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Abstract 

Decision-making in environmental management requires eliciting preferences of stakeholders 

and predicting outcomes of alternatives. Usually, preferences and predictions are both uncertain. 

Uncertainty in predictions can be tackled by multi-attribute utility theory, but the uncertainty in 

preferences remains a challenge. We demonstrate an approach for including both uncertainties in 

a multi-criteria decision analysis (MCDA), using utility theory and the concept of expected 

expected utility. For a decision regarding a regional merger of wastewater infrastructure in 

Switzerland, we constructed preference models for four stakeholders. These models also allowed 

for non-additive interactions between objectives. We evaluated the performance of eleven 

decision alternatives for which we predicted potential outcomes. Even though uncertainties were 

high, we could draw conclusions based on the expected expected utility of alternatives. Building a 

pipeline to discharge treated wastewater to a larger river emerged as a potential consensus 

alternative to mitigate the problem of micropollutants in a small stream. We investigated the 

robustness of the �indings with sensitivity analysis regarding the preference parameters and the 

included objectives. In their actual decision, the stakeholders partly preferred other alternatives 

than those proposed by the model. Their choices could be explained by reduced decision models 

in which only few objectives were included. This may indicate the use of simpli�ied choice 

heuristics by the stakeholders. The presented approach is feasible for supporting other dif�icult 

environmental or engineering decisions in practice, for which we give a number of 

recommendations.  
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1. Introduction 
The uncertainties in planning and decision-making often increase when considering larger 

temporal and spatial scales. The uncertainty concerns both the knowledge about consequences of 

implementing a decision alternative as well as the values of stakeholders and their valuation of 

these consequences. Such uncertainties are particularly prominent in long-term, strategic, or 

regional planning, such as the planning of wastewater infrastructure (e.g., Lienert et al. 2006; 

Dominguez et al. 2011; Zheng et al. 2016). 

Wastewater infrastructure provides vital services to society. In European countries, it is 

largely characterized by capital-intense assets with long lifespans and interconnected system 

components (Markard 2011). These system characteristics pose challenges to strategic planning. 

Long life-spans and capital intensity entail strong path dependencies and limit adaptive 

approaches to management (Allen et al. 2011). Instead, planning has to account for the future 

uncertainties from the onset. 

Strategic decision-making can be facilitated by various procedures and methods (e.g., 

Truffer et al. 2010; Gregory et al. 2012; Vacik et al. 2014; Scholten et al. 2017). While a structured 

decision-making process cannot guarantee an optimal outcome, it can facilitate a rational and 

transparent approach to the decision’s complexity and uncertainty and facilitate the involvement 

of stakeholders. One valuable tool to support the process is a decision model (e.g., Reichert et al. 

2007; Reichert et al. 2015; Scholten et al. 2015; Zheng et al. 2016). 

Such a model consists of two connected parts: (1) an outcome prediction model for 

estimating the outcomes of the alternatives, and (2) a preference model for representing 

stakeholder values. The prediction model is not necessarily a mathematical model; for instance, it 

can also be the mental model of an expert. The preference model is de�ined over the outcome 

space of the predictions and returns a valuation of the potential outcomes. When applied to the 

predictions of decision alternatives, it can be used to rank the alternatives according to the 

preferences. 

Specifying and identifying decision models is complicated by at least two aspects. (i) 

Predictions about the consequences of implementing an alternative are often dif�icult to obtain. A 

large portion of modeling in the natural and engineering sciences is focused on improving such 

predictions. How to conceptualize and tackle these uncertainties is not a focus in this study and 

has been explored elsewhere (e.g., Durbach and Stewart 2012; Kelly et al. 2013; Reichert et al. 2015; 

Uusitalo et al. 2015). (ii) Stakeholders might not have clear preferences, cannot express them 

(numerically), and the preference elicitation process can introduce uncertainty (e.g., Slovic 1995; 

Payne et al. 1999). To simplify elicitation, often assumptions are made about the form and 

structure of preference models, which might not hold in practice (Haag et al. 2019a). 

