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Abstract

Aim Species distribution models (SDMs) are widely used to study geographic distri-
butions of taxa in response to natural and anthropogenic environmental conditions.
For a community, common approaches include fitting individual SDMs (iSDMs) to
all taxa or directly modelling community properties such as richness. However, the
parameters of iSDMs are difficult to identify for rare taxa, and community proper-
ties do not reveal taxon-specific responses. Individual models can be combined into
a hierarchical multi-species distribution model (mSDM) that constrains taxon-specific
parameters according to overarching community parameters, or a joint model (jSDM)
in which interdependencies between taxa are jointly inferred. We compare how indi-
vidual, hierarchical multi-species, and joint SDMs differ in quality of fit, explanatory
power, and predictive performance, and analyze how these properties depend on the
prevalence of taxa.
Taxa Presence-absence observations of 245 benthic macroinvertebrate taxa identified
at a mixed taxonomic resolution.
Location 492 sites at rivers throughout Switzerland.
Methods Individual, hierarchical, and joint hierarchical generalized linear models
(GLM) were developed for all taxa. Parameters were estimated using maximum like-
lihood estimation or Bayesian inference with Hamiltonian Markov chain Monte Carlo
simulations. Predictive performance was assessed with cross-validation. In addition,
the predicted family and species richness of the models was compared with a GLM for
richness.
Results Individual models show a slightly higher quality of fit largely due to overfitting
for rare taxa. The mSDM achieves a similar quality of fit and explanatory power,
mitigates overfitting for rare taxa, and considerably improves predictive performance
over the whole community. The joint models further improve the quality of fit, but
decrease predictive performance and increase predictive uncertainty.
Main conclusions We show that even a relatively simple mSDM combines many of
the analytical capabilities of iSDMs and improves predictive performance. Increasingly
complex mSDMs and jSDMs provide additional analytical possibilities, but depending
on the data and research questions, different levels of complexity may be appropriate.

Keywords: species distribution models, stacked individual models, hierarchical multi-species
models, joint models, benthic macroinvertebrates, biodiversity, richness, predictive modelling

1 Introduction

Statistical species distribution models (SDMs) have become important tools for explaining
and predicting the geographic distributions of taxa in response to key environmental condi-
tions, yet ecologists are often confronted with complex community data (typically consisting
of presence-absence or abundance observations at sampled sites) that is multivariate and
sparse (i.e., containing a large number of taxa and many zeroes). Selecting an appropriate
model given the data and research questions at hand can be daunting, given the variety of
fundamentally different approaches in statistical species distribution modelling.
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Perhaps the most common approach of applying a statistical SDM is to fit an individual
SDM (iSDM) to a taxon, or to each taxon in a community to yield “stacked” iSDMs of the
whole community (often with identical explanatory variables; Guisan and Rahbek, 2011).
Stacked iSDMs quantify taxon-specific responses and can be used to estimate community
properties such as species richness, although community properties can be modelled directly
as a response variable in a richness model (RM; e.g., Kaelin and Altermatt, 2016). Both
approaches have major shortcomings: unless taxon-specific iSDMs are used (with very few or
no explanatory variables for rare taxa), studies applying stacked iSDMs often must exclude
rare taxa due to the difficulty of identifying their parameters (Aitken et al., 2007; Elith et al.,
2006; Guisan et al., 2006). Moreover, stacked iSDMs tend to overpredict species richness
(e.g., Clark et al., 2014; Guisan and Rahbek, 2011), while RMs inherently ignore taxon-
specific distributions. Another approach is to fit multiple iSDMs to a taxon and combine
the models in an ensemble-based approach that can improve predictive performance and
quantify predictive uncertainty due to different model structures. Although ensemble-based
approaches have been shown to reduce predictive errors for rare taxa (e.g., Breiner et al.,
2015; Lomba et al., 2010), the biological interpretation and comparison of multiple different
models is more difficult relative to an individual model.
Rather than individually modelling the distributions of taxa independently of one another,
more recent studies have applied multi-species and joint species distribution models (mS-
DMs and jSDMs, respectively) in which the responses of multiple taxa to environmental
conditions are jointly inferred under one model (Latimer et al., 2009; Ovaskainen and Soini-
nen, 2011; Warton et al., 2015b). Commonly implemented as an extended generalized linear
model (GLM; see Guisan et al., 2002), an mSDM can quantify the responses of individual
taxa according to a community response to the selected explanatory variables, leading to a
hierarchical model structure. For instance, stacked iSDMs can be extended into a relatively
simple hierarchical mSDM by introducing overarching community parameter distributions
that effectively constrain the taxon-specific responses for each explanatory variable, similar
to the model proposed by Ovaskainen and Soininen (2011). In a hierarchical mSDM, the re-
sponse of the community and all individual taxa to the explanatory variables are quantified,
allowing community properties such as richness to be derived as well. Moreover, hierar-
chical mSDMs can be extended with site- or sample-specific effects to quantify the effect
of unknown explanatory variables not included in the model on the distributions of taxa,
potentially guiding the selection of additional explanatory variables (Bolker et al., 2009;
Warton et al., 2015a).
A joint model can include hierarchical structures similar to an mSDM, but additionally
quantifies residual correlations between taxa after accounting for the explanatory variables
included in the model (Pollock et al., 2014; Warton et al., 2015a). The residual correlations
between taxa have been used to explore and test hypotheses of patterns between distributions
of taxa arising due to biotic interactions or unknown explanatory variables, and to quantify
associations between taxa under varying environmental conditions (e.g., Tikhonov et al.,
2017) or spatial scales (e.g., Ovaskainen et al., 2016a). Studies applying jSDMs have empha-
sized that the residual correlations between taxa do not directly quantify biotic interactions,
and should be interpreted with caution (Clark et al., 2014; Dormann et al., 2018). For ex-
ample, a positive correlation between two species may be due to mutualism or competition
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(e.g., due to high niche overlap; see Clark et al., 2014), or due to an explanatory variable not
included in the model (Ovaskainen et al., 2010; Tikhonov et al., 2017; Warton et al., 2015a).
Joint models have been applied to a variety of communities (e.g., Pollock et al., 2014), in-
cluding waterbirds and bryophytes (e.g., Ovaskainen et al., 2017), trees (e.g., Clark et al.,
2014), butterflies (e.g., Ovaskainen et al., 2016b), and marine fish (e.g., Thorson et al., 2016).
Comparative studies have found that relative to individual modelling approaches, equivalent
hierarchical multi-species and joint model structures improve predictive performance for the
overall community (e.g., Clark et al., 2014; Hui et al., 2013; Ovaskainen and Soininen, 2011;
Taylor-Rodríguez et al., 2017), and quantify community properties such as species richness
(e.g., Clark et al., 2014; Taylor-Rodríguez et al., 2017).
Despite many applications, few studies have conducted a comprehensive methodological com-
parison of the performance of stacked individual, hierarchical multi-species, and joint species
distribution models for community modelling and prediction, or for modelling community
properties such as richness (e.g., Clark et al., 2014; Hui et al., 2013; Ovaskainen et al., 2016b;
Taylor-Rodríguez et al., 2017; Tikhonov et al., 2017). In this paper, we compare the per-
formance of equivalent individual and joint modelling approaches, incrementally extending
an individual model into a hierarchical multi-species and finally into a joint model that
quantifies both the effects of environmental conditions on each taxon and the residual cor-
relations between taxa. Based on these models, we explore and analyze differences in model
performance using an extensive dataset of benthic stream macroinvertebrate communities
in Switzerland with a wide range in prevalence (i.e., the proportion of samples in which a
taxon was present) and many rare taxa, specifically emphasizing how model performance is
affected by the prevalence of the taxa. While comparing these models we pose the following
questions:

