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ABSTRACT
We investigated radiatively driven under-ice convection in Lake Onego (Russia) during 3
consecutive late winters. In ice-covered lakes, where the temperature of water is below the
temperature of maximum density, radiatively driven heating in the upper water column induces
unstable density distributions leading to gravitational convection. In this work, we quantified the
key parameters to characterise the radiatively driven under-ice convection: (1) the effective
buoyancy flux, B∗ (driver), and its vertical distribution; (2) the convective mixed-layer thickness,
hCML (depth scale); and (3) the convective velocity, w∗(kinematic scale). We compared analytical
w∗ scaling estimates to in situ observations from high-resolution acoustic Doppler current
profilers. The results show a robust correlation between w∗ and the direct observations, except
during the onset and decay of the solar radiation. Our results highlight the importance of
accurately defining the upper limit of hCML in highly turbid water and the need for spectrally
resolving solar radiation measurements and their attenuation for accurate B∗ estimates.
Uncertainties in the different parameters were also investigated. We finally examined the
implications of under-ice convection for the growth rate of nonmotile phytoplankton and
provide a simple heuristic model as a function of easily measurable parameters.
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Introduction

Ice-covered lakes are largely disconnected from external
kinetic and thermal atmospheric energy (Kirillin et al.
2012). Late winter has long been assumed as a quiescent
period for inland waters before spring melt and water
reset the thermal and biogeochemical conditions of the
ice-free period. Yet, ice-covered lakes remain complex,
hosting active biogeochemical processes (Powers and
Hampton 2016, Hampton et al. 2017). The disconnec-
tion from the atmosphere and cessation of the air–
water gas exchanges can lead to anoxic conditions
(Golosov et al. 2007). Similarly, the under-ice lake car-
bon dynamics result in an accumulation and a late
CO2 evasion estimated to significantly contribute to the
annual CO2 flux (Ducharme-Riel et al. 2015). Lastly,
algal growth is observed in various ice-covered lakes
despite the low light and low temperature conditions
(Twiss et al. 2014), as for instance in Lake Baikal
where under-ice diatom blooms can account for a large
part of the annual production (Katz et al. 2015).

A growing number of observations have undermined
the traditional quiescent representation of under-ice lim-
nology (Powers and Hampton 2016), and the coupling
between physical and biogeochemical processes should
be further investigated.

In the global context of climate change, the phenol-
ogy of lake ice is of primary importance because the
timing of freezing and thawing might strongly affect
the lacustrine processes, yet the role of the physical
processes in winter limnology remains substantially
overlooked. At the end of winter, the intensity of
solar radiation can become strong enough to penetrate
the ice. One direct implication is the availability of
energy for photosynthesis. With water cooler than
the temperature of maximum density (TMD =
3.984 °C for zero salinity), solar radiation increases
the near-surface water density and leads to gravita-
tional convective instabilities (Bouffard and Wüest
2019). Thus, heating by radiative energy modifies the
vertical temperature profile of the lake by setting up
a convective mixed layer (CML).
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Radiatively driven convection has been observed in
late winter in ice-covered lakes (Farmer 1975, Bengtsson
1996, Mironov et al. 2002, Jonas et al. 2003, Forrest et al.
2008, Kirillin et al. 2015, Bouffard et al. 2016) with sub-
sequent local- to basin-scale circulation. In addition to
the direct effect of solar radiation to trigger photosyn-
thetic activity, radiatively driven convection can redistri-
bute deeper nutrients and increase the retention time of
phytoplankton in the photic surface layer (Pernica et al.
2017). The nonmotile phytoplankton growth under the
ice is an interesting example of a coupled biophysical
process. Solar radiation is both the trigger for growth
as well as the curator for the environmental niche via
the development of a convective layer with thermal
plumes counteracting the settling of phytoplankton.

Kelley (1997) compared the sinking rate of nonmotile
phytoplankton with the updraft convective velocity,
which depends on the buoyancy flux and the thickness
of the CML, hCML. A scaling for the convective velocity
was established from laboratory experiments (Deardorff
1970) and was extended in the case of volumetric radia-
tive forcing of under-ice convection (Mironov et al.
2002). This scaling predicts under-ice convective velocity
that typically ranges from 1 to 7 mm s−1 in lakes (Farmer
1975, Bouffard et al. 2016). Yet to date there is no direct
estimate of the vertical velocity in the radiatively driven
under-ice convective layer. Previous velocity estimations
have focused on horizontal currents due to seiches
(Malm et al. 1998) and more recently on gyres (Forrest
et al. 2013) and downslope density currents (Kirillin
et al. 2015). The challenge in the Deardorff scaling is to
relate the strength of the convection to the incoming
solar radiation and optical properties of the water.
Indeed, the parameterization of the transfer of solar
energy is complex. First, parts of the incoming solar radi-
ation are reflected by snow and ice at the surface. Other
parts are absorbed by the ice, depending on its properties
(Leppäranta et al. 2003, Zdorovennova et al. 2013a).
Finally, the remainder of solar radiation is absorbed
throughout the water column, and its vertical distri-
bution depends on the quantity of particles. Yet, the
absorption is not uniform over the wavelength, and the
light spectrum is not only modified in intensity but
also in shape. This phenomenon is particularly relevant
for waters with high coloured dissolved organic matter
(CDOM), such as Lake Onego bay (Sabylina and Ryzha-
kov 2018), where the short wavelength radiation is
strongly absorbed compared to the rest of the visible
spectra (Röttgers and Doerffer 2007). With the recent
development of underwater hyperspectral radiometers,
the wavelength-dependent penetration and absorption
of the visible domain relevant for the heat budget can
be assessed.

The goal of this study was to evaluate the scaling
parameterization of the radiatively driven convection
under ice by direct observations of the convection.
Specifically, we evaluated (1) the role of the vertical
and spectral distribution of the incoming radiative
energy and (2) the uncertainties of the relevant physical
parameters. Finally, we illustrated how these parameters
can be used in ecological studies to assess whether or
not convection can favour nonmotile phytoplankton
growth.

Methods and data

Radiatively driven under-ice convection was investigated
over 3 successive late winter periods in March (2015,
2016, and 2017) in Lake Onego (also called Lake
Onega), Russia. Measurements were performed 2 km
from the shore in Petrozavodsk Bay at 61°46,744′N, 34°
25,793′E, where the water column was 27 m deep (Fig. 1).

