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3 Department of Architecture and Civil Engineering, University of Bath, Bath, UK8

4 (formerly at) Seminar for Statistics, ETH Zürich, Zürich, Switzerland9
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Abstract16

Inaccurate description of uncertainty in the error models can cause biases in parameter estimation.17

When the parameters of the deterministic model and the error model are inferred jointly from the18

observations, the posterior converges to regions that reflect the processes in both high and low flows.19

If the nature of errors in low and high flows is different to the extent that the same error description20

cannot be used for both, biases in inference are introduced. In such cases, the parameter posterior21

will adjust to the region of the hydrograph with longer proportionate presence in the calibration time22

series. In this paper we demonstrate that the autoregressive order 1 (AR1) description of errors can23

lead to sub-optimally performing predictive models if the calibration period has substantial sections24

of inadequately modelled flows. Inference is performed within the Bayesian framework. We show this25

for a synthetic example as well as a case study. We also see that the predictive uncertainty bands that26

we get using the AR1 description can be overconfident and also admit negative values. To mitigate27

this, we analyze an alternative to additive error models. We use a distribution with a non-negative28

support, gamma in this study, reflecting the uncertainty in the system response at every time step. The29

gamma distribution is conditioned on the deterministic model output, which determines its mode and30

standard deviation. We capture autocorrelation in time using copulas. Given that copulas can capture31

dependence between different marginals, we use different specifications of the marginal distribution32

for high and low flows. The results show that 1) biases in parameter estimation can be reduced if a33

representative error description is attained using the flexibility of a copula-based likelihood. 2) The34

non-negative support allows to make more realistic uncertainty intervals for low flows. 3) However,35

the autocorrelation parameter in copulas severely interacts with the model and heteroscedasticity36

parameters. 4) While the formulation, in principle, should be of added value for parameter inference,37

in case of less informative priors, the flexibility of this description can produce non-robust inference.38
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1 Introduction39

Due to the complexity of hydrologic processes like rainfall-runoff, deterministic modelling proves to40

be inadequate for efficient decision making (Krzysztofowicz, 2001; Verkade and Werner, 2011). Use of41

probability theory helps quantify uncertainty in such predictions (Gupta et al., 1998; Honti et al., 2013;42

Kuczera et al., 2006; Refsgaard et al., 2007). Specifically within the Bayesian framework, to further43

constrain the range of parameters values that seem feasible for a catchment a prioiri, observations of44

the system response are used for parameter probability density updating. The physical understanding45

of the system, as well as the understanding of errors is put in formulating the conditional probability46

density of system response, p(yo | x,θ), given parameters (θ) and input forcing (x). This reflects our47

assumption about the system as the observation generating random processes. Bayes’ theorem is then48

used to invert the conditioning and get the probability density of parameters given some observations49

of the system i.e. p(θ | x,yo) (Hall et al., 2011; Kavetski, 2018; Kennedy and O’Hagan, 2001).50

However, like the assumptions about the deterministic model, our assumptions about the errors should51

be representative to an adequate degree so that inference gives meaningful parameter estimates. The52

rainfall-runoff time series usually has these properties: 1) scaling with rainfall, 2) autocorrelation in53

time, and 3) heteroscedasticity i.e. changing variance and 4) non-negativity. While the deterministic54

rainfall-runoff models provide information about the aggregate tendencies of the flow, for an unbiased55

parameter estimation and accurate uncertainty estimation, the hydrologic error model should be able56

to reproduce the other stochastic properties to an adequate degree (Del Giudice et al., 2016). However,57

it is not straightforward to reproduce all of these properties in the formulation of the likelihood function58

without some further simplifying assumptions, for example allowing the possibility of negative flow59

predictions in additive error models (Sun et al., 2017). Also, the structural deficits in many hydrologic60

models may come from very systematic biases which may not lend themselves adequately to one single61

probabilistic description for the entire hydrologic time series. Data from different hydrologic regimes,62

like low and high flows, may appear to be a result of different data generating random processes63

that need their own unique probabilistic model, e.g different autocorrelation (Ammann et al., 2019).64
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Poor accounting of low flow errors can otherwise lead to poor prediction for high and medium flows.65