Taken together, the uncertainties in predictions and preferences can limit the conclusions 

that can be drawn from a decision model. The uncertainty can overwhelm the actual differences 
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between alternatives (cf. Reichert and Borsuk 2005). The simplistic solution of ignoring 

uncertainties may occasionally work without impacting major conclusions, but is not a general 

solution (see Durbach and Stewart 2009; Scholten et al. 2017). Thus, we need (a) a conceptually 

sound approach to dealing with uncertainties in decision-making and (b) a way of integrating the 

uncertainties to allow making rational recommendations given the knowledge we have. 

The established theory of expected utility (Keeney and Raiffa 1976; Eisenführ et al. 2010) 

prescribes a way for making rational decisions while considering the uncertainty in predictions. 

However, it assumes known preferences. Intuition and counter-examples show that preferences 

are also uncertain and change in time (e.g., Slovic 1995; Chajewska et al. 2000; Houlding and 

Coolen 2011). This led to the development of the adaptive utility concept (Cyert and DeGroot 1975), 

though this seemingly did not have a major impact on mainstream decision analysis. Still, the 

explicit consideration of preferential uncertainty is equally relevant for good decision-making as 

the consideration of prediction uncertainty. 

Various approaches for dealing with uncertainty of preferences have been developed. 

Sensitivity analysis can be used to determine how strongly preferences may vary before 

conclusions would change (e.g., Lahdelma and Salminen 2001; Scholten et al. 2015), or robust 

inferences can be made directly given uncertain preferences (e.g. Greco et al. 2008). In the 

stochastic multicriteria acceptability analysis (SMAA) family of methods, different indices are 

suggested to �ind well performing alternatives despite uncertainty in weight parameters, based 

on distributions of rankings of the alternatives (Lahdelma et al. 1998; Hokkanen et al. 2000; 

Lahdelma and Salminen 2001; Tervonen and Figueira 2008). However, the conceptual 

underpinning why decisions should be based on one or another index is so far lacking. 

An alternative and possibly more natural way of considering uncertainty in preferences is 

offered by the concept of expected expected utility (EEU; Chajewska et al. 2000; Boutilier 2003). It 

is essentially equivalent to the adaptive utility concept. EEU allows us to jointly average over the 

uncertainty in predictions and preferences, while sharing the same axiomatic basis as utility 

theory (see section 2.2). This provides a sound basis for rational decision-making given 

uncertainties in predictions and preferences. In addition to considering these uncertainties, 

analyzing the robustness of the results regarding underlying model structures and chosen 

parameter distributions is always important to assess the uniqueness or ambiguity of the choice 

of the optimal alternative (see Roy 2010). 

The aim of this paper is to show how to practically tackle the consideration and integration 

of uncertainties in preferences and predictions. While multi-criteria decision analysis (MCDA) 

based on utility theory is well established in environmental planning (Cegan et al. 2017), we are 

not aware of any application of EEU in that area. A case study on regional planning of wastewater 

infrastructure in Switzerland serves as our reference and re�lection point. We demonstrate how 
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the concepts can be implemented for such a complex, real-world case and investigate the 

robustness of the results for the actual decision. The main research questions are: 

(1) How can the EEU concept be applied in a complex decision? Is it feasible and bene�icial for 

making choices under uncertainty? 

(2) What is the value of eliciting more detailed preference information in comparison to using 

simpli�ied assumptions? Does the consideration of uncertainty in preferences in�luence the 

ranking of the alternatives? 

(3) Can the objectives hierarchy be simpli�ied by omitting objectives, without losing much of the 

power to discriminate the alternatives? 

(4) How does the actual choices of the stakeholders in the case match to the results from the 

decision model? 

2. Expected (expected) utility 

2.1. Decision models based on multi-attribute utility theory 
Rational decision-making requires predicting the potential outcomes of alternatives and 

knowledge about preferences for these outcomes. If we can specify these elements, the theory of 

expected utility (Eisenführ et al. 2010) offers a well-founded rationale for evaluating alternatives 

and for making (environmental) decisions (Reichert et al. 2007; Reichert et al. 2015). Expected 

utility theory assumes that uncertainties about outcomes of alternatives can be quanti�ied as 

probabilities and stakeholders can specify their preferences. 

