TSEB is a residual-based approach, we evaluate model
performance based on Hmeasurements from eddy covariance (EC) towers. In this way, we are not confound-
ing model performance with errors in estimates of available energy and lack of energy balance closure with
EC systems. In addition, a new model evaluation strategy proposed by Best et al. (2015) is used to evaluate
model performance, which leads to less ambiguous conclusions based on the selected performance criteria
and allows for an explicit framework for stepwise hypothesis testing. To identify the influencing parameters
of TSEB over natural semiarid and arid regions, a global sensitivity analysis was conducted for evaluating the
effects of key inputs and soil resistance coefficients to TSEB with original and the new soil
resistance formulation.

2. Methodology
2.1. TSEB Model

The TSEB model, originally proposed by Norman et al. (1995) for estimating component surface energy fluxes
from soil and vegetation using observations of directional radiometric temperature, was developed to
accommodate a wider range of land cover and environmental conditions. Several revisions to TSEB algo-
rithms have been subsequently implemented, which include improving estimates of net radiation for soil
and vegetation based on amore physically algorithm proposed by Campbell and Norman (1998) and refining
formulations for soil resistance terms (Kustas & Norman, 1999, 2000). There have also been proposed
improvements to the soil and vegetation partitioning of temperatures and radiation for row crops (Colaizzi
et al., 2012, 2014) as well as a transpiration algorithm based on Penman-Monteith canopy conductance
instead of PT (Colaizzi et al., 2013, 2014). In this study, the original TSEB including refinements by Kustas
and Norman (1999, 2000) was considered suitable for modeling the SEB of landscapes containing sparse ran-
domly distributed clumped vegetation.

In TSEB, the surface energy budgets are separately balanced for soil and vegetation:

Rn ¼ LE þ Hþ G; (1)

Rnc ¼ Hc þ LEc; (2)

Rns ¼ Hs þ LEs þ G; (3)

where Rn is net radiation, G is soil heat flux, H is sensible heat flux, and LE is latent heat flux (all in W/m2).
Subscripts s and c represent soil and vegetation scene components, respectively. All the composite surface
fluxes for the combined soil-vegetation system in equation (1) can be estimated as the sum of soil and vege-
tation components except G, which is parameterized as a fraction of Rns,

G ¼ cGRns; (4)
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where cG is an empirical coefficient, which is constant for several hours around solar noon (Kustas & Daughtry,
1990). Details of estimating Rns and Rnc can be found in Kustas and Norman (1999) and Morillas et al. (2013).
For incomplete vegetation cover, Colaizzi et al. (2016, 2016) proposed a soil heat flux model that calculate G
as a function of shaded, partially sunlit, or fully sunlit Rns.

By permitting the interaction between soil and vegetation, Norman et al. (1995) proposed a series soil-
vegetation resistance network to estimate sensible heat flux (H), which is defined as

H ¼ Hs þ Hc ¼ ρCP
Tac � Ta

ra
; (5)

with

Hs ¼ ρCP
Ts � Tac

rs
; (6)

Hc ¼ ρCP
Tc � Tac

rx
; (7)

where Hs and Hc are sensible heat flux from soil and vegetation, respectively. The symbol ρ is the density of air
(kg/m3); CP is the specific heat of air (J/(kg·K)); Ts and Tc are soil temperature (K) and vegetation canopy tem-
perature (K), respectively; Tac is the temperature in the canopy-air space (K); and Ta is air temperature (K) in
the surface layer. The term rx is the boundary layer resistance associated with the complete canopy of leaves
(s/m), which is calculated according to Norman et al. (1995). The bulk aerodynamic resistance ra (s/m) is cal-
culated based on Monin-Obukhov surface layer similarity theory. The resistance to heat flow in the boundary
layer immediately above the soil surface, rs (s/m), is derived by Kustas and Norman (1999) as follows:

rs ¼ 1

c Ts � Tcð Þ1=3 þ bus
; (8)

where us is wind speed near soil surface (m/s). c(Ts � Tc)
1/3 is the free convection velocity (m/s). Kondo and

Ishida (1997) indicated that c (m s�1 K�1/3) ranges from 0.0011 for a smooth surface to 0.0038 for rough sur-
face based on both laboratory and field experiments. The coefficient b (�) cannot be determined directly
from routine observations, which relates to turbulent length scale in the canopy, soil surface roughness,
and turbulence intensity (Sauer et al., 1995). The regression statistics for the rate of heat exchange over a soil
surface beneath a maize canopy versus us from Sauer et al. (1995)’s experiments reported that b ranges from
0.025 to 0.087 during a whole growing season. For moderately rough soil surfaces, default values for b and c
are 0.012 and 0.0025, respectively, in TSEB (Kustas & Norman, 1999). For rough soil surfaces with sparse vege-
tation, however, b and c are up to 0.087 and 0.0038 (Kondo & Ishida, 1997; Sauer et al., 1995), respectively. In a
previous study (Kustas et al., 2016), b = 0.065 and c = 0.0038 were used for a strongly clumped tussock grass-
land with rocky soils in a semiarid region, yielding good agreement with measured H. This result is due to the
fact that in sparsely vegetated semiarid and arid landscapes, accurate estimate of Hs is critical since it is the
main contributor to H (Jacobs et al., 1996).

Radiometric surface temperature observations (TR), the key variable for estimating surface energy fluxes
based on TSEB, is partitioned into soil and vegetation component temperatures based on fraction vegetation
cover (Kustas & Anderson, 2009):

TR ¼ f c θð ÞT4c þ 1� f c θð Þð ÞT4s
� �1=4

; (9)

where fc(θ) is the vegetation cover fraction at the view angle θ of thermal sensor, and the soil and canopy
temperatures, Ts and Tc, respectively, are estimated iteratively by solving equations (2)–(9) with an initial
LEc calculated based on PT formulation:

LEc ¼ αPT f g
Δ

Δþ γ
Rnc; (10)
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where αPT is PT coefficient of 1.26 assumed for unstressed transpiring vegetation. The value of αPT is itera-
tively reduced for stressed vegetation conditions to achieve a physically plausible solution (LEs > 0; see
Kustas & Anderson, 2009). In equation (10), the variable fg is the fraction of leaf area index (LAI) that is green,
Δ is the slope of the saturation vapor pressure versus temperature curve (kPa/°C), and γ is the psychrometric
constant (kPa/°C).