Generally the modeler prioritizes one property over the other, depending on the task for which the66

model is being designed.67

To make error descriptions more representative of the rainfall-runoff, several parameterizations for the68

likelihood function have been proposed, like for example, to capture heteroscedasticity (Evin et al.,69

2013) , skewness (Schoups and Vrugt, 2010), autocorrelated structural deficits through time continuous70

processes (Del Giudice et al., 2013) etc. Beyond using probabilistic description of errors to perform71

parameter inference for the model, these descriptions have also been utilized to just quantify predictive72

uncertainty, given a hydrologic model with fixed parameters (Weerts et al., 2011). Flexibility in the73

description of errors has been sought for a more representative parameter estimation and a more74

reliable predictive uncertainty estimation, be it within a formal Bayesian framework or as a post-75

processor where parametric uncertainties are neglected e.g (Dogulu et al., 2015; Pianosi and Raso,76

2012; Wani et al., 2017). However, especially for inference, it has been challenging to suggest a77

probabilistic description of errors that is effective for all different catchments and all different models78

(McInerney et al., 2017).79

One of statistical tools to capture more complex multivariate probability densities in hydrology, be80

it data or modelling, is copulas (Bárdossy and Hörning, 2016; Sadegh et al., 2017; Salvadori and De81

Michele, 2004). Especially in the context of uncertainty analysis, copulas have been used to model the82

residual uncertainty in the post-processing phase of the model (Klein et al., 2016; Liu et al., 2018).83

The ability of copulas to model dependence between random variables, regardless of the nature of their84

marginal distributions, gives us the choice to construct the description of marginals and dependence85

separately. One of the limitations of exploring more representative marginals of errors to construct86

likelihood functions is the loss of temporal autocorrelation. Copulas can then be used to model such87

time series dependence e.g (Borgomeo et al., 2015; Salvadori and De Michele, 2004).88

In this paper, we describe and analyze a relatively general formulation of likelihood function for89

hydrologic models. This formulation employs copulas, which offer much more flexibility, for example90
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by allowing the parameterization of errors separately for low and high flow, while having the possibility91

to represent autocorrelation and non-negativity. The additive AR1 Gaussian error model can be seen92

as a special case of this general formulation. Using results from simulation experiments, we move on to93

show the effects of inadequately modeled low flows on parameter inference. We do this using synthetic94

data and real data. We also show that the flexibility in the proposed formulation allows the modeler95

to choose different parameterized marginals for high and low flows and we discuss the benefits and96

shortcoming of this formulation.97

2 Method98

2.1 Error Model99

Additive description: If we expect to observe a hydrologic system response Yo = [Yo,1, . . . , Yo,T ],100

given input time series x and a model output ym = [ym,1, . . . , ym,T ] with parameters θ, the classical101

description of additive autoregressive Gaussian error B gives us (vectors in bold and random variables102

in capital letters):103

Yo(x,θ,ψ) = ym(x,θ) +B(x,ψ) (1)

where ψ is the error model parameter vector. It follows that the conditional probability density for T104

observations , yo = [y1, ..., yT ], given a certain input and parameter vector, is a multivariate normal105

distribution106

107

p(yo | x,θ,ψ) = N
(
yo | ym(x,θ),Σ(x,θ,ψ)

)
(2)

108

with the mean given by the hydrologic model and the covariance matrix Σ is derived from a covariance109

function that models autocorrelation. Samples from this probability density give us “candidate” time110

series of observations. We expect the observation to be like those samples. The whole range of the111

samples constitutes the predictive distribution of the hydrologic system response, for a certain value112
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of inputs and parameters. Then suitable quantiles from this distribution can be chosen to provide113

uncertainty bands.114

One of the shortcomings is that a Gaussian process cannot guarantee non-negative model realizations.115