A decision model can help to select one or a subset of alternatives out of a set of feasible 

alternatives 𝒜𝒜 = {𝑎𝑎, 𝑏𝑏, … }. A potential decision outcome can be characterized by attributes 

𝒙𝒙 = (𝑥𝑥1, … 𝑥𝑥𝑛𝑛). Attributes are properties to describe the state of a system. Our knowledge about 

the outcome of an alternative 𝑎𝑎 ∈ 𝒜𝒜  is described either (a) by the levels of the attributes when 

implementing the alternative, 𝒙𝒙𝑎𝑎 , when disregarding uncertainty, or (b) by a probability 

distribution 𝑝𝑝𝑎𝑎(𝒙𝒙) that quanti�ies the uncertain knowledge about the outcomes. 

We care about the outcomes of alternatives because they impact what we value. Taking 

such a perspective of value-focused thinking (Keeney 1992), alternatives are evaluated in terms of 

a stakeholder’s objectives. We can think of objectives as qualitatively specifying the values of a 

stakeholder and thus determining the structure and extent of the evaluation. In all but the 

simplest cases, multiple objectives are relevant. In such multi-criteria decisions, the objectives are 

often structured in the form of a hierarchy with higher-level objectives and sub-objectives 

(Keeney and Raiffa 1976). In multi-attribute utility theory, this hierarchy can be used to structure 

the quanti�ication of a stakeholder’s preference. 

The preferences of a stakeholder can be represented by a value or utility function. Let 𝑋𝑋 

denote the set of all possible outcomes for all attributes considered relevant in the decision. A 
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multi-attribute value function 𝑣𝑣: 𝑋𝑋 →  [0,1] returns the valuation of potential outcomes  such that 

larger values represent preferred states (Keeney and Raiffa 1976). When the outcomes are not 

uncertain, a ranking of the alternatives can be found after calculating the value 𝑣𝑣(𝑎𝑎) = 𝑣𝑣(𝒙𝒙𝑎𝑎) for 

each alternative in 𝒜𝒜. A decision is rational, if the alternative with the highest value is chosen. 

For decisions under risk, i.e., if decision outcomes are uncertain, a multi-attribute utility 

function 𝑢𝑢: 𝑋𝑋 →  [0,1] returns the valuation of potential outcomes (Keeney and Raiffa 1976). A 

utility function not only considers preferences about outcomes but also preferences about risk. 

For example, a stakeholder can be risk averse and have a preference to avoid an uncertain 

situation (see Eisenführ et al. 2010 for discussion). If a stakeholder is risk neutral, the utility 

function has the same shape as the value function. In the case of continuous distributions, the 

expected utility of an alternative 𝑎𝑎 is given by: 

𝐸𝐸𝐸𝐸(𝑎𝑎) = ∫ 𝑢𝑢(𝒙𝒙𝒙𝒙 ) 𝑝𝑝𝑎𝑎(𝒙𝒙) dx        (Equation 1) 

By calculating the expected utilities of the considered alternatives, a ranking can be found. A 

decision is rational, if the alternative with the highest expected utility is chosen. 

Directly identifying the multi-attribute utility function 𝑢𝑢(𝒙𝒙) of a stakeholder is dif�icult; 

instead, it can be constructed in a stepwise and hierarchical manner (Reichert et al. 2015; Haag et 

al. 2019a). Once we elicited the model structure in form of an objectives hierarchy, constructing a 

utility function for the evaluation of the overall objective can be partitioned into three steps. 

First, each lowest-level objective is evaluated with respect to its attributes {𝑥𝑥𝑘𝑘, … , 𝑥𝑥𝑙𝑙} with a 

value function 𝑣𝑣𝑖𝑖(𝑥𝑥𝑘𝑘 , … , 𝑥𝑥𝑙𝑙 ,𝜽𝜽𝑖𝑖) with parameters 𝜽𝜽𝑖𝑖 . Normally, due to the narrow de�inition of 

these objectives, the value function only depends on a single attribute or few attributes. 