Thermal structure of the water column

The thermal structure of the water column was moni-
tored with RBR temperature sensors mounted with
vertical spacing increasing with depth (see Appendix
A for setting and characteristics of all instruments
and Fig. 1 for setup). For 2016 and 2017, an additional
mooring was deployed with 10 high-resolution, fast-
responding RBR temperature sensors with 2.5 cm ver-
tical spacing from the ice–water interface to 0.25 m
below it. This fine-scale resolution of the temperature
directly below the ice provided information on the
dynamics of the under-ice diffusive layer (UIDL) and
an accurate estimate of the upper boundary of the
CML at z = −d (m). The spatially discretized obser-
vation of the thermal structure was complemented by
hourly conductivity, temperature, and depth (CTD)
profiles resolving precisely and continuously the
lower bound z = −hM of the CML. The vertical extent
of the CML was determined by hCML = hM − d (m).
Two conductivity loggers were moored in the CML
in 2017, showing low and constant salinity over the
measuring period (27 [SD 0.7] μS cm−1). Salinity and
salt exclusion during the freezing/thawing process
can modify the local density structure under the ice
(Bluteau et al. 2017), yet the observed low conductivity
and almost constant ice thickness justified neglecting
salinity effects in this study.

Temporal change of the mixed layer thickness

The increase in TCML has a complex dependence on how
the incoming radiative energy is vertically distributed.
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Briefly, part of the incoming energy directly goes into
background potential energy (e.g., warming of the
layer) while another part is transformed into available
potential energy. This energy component is then con-
verted into kinetic energy (e.g., convective plumes) that
in turn enhances mixing, consequently deepening the
hCML. However, part of the kinetic energy is expended
impinging the lower bound of the CML, a process that
transfers energy from the convective cells to the internal
wavefield in the deep stratified layer, while the rest of the
kinetic energy is irreversibly dissipated by friction. This
chain of energy conversions leads to an increase in the
background potential energy of the system. A detailed
analysis of the energy pathway in radiatively heated
ice-covered lakes was provided by Ulloa et al. (2018).

The deepening of hCML can be approximated by
(Zilitinkevich 1991, Kirillin et al. 2012):

dhCML

dt
= (1 + 2j)

B∗
hCMLN2

, (1)

with the entrainment coefficient j. Farmer (1975) esti-
mated j = 0.2 for the ice-covered Lake Babine; B∗ (m2

s−3 =W kg−1) is the buoyancy flux; and N2 (s−2) is the
background stratification or water column stability

just below the CML, defined as N2 = − g
r

∂r

∂z
, with the

gravitational acceleration g and the water density ρ.

Light penetration

The light penetration was measured with 3 pyranometers
fordownwelling irradiance above andbelow ice andupwel-
ling irradiance above the ice (Fig. 1, Appendix A). This

setup provided estimates of albedo and transmittance of
the ice/snow layer (Leppäranta et al. 2010, Kirillin et al.
2012, Bouffard et al. 2016). Hereafter, we denote the down-
welling and upwelling solar irradiance above the ice as
Ed(O+) and Eu(O+), respectively, and the under-ice
downwelling solar irradiance as Ed(O−), all in W m−2.
The albedo and transmittance are defined as
A = Eu(O+)/Ed(O+) and Tr = Ed(O−)/[(1− A)
Ed(O+)], respectively. In this study, the most important
parameter was Ed(O−), which represents the energy enter-
ing the water beneath the ice.

Nine photosynthetically active radiation (PAR) sen-
sors were moored to measure the light as a function of
depth and time and its attenuation based on Beer’s law
(1 m resolution for 2015/2016, ∼0.3 m for 2017; see
Appendix A). PAR (μmol m−2 s−1) observations pro-
vided the integrated light spectrum (400–700 nm) at
each depth and were used to estimate the light absorp-
tion, kPAR (m−1). Assuming that the solar radiation can
be parameterized as a monochromatic source, downwel-
ling solar irradiance decreases with depth by
Ed(z) = Ed(0−)e−kPARz.

Moreover, the radiative spectral energy penetration of
the sunlight was specifically investigated in 2016 with a
setup similar to that used by Lei et al. (2011). A hyper-
spectral radiometer (Ramses VIS, Trios; Fig. 1) was
deployed under the ice to record the downwelling
irradiance at 190 wavelengths between l1 = 320 < λ <
950 = l2 nm (3.3 nm spectral resolution). We defined
Ed,l(l, z) (mWm−2 nm−1), the spectrally resolved down-
welling irradiance at depth z, and then the net downwel-

ling irradiance by Ẽd(z) =
�l2
l1

Ed,l(l, z)dl. From the

Figure 1. The experimental setup including pyranometers (1, 2, 3), PAR sensors (4), T-loggers (5), CTD-profiles (6), ADCPs (7), and hyper-
spectral radiometer profiles (8). Physical processes represented include light penetration transmittance (yellow arrows) and albedo (yel-
low curve), spectrally resolved light distribution (rainbow spectra), and temperature profile and convective cells. The different layers
(under-ice diffusive layer [UIDL] and convective mixed layer [CML]) and their thicknesses (δ and h_CML, respectively) are indicated.
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hyperspectral radiometer profiles, we estimated the spec-
trally resolved light attenuation coefficient kλ(m

−1) and
the profile of downwelling solar irradiance as

Ẽd(z) =
�l2
l1

Ed,l(l, 0−)e−klzdl. The difference between

Ẽd and Ed provides an estimate of the errormade bymod-
elling the solar radiation as a monochromatic source.
Here, the depth dependencies of kPAR and kλ were not
investigated, andwe assumed homogeneous optical prop-
erties within the CML. Given the strong light absorption
(discussed later), heterogeneities in kPAR and kλ in the
deeper part of the CML did not affect our results. Finally,
sunrise was defined as the time when the solar irradiation
above ice exceeded 10 W m−2 (typically ∼0730 h, local
time). Note that astronomical noon is∼1350 h in the Pet-
rozavodsk area for mid-March.