It would be desirable to use distributions with positive support as marginal distributions for each116

time step, such as gamma or lognormal distributions. However, this makes the incorporation of the117

autocorrelation structure difficult. Ammann et al., 2019, address this problem by transforming the118

real observation space, which does not admit negative values, to a space in which the distribution119

is expected to be normally distributed and then they model the autocorrelation using the standard120

Gaussian process.121

Copula-based description: In this study, we present a generalized formulation to model autocorrelated122

time series. First, we select a familiy of distributions for the marginals, i.e. the system response at123

single point in time, and then use a copula that captures autocorrelation. The marginal distribution124

ft(yo,t) at time t of system response Yo,t should depend on the model output. The deterministic model125

ym,t describes the location (e.g. mean or mode) of ft. The variance is also linked to the model using126

some linear or non-linear relationship, such that sd[Yo,t] = g(ym,t, φ). The selection of the distribution127

family is guided by system understanding, for example negative support and multi-modal distributions128

should be avoided. To capture the temporal correlation between f1 . . . fT , a copula is introduced.129

A T -dimensional copula is a cumulative probability distribution function defined over a unit cube in130

some T -dimensional space such that the marginal density over each dimension is uniform. Using a131

copula with density c(u1, ..., uT ) and the marginals, any joint distribution of the observations can be132

expressed as:133

p(yo | x,θ,ψ) = c
(
F1

(
yo,1 | ym,1(x,θ),ψ

)
, ..., FT

(
yo,T | ym,T (x,θ),ψ

)) T∏
t=1

ft(yo,t | ym,t(x,θ),ψ)

(3)

where Ft() is the cumulative probability distribution of the corresponding density ft() (Loaiza-Maya134

et al., 2018). The copula can be simplified if a Markov property is assumed for the time series. For135

example with an order-1 Markov property we can write Eq. (3) with a 2-dimensional copula136
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p(yo | x,θ,ψ) =
T∏
t=2

c
(
Ft−1, Ft

) T∏
t=1

ft (4)

(with conditionals dropped for clarity). If the marginals are taken as normally distributed and a137

Gaussian copula is used to model the autocorrelation, this equation can be further reduced to an AR1138

process.139

Specifications for this study: In this study Frank copula, which is symmetric for low and high quan-140

tiles, is used to capture autocorrelation. Archimedean copulas, like Frank, have few parameters, and141

therefore do not increase the dimensionality of parameter space by much. Frank copula has one142

parameter ψα for controlling correlation and it is defined as:143

C(u1, u2) = − 1

ψα
ln
[
1 +

(e−ψαu1 − 1)(e−ψαu2 − 1)

(e−ψα − 1)

]
(5)

Its density function is defined as:144

c(u1, u2) = ψα
(1− e−ψα)(1− e−ψα(u1+u2))

((1− e−ψα)− (1− e−ψαu1)(1− e−ψαu2))2
(6)

Figure 1: (1) Univariate gamma distribution with different ψshape and ψscale parameter values. (2)

Density of Frank copula with different ψα values. (3) Corresponding samples.

To assure non-negative outputs yo we use gamma distributed marginals ft():145
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Yo,t ∼ ft(y | ψscale, ψshape) =
1

ψ
ψshape
scale Γ(ψshape)

y(ψshape−1)e
−( y

ψscale
)

(7)

where Γ() is the gamma function.146

We assume a threshold parameter, that separates low flows and high flows, called ψbase. For low147

flows, we assume that the model has deficits that cause it to have errors such that it follows exponential148

distributions. So for this regime of flow we assign a shape factor of 1 and get the scale from the model149

output. For flows higher than ψbase, the assumption is made that the deterministic model output150

is the mode of the observational distribution (Fig. 1). This differentiates the observation generating151

process for low and other flows.152

In this research, the standard deviation (σt) of ft() is as a function of the deterministic model output.153

It is incorporated by the explicit equivalent of Box-Cox, with λ = 0.5154

sd(Yo,t) = σt = g(ym,t, ψ1, ψ2) = ψ2(ym,t + ψ1)
1−λ (8)