Surface energy fluxes and temperatures of the soil and vegetation are solved for iteratively with the above
formulations. Model inputs for TSEB can be divided into two categories: meteorological forcing factors (i.e.,
air temperature, wind speed, vapor pressure, and incoming solar radiation) and land surface boundary con-
ditions, the key ones being TR, fc, LAI, and canopy height (hc). For more detailed description of TSEB, please
refer to Norman et al. (1995) and Kustas and Norman (1999).

2.2. New Soil Resistance Formulation

Interactions between bluff-body elements, protruding a drying surface, and airflow boundary layer result
in complex and unsteady flow regimes in the near-surface region forming a thin aerodynamic layer adja-
cent to the surface (termed viscous sublayer) that underlies turbulent air boundary layer and sets the
upper boundary conditions for heat and water vapor transfer by thermal conduction and molecular diffu-
sion, respectively (Haghighi et al., 2013; Haghighi & Or, 2013, 2015a, 2015c). The complex and unsteady
flow regime is characterized by turbulent structures termed eddies (Palau-Salvador et al., 2010) that affect
the viscous sublayer local patterns via modifying the local wind stress and drag partitioning and thus gov-
ern momentum, heat, and mass transfer processes (Haghighi & Kirchner, 2017; Haghighi & Or, 2015b;
Raupach, 1992; Shao & Yang, 2008). Considering the dynamics of viscous sublayer caused by interactions
between bluff-body elements and airflow, a mechanistic model for estimating turbulent sensible and
latent heat fluxes over a drying surface with bluff-body elements, representing a natural landscape com-
prised of bare soil with rocks/stones and clumped vegetation, was proposed and verified using evapora-
tion experiments conducted under controlled boundary conditions in a small wind tunnel (Haghighi & Or,
2015b). In this model, a boundary layer resistance rBL (for the soil) was developed for heat transfer (s/m;
Haghighi & Or, 2015c, 2015d), explicitly incorporating near-surface turbulence around dryland vegetation
(Mayaud et al., 2016),

rBL ¼ δ
Dh

; (11)

where Dh is thermal diffusivity of air (≈1.9 × 10�5 m2/s; Decker et al., 2017) and δ (m) is the mean thickness of
the viscous sublayer. Following Haghighi and Or (2013), δ is expressed as

δ ¼ g αð Þ v
u�

(12)

with a dimensionless coefficient g(α),

g αð Þ ¼ 2:2
ffiffiffiffiffiffiffiffiffiffi
112π

p

Г αþ 1ð Þ
1

2 αþ1ð Þ ffiffiffiffiffiffiffiffiffiffiffi
αþ 1

p 1 α ¼ 0

П 2αþ 1ð Þ α > 0
;

�
(13a)

П 2αþ 1ð Þ ¼ 2αþ 1ð Þ 2 α� 1ð Þ þ 1ð Þ 2 α� 2ð Þ þ 1ð Þ… 2 α� nð Þ þ 1ð Þ n < α; (13b)

where v is the air kinematic viscosity (1.5 × 10�5 m2/s) and n is the largest integer smaller than α. The variable
α is the shape parameter of eddy residence time distribution, which can be determined from observations of
spatially variable surface thermal fluctuations. With values of α typically ranging from 0 to 5, g(α) varies from
20.6 to 22.8 (Haghighi & Or, 2013). The friction velocity, u* (m/s), is computed by (Haghighi & Or, 2013) as
follows:

u� ¼ 0:3
αþ 1

Ua; (14)

where Ua is the mean wind speed at a reference height in the surface layer (m/s).

10.1029/2018WR022981Water Resources Research

LI ET AL. 1063



Shao and Yang (2008) developed a formulation for friction velocity (u*) over rough surfaces (considered as a
relatively smoother surface superposed with bluff-body elements), which is parameterized as

u� ¼ Ua

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f rλ 1� ηð ÞCrg þ f s 1� ηð Þ þ f vηð ÞCsg

q
; (15)

where η is the fraction of elements cover (equivalent to vegetation cover fraction, fc) and λ is roughness den-
sity (or frontal area index) that can be calculated based on η, height of elements (h), and element width to
height ratio (wc/hc; Haghighi & Or, 2015b; Shao & Yang, 2008). The variables fr, fs, and fv are functions of quan-
tities related to bluff-body elements parameterized by

f r ¼ exp � arλ

1� ηð Þk
 !

; (16)

f s ¼ exp � asλ

1� ηð Þk
 !

; (17)

f v ¼ 1þ Csgc

Csg
� 1

� �
η; (18)

where ar = 3, as = 5, and k = 0.1 are determined from numerical simulations (Shao & Yang, 2008). The variables
Crg, Csg, and Csgc are drag coefficients for bluff-body element, ground surface, and surface of bluff-body ele-
ment at λ = 0, respectively, which are defined as,

Csg ¼ κ2 ln�2 zw
z0s

� �
; (19)

Csgc ¼ κ2 ln�2 zw � h
z0sc

� �
; (20)

Crg ¼ βCsg; (21)

with

β ¼ Cd

κ2
ln

h
z0s

� �
� 1

� �2

þ 1

 !
; (22)

where κ = 0.41 is the von Karman constant, zw is the reference height (m) at which Ua is measured, z0s is the
roughness length for bare surface (m), z0sc (≈z0s) is the roughness length for fully covered surface (m), h is the
height for bluff-body element (m), and Cd is the drag coefficient of bluff-body element. For a wide range of
plant species, Cd varies from 0.2 to 0.45 (Choudhury & Monteith, 1988; Gillies et al., 2002).