Parameterization of the convective velocity

The convective velocity w∗(m s−1) was parameterized
using the scaling relation for convective turbulence
(Deardorff 1970), expanded for volumetric forcing (Mir-
onov et al. 2002) and applied by Bouffard et al. (2016).
Briefly, w∗(m s−1) scales with the buoyancy flux, B∗,
and hCML by:

w∗ = (hCMLB∗)1/3. (2)

B∗ results from the absorption of solar radiation within
hCML and is given by (z is positive downward, z = 0 at
the ice–water interface; Fig. 1):

B∗ = 1
hCML

∫
hCML

B(z)dz

= − g
rCphCML

∫−d

−hM

a
∂HQ(z)
∂z

(hM + z)dz, (3)

with ρ (kg m−3) the density of the water in the CML, Cp (J
K−1 kg−1) the thermal capacity, and α the thermal expan-
sion coefficient (K−1, α < 0). For under-ice processes, the
heat flux, HQ (W m−2), can simply be expressed as
HQ(z) = Ed(z). This form is similar to, yet more general
than, the equation presented by Mironov et al (2002).

Direct estimate of the convective velocity

We measured vertical velocities, w(t), with one RDI 600
kHz Mode 11 ADCP and two HR 2 MHz Nortek Aqua-
dopp, both downward-looking in pulse-to-pulse coherent
mode. The ADCPs were kept frozen in the ice for the ∼2
week duration of the field measurements in 2016 and

2017. No direct observations of the vertical velocities
were made in 2015. The RDI and Aquadopp ADCPs
ranged from 8.0 to 2.5 m under the ice, respectively.
The convective velocity in the CML was estimated as:

w∗(t) = 1
hCML

∫−d

−hM

w2(t)dz

⎛
⎜⎝

⎞
⎟⎠

0.5

. (4)

The time series of w∗(t) was hourly averaged. Although
the downward velocity over the entire CML could not
be measured, an estimate of w∗ based on high-reso-
lution ADCP measurements was obtained from a
layer of 1.0 m thickness in the upper region of the
CML between 1 and 2 m depth. Although investigating
the vertical velocity over the entire CML would be pre-
ferable, the CML thickness was larger than the ADCP
vertical range, and the divergent-beam ADCP is not
ideal for investigating narrow coherent structures such
as convective plumes. We set the upper noise limit for
the background vertical velocity to ∼0.5 mm s−1 based
on measurements at night.

Finally, the skewness of the ratio between upward
(w+) and downward (w−) velocities provided an indi-
cation of the convective plumes structures. This ratio
was calculated when the daytime-averaged upward travel
distance closely matched the vertical downward distance
(e.g., conservation of mass).

Results

We focused on the direct forcing (e.g., solar radiations)
and change in thermal structure of the water column
as the most important observable parameters to charac-
terize under-ice convection. The temporal evolutions of
air temperature as well as wind intensity and direction
were reported (Appendix B).

Solar radiation and ice optical properties

The downwelling solar radiation Ed(0
+) measured in

March 2015, 2016, and 2017 (Fig. 2) indicates different
weather scenarios depending on cloudiness (e.g., 23–24
March 2015, 11–16 March 2016, 13 and 17–19 March
2017). The maximum solar radiation was observed in
2015 and 2016 with Ed(0

+) exceeding 750 W m−2. Aver-
aged solar radiations measured in 2017 were slightly
weaker with 262 (SD 113)Wm−2 (max: 697Wm−2) com-
pared to 2015 with 345 (135) W m−2 (max: 756 W m−2),
and 2016 with 351 (143) W m−2 (max: 753 W m−2).

The upwelling solar radiation Eu(0
+) (Fig. 2) was also

much larger in 2016, when midday (1100–1500 h)
albedo was ∼0.71 (SD 0.05) and nearly constant over
the 12 d period (Fig. 3b). This measurement was
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consistent with the observations of a thin patchy layer
(up to 5 cm) of snow above the ice surface. Despite the
large Ed(0

+) in 2016, most of the light was reflected by
ice and snow, and the measured Ed(0

−) of 6 (SD 3) W
m−2 was drastically lower than for the other years: 108
(50) W m−2 in 2015 and 79 (25) W m−2 in 2017.

For 2015, the average midday albedo was 0.23 (SD
0.18; Fig. 3a). The large standard deviation was due to
strong weather variability during the field campaign.
There was no snow on the ice, and the average midday
albedo was ∼0.15 and ∼0.33 during the first and second
half of the observed period, respectively. In 2016 the
albedo reached a midday average value of 0.71 (SD
0.05; Fig. 3b), and in 2017 the average midday albedo
was 0.21 (SD 0.10; Fig. 3c). All 3 periods in March
revealed a daily pattern in the albedo with a decrease
in the afternoon due to ice melting.

The transmittance (Fig. 3) was also different for the
3 late winters, with a midday average value of Tr = 0.42
(SD 0.14) in 2015, 0.07 (0.05) in 2016, and 0.40 (0.05)
in 2017, indicating that between ∼60% and ∼90% of
the solar radiation was absorbed by the ice. Black ice
and white ice thicknesses were 39 and 0 cm in 2015,
40 and 9 cm in 2016, and 43 and 3 cm in 2017,
respectively.

Despite the high incoming solar radiation in 2016, the
thin layer of snow above the 9 cm of white ice reflected
and absorbed (Petrov et al. 2005) most of the light and
resulted in lower solar radiation penetrating the water.
In conclusion, in 2015 and 2016 we observed similar
incoming solar radiation during the measuring periods.
Yet, the ice and snow properties were different, and ice
optical properties and penetrative solar radiation were
more similar in 2015 and 2017.