If we would have a normal distributed additive error, this scaling would correspond to a Box-Cox155

transformation. This result can be derived by using the truncated Taylor approximation (McInerney156

et al., 2017). To illustrate this dependency we sampled an additive normal distributed error term and157

applied the inverse Box-Cox transformation (see Fig. 2).158

Defining the standard deviation dependence explicitly makes the formulation of priors for the error159

model parameters more intuitive, compared to the traditional Box-Cox transformation. Here ψ1 and160

ψ2 are parameters to be inferred . All this defines the parameters of the gamma distribution as:161

Yo,t ∼


ft
(
y|ψshape = 1, ψscale = σt

)
if ym,t < ψbase

ft
(
y|ψshape =

( ym,t
ψscale

+ 1
)
, ψscale =

(√4σ2
t+y

2
m,t−ym,t
2

))
otherwise

(9)

This definition of ψshape and ψscale for ym ≥ ψbase assures that the mode of the distribution is ym,t162

and its standard deviation is σt.163

Given the general formulation of Eq. (4), we are free to pick and choose different autocorrelation struc-164

tures (similar to Eq. (6)), heteroscedasticity structures (similar to Eq. (8)) and marginal distributions165
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(similar to Eq. (9)). Each of these three components can be employed independently of the other,166

with its own parameterization.167

Figure 2: The change in standard deviation (σt) of the error in untransformed space, when the error

is assumed to be homoscedastic (with a fixed standard deviation = ψ2) in the Box-Cox transformed

space. This graph helps to understand the implicit dependence of standard deviation of the output

when using Box-Cox. Using Taylor approximation this dependence is σt = ψ2(ym)(1−λ).

2.2 Bayesian inference168

The expressions in Eqs. (2) and (4) turn into a likelihood function when a given set of observations yo169

are put into them and the parameter values are varied. This expression is not a probability density170

in the parameter space (θ,ψ), but only in the observation space (yo), hence referred to as a function171

of (θ,ψ). As likelihood function gets defined uniquely once we define the probability model for Yo,172

therefore, in this paper ‘copula-based probability model’ and ‘copula-based likelihood function’ refer to173

the same mathematical description as defined in section 2.1. Once the likelihood function is specified,174

in combination with the prior, we use Bayes’ theorem to get the posterior. An adaptive Markov175

Chain Monte Carlo (MCMC) sampling scheme is employed to get the parameter samples (Vihola,176

2012; Scheidegger, 2018). The samples represent the updated belief in the parameter values, given the177

9



observed data.178

p(θ,ψ|yo,x) =
p(yo|x,θ,ψ)p(θ,ψ)∫

p(yo|x,θ,ψ)p(θ,ψ)dθdψ
(10)

These samples are then run through the probabilistic model to generate the prediction bands.179

2.3 Rainfall-runoff model180

For analysis using synthetic data, we use a linear model and with input P and (θ1, θ2) as model181

parameters.182

ym,t = θ1Pt + θ2 (11)

This model gives flexibility and speed to facilitate preliminary analysis and provide proof of concept.183

To analyze the ability of this likelihood formulation on real data, we use a simple conceptual model184

with deficits which do not take infiltration, evapotranspiration and rainfall variability into account.185

A unit hydrograph convolution is used which defines the input-output relationship between discharge186

and precipitation. Such models have been used before for capturing discharge relationship of catch-187

ments (Betterle et al., 2017). The model assumes an exponentially decaying response to a unit of188

instantaneous rainfall. Given this formulation, the response of a time series of rainfall, P (t), can be189

obtained by integrating the response corresponding to each time slice of the rainfall .190

ym,t = θA

∫ t

0
P (t− τ) · θke−θkτdτ (12)

Parameter θA represents the effective area of the catchment, and θk represents the dependence on191

the rainfall at past time steps. The motivation here is to use fast and simple rainfall-runoff models192

with overt deficits so that the performance of the error description can be evaluated.193

2.4 Case study194

The study area is the catchment of the River Rawthey, North of England, in the Yorkshire Dale195