1. To what extent and why do individual models, a hierarchical multi-species model (of
varying complexity), and a joint model differ in quality of fit, explanatory power,
and predictive performance for the overall community? How does model performance
depend on the prevalence of a taxon in a community with many rare taxa?

2. To what extent can we quantify the residual correlations between taxa in a joint model,
and to what extent does this improve model performance with respect to a hierarchical
multi-species model?

3. How well do hierarchical multi-species and joint models predict richness when compared
to modelling richness directly?

We address our research questions by performing a systematic variable selection procedure
using iSDMs (i.e., stacked individual GLMs) to select a set of explanatory variables that
optimize the mean predictive performance for taxa with identifiable parameters. We com-
pare the quality of fit during calibration and predictive performance under cross-validation
of individual models to an equivalent hierarchical multi-species model (i.e., an mSDM). We
then extend the mSDM to include correlated hierarchical parameters, site-specific effects,
and residual correlations between taxa (parameterized with latent variables) to obtain a hi-
erarchical joint generalized linear model (i.e., a jSDM). We aim to analyze how these model
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elements affect model performance, the quantification of community- and taxon-specific re-
sponses, and richness.
We hypothesize that (1) the iSDMs will exhibit a slightly better quality of fit during calibra-
tion than an mSDM with an equivalent model structure, but will be prone to overfitting for
increasingly rare taxa due to unconstrained parameter estimates. The hierarchical structure
of the mSDM should achieve a similar quality of fit, constrain the parameters for individual
taxa, mitigate overfitting, and improve predictive performance for the community. We ex-
pect that (2) relative to an mSDM, a joint model quantifying residual correlations between
taxa should further improve predictive performance due to the role of biotic interactions or
joint responses to unknown explanatory variables in driving community composition. Fol-
lowing from (2) we expect that (3) a joint model should improve performance for predicted
richness relative to an RM or mSDM.

2 Methods

2.1 Study Area and Data

We used data from the program ‘Biodiversity Monitoring in Switzerland’ (BDM; BDM Co-
ordination Office, 2009). It consists of semi-quantitative abundance observations of macroin-
vertebrates based on Swiss multi-habitat sampling protocols for stream assessments (Stucki,
2010). A total of 580 samples were taken at 492 sites located throughout Switzerland using
the Swiss topographic grid and sampled between 2011 and 2015 during March and July,
depending on the elevation of the sites (Figure S1.1). For the purposes of this study, we used
presence-absence observations of 245 benthic macroinvertebrate taxa at a mixed taxonomic
resolution (based on the highest level of identification, with species resolution only for EPT1

orders).

2.2 Model Definitions

In defining the individual, hierarchical multi-species, and joint models below in a stepwise
approach, we identified six distinct models in our analysis to quantify how various aspects of
model performance depend on increasing model complexity. The following indices are used
throughout the paper:
Sites: i ∈ {1, . . . , I}
Samplings at site i: ti ∈ {1, . . . , Ti}
Taxa (“species”): j ∈ {1, . . . , J}
Explanatory variables: k ∈ {1, . . . , K}
Latent variables l ∈ {1, . . . , L}

For a presence-absence response where observations are yitij = 1 if a taxon is observed as
present and yitij = 0 if the taxon is not observed as present, we apply a generalized linear

1Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies).
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model with a logistic link function to each taxon to obtain probabilistic predictions that the
random variable Yitij = 1 (see Guisan et al., 2002). The probability of occurrence (including
the probability of detection) P (Yitij = 1 | x,αtaxa,βtaxa) given the explanatory variables x,
and the taxon-specific parameters αtaxa and βtaxa is equal to the link function (Equation 2)
evaluated at a linear combination of the explanatory variables and parameters (Equation 1).
The explanatory variables shift the linear predictor z (Equation 1) that, through the logistic
link function, yields a probability of occurrence (Equation 2).

zitij = αtaxa
j +

K

Σ
k=1

xitikβ
taxa
kj , (1)

P (Yitij = 1 | x,αtaxa,βtaxa) = 1
1 + e−zitij

. (2)

The observations are assumed to be Bernoulli distributed with P
(
yitij | x,αtaxa,βtaxa

)
equal

to P
(
Yitij = 1 | x,αtaxa,βtaxa

)
if a taxon is present at a site (yitij = 1) or 1−P

(
Yitij = 1 | x,αtaxa,βtaxa

)
if a taxon is absent (yitij = 0). When fitting an iSDM to each taxon (i.e., stacked iSDMs) in
the community, the joint probability of the observations of all taxa given the model structure,
explanatory variables, and parameters is

P
(
y | x,αtaxa,βtaxa

)
=

I∏
i=1

Ti∏
ti=1

J∏
j=1

P
(
yitij | x,αtaxa,βtaxa

)
. (3)

In applying an identical iSDM to each taxon, the parameters for rare taxa may be difficult
to identify. This limitation is addressed in the mSDM by assuming that the taxon-specific
parameters αtaxa

j and βtaxa
kj are distributed according to and constrained by the corresponding

community distributions αcomm and βcomm
k (Ovaskainen and Soininen, 2011)2. The taxon-

specific parameters are then inferred jointly with the community parameters from the data.
The joint probability distribution of the model parameters and outcomes is given by the
product of the probability densities formulated as a probability network (Figure 1).