Figure 2. Downwelling irradiance Ed(0
+) above the ice (green), upwelling irradiance Eu(0

+) above the ice (blue), and downwelling irra-
diance Ed(0

−) below the ice (purple) for (a) 2015, (b) 2016, and (c) 2017. Note that Ed(0
−) is shown on the right axis on a finer range.
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Light absorption

Despite the largest solar radiation Ed(0
+) observed in

March 2016, the weakest light intensity Ed(0
−) was

measured for this period below the ice (Fig. 2). This obser-
vation is consistent with the under-ice light measurements
(Fig. 4), in which the solar radiation across the water col-
umn was one order of magnitude smaller in 2016 than in
2015 and 2017. Light penetrated to ∼4 m depth (PAR
≥ 1 μmol m−2 s−1) in March 2015 (Fig. 3a), ∼1.5 m in
2016 (Fig. 3b), and ∼2.5 m in 2017 (Fig. 3c). The PAR
attenuation coefficient in the depth range of 1–2 m was
kPAR = 1.2 (SD 0.3) m−1 for March 2015, kPAR = 3.2 (0.5)
m−1 for 2016, and kPAR = 2.7 (0.1) m−1 for 2017, corre-
sponding to overall turbid water conditions. Visual inspec-
tion of collected samples indicated yellowish waters as
typically observed in coloured dissolved organic matter
(CDOM) dominated lakes. Indeed, the large absorption
in the short wavelengths, typically responsible for this col-
our, is a signature of CDOM (Röttgers and Doerffer 2007),

which was clearly shown with underwater hyperspectral
measurements (Fig. 5). Although the mean kλ across the
range of 400 , l , 700 nm was 2.6 m−1, the attenuation
coefficient varied from 1.2 m−1 at λ = 700 nm (higher
wavelength are contaminated by sensor accuracy) to 5
m−1 at λ = 450 nm. Given the large absorption at small
wavelengths (Fig. 5a), only the largest wavelengths
(600 , l , 700 nm) still contain energy below 1 m
depth (Fig. 5b). The spectral distribution of energy differs
from the monochromatic assumption made when using
PAR and pyranometer sensors.

Thermal structure

The thermal structure of the water column had the same
pattern for all 3 late winters (Fig. 6), with a top under-ice
diffusive layer (UIDL), followed by the CML, and ending
with a near bottom stratified layer. Yet the evolution of
the CTD profiles showed different dynamics (Fig. 6).

Figure 3. Ice albedo (red) and transmittance (blue) for (a) 2015, (b) 2016, and (c) 2017. Note the difference in albedo and transmittance
between measurements in 2015/2017 and 2016. The histograms are shown on the right panel.
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In 2015, we first observed a warming phase followed by
restratification (after 21 March) of the previous CML. In
2016, the temperature profiles did not change signifi-
cantly over time. In contrast with the previous years,
we observed both a consistent warming and deepening
of the CML in 2017. We described the daytime vertical
thermal structure starting from the top.

The UIDL immediately below the ice was character-
ized by a steep, thin temperature gradient between the
ice and the CML. The UIDL exhibited a clear diurnal
variability (Fig. 7b). The night-averaged UIDL profile
was a diffusive thermal layer subject to the ice-

temperature boundary condition, Tice = 0 °C, and a
lower limit temperature, TCML, set in the upper CML at
the end of the day before. The day-averaged UIDL was
characterized by a much steeper stable thin diffusive
layer that separated the ice from the maximum tempera-
ture and was followed by an unstable ∼10 to ∼20 cm
thick layer below (blue line in Fig. 7a). Above the maxi-
mum temperature, the incoming radiation was stabiliz-
ing the layer while below the TMD the incoming
radiation contributed to drive convection. Below, the
vertical temperature gradient flattened, defining the clas-
sical CML (Fig. 7a). This diurnal UIDL structure can be

Figure 4. Vertically resolved light penetration measured with PAR sensors for (a) 2015, (b) 2016, and (c) 2017. Black dots indicate the
depth of the PAR sensors. Note the large difference in energy penetrating into the convective mixed layer (CML) between 2016 and
2015/2017.
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explained as a balance between vertical diffusion and the
buoyancy flux (Kirillin and Terzhevik 2011).

Below the UIDL, the CML extended down to 10 m in
2016 as well as 20 m in 2015 and 2017 (Fig. 6). This layer
was nearly constant in 2016 because of the weak radiative
forcing and associated convection. In 2015, this layer was
already ∼20 m at the beginning of the measuring period,
and the changes in themeteorological forcing affected the
CML thickness (Fig. 6). The cause of this change was not
investigated further in this study and is thereby briefly
described here. From 20 to 25 March 2015, a storm

affected the lake with strong wind from the northwest
(Appendix B), which may have induced a pressure gradi-
ent that possibly led to horizontal transport and barotro-
pic and/or baroclinic seiches within Petrozavodsk Bay. In
March 2017, we observed a clear widening of hCML from
12.2 to 20.5 m, equivalent to an average increase of
1.0 md−1. Not only hCML varied, but also the temperature
in the CML. For March 2015, TCML started at 0.61 °C on
15 March and reached 0.95 °C on 24 March, with a mean

Figure 5. (a) Light attenuation as a function of wavelength
between 0.5 and 1 m below the surface on 16 March 2016,
1200 h local time (e.g., midday). (b) Spectrally resolved downwel-
ling irradiance, Ed,λ(λ, z) measured at 0.5 m and 1 m (thick green
and black lines). Thin lines are calculated from Ed,λ(λ, z) based on
spectrally resolved light attenuation coefficient kλ (a). Dashed
lines represent the vertical evolution of Ed,λ(λ, z) based on spec-
trally averaged light attenuation coefficient (e.g., equivalent to
kPAR estimated from PAR measurements). Horizontal light dash-
dotted lines represent the vertical evolution of spectrally aver-

aged
1

720− 420

∫720
420

Ed,l(l, z)dl (e.g., equivalent to pyranometer

measurements). The thick dash-dotted blue line represents the
actual pyranometer measurements decomposed over wave-
length as monochromatic radiation, based on spectrally averaged
light attenuation coefficient (e.g., equivalent to kPAR). Numbers
on (b) indicate depth (0, 0.25, 0.5, 1, 2, and 3 m).

Figure 6. Examples of daytime vertical temperature profiles for
2015, 2016 and 2017. Each profile was taken at ∼1600 h. Num-
bers in the legend represent successive days. The CML is signifi-
cantly warming over time in March 2015 and 2017.
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daily increase of 0.04 °C d−1 (Fig. 6a, 8a). The temperature
increase as well as the absolute temperature were smaller
for March 2016, with an initial TCML = 0.07 °C on 11
March, reaching TCML = 0.12 °C on 23 March, and a
mean daily increase of 0.0045 °C d−1 (Fig. 6b, 8b). For
March 2017, TCML started at 0.23 °C on 12 March and
reached 0.42 °C on 20 March, with a mean daily increase
of 0.024 °C d−1 (Fig. 6c, 8c).

Finally, we observed a stratified layer below the CML.
The water column stability in the stratified layer below
the CML was N2 = 8.5 × 10−5 s−2 in 2015, 4.3 × 10−5

s−2 in 2016, and 1.2 × 10−5 s−2 in 2017.