To generalize this model, Haghighi and Or (2015b) established a formulation for the average eddy distribu-
tion shape parameter α for rough surfaces by combining equations (14) and (15),

α ¼ 0:3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f rλ 1� ηð ÞCrg þ f s 1� ηð Þ þ f vηð ÞCsg

p � 1; (23)

whereαdefined in eqaution (23) is independent of the thermal observations and parameterized as a function
of bluff-body roughness density and drag coefficients that relate to interactions between near-surface turbu-
lent airflow boundary layer and bluff-body elements (Haghighi & Or, 2015b; Mayaud et al., 2016).

Combining equations (11)–(13) with equations (15)–(23), the boundary layer resistance rBL for heat transfer
can be calculated over rough surfaces, which reflects physical insights about variations of eddy
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distribution (parameterized by eddy distribution shape parameter α) and patterns of momentum transfer to
the surface (parameterized by friction velocity u*). In this study, rBL replaced rs in equation (6) for estimating
soil sensible heat flux Hs in TSEB for evaluating its performance in estimating the total sensible heat flux over
semiarid and arid regions with sparse and clumped vegetation. Input parameters and coefficients involved in
calculating rBL are listed in Table 1.

3. Study Areas and Data Sets

Three semiarid and three arid sites were used in this study to evaluate the performance of TSEB with original
and new soil resistance formulations. One semiarid site is in southeast Spain while the other two semiarid
sites are in southwest United States. The three arid sites are in northwest China. A general description of
the field sites is given in Table 2 (Garcia et al., 2013; Cheng et al., 2014; Li et al., 2008; Li et al., 2013; Scott,
2010, Scott et al., 2015; Xu et al., 2013). All six field sites are covered by sparse and clumped vegetation
(Figure 1) and are under water-limited conditions. As a result, ET or LE rates are low, and H is the dominant
turbulent flux during most of the growing season (Figure 2).

3.1. Semiarid Sites

The Balsa Blanca site is a tussock grassland located in Cabo de Gata National Park southwest of Spain with a
semiarid Mediterranean climate characterized by rainy winters and dry summers. Although the study period
is only part of a complete growing season, the data capture most of the annual variability in soil water avail-
ability, surface energy exchange, and phenology (Figure 2; Garcia et al., 2013; Morillas et al., 2013).

An EC system was installed at height of 3.5 m above ground level (agl) to measure sensible and latent heat
fluxes with a sampling frequency of 10 Hz. The EC system was composed of a three-dimensional sonic anem-
ometer (CSAT-3, Campbell Scientific Inc., Logan, UT, USA) that was used to measure wind speed and direction
and an open-path infrared gas analyzer (LI-7500, LI-COR, Lincoln, NE, USA) that was used to measure water
vapor and CO2 concentration. (The use of trade, firm, or corporation names in this article is for the information
and convenience of the reader. Such use does not constitute official endorsement or approval by the US
Department of Agriculture or the Agricultural Research Service of any product or service to the exclusion
of others that may be suitable.) The raw, high-frequency data were processed over 15-min intervals using
the corrections for axis-rotation and density fluctuations (Garcia et al., 2013). Air temperature and relative
humidity were measured by a thermo-hygrometer (HMP45C, Vaisala, Helsinki, Finland) installed at a height
of 2.5 m agl. Net radiation and incoming shortwave radiation were measured using a net radiometer
(NRLite, Kipp & Zonen, Delft, The Netherlands) installed at a height of 1.9 m and a LP02 Pyranometer
(Campbell Scientific Inc., USA) at height of 3.5 m, agl respectively. A water-content reflectometer (ECHO
EC5, Decagon Devices, Pullman, WA,USA) buried at depth of 0.04 m in a bare soil area was used to measure
near-surface volumetric soil moisture content. Radiometric surface temperature, TR, and soil surface tempera-
ture, Ts, were measured using Apogee broadband thermal infrared thermometers (IRTS-P, Apogee
Instruments Inc., Logan, UT, USA). All the meteorological, soil water content, radiation, and temperature vari-
ables were averaged over 15-min intervals.

Table 1
Input Parameters and Coefficients Involved in Calculating rBL

Input parameter or coefficient Description Value source or value

Inputs Ua Mean air wind speed at reference height Measurement
zw Reference height for wind speed Measurement
η Fraction of elements cover (i.e. fc) Measurement or calculate based on NDVI
h Height of elements (i.e. hc) Measurement or calculate based on NDVI

wc/hc Elements width to height ratio 1.5 in this study
Coefficients zos Roughness length for bare surface Ranges from 0.01 to 0.1 m for different sites

Cd Drag coefficient of bluff-body element 0.2 (Choudhury & Monteith, 1988)
ar Model parameters 3 (Shao & Yang, 2008)
as Model parameters 5 (Shao & Yang, 2008)
k Model parameters 0.1 (Shao & Yang, 2008)

Note. NDVI = normalized difference vegetation index.
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Measured values of vegetation cover fraction (fc) and canopy height (hc) of
0.6 and 0.7 m, respectively, were considered as constant for the experimen-
tal period because the site was comprised of perennial grasses. Considering
the fact that a significant amount of dead/senescent grass always exists in
perennial tussock grass communities during the whole growing season,
Kustas et al. (2016) assumed that total (green + dead) local LAI was a con-
stant value of 1.75 based on visual observations. The fraction green vegeta-
tion, fg, was derived based on green LAI calculated using an NDVI
(normalized difference vegetation index)-LAI relationship derived from
Tetracam camera images (ADC Tetracam Inc., Chatsworth, CA, USA) together
with LAI from destructive sampling.

The other two semiarid sites, Lucky Hills and Kendall, are located in the
U.S. Department of Agriculture-Agricultural Research Service Walnut
Gulch Experimental Watershed, located southeast of Tucson, Arizona,
USA (Scott, 2010; Scott et al., 2015). The climate is characterized by cool,
dry winters and warm, wet summers, with 50–60% rainfall arriving in
July–September as part of the North American Monsoon (Scott, 2010).
Lucky Hills is a desert shrubland containing several species while
Kendall is a semidesert grassland comprised mainly of grasses with a
few scattered shrubs.