2If the parameters vary strongly across taxa, the community distributions would be very wide and thus
would not provide much information for rare taxa.
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Figure 1: Network representation of conditional probability distributions in the hierarchical
multi-species and joint models. The nodes µαcomm , σαcomm and µβcomm ,σβcomm are the means
and standard deviations parameterizing their respective community distributions αcomm and
βcomm. The nodes αtaxa,βtaxa are taxon-specific parameters constrained by and jointly in-
ferred with their respective community distributions αcomm,βcomm from the model inputs
(i.e., explanatory variables) x and model output y. The conditional probability densities
extending the mSDM are discussed in-text below, including the correlation matrix of the
community parameters (Rβcomm), the site effect (γ and its parameter σγ), and the random
effect u (given by the latent variables ξ and factor loadings λ).

Assuming normal distributions for the community distributions αcomm and βcomm
k with cor-

responding parameters µαcomm , σαcomm and µβcomm
k

, σβcomm
k

, the joint prior probability distri-
bution of the parameters and outcomes in the mSDM is

P
(
y,αtaxa,βtaxa, µαcomm , σαcomm ,µβcomm ,σβcomm | x

)
=

P (y | x,αtaxa,βtaxa)×
J∏
j=1

(
fN(αj | µαcomm , σαcomm)× fβ(βj|µβcomm ,σβcomm ,Rβcomm)

)
×f

(
µαcomm , σαcomm ,µβcomm ,σβcomm

)
,

(4)

where fN is the density of the one-dimensional normal distribution and f is the density of the
joint prior of the means and standard deviations of the community parameters (f is assumed
to be the product of normal distributions for the means and lognormal distributions for the
standard deviations) and fβ is the density of a multivariate normal distribution:

fβ(βj|µβcomm ,σβcomm ,Rβcomm) = fNK
(βj|µβcomm , diag(σβcomm) ·Rβcomm · diag(σβcomm)) . (5)
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In the simplest mSDM, the correlation matrix Rβcomm is assumed to be diagonal to reflect
the assumption that the community parameters are independent of each other. Considering
correlated community parameters may improve the identifiability of the taxon-specific pa-
rameters and improve the quality of fit and predictive performance, and reveal dependencies
among community responses to the explanatory variables. To do so, we can assume an LKJ
prior (Lewandowski et al., 2009) for the correlation matrix given by

f(Rβcomm) ∝ det(Rβcomm)η−1 , (6)

as an additional factor to Equation 4 (with η = 2).
The addition of a site- or sample-specific effect can facilitate the selection of additional
explanatory variables or be used to identify non-linear responses to environmental conditions
(by comparing the site effect with potential explanatory variables). In the multi-species and
joint models defined here, we include a site effect γi that increases or decreases the predicted
probabilities for all taxa at each site due to site-specific explanatory variables not included
in the model:

zitij = αtaxa
j +

K

Σ
k=1

xitikβ
taxa
kj + γi . (7)

The site effect is assumed to be normally distributed with mean zero and standard deviation
σγ, with a lognormal prior for σγ. This results in an additional factor for Equation 4:

f (γi, σγ) = fN (γi | 0, σγ)× fLN(σγ) . (8)

To extend the mSDM (with correlated community parameters and a site effect) into a joint
model, residual correlations between taxa can be modelled as a multivariate random effect
over the observational units (e.g., sites or samples) (Warton et al., 2015a). When the number
of taxa is small relative to the number of samples, the parameters of the multivariate random
effect may be inferred from the data based on an unstructured covariance matrix (Warton
et al., 2015a). However, the number of parameters quickly increases for communities with
a large number of taxa. This limitation can be mitigated using dimensionality reduction
techniques such as Dirichlet processes (e.g., Taylor-Rodríguez et al., 2017) or latent variables
(e.g., Letten et al., 2015; Ovaskainen et al., 2016a; Tikhonov et al., 2017; Warton et al.,
2015a). Latent variables are particularly appealing as residual correlations between taxa are
induced by taxon-specific parameters or “factor loadings” that respond to a site- or sample-
specific latent variable (i.e., the latent variable is a random effect). Multiple latent variables
can be included in a joint model to further improve the identifiability of the true correlation
structure among taxa, but at the cost of increasing the number of parameters (Warton et al.,
2015a). In our model, we introduce a random effect uitij to the linear predictor

zitij = αtaxa
j +

K

Σ
k=1

xitikβ
taxa
kj + γi + uitij . (9)
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The dimensionality of the random effect uitij can be reduced with a latent variable parame-
terization defined as

uitij =
L

Σ
l=1

ξitilλlj , (10)

with

f(ξitil) = fN (ξitil | 0, 1) (11)

and

f (λlj | σλl
) = fN (λlj | 0, σλl

) (12)

as additional factors to Equation 4. The latent variables ξitil can be interpreted either as
unknown explanatory variables or as the main axes of covariation in occurrences across taxa
(Warton et al., 2015a). The taxon-specific factor loadings λlj induce correlations between
the predicted probabilities of occurrence among taxa in each sample in response to the latent
variables (Warton et al., 2015a). The covariance matrix quantifying associations between
taxa is given by the residual covariance matrix

Σ = λTλ . (13)

To test how model performance depends on various model extensions (e.g., including cor-
related community parameters, site effects, and latent variables) that increase model com-
plexity, we selected six distinct individual, hierarchical multi-species, and joint models for
testing (Table 1). Throughout the text, we will refer to these models using a consistent set
of abbreviations defined in Table 1.

Table 1: Abbreviations and extensions of the individual, hierarchical multi-species, and joint
models, with models ordered by increasing number of parameters and model extensions
highlighted (in grey).