Temporal change of the mixed layer thickness

Data collected in 2017 allowed investigating the temporal
change of hCML as a function of B∗. Equation 1 applied to
the March 2017 data agreed well with the observed hCML

(Fig. 8c; root mean square error [RMSE] = 1.1 m, R2 =
0.65). Yet, the model could not reproduce the oscillations
in hCML identified during the second part of the measuring
period resulting from other processes such as deep large-
scale motions not investigated here. Other studies have
shown that river intrusions (Cortés et al. 2017) or differen-
tial horizontal heating (Kirillin et al. 2015) can cause spatio-
temporal variability in the locally measured temperature.
Equation 1 allows examining whether radiatively driven
convective turbulence is the main process, and significant
deviations from equation 1 suggest that additional physical
mechanismsmight be relevant for the CML evolution. The
most relevant parameters, incoming light, optical proper-
ties, and CML characteristics, were summarized for the 3
measuring periods (Table 1).

Convective velocity

In 2016, the downward-looking 600 kHz ADCP showed a
diurnal pattern with alternating downward and upward

velocities ranging up to ±2.5 mm s−1 during daytime (Fig.
9a). The distribution of the plumes was asymmetrical with
mostly downward thermal plumes recorded on 16 March
and mostly upward thermal plumes recorded on the 22
March. Plume median duration was: τc ∼17 (SD 9) min.

The situation was much clearer in 2017, where all
ADCPs showed alternating downward and upward
plumes during daytime reaching up to ±7.5 mm s−1

(Fig. 9b–c). The distribution was asymmetrical, with lar-
ger velocities recorded for downward plumes than for
upward plumes (Fig. 9d). When compared to w∗, we
obtained w∗ = bw+ = −gw−, with β = 1.25 and γ =
0.75. Indices “+” and “–” are for upward and downward
velocities. From the continuity equation balance, we

obtain:
t−c
t+c

= g

b
∼ 0.6, with t+c (respectively t−c ) the dur-

ation of upward (respectively downward) convective
plumes. The skewness in the distribution indicates that
the CML is slightly dominated (by ∼60%) by slowly ris-
ing upward flow. Our observations agree with previous
large eddy simulation of near-surface cooling-induced
convection (Sander et al. 2000).

From the vertical velocity observations, the onset and
breakdown of the radiatively driven convection can be esti-
mated. The median time lag between sunrise and onset of
convection was 90 (SD 40) min. A threshold approach on
the slowly decaying convective turbulence is arbitrary, yet
the same approach applied to sunset (10 W m−2,
∼1830 h, local time) gives a time lag of 225 (SD 65) min.

Discussion

Convective velocity

The convective velocity was estimated for 3 late winter
periods based on equations 2 and 3. This parameterization
was compared to the direct measurements of the vertical
velocity in March 2017, using equation 4 (Fig. 10a).

Figure 7. (a) Mean (bold line) and standard deviation (dashed lines) of temperature profiles in the UIDL during day (blue) and night
(red) for 13 March 2017. (b) Three-day (13–15 March 2017) record of temperature in the UIDL at 3 cm (blue), 7.5 cm (pink), 16.5 cm
(red), and 30 cm (black) depth. Note (1) day–night fluctuations, (2) high-frequency fluctuations, and (3) daytime unstable profiles.
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Excellent agreement (Fig. 10b, RMSE = 0.67 mm s−1, R2 =
0.51) occurred at midday between the direct and the buoy-
ancy flux method, the envelope of the direct measurements
(Fig. 10a). The same method was applied for March 2016
under weaker convection and provided a way to compare

the observed convective velocity from ADCP measure-
ments with the scaling using the monochromatic radiation
assumption (e.g., PAR sensor, blue dots and line in Fig. 10b)
and the spectrally resolved radiation method (e.g., hyper-
spectral measurements). Our results suggest

Figure 8 . Temporal evolution of the temperature (°C) over the water column for (a) 2015, (b) 2016, and (c) 2017. The black dots on the
right indicate the location of the sensors. The grey lines represent isotherms (ΔT = 0.1 °C). White lines represent the lower end of hCML.
The black line on panel (c) represents the modelled temporal change of the CML.

Table 1.Mean and standard deviation (SD) of measured parameters (light, optical characteristics, and CML properties) during the 3 late
winter periods in 2015, 2016, and 2017.

Ed(0
+) Ed(0

−) A Tr kPAR kλ hCML dhCML/dt dTCML/dt
(W m−2) (W m−2) (−) (−) (m−1) (m−1) (m) (m s−1) (°C s−1)

2015 345 (132) 108 (50) 0.23 (0.18) 0.42 (0.14) 1.2 — 20 — 0.04
2016 351 (143) 6 (3) 0.71 (0.05) 0.07 (0.03) 3.2 2.6 9 — 0.0045
2017 262 (113) 79 (25) 0.21 (0.1) 0.40 (0.05) 2.6 — 12–20 1.0 0.024
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an improvement in the estimation of the convective velocity
scale by using the spectrally resolved radiation method
(RMSE = 0.32 mm s−1, R2 = 0.65 vs. RMSE = 0.35 mm s−1,
R2 = 0.25). We showed that the directly measured

convective velocity had a slower decay rate than the velocity
estimate based on the buoyancy flux method, in which low
convective velocities were recorded during the evening and
early night (no light). From a sunset occurring at 0630 h

Figure 9. Vertical velocity for (a) 2016 and (b, c) 2017. (a, b) Data from a 600 kHz Mode 11 RDI ADCP. (c) Data from a 2000 kHz Pulse-
coherent Nortek Aquadopp ADCP. In 2017, the RDI (b) only worked for 3 days. Left insets in panels (a) and (b) are zooms for 18 March
2016 and 17 March 2017 (x-axis in hours on the inset) showing alternating upward and downward thermal plumes. (d) Distributions of
upward and downward velocities of convective plumes.
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during the March 2017 measurements, the median break-
down time for the convective turbulence was at 1015 h
(i.e., 225 [SD 65] min after sunset). The onset of the morn-
ing convection was also shifted. The buoyancy flux method
responded immediately to the onset of solar radiation after
sunrise while the measured velocities exceeded the
threshold by 90 (SD 17) min later. Although the decaying
convective turbulence has been previously investigated
(Nieuwstadt and Brost 1986, Bouffard et al. 2016), our
observations confirm the systematic delay in the onset of
convection, and we conclude that estimates of the daytime
duration using solar radiation largely underestimate the
duration of the convection.