At each site, the EC flux tower, which is still in operation, contains EC, radia-
tion, and meteorology instrumentation. The EC systems are mounted at
~5 m above the height of the vegetation with four-component radiation
measurements at ~3 m above the canopy. Air temperature and relative
humidity are made with temperature/relative humidity probe (HMP35C,
Vaisala, Helsinki, Finland) at a height of 6 m agl. Wind speed and direction
are measured at height of 6.4 m agl. Near surface volumetric soil water con-
tent at 0.05-m depth is measured by TDR soil moisture probes (CS616,
Campbell Scientific Inc., Logan, UT, USA). These measurements were pro-
cessed over 30-min intervals and are available at the AmeriFlux website
(Lucky Hills site is named as US-whs, and the Kendall site is referred to
as US-wkg).

Land surface temperature over the study sites was derived based on upwel-
ling and downwelling longwave radiation measured by four-component
radiometers using thermal radiative transfer theory (Liang, 2004). The con-
stant values of hc given by Li et al. (2008) were used in this study (i.e., 1 m
for Lucky Hills and 0.3 m for Kendall). Values of fc and LAI were calculated
from NDVI using a relationship from Li et al. (2008). NDVI was calculated
using fused red and near-infrared reflectance that was derived from 30-m
Landsat 8 and 500-m Moderate Resolution Imaging Spectroradiometer
images using the spatial and temporal adaptive reflectance fusion model
(Gao et al., 2006).

3.2. Arid Sites

The Desert steppe, Gobi, and Sandy sites are located around an artificial
oasis at the midpoint of the Heihe River Basin in northwest China. This
region has an arid continental monsoon climate characterized by extremely
hot summers and severely cold winters, with 60–70% of precipitation occur-
ring in the summer months (Cheng et al., 2014). In 2012, a comprehensive
eco-hydrological experiment—the Heihe Water Allied Telemetry
Experimental Research project including the Multi-Scale Observation
Experiment on Evapotranspiration (HiWATER-MUSOEXE)—was conducted
in this region from May to September (Li et al., 2013; Xu et al., 2013). AnTa
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extensive network of measurement sites including the three desert sites was instrumented during the
HiWATER-MUSOEXE experiment. The meteorological and land surface flux observations collected from the
HiWATER-MUSOEXE experiment are available at the Cold and Arid Regions Science Data Center at Lanzhou
(http://card.westgis.ac.cn/).

For the Desert steppe site, the EC system is still in operation and is installed at height of 2.85 m agl. Humidity
and temperature probes (HMP45A, Vaisala, Helsinki, Finland) are installed at three levels (1, 1.99, and 2.99 m
agl). Wind speed and direction are made with wind sentry anemometer and vane (03102/03302, RM Young,
Traverse City, MI, USA) systems at four levels (0.48, 0.98, 1.99, and 2.99m agl). Air temperature, relative humid-
ity, and wind speed measured at 2.99 mwere used for this site. Four-component radiation measurements are
made with a CNR1 radiometer (Kipp & Zonen, Delft, Netherlands) installed at height of 2.65 m agl. Volumetric
soil moisture content is measured at a depth of 0.1 m using soil moisture sensor (ML2X, Delta-T Devices Ltd,
Cambridge, UK) buried at 2 m south of the EC tower.

For the Gobi and Sandy desert sites, the EC systems (no longer operating after 2015) were installed at a height
of 4.6 m agl. Air temperature, relative humidity, and wind speed were measured at two levels (5 and 10 m);
the observations at 5 m agl were used in this study. A four-component radiometer (CNR1, Kipp & Zonen, Delft,
Netherlands) was installed at 6 m agl. Soil moisture sensors (ECH2O-5, Decagon Devices, Pullman, WA, USA,
for the Gobi site, and CS616, Campbell Scientific Inc., Logan, UT, USA, for the Sandy site) were buried at seven
levels (0.02, 0.04, 0.1, 0.2, 0.4, 0.6, and 1 m). Volumetric soil moisture measurements at 0.04 m were used in
this study because the sampling at this depth was nearly time continuous. Composite land surface tempera-
ture was derived based on upwelling and downwelling longwave radiation measurements. Meteorological
measurements and turbulent fluxes were processed over 30-min intervals.

Figure 1. Photos of typical land cover conditions for the (a) Balsa Blanca, (b) Lucky Hills, (c) Kendall, (d) Desert steppe, (e) Gobi, and (f) Sandy sites.
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Figure 2. Variation in normalized difference vegetation index (NDVI), midday soil water content (SWC) at depths of 0.04 m for Balsa Blanca, Gobi, and Sandy; 0.05 m
for Lucky Hills and Kendall; and 0.1 m for Desert steppe, and daytime average sensible and latent heat flux from the eddy covariance measurements during
experiment periods used with TSEB model. Values for Balsa Blanca are shown in (a, b) and (c, d) for Lucky Hills, (e, f) for Kendall, (g, h) for Desert steppe site, (i, j) for
Gobi, and (k, l) for Sandy site.
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Desert steppe site is partially covered by small shrubs while Gobi and Sandy sites are partially covered by per-
ennial grasses. Due to the fact that these three sites are dominated by perennial vegetation, hc was consid-
ered as constant (hc = 0.3 m for Desert steppe, 0.2 m for Gobi, and 0.3 m for Sandy) during the study period.
Estimates of fc were calculated via the NDVI-based approach proposed by Gutman and Ignatov (1998). LAI
was derived from fc using an exponential relationship between fc and LAI (Choudhury, 1987). In this study,
NDVI was calculated by fusing red and near-infrared reflectances at 90-m spatial resolution from Advanced
Space-borne Thermal Emission Reflectance Radiometer with spatiotemporal characteristics at 500 m from
Moderate Resolution Imaging Spectroradiometer (Li et al., 2017). Estimates of fg were computed as the ratio
of fraction of photosynthetically active radiation absorbed by green vegetation cover (fAPAR) and intercepted
by total vegetation cover (fIPAR; Fisher et al., 2008).