Extensions
In-text ab-
breviation

Model
struc-
ture

Number
of pa-

rameters

Correlated (C)
/ uncorrelated
(U) βcomm

With (T) /
without (F)
site effect

(γ)

Number
of latent
variables

(ξ, λ)
iSDM iSDM 1715 U F 0
UF0 mSDM 1729 U F 0
CF0 mSDM 1765 C F 0
CT0 mSDM 2258 C T 0
CT1 jSDM 3083 C T 1
CT2 jSDM 3908 C T 2

Note: the number of parameters are calculated based on model calibration to the entire
dataset with six explanatory variables.
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2.3 Model Performance

Each model was first calibrated using the entire dataset to comprehensively demonstrate
differences in quality of fit and how these differences depend on the model structures and
prevalence of taxa in the community. We included rare taxa (i.e., with too few presence
points; see Figure S1.1) when calibrating all models, including the iSDMs to analyze how
hierarchical and joint model structures affect model performance. The quality of fit, ex-
planatory power of the input variables, and predictive performance of each taxon in the
individual, multi-species, and joint model is based on the deviance (a statistic equivalent to
the residual sum of squares under the assumption of normality) over all observations and
given as

dj = −2
I∑
i=1

Ti∑
ti=1

log
(
P
(
yitij | x,αtaxa,βtaxa

))
, (14)

where dj is the taxon-specific deviance over all samples based on the probabilities of occur-
rence predicted by the null or proposed model (Equation 14). Under the null model, the
taxon-specific intercept αtaxa

j corresponds to the prevalence of a taxon and its parameters
βtaxa
kj are set to zero. The deviance can be divided by the number of samples for a taxon to

obtain a standardized deviance that is comparable among taxa with different sample sizes.
We chose to use the deviance to quantify model performance rather than the classification
statistics commonly used in studies applying SDMs (e.g., Mouton et al., 2010) to avoid im-
posing different classification thresholds on the probabilities of occurrence of the taxa, and
to ensure comparable model predictions among taxa that vary widely in their prevalence.
For the iSDM and mSDM UF0, the explanatory power or D2

j (a statistic similar in interpre-
tation to the R2 of a linear model) of the selected explanatory variables for each taxon is
measured as the proportion of deviance in the null model that is reduced by the proposed
model (i.e., including the explanatory variables; Guisan and Zimmermann, 2000):

D2
j =

dnull
j − dproposed

j

dnull
j

. (15)

To assess the geographic distribution of the quality of fit for each taxon in the iSDMs
and mSDM UF0, the maximum likelihood and maximum posterior parameter values were
propagated through the respective models to obtain point estimates of the probabilities of
occurrence for all taxa at each sample. The uncertainty in the probabilities of occurrence of
each taxon in UF0 was quantified by propogating the posterior sample through the model
and calculating the 5th and 95th quantiles of the predicted probabilities.
The predictive performance of the individual, hierarchical multi-species, and joint models
was assessed using k-fold cross-validation. The samples were randomly divided into k = 3
subsamples of nearly equal size. Each model was calibrated using each combination of
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k − 1 subsamples and used to predict the probability of occurrence for each taxon in the
independent subsample. We chose k = 3 due to the computationally intensive inference of
the multi-species and joint models, and to avoid deteriorating the predicted probabilities of
occurrence in the independent subsample. The predictive performance for each taxon was
quantified as the mean standardized deviance of k subsamples.
The predictive performance of the hierarchical multi-species and joint models with site effects
and latent variables was quantified for all taxa using both the maximum posterior parameter
values and a sample of the joint posterior parameter distribution. For the mean standardized
deviance at the maximum posterior, the site effect and latent variables were set to zero to
enable a comparison with the individual models and to analyze how the site effect and latent
variables (i.e., in CT0, CT1, and CT2) shift the taxon-specific parameters with respect to
simpler hierarchical multi-species models (i.e., UF0, CF0).
The predictive uncertainty of the hierarchical multi-species and joint models was compared
by propagating the joint posterior parameter distribution through the models to obtain
predicted probabilities of occurrence and the mean standardized deviances of taxa during
prediction for independent data. During predictions for independent data, the site effect was
simulated by randomly sampling from its normal distribution (Equation 8) while the latent
variables were simulated by randomly sampling from a multivariate normal distribution with
a zero mean and a standard deviation given by the residual covariance matrix (Equation 13).

2.4 Parameter Inference & Model Implementation

The taxon-specific parameters αtaxa
j , βtaxa

kj in the individual models were identified by max-
imum likelihood estimation. Numerically, parameter estimates were obtained with an it-
erative weighted least squares (IWLS) algorithm in the glm function of the R statistical
computing environment (R Core Team, 2018). The null model parameters were used as
starting values for the IWLS algorithm. If the IWLS algorithm produced parameters where
the proposed model deviance was greater than the null model deviance (see equation Equa-
tion 14), a more robust optimization method by Nelder and Mead (1965) (implemented in
the optim function in R) was applied to identify the maximum likelihood solution. The
use of efficient maximum likelihood estimation allowed us to obtain parameter estimates
for a very large number of combinations of potentially important explanatory variables for
variable selection (see subsection 2.6).
The parameters of the hierarchical multi-species and joint models were estimated by Bayesian
inference. Wide priors were used for the means and standard deviations of the community
distributions to compare the maximum posterior parameter estimates to the maximum like-
lihood parameter estimates for the individual models, and to clearly distinguish the effect
of the simplest hierarchical multi-species model (i.e., UF0) structure on the taxon-specific
parameters. The joint posterior probability distributions of the model parameters were sam-
pled by doing Bayesian inference with a Hamiltonian Markov chain Monte Carlo (HMC; see
Duane et al., 1987, Brooks et al., 2011) algorithm implemented in Stan and accessed through
the R package rstan (Stan Development Team, 2016; see Appendix S1 subsection S1.10 for

11



scripts containing Stan model definitions that correspond to the mSDMs and jSDMs sum-
marized in Table 1). To improve inference of the correlation coefficients of the correlated
community parameters, we used a Cholesky decomposition of the correlation matrix Rβcomm

as provided in Stan. Convergence issues for joint models with multiple latent variables (e.g.,
CT2) are detailed in subsection S1.8 of Appendix S1.

2.5 Community Properties & Taxon-Specific Responses

Due to the mixed taxonomic resolution of the dataset, we calculated two metrics of richness
to compare model predictions to the observations: species richness for EPT taxa identified at
the species level, and family richness with all taxa aggregated to the family level or lower. The
predicted family and species richness was obtained during k-fold cross-validation of a model
for richness as a directly modelled output (i.e., a richness model, RM), and calculated from
the taxonomically resolved output of the hierarchical mSDM and jSDM (see subsection 2.3).
For the mSDM and jSDM, the predicted richness at each sample was obtained by sampling
from the model including the Bernoulli distribution for presence-absence. In the RM, we
assume a negative binomial GLM with a log-mean richness given by the linear predictor
(Equation 16, Equation 17):