National Park, an affluent of the River Lune. It covers 219 km2, and collects waters from a terrain196

that ranges from 675m to 85m of elevation. The catchment is primarily a Natural Park, with very197

limited human intervention in terms of agriculture and urban land use. The rainfall data used in198
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Figure 3: The Rawthey catchment in England.

this work is obtained from rain gauges from the Environment Office. Data was available from a set199

of 203 tipping bucket devices with a resolution of 0.2 mm, available at 15 minutes resolution, then200

accumulated at hourly resolution for two years, from January 2009 to December 2010. The study201

area, the rain gauges, and the flow gauge are represented in Fig. 3. Rainfall time series are obtained202

with block kriging (Chiles and Delfiner, 2009). Block kriging is a technique that integrates the values203

obtained through ordinary kriging over an area. Apart from this, we also use a rainfall multiplier,204

named θr, as a parameter for inference. This is done to alleviate the systematic errors due to the fact205

that none of the rain gauges used to generate the rainfall time series lie within the catchment area.206

2.5 Simulation experiments207

Parameter estimation for synthetic data:208

A) We first show using a didactic example why incorporating autocorrelation and heteroscedasticity is209
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important for unbiased parameter estimation and predictive uncertainty estimation. We do this using210

synthetic data generated from a linear model (Eq. (11)), feeding it with a sinusoidal rainfall. The211

error is assumed to be heteroscedastic, following Eq. (8), and autocorrelated (AR1), with a correlation212

parameter ψρ. Inference is done using flat priors. The parameter values for (θ1, θ2, ψ1, ψ2, ψρ) used to213

produce data are (1,5,2,2.5,0.9). ψ1 is kept fixed. Inference is done using P as, 30 sin(x) + 30, with214

x from 0 to 100, spaced at 0.1. Verification time series is generated as a second sample using same215

probability model specification.216

B) Preliminary proof of concept: To facilitate reproducibility, we again do parameter inference using217

the new copula-based formulation of likelihood and synthetic data generated through same linear218

model. Inference is done using flat priors. Eqs. (8) and (11) are used to generate synthetic data. We219

use two precipitation time series:220

Phigh = 30 sin(x) + 30, Plow = 10 sin(x) + 10 (13)

A sequence of x from 0 to 100, spaced at 0.1, is used to generate P at discreet time steps. We then221

combine first 220 points from Plow and the other 780 from Phigh to get the precipitation for the222

calibration time series. And combine first 420 points from Plow and the other 580 from Phigh to get223

the precipitation for the validation time series. The parameters (θ1, θ2) used for the high flow are (1,5)224

and for the low flow (0.1,5). This gives us observation generated by two separate processes. ψ2 and225

ψρ are 0.3 and 0.9 respectively.226

Parameter estimation for real case study: For the case study we use two time series of observation227

for calibration and validation. As there are substantial sections of the time series that are low flows,228

we see the effect of such flows on the inference of the parameters and on the predictive uncertainty.229

We use an hourly time series of discharge and precipitation. We calibrate the model on 2000 data230

points, from 01.01.2009 00:00 to 25.03.2009 07:00, and then validate the results for 3000 data points,231

from 08.09.2009 00:00 to 10.01.2010 23:00. Both the calibration and validation time series contain232

sections of high and low flows. As the model used is in this study has substantial deficits, we expect233

the prediction intervals to be wide. The model has two inference parameters θA and θk (Eq. (12)).234
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Figure 4: Effect of various assumptions regarding the likelihood on the inference of linear model

parameters when the error generating process is alike for low and high flows (synthetic data from an

additive error model). 1) Predictive uncertainty estimated using correlated and heteroscedastic (true)

likelihood 2) Predictive uncertainty estimated using uncorrelated and homoscedastic (i.i.d) likelihood,

with standard deviation σ. 3) and 4) are the corresponding posteriors.

The priors used for the inference are mentioned are presented in Table 1. And the ratio high and low235

flows in the calibration and validation time series is presented in Table 2.236
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Table 1: Normal truncated distributions were used to define the priors for the parameters in simulation

experiments for the case study. The vector in the table give the values for mean, standard deviation,

lower limit and upper limit of the prior for each parameter in our inference.