4. Evaluating TSEB Model Performance
4.1. Evaluation Strategy

Sensible (H) and latent (LE) heat fluxes obtained from an EC system, net radiation (Rn) measured with a
radiometer, and soil heat flux (G) calculated from an array of soil heat flux plates and near-surface soil
temperature and moisture measurements are widely used to validate the performance of ET models.
However, the sum of H and LE from EC is generally less than available energy (Rn � G), known as surface
energy imbalance or lack of energy closure. There are many factors that can contribute to this flux mismatch,
including a mismatch in source areas between the EC turbulent measurements of H and LE, and the net
radiometer, and soil heat fluxmeasurements, ignoring or underestimating the heat storage terms, neglecting
advective flux divergence, and inability to capture large eddies using EC systems (Foken, 2008; Leuning et al.,
2012; Xu et al., 2017).

Average values of the closure ratios (H + LE)/(Rn � G) during the study periods for Balsa Blanca, Lucky Hills,
Kendall, Desert steppe, Gobi, and Sandy were 0.8 (Morillas et al., 2013), 0.8 and 0.75 (Scott, 2010), 0.88, 0.86,
and 0.76 (Li et al., 2017), respectively. The impact of energy imbalance onmodel comparisons can be assessed
by forcing closure in the observed energy budget. Given that underestimation of LE relative to H tends to be
considered themain reason for energy imbalance (Wang &Dickinson, 2012), the residual-LE closuremethod is
considered as the most appropriate method for validating SEB-based models in previous studies (Alfieri et al.,
2012; Li et al., 2005; Li et al., 2017; Morillas et al., 2013; Song et al., 2016). This method assumes that H is mea-
sured accurately and adjusts LE by adding residual of energy balance (i.e., Rn� G� H = LE). However, there is
mounting evidence of sonic anemometer measurement issues (Frank et al., 2013; Kochendorfer et al., 2012),
which affect bothH and LE. But in these sparsely vegetated environments, G is a significant term in the energy
balance, similar in magnitude to H. Hence, the method for measuring G can significantly affect its magnitude
(e.g., Liebethal et al., 2005; Ochsner et al., 2006). In addition, the sparse and heterogeneous nature of arid vege-
tated landscapes makes it challenging to obtain an areal average G representative of the tower flux footprint
(Kustas et al., 2000). Considering the objective of this study, and the energy balance closure issues discussed
above—namely, evaluating the performance of the TSEB using different soil resistance formulations—only
the sensible heat flux, which has its main contribution from the soil (Hs), was evaluated here since it tends
to be more accurately measured and is a direct computation in TSEB.

In addition to the traditional method of evaluating TSEB by comparing with observed H from EC systems, a
new model evaluation strategy—benchmarking model performance—proposed by Best et al. (2015) was
used to evaluate TSEB performance. Best et al. (2015) reported that unlike traditional methods of model eva-
luation, benchmarking model performance can lead to different conclusions about model performance
based on setting expectations of performance (i.e. performance benchmarks) for a range of metrics. In bench-
marking model performance strategy, simple physically based models as well as empirical relationships can
be used as the benchmarks. The metrics (i.e., error statistics) for all models and benchmarks are determined
by comparing observations and model output. Then, each model is ranked, with the best performant given a
score of 1 and the worst a score of 5 in this study. Finally, the average rankings for each model over all sta-
tistics and all sites are given as

Ri ¼ 1
nsnt

∑nsj¼1∑
nt
k¼1Rjik ; (24)
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where Ri is the average ranking for ith model or benchmark, ns is the number of study sites, nt is the number
of statistical metric, and Rjik is the ranking of ith model or benchmark at site j for statistical metric k. The aver-
age rankings for models are reasonably robust because the influence of a particularly good or poor perfor-
mance on overall average rankings is avoided with limited contribution from each statistic at each site
(Best et al., 2015).

For this study, a simple one-source surface energy balance (OSEB) model (Kustas et al., 1996) was considered
as the benchmark. Total H from the combined soil-canopy system can be governed by a bulk resistance
formulation,

H ¼ ρCP
Tr � Ta
rah

; (25)

with

rah ¼ 1
ku2

ln
z � d0
zom

� �
� Ψm

� 	
ln

z � d0
zom

� �
þ kB�1 � Ψh

� 	
; (26)

where Tr is composite radiometric surface temperature (K), rah is the resistance for heat transfer (s/m), u is
wind speed (m/s) at reference height z (m), zom is roughness heights for momentum transfer (m), and Ψm

and Ψh are the stability corrections for momentum and heat transfer, respectively. The variable kB�1 (�)
represents the difference in the efficiency of heat and momentum transport. For semiarid and arid regions,
an average value of kB�1 = 7 was derived from equations (25) and (26) using observed H, u, Tr, and Ta by
Stewart et al. (1994). For the six study sites in this case, however, the average value of kB�1 = 3.7 was derived
from a similar set of observations.

Here the OSEB with kB�1 = 7 is set as a better-than-another benchmark (Best et al., 2015), which means
that the more complicated physically based TSEB should outperform this benchmark validating the
hypothesis that TSEB is a more robust model than OSEB in semiarid/arid environments. The OSEB with
kB�1 = 3.7 is set as a fit-for-a-particular-application benchmark (Best et al., 2015) that represents the level
of performance required for TSEB to meet or exceed to be considered an improvement over
existing approaches.

4.2. Model Sensitivity Analysis

To identify the sensitivity of input variables and coefficients in the soil resistance formulations used in TSEBKN
(i.e., TSEB with soil resistance formulation proposed by Kustas & Norman, 1999) and TSEBHO (i.e., TSEB with soil
resistance formulation proposed by Haghighi & Or, 2015b, 2015d), the Extended Fourier Amplitude
Sensitivity Test (EFAST) was used for global sensitivity analysis. The EFAST method developed by Saltelli
et al. (1999) not only computes the main effect contribution of each individual factor to the variance of the
output but also addresses the influence of the interactions between factors on the variance of the model pre-
dictions. For each factor i, there are two sensitivity indexes derived from EFAST: (1) the first order effect index
(Si) and (2) the total effect index (STi). The Simeasures the influence of factor iwithout considering interactions
with other factors, which is defined as

Si ¼ VarXi M Y=Xið Þ½ �
Var Yð Þ ; (27)

where Y denotes the output variable and Xi denotes the factor i. Var andM are the variance operator and the
expectancy operator, respectively.