P (riti | x, α,β, θ) = PNB(riti | µiti(x, α,β), θ) , (16)

log(µiti) = α +
K

Σ
k=1

xitikβk , (17)

where riti is the richness at the sampled site i at time ti (i.e., the number of taxa) and
θ is an additional parameter to control the variance of the negative binomial distribution
(σ2 = µ + µ2/θ) (Equation 16). The dispersion parameter θ is estimated from the data
in addition to the parameters α and β (Equation 16). This model is similar to the model
used by Kaelin and Altermatt (2016), though we use different explanatory variables and
use a negative binomial rather than a Poisson distribution to describe the variance more
realistically. The richness model was fitted (one parameter α, K parameters βk, and one
parameter θ) using the function glm.nb in the R package MASS (Venables and Ripley, 2002).
The predicted and observed family and species richness for the RM and mSDM UF0 was
compared based on their respective maximum likelihood and maximum posterior parameter
estimates. The predictive performance and uncertainty of the hierarchical multi-species
(UF0-CT0) and joint models (CT1, CT2) was compared by propagating a subsample of the
posterior distribution through each model during k-fold cross-validation (see subsection 2.3).
Taxon-specific responses in the individual models and the mSDM UF0 were obtained by
plotting the probability of occurrence (for the entire dataset) in response to the explanatory
variables. The posterior parameter distributions underlying the model predictions and the
hierarchical structure of the mSDM UF0 were both visualized by identifying statistically
significant positive and negative responses at a 5% level based on the respective 5th and
95th quantiles of the marginal posterior taxon-specific parameter distributions (βtaxa

kj ) for all
taxa.
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2.6 Selection of Explanatory Variables

Using a broad range of potential variables chosen based on a priori knowledge, we applied
stacked iSDMsin an exhaustive search procedure (i.e., similar to a best subsets or “brute
force” approach; see James et al., 2013) to identify a set of explanatory variables that max-
imizes the predictive performance for taxa with a minimum number of occurrences (due to
the difficulty of identifying the parameters for rare taxa). Potential explanatory variables
were identified on the basis of expert knowledge and existing literature, with an emphasis on
direct, mechanistic explanatory variables reflecting natural and anthropogenic impacts on
stream invertebrate communities in Switzerland (Austin, 2007; Guisan and Zimmermann,
2000) (Table 2; see Table S1.1 and Table S1.2 for detailed descriptions of each variable).
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Table 2: Potential explanatory variables of stream invertebrate communities in Switzerland
(selected variables in bold)

Description Abbreviation
(units)

Mean maximum morning summer stream temperature predicted from a
linear model based on catchment area and mean catchment elevation

Temp (oC)

Mean annual stream flow velocity estimated from spatial data FV (m/s)
Riparian agriculture (A) or forest (F) cover within a buffer distance from
stream

A10m,
A100m,
A1km, F10m,
F100m,
F1km (%)

Livestock unit density: cattle equivalent (CE) units of livestock per
square kilometre of catchment area

LUD
(CE/km2)

Insecticide application rate: sum of the products of the fraction of
croplands in the catchment and respective mean annual spray treatments

IAR
(unitless)

Proportion of urban and transport-related land use within the catchment Urban (%)
Forest-river intersection: proportion of upstream river length in the
catchment intersected by forest cover

FRI (%)

Proportion of forest cover within the catchment Forest (%)
Evaluation of width variability of stream channel (0 = bad, 1 = very
good)

WV
(unitless)

Evaluation of stream bed modification (0 = bad, 1 = very good) BM (unitless)
Evaluation of overall stream morphology (0 = bad, 1 = very good) Morph

(unitless)
Agricultural (A) or forest (F) land cover in catchment inversely weighted
by the Euclidean distance to the site

A.EDO,
F.EDO (%)

Toxic units (TU) of modelled micropollutant concentrations for Daphnia
magna (TU.Dm) and Chironomidae (TU.Cr)

TU.Dm,
TU.Cr

Urban index: sum of specific urban land uses weighted by stormwater
discharge coefficients

UI (%)

Wastewater discharge as a proportion of stream discharge WW (%)
Residual flow: fraction of residual stream discharge from upstream
hydroelectric dams

RF (unitless)

Note: the mean of each explanatory variable was subtracted at each site (xk = xik − x̄ik) to
reduce correlations among the marginal posterior parameter distributions while still main-
taining parameter estimates relative to the units of the explanatory variables. Temp and FV
include a quadratic transformation to identify taxa with mid-range preferences for temper-
ature and flow velocity (i.e., Temp2,FV2). For a complete description of each variable, see
Table S1.1 and Table S1.2.

The exhaustive search procedure uses k-fold cross-validation to quantify the mean standard-
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ized deviance for each taxon based on independent predictions (see subsection 2.3) for a
full subset of models of varying complexity (i.e., between five and eleven parameters). For
any number of parameters p, models containing all possible combinations of p potential
explanatory variables were constructed. The number of proposed models was constrained
by only considering models that included stream temperature (Temp), flow velocity (FV),
and the insecticide application rate (IAR) as explanatory variables, and excluding models
with collinear explanatory variables (i.e., a Pearson correlation greater than 0.6 or less than
-0.6). The predictive performance of each potential model for the whole community was
calculated as the mean standardized deviance during k-fold cross-validation of all taxa with
identifiable parameters (see subsection 2.3; e.g., taxa in BDM occurring in less than 10% of
the samples were excluded due to the poor identifiability of their parameters (Figure S1.8)
and consistently poor predictive performance).

3 Results

3.1 Selection of Explanatory Variables

The exhaustive search procedure shows that simpler individual models (i.e., with fewer pa-
rameters) have a higher deviance during calibration but maintain a relatively similar predic-
tive error, demonstrating that simpler models produce a more stable predictive performance
while more complex models tend to overfit (Figure 2). However, multiple models consisting
of between approximately six and nine parameters achieve a higher predictive performance
over the community relative to models with fewer or a greater number of parameters.

15
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Figure 2: Mean standardized deviance during calibration and prediction of potential indi-
vidual models with between five and eleven parameters, with a 1:1 reference line (red). Each
point represents the predictive performance of a potential model for taxa with identifiable
parameters (see subsection 2.3 and Figure S1.8). The inset figure (top right) shows the same
data with rescaled axes.

The top ten models with the highest mean predictive performance among the datasets show
a generally consistent set of explanatory variables, including multiple agricultural (IAR,
LUD) and forest-related explanatory variables (F10m, F100m, or FRI; see Table S1.3). The
explanatory variables of the iSDMs with the lowest mean standardized deviance during
prediction were selected as the basis for further analysis (see Table 2 with selected variables
shown in bold; see Figure S1.2 for the geographic distribution of the selected explanatory
variables).