For copula-based likelihood function

ψ1 ψ2 ψα θA θr θk ψbase

(5,2,0,30) (0.4,0.3,0,5) (5,10 ,0,50) (16000,10000, 12000,100000) (1.5,1, 1,5) (0.2,0.5, 0.08,3) (50,3, 40,60)

For AR1 likelihood function

ψ1 ψ2 ψρ θA θr θk

(5,2,0,30) (0.4,0.3,0,5) (0.9,0.3,0,1) (16000,10000, 12000,100000) (1.5,1, 1,5) (0.2,0.5, 0.08,3)

Table 2: High and low flows in calibration and validation time series.

Calibration Validation

Highest flow No. of observations Number of observations Highest flow No. of observations No. of observations

(m3/s) below 30 m3/s above 150 m3/s (m3/s) below 30 m3/s above 150 m3/s

259 1901 12 279 2607 14

3 Results237

As it is evident from Fig. 4, when data that is generated from an autocorrelated and heteroscedastic238

process is used to infer parameters for a linear model, the inference results in underestimation of239

parametric (given by the spread in the posterior) and predictive uncertainties (given by the width of240

prediction intervals for high flows). Also, in the predictive phase the high and low flows do not get241

captured adequately. For example in this case, the prediction intervals using independent, identically242

distributed (i.i.d) model are narrower for high flows and wider for lower flows, compared to actual243

distribution of observation in these flow regimes. Also, the posteriors of parameters from i.i.d are244

narrower than the posterior from autocorrelated model. We additionally see that inference under245

the i.i.d assumption can show artificial dependence between various parameters, e.g. high correlation246

between (θ1, θ2), which is not the case when using the true error model. This didactic example247

establishes the operational need to capture the autocorrelation and heteroscedasticity of a hydrologic248

time series.249
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Figure 5: Model deficits in low flows inducing biased parameter inference can be avoided by using the

flexibility of copula based likelihood during inference (synthetic data). 1) Prediction using the copula

based probability model. 2) using AR1 probability model.

Apart from heteroscedasticity and autocorrelation in the hydrologic time series, errors in high and250

low flows can be generated by different deficits in the model, and therefore it may not be reasonable251

to treat them with the same marginal error distribution. Fig. 5 depicts the inference of the linear252

model which systematically overestimates low flows. This bias in the model causes severe biases in253

inference if we use the AR1 processes. The model parameters tend to underestimate flows during254

high rainfall, so that they can fit the base flows better. One way to overcome this problem is using255

a different type of marginal distribution, which can capture such a tendency of the modelling errors.256

The error description, as suggested in Eq. (9), is more tolerant towards the biases in the low flows and257

thus allows the model to fit for high flows Also, we see that the non-negativity of the flow is avoided.258
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Similar underestimation of high flows is seen for the real case study. Whereas copulas-based likelihood259

description is able to save the inference procedure from the underestimation of high flows (Fig. 6).260

We use the maximum posterior density parameter values as well as the parameter values from the261

whole posterior density to assess the prediction intervals. Given we anticipate that model does not262

capture the infiltration process well, and may overestimate runoff from small rainfall events, we put263

this understanding in Eq. (9), where low flow predictions are more likely to overestimate flow. This264

makes the probability model lenient towards such errors in low flows, giving the inference procedure the265

flexibility to search for parameters that take the prediction closer towards the high flow observations.266

Many other formulations, different from Eq. (9), can be used to incorporate more complex error267

structures.268

From the analysis of the real case study, we find that around 62% of observational time steps for the269

validation time series have prediction intervals going into negative flows when only using the maximum270

posterior parameter values; this number increases to 67.4% when using the whole posterior density.271

No such negative flows are seen using the copula-based likelihood function description. Also, for 95%272

prediction interval, the mean width of the copula-based likelihood is higher, and it thus captures more273

observations within it. AR1 captures 81.7% and copula-based probability model 92.1% observations274

in the validation phase, using the maximum posterior parameter values; using the whole posterior275

density the numbers go up to 86.8% and 96.2% respectively. For the high flow regime (flows higher276

that 150 m3/s), the relative mean error of model prediction corresponding to maximum posterior277

parameter values is 33.2% for AR1 and 14.2% for copula-based likelihood function.278