Relevance of spectral light extinction estimates

Under-ice stratification in freshwaters (low salinity) is
governed by the density increase with temperature
until the temperature of maximum density is reached.
For T , TMD, solar radiation increases the near-surface
water density and leads to gravitational instabilities and
convection. There is a misleading symmetry with the
case T . TMD, in which surface cooling drives gravita-
tional instabilities. The heat leaving the lake during the

cooling phase is strictly located in the top millimetre of
the air–water interface while the shortwave solar radi-
ation responsible for the warming is deposited in the
interior of the water column. In clear freshwaters, short
wavelengths penetrate deeper than long wavelengths,
and convective mixing resulting from near-surface heat-
ing requires an accurate description of the incoming
solar radiation (Kirillin et al. 2012).

The 3 late winter observations present different pat-
terns for the convective velocity. The parameterized vel-
ocity was strong in 2015 and 2017 and weak in 2016, yet
the strength of the convective turbulence was not corre-
lated to the incoming solar radiation, which was higher
in 2016 (Fig. 2). Albedo and transmittance in the few
centimetres of thick snow and white ice cover drastically
damped the energy input in 2016 compared to 2015 and
2017 (Fig. 3, 4). This example demonstrates the inability
of estimating the buoyancy flux based on above-ice solar
radiation measurements only.

The volumetric forcing of solar radiation in the photic
zone requires accurate description of the light absorption
across the upper water column. We compared the buoy-
ancy flux estimates from light extinction coefficients
based on a kPAR and a second estimate based on a full

Figure 10. (a) Temporal evolution of the ADCP-based (green, equation 4) and radiation-based estimates (black line, equation 3) of the
convective velocity scale for March 2017. (b) Comparison of the 2 methods at midday (1100 to 1400 h) for March 2017 (red dots and
line), March 2016 using PAR and pyranometer sensors (blue dots and line), and March 2016 using hyperspectral radiometer (brown dots
and line). The dashed-line indicates the 1:1 relation.
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wavelength decomposition of kλ from underwater hyper-
spectral measurements. The second approach led to kl =
2.6 m−1 for March 2016, representing the average over
400 < λ < 700 nm (Fig. 5), which differs from kPAR = 3.2
m−1 estimated with PAR sensors at the same time (16
March 2400 h; 2016). We removed potential sensors bias
by setting kPAR = kl. For this period, we obtained B∗PAR
= 2.1 × 10−9 W kg−1 (monochromatic radiative transfer
assumption) and B̃ = 6.4 × 10−9 W kg−1 (wavelength
dependent radiative transfer) with an error of 67% from
the corrected PAR estimate. The difference reached 80%
for the uncorrected (e.g., kPAR = 3.2 m−1) PAR estimate.
The error reached 31% for the convective velocity using
the corrected PAR and 40% using the uncorrected PAR.
CDOM modifies the spectral distribution (Röttgers and
Doerffer 2007) of the light absorption compared to PAR-
based light absorption. Many high latitude ice-covered
lakes are CDOM-dominated, and spectral correction may
be required to accurately quantify radiatively driven
under-ice convection. In addition to the varying light
absorption by the particles, the ice itself modifies the heat
input into the water below (Jakkila et al. 2009, Zdoroven-
nova et al. 2013b). We conclude that not only under-ice
downwelling irradiance is required but also information
regarding the spectrally resolved absorption.

Given the high absorption and the large thickness of
CML, B∗ and w∗were not sensitive to the lower boundary
of CML as would be the case in the early stage of convec-
tion or in clear lakes where the light penetration may
scale with the CML. Yet B∗ and w∗depend on the thick-
ness of UIDL. Over daytime for 16 March 2016 we
observed a 10 cm variability in δ (e.g., 66% change) lead-
ing to a change in B∗ and w∗ of 24% and 7%, respectively
(for the case described in Fig. 5). The difference reached
36% and 12%, respectively, when B∗ and w∗ were calcu-
lated with hCML starting at z = 0 (UIDL neglected).

Minimum setup for in situ analysis of radiatively
driven convection

From this study, we inferred a minimum setup required to
quantify under-ice convection. The 2 main parameters
were hCML and B∗. We developed indications of the errors
from inaccuracy in (1) radiation and absorption in the
water column, (2) estimates of the upper boundary of the
CML, and (3) use of the radiatively driven buoyancy flux
parameterization (equation 3). While repeated CTD
profiles provide sufficient information to quantify the
extent of the CML, the upper boundary of the convective
layer (where a large part of the heat is deposited) must be
precisely determined. Above the CML, the absorbed heat
stabilizes theUIDL,whereas in theCML the solar radiation
drives the convective turbulence.While the long-term goal

is to infer the convection from the incoming solar radi-
ation, the high variability of the ice properties hinders
any attempt to link atmospheric forcing directly to
under-ice convection. A radiometer for downwelling irra-
diance just under the ice is thereby required. Depending on
the temporal variability, the light extinction in the water
column can be estimated from single radiometer profiles
(PAR or hyperspectral sensors). In CDOM-dominated
lakes, the estimated error in using a PAR sensor instead
of a spectrally resolving sensor can reach ∼40% for w∗.

Implications for “life under the ice”

To show the significance of adequate quantification of the
radiative convection within the CML, we exemplified the
implications for phytoplankton growth. We assumed that
under-icephytoplanktongrowthwas light-limited (Hamp-
ton et al. 2017) and that the increase of solar radiation in
late winter, responsible for radiatively driven convection,
thereby also promotes phytoplankton growth. Salmi et al.
(2014) observed a slight increase of the biomass of pico-
phytoplankton (<2 μm) under convective conditions
during late-winter ice-covered conditions in Lake Vesi-
järvi. Twiss et al. (2014) measured a rate of growth equiv-
alent to the rate of loss of phytoplankton under ice in
Lake Erie. Kelley (1997) suggested that convective turbu-
lence could reduce sedimentation of nonmotile phyto-
plankton such as diatoms, which are often dominant
species in early spring. The potential of convective turbu-
lence to reduce sedimentationwas parameterized as a func-
tion of w∗, the phytoplankton settling velocity ws, and a
suspension efficiency. This simple model could justify the
phytoplankton growth observed under the ice in Lake Bai-
kal (Kelley 1997). Yet, the model developed by Kelley
(1997) is not easy to use, and some physical assumptions
were also questioned by Mironov et al. (2002).