The variable STi indicates the total effect of factor i on the output variance considering its main effect as well
as interactions with other factors. The STi is expressed as

STi ¼ Si þ Sij þ Sijm þ⋯þ S1;2;⋯;i;⋯;k ; (28)
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where Sij is the second-order sensitivity index for factor i, measuring the
contributions of the interaction between factors i and j to output variance.
Similarity, Sijm and S1, 2, ⋯, i, ⋯, k are the third-order and higher-order sen-
sitivity index. The difference between STi and Si represents the interactions
among factors.

In this study, the sensitivity of H to input variables and coefficients used in
the soil resistance formulations were calculated using EFAST from an
open-source Python library for Sensitivity Analysis (SALib; Herman &
Usher, 2017). The input parameters related to resistance terms for
TSEBKN and TSEBHO usually derived from satellite data with relatively large
uncertainty include LAI, fc, and hc and therefore were used in this sensitiv-
ity analysis. The input parameters wc/hc and zos were also analyzed, which
are usually considered as constant when running TSEB. Additionally, varia-
tion in the soil resistance coefficients b and c in equation (8) was analyzed
for TSEBKN. For TSEBHO, variation in the soil resistance coefficients listed in

Table 1 was evaluated in the sensitivity analysis. For each input or coefficient, 7,000 samples were generated
and analyzed in EFAST. The sampling range of LAI, fc, hc, and z0s were determined based on the observed
range in their values for the six sites listed in Table 2. The range in values of the soil resistance coefficients
for TSEBKN and TSEBHO was derived from the literature (Choudhury & Monteith, 1988; Gillies et al., 2002;
Kondo & Ishida, 1997; Kustas & Norman, 1999; Sauer et al., 1995; Shao & Yang, 2008). The sampling range
for all analyzed inputs and coefficients are listed in Tables 3 and 4.

5. Results
5.1. Sensitivity Analysis

The sensitivity indexes of H from TSEBKN and TSEBHO are presented in Figure 3 and Tables 3 and 4. From
Figure 3a and Table 3, it appears that TSEBKN has relatively low sensitivity to wc/hc and zos with Si of ̴0 and
STi less than 0.06. However, the sensitivity analysis indicates that coefficient b is a highly sensitive para-
meter for computing H yielding Si of 0.34 and STi of 0.58. In addition, TSEBKN shows moderate sensitivity
to vegetation parameters LAI, fc, hc, and coefficient c with Si between 0.05 and 0.12 and STi between 0.18
and 0.34. For almost all analyzed parameters and coefficients used in TSEBKN, the second- and higher-
order interactions among the 7 factors (i.e., STi � Si) had a larger impact on H than the effects of any indi-
vidual factor. With the new soil resistance formulation in TSEB, namely, TSEBHO, variation in fc and hc had
a moderate effect on H estimates with Si of ̴0.15 and STi of ̴0.25, while variation in wc/hc and zos did not
significantly affect H estimates with STi less than 0.02 (Figure 3b and Table 4). This is similar to the results

found with TSEBKN. It appears that the value of ar may cause the largest
variations in TSEBHO estimates of H but in all cases STi values are below
0.1, indicating TSEBHO has relatively low sensitivity to all the soil resis-
tance model coefficients. TSEBHO shows highest sensitivity to LAI yield-
ing Si of 0.45 and STi of 0.52, similar to the sensitivity of the soil
resistance coefficient b for TSEBKN. However, interactions among factors
had relatively lower impact on estimates of H using TSEBHO versus
TSEBKN. Therefore, compared with TSEBKN, TSEBHO appears to be more
robust because interactions among input variables and uncertainty in
key coefficients do not lead to significant variation in modeled esti-
mates of H.

5.2. Performance of TSEB With Different Soil Resistance Formulations

The TSEB model has not been extensively applied and verified over het-
erogeneous semiarid and arid regions, which are challenging landscapes
for estimating surface fluxes due to random and ill-defined canopy
cover, large differences in the efficiency in heat flux transport from
the soil and vegetation canopy surfaces, and major contribution of the

Table 3
The Sensitivity Indexes of Model Coefficients and Range in Input Variables or
Coefficients for Estimating H Using TSEBKN

Inputs or coefficients The sensitivity indexes

Names Ranges Si STi

fc [0.05, 0.6] 0.05 0.26
LAI [0.10, 1.05] 0.10 0.34
hc [0.2, 1.0] 0.12 0.27
wc/hc [0.5, 2.0] 0 0.03
zos [0.01, 0.1] 0 0.06
b [0.012, 0.087] 0.34 0.58
c [0.0011, 0.0038] 0.08 0.18

Table 4
The Sensitivity Indexes of Model Coefficients Range in and Input Variables or
Coefficients for Estimating H Using TSEBHO

Inputs or coefficients The sensitivity indexes

Names Ranges Si STi

fc [0.05, 0.6] 0.15 0.25
LAI [0.10, 1.05] 0.45 0.52
hc [0.2, 1.0] 0.17 0.22
wc/hc [0.5, 2.0] 0 0.01
zos [0.01, 0.1] 0 0.02
Cd [0.2, 0.45] 0 0.01
ar [0.0, 10.0] 0.06 0.09
as [0.0, 10.0] 0.02 0.03
k [0.0, 1.0] 0 0.01
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soil component to the turbulent fluxes, particularly H. To evaluate performance of TSEB with different soil
resistance formulations over these heterogeneous semiarid and arid sites as discussed in section 4.1,
modeled H from TSEB was compared with measured H from the EC systems at all six study sites, as
shown in Figure 4. Quantitative measures (i.e., error statistics) of modeled H for the six study sites are
listed in Table 5.