4 Discussion279

The results of the simulation experiments demonstrate that, akin to the accuracy of the deterministic280

hydrologic model, our description of the errors should also be representative of the modelled process.281

A departure from this can lead to non-trivial biases in the parameter estimation (Fig. 4 and 5). We282

also show that the disproportionate presence of low and high flows affects how the parameter inference283
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would perform (Fig. 5 and 6). Manually choosing only high events from the past time series to calibrate284

the model is not always a desirable alternative. We may also be interested in the prediction of low flows285

using the same model. Then the error description needs to be flexible enough to capture both high and286

low flows adequately. There can be cases where the errors in the low flows are skewed, with the model287

having some systematic tendencies to depart from the observations. It is intuitive that the tendency288

of the model to overestimate and underestimate would not be symmetric for flows closer to zero. The289

errors have to truncate such that the real flow is always positive. In order to prevent such complex290

errors undesirably influencing the whole inference procedure, we can describe these errors with heavy-291

tail or exponential distributions (Eq. (9)). The results show that AR1, due to its inflexibility with the292

autocorrelation is not able to capture non-negative support and skewed distributions simultaneously.293

We use copulas to capture this and see a noticeable improvement in inference. Copulas allow us to294

capture the temporal dependence and we are free to choose the marginals. However, we also found that295

this flexibility, while in principle desirable, in practice still does not guarantee unbiased parameters.296

As we can see from Fig. 6 (3), ψα parameter tends to go towards the upper extreme value, and is only297

bound by the hard prior. While this is not the case for the synthetic case studies, where the error298

structures are known, real case studies have more complex errors and these interactions between error299

model parameters and deterministic model parameters become more severe. So this description of300

error, as defined in Eq. (4), just makes an unbiased inference potentially achievable, if we are able to301

define the adequately representative marginal distributions using this flexibility, and have informative302

priors, for example in the case of Fig. 6. More concrete guidelines to choose such representative303

marginals still need to be researched. And it is not possible to formulate a unique description of errors304

that is representative of all the hydrologic time series.305

We find that copula-based likelihood functions prefer a high correlation value, as such parameter306

values produce peaky densities at the edges of the unit cube (Fig. 1). These edges correspond to high307

and low quantiles. In principle, high copula density values at these edges should be compensated by308

corresponding low values of marginal densities, hence avoiding parameter biases. As the likelihood is309

a product of copula densities and the marginal densities (Eq. (4)), if copula densities have high value310
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Figure 6: Comparing inference using copula based likelihood and AR 1 likelihood. 1) and 2) are

the predictions. And 3) and 4) are the bivariate posteriors for copula based likelihood and AR1

respectively.
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for extreme correlations, the low values of marginal should bring down the product and we should311

still have low likelihood values. However, this is not always achieved - the observations are not always312

described adequately by the selected probability model, so the compensation of the marginal is not313

guaranteed to suffice in avoiding very high parameters values of copulas. In many cases the posterior314

can converge to a high autocorrelation, at the expense of taking the deterministic model away from the315

observational data. One way to avoid this is by having informative priors where we know for sure that316

the autocorrelation of the process cannot be more than a certain amount and the standard deviation317

of the error cannot be more than a certain amount, representing the model understanding and the318

local hydrology of that particular case study. Nonetheless, more robust schemes which allow the319

model to go closer to the observations even when the priors are uninformative need to be formulated.320

The desirable formulation an error model would be such that small inaccuracies in the error models321

only lead to small inaccuracies in inference. Priors, however, can be used to exclude unreasonable322

parameter spaces.323

As far as the improved performance of copula-based likelihood function over the AR1 is concerned,324

one of the reasons why this is seen in both synthetic and the real case studies of this work is that the325

peaky low flows are poorly represented by the chosen hydrologic models. The rainfall produces a flow326

signal in the model which is not seen in the real catchment. This effect is a combination of several327

sub-effects. First, the rainfall itself is measured by rain gauges that do not lie within the catchment328