Here, we present a simple heuristic model to evaluate
how radiatively driven under-ice convection can favour
the growth of nonmotile phytoplankton. We defined a
net daily rate of change of phytoplankton as
Cn+1 − Cn

Cn
, where C is the concentration of phytoplank-

ton in the CML and n-index denotes the day number n.
The sedimentation velocity of nonmotile phytoplankton
is given by ws. We further assumed a light-limited
growth rate of phytoplankton with Pmax

G = f (Ed), the
maximum growth rate in the upper part of the CML,
where Ed is maximal. Given the mixing properties of
the radiatively driven convective turbulence, we assumed
that the phytoplankton population will be advected into
the upper part of the CML for a time long enough to
insure sufficient exposure time for phytoplankton in
the photic zone, thereby ensuring Pmax

G to the whole
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phytoplankton community within the CML. The daily
evolution of Cn was divided into 2 phases: a phase with
active convection, tnc (mostly during daytime) and a
phase with no convection, tnnc, with tnc + tnnc = 1 d. We
derived the minimal values of physical properties (e.g.,
w∗, hCML and tnc ) that would favour or hamper growth
of nonmotile phytoplankton characterized by Pmax

G and
ws. Note that the controlling physical parameters were
all determined by the volumetric buoyancy flux working
in the CML and can thereby be estimated as a function of
solar radiation and light absorption (detailed calculation
and assumptions in Appendix C). From this model, a

(positive) daily growth rate,
Cn+1 − Cn

Cn
. 0, leads to:

Pmax
G (�w∗ − ws)

1
2
tc − wstday

[ ]
. 0, (5)

with tday = 1. Equation 5 does not take into account any
biological processes and provides no representative value
regarding the growth rate. Yet it expresses the conditions
for which radiatively driven convection is not strong
enough to sustain a positive growth rate of nonmotile
phytoplankton.

When applied to conditions observed in 2017 (hCML =
15 m, tnc = 0.5 d, �w∗ = 2.5 mm s−1), we estimated themini-
mal growth rate, Pmax

G , needed for a given sinking speed,ws

(Fig. 11). The growth rate was consistent with observations
from Lake Erie (Twiss et al. 2014), and ws was within the
range of diatom sinking speed, 0.2 to 20 m d−1 (Miklasz
and Denny 2010). The influence ofw∗on the development
of nonmotile phytoplankton, defined by 2 parameters
(Pmax

G and ws), was determined (Fig. 11b). This heuristic

model offers a simple methodology to evaluate the role of
convective processes on nonmotile phytoplankton growth.

Conclusion

We analysed the in situ data from 3 consecutive late winter
(Mar) under-ice conditions in Lake Onego. The 3measure-
ment periods significantly differed fromeach other in terms
of atmospheric and ice/snow conditions directly affecting
the under-ice convection. We first showed that, despite
the weak velocities of the radiatively driven convective tur-
bulence, the large-scale thermal plumes can be directly
measuredwithpulse-coherentADCPs.Thedirectmeasure-
ments were in good agreement with the classical buoyancy
flux parameterization of the convective scale; however, the
classical parameterization could not reproduce the duration
of thedaily convection, τc. Indeed,wenoticed a∼1.5 hdelay
between sunrise andonset of convection, and a∼3.5 h delay
between sunset anddecayof convection.We showed that all
relevant parameters (hCML, B∗, ∂TCML/∂t, τc, andw∗) could
be directly accessed from temperature and radiometer sen-
sors and provided a minimum in situ setup to access these
parameters together with errors estimates. Interestingly,
these parameters all depend on solar radiation and optical
properties of snow, ice, and the water column. Thereby,
the vertical distribution of heat in the water column is the
cornerstone for quantifying radiatively driven convection.
Further investigations of spectrally resolved light absorp-
tion and UIDL dynamics will help to better constrain the
analysis of radiatively driven under-ice convection. In this
study, we showed that the physical boundary conditions
for biological models can be accurately measured. Finally,
we provided a simple heuristic model to evaluate the role
of under-ice convection for nonmotile phytoplankton
growth.
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Appendix A

Sensors
Temperature (°C)

CTD-90 Sea&Sun Technology
Accuracy: ±0.005 °C; resolution: ±0.001 °C
Setup: 1 profile per hour; each year

TR-1060 RBR
Accuracy: ±0.002 °C; resolution: ±0.00005 °C
Setup: 10 s sampling frequency
2015: depth (m) = [0, 0.5, 1, 2, 3, 5 10, 15, 20, 21, 22, 22.5, 23, 23.5, 24, 24.5, 25, 25.5, 26, 26.5, 27, 27.5]
2016: depth (m) = [0: 0.025: 0.25]

depth (m) = [0, 0.5, 1, 2, 3, 5 10, 15, 20, 21, 22, 22.5, 23, 23.5, 24, 24.5, 25, 25.5, 26, 26.5, 27, 27.5]
2017: depth (m) = [0: 0.025: 0.25]

depth (m) = [0: 0.36: 25.6]
Solar radiation (W m−2)

Pyranometer M80
Accuracy: ±10%; resolution: 0.2 W m−2

Setup: 3 pyranometers. 2 pyranometers above the ice for downwelling Ed(0
+) and upwelling Eu(0

+) irradiance (star-shaped
pyranometers) and 1 pyranometer (M80) under the ice for downwelling irradiance Ed(0

−); 1 min sampling; each year.
Light intensity PAR sensors (μm m−2 s−1)

Light intensity recorder MDS-MkV/L, Alec Electronics
Accuracy: ±4% FS; resolution: 1 μm m−2 s−1

Setup: 9 sensors; 1 min sampling
2015: 1 m spacing between 0–8 m
2016: 1 m spacing between 0–8 m
2017: depth (m) = [0, 0.35, 0.6, 0.85, 1.1, 1.6, 2.1, 2.6]

Irradiance (μW m−2 mm−1)
Hyperspectral radiometer (Ramses Trios)