3.2 Quality of Fit for the Full Dataset

Calibrating the iSDMs and the simplest mSDM (UF0) to the entire dataset with identical
explanatory variables reveals that the dependence of the quality of fit (i.e., the standardized
deviance) on the prevalence of the taxa differs based on the model structure (Figure 3a).
The null model (i.e., including an intercept αtaxa

j and with βtaxa
kj = 0) deviance is lowest

for rare and very common taxa (given that a good fit does not require a high explanatory
power), and highest for taxa of intermediate prevalence where explanatory variables are
needed to distinguish modelled predictions in samples where the taxa are present or absent.
The lower standardized deviance values of the iSDMs suggest a slightly higher quality of fit
for increasingly rare taxa than the UF0 model, however these differences become negligible
for intermediately prevalent taxa with distributions that are well explained by the selected
variables (Figure 3a).
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Figure 3: Top: Quality of fit (standardized deviance) during calibration to the entire dataset
and explanatory power (D2

j ) of the iSDMs and the mSDM UF0, including (a) the standard-
ized deviance of the null model (i.e., intercept only; black points) and proposed models
versus the prevalence of each taxon (i.e., the proportion of samples where the taxon was
observed to be present), and (b) the explanatory power of the variables versus the standard-
ized deviance for each taxon, with the length of the lines visualizing differences between the
models (approximate regions of interest are circled in red and described in-text). Bottom:
comparisons of the quality of fit of the iSDMs and extended model structures, including (c)
the standardized deviance values for each proposed model (and the null model given by black
points and dashed line; note that the LOESS curves for UF0 and CF0 overlap) versus the
prevalence of each taxon, and (d) the distribution of standardized deviance for taxa in the
proposed models.

Differences in the explanatory power (D2
j ) of the iSDMs and UF0 are in turn dependent on

the quality of fit of the proposed model (Figure 3b). For rare taxa in region (1), the individual
models produce a nearly perfect quality of fit and explanatory power (dj ≈ 0, D2

j ≈ 1) of the
selected variables, while UF0 produces a relatively lower explanatory power. Taxa in region
(2) have an intermediate prevalence and a reasonable explanatory power of the selected
variables (0.20 < D2

j < 0.60) with an intermediate quality of fit. Taxa in region (3) display
a similar quality of fit and yet are poorly explained by the selected variables. Region (4)
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includes common taxa with a poor quality of fit and low explanatory power of the selected
variables in both models (Figure 3b).
Compared to the simplest mSDM UF0, introducing correlated community parameters (i.e.,
CF0) has no significant effect on the quality of fit (Figure 3cd). However, incorporating
site effects with CT0 produces a significant improvement in the quality of fit over the whole
community while the joint models (i.e., including one or two latent variables: CT1, CT2)
yield similar improvements (Figure 3cd).

3.3 Predictive Performance during Cross-Validation

During cross-validation, the iSDMs of multiple taxa have a low mean standardized deviance
during calibration that increases significantly during prediction (i.e., for samples not used
to calibrate the model), indicating a tendency to overfit (especially among rare taxa; Fig-
ure 4ab). The standardized deviance for each taxon in the mSDM UF0 remains similar
during calibration and prediction, demonstrating that the model consistently generalizes to
independent data and mitigates overfitting for rare taxa. The addition of correlated com-
munity parameters with CF0 yields no significant improvement in predictive performance
(Figure 4b), while the site effects (CT0) and latent variables (CT1, CT2) lead to a decrease
in the mean standardized deviance during calibration (i.e., improving the quality of fit) and
increased and wider distributions of predictive error (Figure 4c). Joint models including
three or four latent variables were also tested (with the results not shown here), but led only
to further decreases in predictive performance.
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Figure 4: Predictive performance during cross-validation for taxa in the individual, hierar-
chical multi-species, and joint models, including (a) the mean standardized deviance during
calibration and prediction for taxa in the individual models versus the simplest hierarchical
multi-species model (UF0) based on maximum likelihood and maximum posterior parameter
estimates respectively(including a 1:1 reference line), (b) the mean standardized deviance
(over the cross-validation folds) at the maximum posterior for taxa in each model, and (c)
the mean standardized deviance values based on the posterior sample (i.e., a sample of the
joint posterior distribution) of the hierarchical multi-species and joint models (UF0-CT2).
Note that (a) shows predictive performance during calibration and prediction while (b) and
(c) shows the predictive performance only during prediction (i.e., for independent testing
data). In (b), γ = 0 and u = 0 during predictions for models CT0, CT1, and CT2.

3.4 Predicted Richness during Cross-Validation

The mSDM UF0 and the richness model produce similar predictions for family and species
richness during cross-validation, with a bias at very low and high observed species richness
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due to over- and under-predictions, respectively (Figure 5, Figure S1.9). Propagating the
joint posterior distribution through the mSDMs and joint models shows that species richness
remains more biased than family richness, although the mean posterior family richness has
more variability across all models. Over the posterior sample, the simpler models (UF0,
CF0) generally have a lower uncertainty in predicting richness while the mSDM with site
effects (CT0) and joint models (CT1, CT2) have relatively larger predictive uncertainties.
However, the predictive performance of the mean posterior richness appears to become more
narrow and biased when extending the simplest mSDM (UF0) to the joint model with two
latent variables (CT2).

Figure 5: Predicted versus observed family and species richness at each sample (of a site)
during cross-validation of the richness model, hierarchical multi-species and joint models,
including (a) the mean predictions of the richness model and the hierarchical multi-species
model (UF0) based on their respective maximum likelihood estimates and maximum pos-
terior parameter estimates, and (b) the hierarchical multi-species and joint models, with
the posterior predicted richness distribution (black points) and the mean posterior predicted
richness (red points) at each sample.. One-to-one reference lines are included.
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3.5 Community & Taxon-Specific Responses

The hierarchical structure of the simplest mSDM (UF0) allows rare taxa with a high uncer-
tainty in their taxon-specific responses (i.e., the marginal posterior taxon-specific parameters
βtaxa
kj ) to “borrow” information from the community response (i.e., the posterior community

parameters βcomm
k ), resulting in improved predictive performance relative to the iSDMs (e.g.,