(Fig. 3). The biases in the precipitation input, with overestimation and underestimation of rainfall,329

induce high relative errors in the low flows. Also, in the absence of an infiltration mechanism, all330

the rainfall is converted into surface runoff by the model. These deficits lead to peaky errors in low331

flows every once in a while. As these errors will have very low probability to occur, in case of an AR1332

process, they get penalized heavily, distorting the parameter inference. Hence, it is recommended,333

before choosing the marginal of this coupla-based probability model, to ascertain the regions of the334

hydrograph where high errors can be tolerated and where relatively better predictive capacity of the335

model is desired. This way during inference, the likelihood function will not produce low probability336

values for parameters that perform poorly only in low flows but perform adequately well for other337
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sections of the hydrograph.338

In case of systematic model deficits, for example Fig. 5, the AR1 likelihood function tends to either339

assume that the observations have been produced by a process with high standard deviation of errors340

and high autocorrelation, instead of a process that has relatively low autocorrelation. To mitigate the341

effect of such interaction between the parameters, we assume that low and the high flows are generated342

by different marginal, and demonstrate that such an assumption improves parameter estimation. Such343

flexibility allows the error model to ascribe a different variance to the base flows, as opposed to the344

high flows, when there is rainfall (Fig. 6).345

We also find that non-negativity in the predictions easily achieved using the formulation of marginals346

used in this work. Even though there are substantial deficits in the low flows, we know that the347

observations cannot be negative. Therefore, the errors are generally from a skewed distribution. The348

use of shape parameter as 1 in our case reflects that the error tend to be skewed in low flows, and the349

model, as in our case, is more likely to overestimate the flow than to underestimate it.350

Regarding the robustness of this error model formulation, even though this description is flexible, and351

can be used to formulate more sophisticated error models, with different marginals, and still be able to352

capture the autocorrelation, the flexibility is not a guarantee for convergence to meaningful posteriors.353

The description of the error model still needs to incorporate the relevant knowledge of the modelers354

about the kind of deficits they expect in their models. Also, the method can perform poorly in cases355

where the autocorrelation parameter and the heteroscedasticity parameters do not have proper prior356

constraints. There is no guarantee that a small approximation in the choice of copula or marginal will357

not diverge the inference from parameter spaces that actually reflect the hydrology of the modeled358

system. To attain this robustness in inference using copula-based likelihood function, more research359

is needed.360
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5 Conclusions361

Biases in parameter and predictive uncertainty estimation arise from poorly modelled errors in hydro-362

logic time series. We show that the parameter inference can be skewed in many situations if we always363

stick to the state-of-the-art AR1 process as the error model. To curtail that we propose a flexible364

formulation of the likelihood function that allows for different choices of marginal for the time series365

and takes care of the autocorrelation using copulas. From the results and discussion we conclude:366

1. Capturing both non-negativity of the hydrologic system response and the autocorrelation in time367

is not straightforward.368

2. We can use copulas with non-negative marginals to define a probability model for hydrologic369

time series.370

3. This description allows for more flexibility in choosing the marginals. For example, we can have371

different error structures for low and high flows.372

4. If the right marginal densities are chosen, we show that this likelihood formulation provides373

better parameter and predictive estimates, where additive error models would otherwise perform374

poorly.375

5. However, if the copula likelihood function is not fully reflecting the underlying data generating376

process, for example, by choosing wrong marginals or wrong heteroscedastic dependence, or377

having uninformative priors, we again run into issues of non-robustness during inference.378

6. Just like in the case of AR1 probability model, the posterior can converge to unrealistic parameter379

spaces.380

This research extends the suite of mathematical descriptions available in hydrology to model time381

series. Given that such a description is flexible, we foresee that it can be useful for many problems382

related to parameter inference and model prediction. The analysis is intended to add to the body of383

literature on representative likelihood functions. It brings forth some benefits and challenges of using384
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a copula-based likelihood function.385
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