As reported by Kustas et al. (2016), TSEBKN with original soil resistance coefficients b = 0.012 and
c = 0.0025 clearly underestimated H with a significant bias (Figure 4a) for Balsa Blanca, which contained
rocky and rough soil surface with clumped vegetation, while reliable estimates of H were recomputed
using b = 0.065 and c = 0.0038 with points scattered around the 1:1 line (Figure 4b). For the other five
study sites, H was also underestimated by TSEBKN with original soil resistance coefficients, yielding large
bias values for Lucky Hills, Kendall, and Desert Steppe (Figures 4d, 4g, and 4j). According to ground
observations (Table 2 and Figures 1 and 2), the Lucky Hills, Kendall, and Desert Steppe are similar in
soil roughness and vegetation distribution to Balsa Blanca while the Gobi, and Sandy sites have a much
smoother soil surface and very sparse and short vegetation cover. Therefore, improvement in the agree-
ment with H observations using TSEBKN was expected using b = 0.065 and c = 0.0038 for Lucky Hills,
Kendall, and Desert Steppe. Thus, TSEBKN computed H with b = 0.065 and c = 0.0038 was compared
with observations, and results are shown in Figures 4b, 4e, 4h, 4k, 4n, and 4q. Indeed, the agreement
with observed H improved for Lucky Hills, Kendall, and Desert Steppe using the larger coefficients. The
values of bias, root mean square error, and the mean absolute percent difference (MAPD) are reduced.
However, the most significant improvement in model performance by adjusting b and c is still with the
Balsa Blanca site. For Sandy and Gobi sites, TSEBKN with the default b and c produces quite reliable esti-
mates of H with higher coefficient of determination (R2) and Nash-Sutcliffe efficiency coefficient values.
The good results using the default values for b and c for Gobi and Sandy sites is likely because these
sites have smoother soil surfaces with lower fractional cover and smaller vegetation.

The results from the sensitivity analysis and estimates of H using TSEBKN suggest that reasonable estimates of
H can be computed if soil resistance coefficients b and c can be modified based on ground/land use informa-
tion when applied over these sparsely vegetated heterogeneous landscapes. Since b and c cannot be deter-
mined directly from routine satellite observations, adjusting b and c coefficients for specific study areas
would be a major challenge, operationally, especially over complex landscapes. Yet basic land cover informa-
tion may help to nominally adjust b and c values in different arid regions.

A similar comparison of modeled versus measured H using TSEBHO over these same semiarid and arid
sites is shown in Figure 4. The coefficients of rBL is listed in Tables 1 and 2, which did not significantly
affect H estimates. It is clear from Figure 4 and the statistics in Table 5 that TSEBHO performs quite

Figure 3. The sensitivity indexes for H from TSEBKN (a) and TSEBHO (b) due to uncertainty in model parameters and key
input variables. TSEB = two-source energy balance.
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Figure 4. Comparisons of measured H from EC systems and modeled H from TSEBKN with original and modified coefficients and from TSEBHO for (a–c) Balsa Blanca,
Lucky (d–f) Hills, (g–i) Kendall, (j–l) Desert steppe, (m–o) Gobi, and (p–r) Sandy sites.
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well for all the sites with points distributed around the 1:1 line and the Nash-Sutcliffe efficiency value
ranging from 0.45 to 0.84. For Balsa Blanca, TSEBHO yields a bias and root mean square error values
slightly larger than that of TSEBKN with modified soil resistance coefficients (Table 5) but clearly less
than that of TSEBKN with original coefficients (Kustas et al., 2016; Morillas et al., 2013). For Lucky Hills
and Kendall, TSEBHO performance is similar to TSEBKN with modified soil resistance coefficients but,
again, is better than TSEBKN using original soil resistance coefficients. For Desert steppe and Gobi sites,
TSEBHO performance is slightly better than TSEBKN. For the Sandy site, the errors in H for TSEBHO are
similar to TSEBKN with original soil resistance coefficients but with H slightly underestimated by TSEBKN
and slightly overestimated by TSEBHO when H is greater than 200 W/m2. MAPD values from TSEBHO
and TSEBKN with coefficients b and c adjusted for the soil/vegetation condition range between
20% and 30%. This range in MAPD values is similar to the uncertainty in the EC observations evaluated
for these study sites, which is 10% to 30% for Lucky Hills and Kendall (Scott, 2010), and nearly 20%
reported for the three arid sites (i.e., Desert Steppe, Gobi, and Sandy; Wang et al., 2015) and for Balsa
Blanca (Morillas et al., 2013).

To test the hypothesis of TSEB being a superior model and to evaluate the improvements made by mod-
ifying soil resistance formulations in general, the average rankings of TSEB with different soil resistance
formulations and two benchmarks were calculated across the six study sites, with the results summarized
in Table 6. Overall, TSEB with original soil resistance coefficients b = 0.012 and c = 0.0025 outperforms
OSEB with kB�1 = 7 (the better-than-another benchmark), which is the minimum expectation TSEB should

meet. However, the R of TSEB with original coefficients is much greater than OSEB with kB�1 = 3.7 (the
fit-for-a-particular-application benchmark), indicating the need for improving the performance of original

TSEB in semiarid and arid regions. The R of TSEBKN with b and c adjusted for site soil/vegetation rough-

ness and TSEBHO are 1.81 and 1.89, respectively, which are much smaller than R of the better-than-another

benchmark (3.69) and of original TSEB (2.92) and slightly less than the R value of the fit-for-a-particular-
application benchmark (1.91). This implies that both modifications to the soil resistance term (i.e., either
adjusting coefficients in the original soil resistance formulation or introducing the new physically based
soil resistance formulation in TSEB) are viable options for improving the performance of TSEB in semiarid
and arid regions.

Table 5
Statistical Results Comparing Modeled H From TSEBKN With Original and Modified Coefficients and TSEBHO With Measurements for Balsa Blanca, Lucky Hills, Kendall,
Desert steppe, Gobi, and Sandy Experimental Sites

Study sites

TSEBKN with b = 0.012 and c = 0.0025 TSEBKN with b = 0.065 and c = 0.0038 TSEBHO

Bias RMSE MAPD R2 NSE Bias RMSE MAPD R2 NSE Bias RMSE MAPD R2 NSE

Balsa Blanca �61 98 39 0.65 0.26 14 54 22 0.81 0.78 �23 61 24 0.76 0.71
Lucky Hills �46 75 33 0.61 0.38 4 67 29 0.6 0.5 �13 65 29 0.62 0.53
Kendall �39 67 31 0.62 0.4 23 62 28 0.69 0.47 �4 63 28 0.63 0.45
Desert Steppe �48 64 36 0.85 0.6 15 46 23 0.86 0.79 �22 41 22 0.89 0.84
Gobi �27 48 28 0.79 0.69 12 53 31 0.72 0.62 �7 41 23 0.80 0.77
Sandy �19 47 28 0.73 0.67 33 70 43 0.69 0.28 0 51 30 0.71 0.62

Note. Bias is the average difference between measured and modeled H (W/m2); RMSE is root mean square error (W/m2); MAPD (%) is mean absolute percent
difference (average of absolute difference between modeled and measured H divided by average measured H); R2 is the coefficient determination. NSE is the
Nash-Sutcliffe efficiency coefficient.