Figure 6, see Figure S1.4 for identical plots for all other explanatory variables). The sim-
ilarities between the distribution of the maxima of the taxon-specific responses and the
community distribution demonstrates that the community distributions are sufficiently nar-
row to prevent overfitting without needlessly constraining the taxon-specific responses. The
marginal posterior taxon-specific parameter distributions βtaxa

kj quantify the strength and
uncertainty of the taxon-specific responses for each explanatory variable, and can be com-
bined to quantify the uncertainty and relative importance of the responses for the overall
community.
For instance, taxa with a narrow marginal posterior parameter βtaxa

kj distribution and a
maximum close to zero have a high certainty of exhibiting no response to a given explanatory
variable (Figure S1.6; see Table S1.7 for a summary of significant responses, and Appendix
S1 subsection S1.10 for a table of significant responses for all taxa). The uncertainty of the
overall community response to an explanatory variable can be quantified as the distribution
of the relative standard deviations of the taxon-specific responses (e.g., Figure S1.7). In our
analysis, we found the uncertainty of the community response was highest for livestock unit
densities in the catchment, followed by flow velocity and riparian forest cover (Figure S1.7).
The relative importance of the explanatory variables (which differ in their units and the range
of environmental conditions covered in the data; e.g., Figure S1.2) to community composition
can be assessed by comparing the degree to which the linear predictor (Equation 1) for
multiple taxa (and thus, the overall community) is shifted by each explanatory variable
(e.g., Figure S1.3). Our results revealed stream temperature to have the largest effect on the
community in all models (Figure S1.3).
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Figure 6: In the hierarchical mSDM, the marginal posterior distribution of the community
response βcomm

k (bold grey line) constrains the taxon-specific parameters βtaxa
kj (thin trans-

parent lines) to flow velocity, with the maxima of the taxon-specific responses (dashed line)
closely following the community response. The diverse taxon-specific responses indicate sig-
nificant positive (blue), negative (red), and non-significant (grey) responses based on the 5th
and 95th quantile of the marginal posterior distributions of the taxon-specific parameters
βtaxa
kj ..

In addition to quantifying taxon-specific responses and their relative uncertainty to explana-
tory variables, a simple mSDM (UF0) can be used to quantify the probabilities of occurrence
for any individual taxon in response to varying environmental conditions (e.g., the amphipod
family Gammaridae; Figure 7a). These “response curves” visualize the relative effects of the
explanatory variables on the distributions of taxa, and can be compared with the geographic
distribution of the probabilities of occurrence and observations of a taxon to show regions
with a good (i.e., large blue and/or small red points) or bad (i.e., large red and/or small
blue points) quality of fit for individual observations (e.g., Figure 7a, Figure 7b; see Ap-
pendix S1 subsection S1.10 for similar plots and maps of all taxa in the individual models
and the mSDM UF0). Large differences in the probability of occurrence (i.e., point size) for
an individual observation indicate a high uncertainty in the modelled output (Figure 7b).
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Figure 7: An example of the taxon-specific responses quantified in a hierarchical multi-species
model, including (a) the calibrated probabilities of occurrence and observations versus the
explanatory variables and (b) the geographic distribution of the probabilities of occurrence
versus the observations of the amphipod family Gammaridae (265 occurrences, D2 = 0.58)
in the mSDM UF0. Observations are colored for a presence (blue) or absence (red). In
(a) the probabilities of occurrences are at the maximum posterior distribution. In (b), the
probability of occurrence increases with point size and the point fill corresponds to the
probability of occurrence at the 5th (filled) and 95th (unfilled) quantiles of the marginal
posterior distributions of the probabilities of occurrence.

4 Discussion

In comparing the performance of individual (iSDMs), hierarchical multi-species (mSDMs),
and joint species distribution models (jSDMs) when applied to a high-quality dataset of
stream invertebrate communities, we found that an mSDM with a relatively simple hier-
archical structure (i.e., model UF0; see Table 1) achieves a higher predictive performance
relative to other modelling approaches (Figure 4, Figure 5). To comprehensively demon-
strate how model performance varies within a community, we applied iSDMs using the same
explanatory variables to the entire community while acknowledging that in practice, iSDMs
with fewer explanatory variables would have to be used for taxa with insufficient presence
observations (as the underlying parameters of the full model are unidentifiable for rare taxa;
see Figure S1.8). Compared to iSDMs, the simplest mSDM performs reasonably well for
specific taxa when calibrated to the entire dataset (Figure 3, Figure 7). The iSDMs provide
unconstrained parameter estimates and appear to show minor improvements in the quality
of fit for the community relative to the simplest mSDM, with indications of overfitting for
taxa with insufficient presence observations and unidentifiable parameters (Figure 3, Fig-
ure 4). The predictive performance of the individual models deteriorates further during
cross-validation, providing evidence of overfitting (Figure 4).
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For taxa that are neither too common nor too rare and well-explained by the explanatory
variables, the simplest mSDM achieves a quality of fit similar to the iSDMs, while miti-
gating overfitting for rare taxa due to overarching community parameter distributions that
constrain the taxon-specific parameters (Figure 4). The hierarchical model structure al-
lows rare taxa with unidentifiable parameters to “borrow” information from the community,
thereby improving predictive performance for the community and rare taxa in particular.
Unlike identical iSDMs, the mSDM can be applied to a whole community without the need
to exclude taxa (e.g., Calabrese et al., 2014; Kuemmerlen et al., 2015; Pottier et al., 2013).
Fitting all taxa with iSDMs would require the selection of taxon-specific explanatory vari-
ables, with fewer variables for rare taxa (or simply fitting the parameters αtaxa