Wavelength range [lower wavelength : resolution : larger wavelength] [320 nm : 3 nm : 950 nm]; wavelength accuracy: 0–
3 nm; number of channels: 190
Setup: 1 profile per hour between 1100 and 1500 h. A profile is made up of 3 min measurements at depth 0, 0.5, 1, 1.5 m

Acoustic Doppler Current Profiler; Velocity (m s−1)
Aquadopp, Nortek

Setup: facing downward, frozen into the ice with head immediately underneath the ice
Year 2016: Ping number: 512 or 2048; Ensemble interval: 600 s; Blanking distance: 0.1 m; Number of bins: 38; Bin
size: 0.05 m
Year 2017: Ping number: 30; Ensemble interval: 60 s; Blanking distance: 0.1 m; Number of bins: 126; Bin size: 0.02 m

RDI, Teledyne 600 kHz Mode 11
Setup: facing downward, frozen into the ice with head immediately underneath the ice
Ping number: 596; Ensemble interval: 300 s; Blanking distance: 0.29 m; Number of bins: 78; Bin size: 0.10 m

Appendix B

Meteorological forcing

During the observation period in 2015, the meteorological conditions were divided into 2 periods. From 14 to 19 March, air
temperature, Ta, oscillated between −5 and 8 °C (mean Ta = 1.1 °C) with weak wind condition (<4 m s−1, mean 1.4 m s−1; Fig.
B1). The situation changed on 19 March with a strong decrease in air temperature to −10 °C (mean Ta = −3.5 °C) and a strong
wind reaching 10 m s−1 (mean 5.3 m s−1). The meteorological forcing from the observation period in 2016 can also be
divided into 2 periods (Fig. B2). From 10 to 17 March, Ta oscillated between −4 and 4 °C (mean Ta = −0.1 °C) and then
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Figure B1. Meteorological conditions for the measuring period in March 2015 with (a) air temperature, (b) wind speed, and (c) wind
direction. All measurements were taken on a meteorological mast mounted on the ice a few meters from the moorings.
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Figure B2. Meteorological conditions for the measuring period in March 2016 with (a) air temperature, (b) wind speed, and (c) wind
direction. All measurements were taken on a meteorological mast mounted on the ice a few meters from the moorings.
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between −13 and −1 °C (mean Ta = −5.9 °C) for the 5 following days. The wind remained weak during 10–15 March (mean
2.0 m s−1) and then increased to a mean intensity of 6.1 m s−1 during 15–20 March. Finally, the meteorological conditions
for the observation period in 2017 remained comparatively constant, with Ta oscillating between –3 and 6 °C (mean Ta = 0.9 °
C) with a relatively strong wind event on 17 March (∼10 m s−1; Fig. B3).

Appendix C

The algal-growth model introduced in “Implications for life under the ice” is based on the following assumptions:

1. A net daily rate of change of phytoplankton
Cn+1

Cn
> 1 or

Cn+1
n − Cn

n

Cn
. 0, where n-index denotes the day n, represents phyto-

plankton “growth.”
2. A constant sedimentation velocity for nonmotile phytoplankton, ws.
3. A light-limited growth rate of phytoplankton with Pmax

G , the maximum growth rate in the upper region of CML where Ed under
the ice is maximal. Yet, given the mixing properties of the radiatively driven convective turbulence, we assumed that the entire

Figure B3. Meteorological conditions for the measuring period in March 2017 with (a) air temperature, (b) wind speed, and (c) wind
direction. All measurements were taken on a meteorological mast mounted on the ice a few meters from the moorings.

160 D. BOUFFARD ET AL.



population of phytoplankton was advected for a time long enough into the upper region of the CML to ensure that all phy-
toplankton in the CML are controlled by a Pmax

G .
4. A uniform vertical distribution of nonmotile phytoplankton, Cn, in the CML. This assumption provided a conservative estimate

of the net growth rate as, despite the convective turbulence, we expected more phytoplankton in the growing zone (e.g., upper
CML) and less in the sinking zone (e.g., lower CML).

5. A daily evolution of Cn divided into 2 periods, a period with active convection, tnc (mostly during daytime) and a period with no
convection, tnnc, with tnc + tnnc = 1.

6. A diurnal-averaged convective velocity, �w∗, in the CML with an upward and downward phase satisfying the volume balance
condition: S�wn+tn+c = S�w−tn−c , t+c + t−c = tc, over an area S. Indices “+” and “–” are for upward and downward velocities,
respectively. We assumed that only maximal rate of growth in the upward mass flux stays in the convective cell. If we consider

that �w−
∗ = −b�w∗ and �w+

∗ = +g�w∗ then from the volume balance we obtained: t+c = b

b+ g
tc , t−c = g

b+ g
tc.

7. The change in Cn due to the deepening of the CML was negligible (decrease in Cn from the deepening together with reinte-
gration of settled phytoplankton)

The net phytoplankton mass balance at diurnal scale of a day n was then given by the following sum:

V(Cn+1 − Cn) = (1+ Pmax
G )[S(�w+ − ws)t

+
c + S(�w− − ws)t

−
c ]C

n − Sws(tday − tc)C
n.

We defined DCn+1
n ; Cn+1 − Cn. We then expressed the rate of chance of concentration by replacing the above defined

quantities in terms of the convective scales and the b and g parameters, which set the aspect ratio between the mean upward
velocity and the mean downward velocity:

DCn+1
n

Cn
= (1+ Pmax

G )
S
V
(g�w∗ − ws)

b

b+ g
tc − S

V
(b�w∗ + ws)

g

b+ g
tc − S

V
ws(tday − tc),

DCn+1
n

Cn
= − S

V
wstc + Pmax

G
S
V
(g�w∗ − ws)

b

b+ g
tc − ws

S
V
(tday − tc)

DCn+1
n

Cn
= Pmax

G
S
V
(g�w∗ − ws)

b

b+ g
tc − ws

S
V
tday

.
To have a (positive) growth rate in time, then

DCn+1
n

Cn
. 0,

which is satisfied by the following inequality:

Pmax
G (g�w∗ − ws)

b

b+ g
tc − wstday

[ ]
. 0.

For a general case, with symmetrical distribution between upward and downward convective plumes, b � 1 and g � 1:

Pmax
G (�w∗ − ws)

1
2
tc − wstday

[ ]
. 0.
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