Table 6
Average Rankings of Benchmarks and TSEB Models for the Statistics (Bias, RMSE, MAPD, R2, and NSE) Across All Six Study Sites

TSEBKN with b = 0.012 c = 0.0025 TSEBKN with adjusted b and ca TSEBHO OSEB with kB�1 = 7 OSEB with kB�1 = 3.7

Average ranking 2.92 1.81 1.89 3.69 1.91

MAPD = mean absolute percent difference; NSE = Nash-Sutcliffe efficiency;
ab = 0.065 and c = 0.0038 for balsa Blanca, Lucky Hills, Kendall, and desert steppe, and b = 0.012 and c = 0.0025 for Gobi and Sandy
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6. Summary and Conclusions

This study evaluates the performance of thermal-based TSEB model applied to sparsely vegetated sites using
EC measurements. Notwithstanding the many applications of TSEB model and its success in field tests, esti-
mates of ET remain prone to bias in sparsely vegetated ecosystems where soil surface interactions are known
to play a critical role. We implement insights from a newly proposed soil resistance formulation (Haghighi &
Or, 2015b; TSEBHO) that explicitly incorporates near-surface physical interactions governing surface heat
fluxes and evaluate the performance of TSEB using original soil resistance formulation (Kustas & Norman,
1999) with coefficients modified for soil and canopy roughness (TSEBKN) and the new physically based soil
resistance scheme (TSEBHO) that requires minimal adjustments for soil and canopy properties.

To evaluate the uncertainty in modeled sensible heat fluxes (H) from TSEBKN and TSEBHO incorporating the
original and the newly proposed soil resistance formulations, respectively, a global sensitivity analysis was
conducted for the key inputs and coefficients related to the resistance terms. The analysis indicated that
TSEBKN has moderate sensitivity to vegetation parameters as well as TSEBHO. However, TSEBKN output is
highly sensitive to the soil resistance coefficients while TSEBHO has relatively low sensitivity to virtually all
of its soil resistance coefficients. In addition, interactions among the inputs and coefficients of TSEBKN had
higher contributions to the variance in H than that of TSEBHO. This result indicates that improving estimates
of H in TSEBKN will require appropriate soil resistance coefficients b and c estimated based on land cover infor-
mation over sparely vegetated semiarid and arid regions. On the other hand, the new soil resistance formula-
tion used in TSEB, TSEBHO, appears to require little if any modification to its model coefficients and thus is less
sensitive to interactions among input variables and associated uncertainties in the key coefficients.

We further tested the performance of TSEBKN with modified soil resistance coefficients based on soil and
vegetation roughness characteristics and TSEBHO for estimating H using EC measurements from six arid
and semiarid study sites. By adjusting the b and c coefficients for the clumped canopy layer with rough (rocky)
soil surface as described in Kustas et al. (2016), TSEBKN performed well over Balsa Blanca (Spain), Lucky Hills
(Arizona, USA), Kendall (Arizona, USA), and Desert steppe (China), with differences in model versus observed
H similar to themeasurement uncertainty. For smooth soil surfaces with very sparse and open canopies at the
Gobi and Sandy sites (China), TSEBKN produced reasonable estimates of Hwith default values of soil resistance
coefficients. The estimates of H from TSEBHO without making any changes to the default values for the soil
resistance coefficients agreed well with the observations over all the six study sites with MAPD values ranging
from 20% to 30% similar to or only slightly greater than the measurement uncertainty. The results of ranking
TSEBKN with different soil resistance coefficients, TSEBHO, and two benchmarks based on the OSEB model
further confirm that TSEBKN with modified soil resistance coefficients and TSEBHO outperform OSEB models
and TSEBKN using only the default values for the soil resistance coefficients for all semiarid and arid study sites.

The default values for the coefficients b and c in the soil resistance algorithm in TSEBKN are currently applied
over most landscapes in the satellite-based regional model—Atmosphere Land-Exchange Inverse (ALEXI)
and associated disaggregation scheme (DisALEXI; Anderson et al., 1997; Anderson et al., 2011). The results
here indicate that when using the TSEBKN land surface scheme, that ALEXI/DisALEXI will likely need to modify
the soil resistance coefficients in arid and semiarid landscapes with rough soil surfaces combined with
strongly clumped vegetation (Kustas et al., 2016). Alternatively, adopting the TSEBHO land surface scheme
within the ALEXI/DisALEXI modeling framework can potentially enhance its operational capabilities, requiring
minimal ground information and providing more reliable estimates in these sparsely vegetated regions.

Future plans include evaluating the utility of TSEBKN and TSEBHO for estimating ET and soil evaporation (E)
and canopy transpiration (T) over a wider range of climates and land cover types. This will require soil E obser-
vations using microlysimeters, and T estimates from sap-flow, and E/ET partitioning from isotopic analyses.
The flux partitioning method using high-frequency EC data will also be employed (e.g., Scanlon & Kustas,
2012). Additionally, in future studies estimates of ET and surface energy fluxes using land surface temperature
derived from satellite platforms in ALEXI/DisALEXI over semiarid and arid landscapes based on TSEBHO will be
implemented and compared with the TSEBKN soil resistance formulation along with flux tower measure-
ments for validation. This will provide a physical framework for improving estimates of ET partitioning into
E and T components, which currently remote sensing-based models compute with significant uncertainty
(Talsma et al., 2018).
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