j for very rare
taxa and setting all βtaxa

kj to zero). An additional advantage of the mSDM is that it com-
bines the analytical possibilities of iSDMs and a RM by quantifying the relative effect size
and its uncertainty for explanatory variables for the overall community and specific taxa
(Figure 6, Figure S1.3, Figure 7), and community properties (such as family and species
richness) similar to an equivalent RM (Figure 5).
An mSDM can be extended with more complex model structures that provide additional
analytical possibilities and may improve model performance. For instance, we introduced
correlated community parameters in the mSDM (i.e., in model CF0) with the aim of testing
whether the identifiability of the taxon-specific parameters could be improved, but found no
change in the overall quality of fit or predictive performance (Equation 14, Figure 4). Still,
the correlations between community parameters can be informative (e.g., Figure S1.5), and
reduce the effective number of parameters relative to the simplest mSDM (see subsection
S1.4). The inclusion of site effects in the mSDM (e.g., as in model CT0) can facilitate
the selection of additional explanatory variables to include in the model or be compared
with existing variables to identify potential non-linear responses to environmental conditions
(e.g., Figure S1.10, Figure S1.11). In this particular application, we included a quadratic
transformation of stream temperature as an additional parameter due to the wide variation
in the topography of Switzerland (Figure S1.4). This allows us to quantify preferences for
intermediate temperatures in addition to montonic dependencies on temperature. However,
we found that while the site effect provides an increase in the quality of fit relative to a
simpler mSDM, the predictive performance declines as the site effect is unknown at sites not
used during model calibration.
Extending the mSDM (with the site effect) into a joint model allowed us to assess whether
the inclusion of residual correlations between taxa (e.g., Figure S1.12) improves predictive
performance. The residual correlations between taxa can provide indications either of biotic
interactions or joint responses to unknown explanatory variables. In our study, we found
that a joint model (parameterized with latent variables) further improved the quality of fit
(Figure 3), although predictive performance progressively declined with the number of latent
variables included in the model (Figure 4; our trials found that the predictive performance
continued to deteriorate with joint models including up to four latent variables [which we do
not show here]). Similarly, community properties including family and species richness show
an increase in predictive bias and uncertainty with more complex mSDMs and jSDMs, while
the predicted richness of the simplest mSDM has a lower predictive uncertainty relative to
more complex models (though predictions remain biased; Figure 5).
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This particular result contradicts our initial hypothesis that the joint model would improve
predictive performance, as similar studies have found that joint models generally improve
the quality of fit and predictive performance (relative to individual models) for various
communities (Clark et al., 2014; Harris, 2015; Ovaskainen et al., 2016a,1; Taylor-Rodríguez
et al., 2017; Tikhonov et al., 2017). For example, Clark et al. (2014) and Taylor-Rodríguez
et al. (2017) show that joint models of forest communities improve predictive performance
and the prediction of species richness over equivalent individual models (Guisan and Rahbek,
2011), with a similar study of plant communities confirming these findings (e.g., Tikhonov
et al., 2017). Studies applying joint models to freshwater communities suggest that shared
responses to environmental conditions may be more important in determining community
composition than residual correlations between taxa (Inoue et al., 2017; Pollock et al., 2014;
Royan et al., 2016).
We speculate that, contrary to forest communities with biotic interactions that are dominated
by competition (Clark et al., 2014; Taylor-Rodríguez et al., 2017), freshwater invertebrate
communities have more diverse energy sources such as alternative food sources, multiple
functional feeding types, and frequent stream disturbance events (preventing the ecosystem
from reaching carrying capacity), thereby reducing the overall importance of biotic inter-
actions for predictive modelling. We urge a careful interpretation of correlations between
stream invertebrate taxa (e.g., Figure S1.12) as the effects of unknown, external explanatory
variables and the type of biotic interactions (e.g., competition versus predation) cannot be
distinguished (Clark et al., 2014; Dormann et al., 2018). Although the joint model did not
improve predictive performance in this particular application, joint models that do not show
a significant deterioration in predictive performance can be used to test for prior hypothe-
ses of interactions between specific species, and to facilitate discussions with biologists to
stimulate additional model development (Dormann et al., 2018). An investigation of the
ecological context in which the inclusion of residual dependencies among distributions of
taxa can lead to improved predictive performance would be an interesting topic for future
research. An additional difficulty of applying a joint model to our data set is the large num-
ber of observed taxa, making an unstructured approach to estimating correlation parameters
infeasible. Parameterization of the correlations with latent variables provides a method to
reduce the number of parameters, however this comes at the cost of inducing structure to the
correlation coefficients, making it difficult to identify a few, important correlations among
the many taxa.
A notable limitation to the modelling approaches applied in this study is that the stacked
iSDMs, mSDMs, and jSDMs impose an identical set of explanatory variables on the commu-
nity, which may not be realistic (particularly for diverse communities with a large number
of taxa). Given that iSDMs allow for the selection of taxon-specific variables, we considered
statistical and machine learning techniques often used to guide variable selection for iSDMs,
including stepwise selection methods (e.g., Leps et al., 2015), elastic net regularization (Zou
and Hastie, 2005), and random forests (Breiman, 2001; Cutler et al., 2007). While these
techniques are suitable for selecting variables specific to each taxon, we instead opted for a
computationally intensive but feasible “exhaustive search” procedure that effectively com-
bines cross-validation with a best subsets approach (see James et al., 2013). To reduce the
computational burden of the procedure, we limited the number of potential individual mod-
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els for cross-validation (i.e., of all taxa in the community) by excluding models with collinear
explanatory variables and limiting model complexity. With this approach, we comprehen-
sively quantified the predictive performance of all potential sets of independent explanatory
variables for multiple taxa (i.e., excluding rare taxa with unidentifiable parameters) in the
community rather than for only specific taxa, while avoiding the disadvantages of stepwise
selection or regularization techniques (e.g., variable selection in the presence of collinearity).

5 Conclusions

In this study, we comprehensively compared the performance of increasingly complex indi-
vidual, hierarchical multi-species, and joint species distribution models when applied to a
diverse community of freshwater invertebrates. In extending these models, we demonstrated
the analytical possibilities of additional model elements, and quantified their effect on model
performance (e.g., quality of fit, predictive performance). Our findings show that some of
the limitations of modelling multiple taxa in a community independently of one another (i.e.,
with individual models that have difficulties in identifying parameters and overfit for rare
taxa when using the same explanatory variables for all models) can be overcome by con-
straining the taxon-specific parameters with overarching community parameters. By assum-
ing that taxa contribute to and follow an overarching community response in a hierarchical
multi-species distribution model, rare taxa with few data points can “borrow” information
from the community, thereby improving the predictive performance for the community and
rare taxa in particular. Including correlations between the community parameters supports
the identification of interactions between taxon-specific responses to explanatory variables,
but did not increase the predictive power of the model in our study. Similarly, site-effects
can be used to identify additional variables to include in the model, but did not increase
predictive performance in our case study. To test whether the inclusion of residual corre-
lations between taxa improves predictive performance, we parameterized a correlation term
of the hierarchical multi-species model with latent variables to obtain a joint model. In our
application, the predictive performance of the joint model did not improve compared to the
simpler mSDMs, indicating either that the biotic interactions or joint responses to unknown
factors are less important than the findings of other studies applying joint models (e.g., for
plant communities), or that the latent variable approach was not sufficient to detect rele-
vant correlations. We found that a hierarchical multi-species model predicts richness as well
as a richness model, and additionally quantifies the response of the overall community and
specific taxa (with their respective uncertainties) to selected explanatory variables. Overall
we view hierarchical and joint SDMs as promising tools that combine and extend many of
the analytical possibilities of individual models, and urge ecologists interested in exploring
community data to select a parsimonious modelling approach that is adequate in reflecting
the dominant environmental conditions that drive species distributions.
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