Secondly, each higher-level objective is evaluated by aggregating the evaluations of its sub-

objectives. We also call this objective an aggregation node. It depends on the attributes only 

indirectly. The multi-attribute value function over lower-level objectives �𝑜𝑜𝑝𝑝, … , 𝑜𝑜𝑞𝑞� on a speci�ic 

hierarchical level can be written as: 

𝑣𝑣𝑝𝑝,𝑞𝑞(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛,𝜽𝜽) = 𝐹𝐹�𝑣𝑣𝑝𝑝�𝑥𝑥1, … , 𝑥𝑥𝑛𝑛,𝜽𝜽𝑝𝑝�, … , 𝑣𝑣𝑞𝑞�𝑥𝑥1, … , 𝑥𝑥𝑛𝑛,𝜽𝜽𝑞𝑞�,𝜽𝜽𝑝𝑝𝑞𝑞�   (Equation 2) 

In practice, each value function 𝑣𝑣𝑖𝑖 will only depend on a subset of the attributes {𝑥𝑥1, … . 𝑥𝑥𝑛𝑛}. The 

function 𝐹𝐹 is an aggregation function (Grabisch et al. 2009). The aggregation function depends on 

the values of the sub-objectives. Form and parameters of the function depend on a stakeholder’s 

preferences. For a hierarchy with several levels, evaluations are aggregated in a stepwise manner 

along the hierarchy, until an overall evaluation is reached. This means that multiple aggregation 

functions are nested according to the hierarchical structure (Haag et al. 2019a). 

The predominant aggregation function in applications is the weighted arithmetic mean. The 

resulting preference model is called the additive model (Keeney and Raiffa 1976). Assuming that 

each lowest-level value function depends only on one attribute, an additive (multi-attribute) 

value function has the form:  
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𝑣𝑣(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛,𝚯𝚯) = ∑ 𝑤𝑤𝑖𝑖 ⋅ 𝑣𝑣𝑖𝑖(𝑥𝑥𝑖𝑖 ,𝜽𝜽𝑖𝑖)𝑛𝑛
𝑖𝑖=1        (Equation 3) 

with parameters 𝚯𝚯 = {𝜽𝜽,𝒘𝒘} and weights 𝒘𝒘 =  (𝑤𝑤1, … ,𝑤𝑤𝑛𝑛) that sum to unity. However, this model 

is only a valid representation of a stakeholder’s preferences if certain independence conditions 

are ful�illed (see Keeney and Raiffa 1976; Dyer and Sarin 1979; Eisenführ et al. 2010; Haag et al. 

2019a for discussions). Many alternative aggregation functions with other premises exist 

(Grabisch et al. 2009). 

Thirdly, a value function can be converted to a utility function, given the risk attitude of the 

stakeholder (Dyer and Sarin 1982). We only consider the case in which the value function is 

converted to a utility function at the highest hierarchical level, as proposed by Reichert et al. 

(2015). This requires knowledge about the stakeholder’s risk attitude at this hierarchy level. 

The objectives hierarchy determines the structure of the preference model and entails 

certain independence conditions (Haag et al. 2019a). If the aggregation function that is used is 

decomposable, the hierarchical structure of the preference model has no in�luence on the results, 

given proper weighting of objectives. Decomposability means that each element of a subset of 

arguments can be replaced by their partial aggregated value without changing the overall 

aggregated value (see Grabisch et al. 2009 p. 35). Then, the order in which values are aggregated 

does not matter. The arithmetic mean of the additive model is such a decomposable aggregation 

function. However, if (combinations of) other aggregation functions are used, the hierarchical 

structure can in�luence the results. This requires a careful structuring of the hierarchy according 

to the preferences of the stakeholder. 

2.2. Expected expected utility 
With utility functions we can calculate the expected utility for an alternative, conditional on 

the preferences and the uncertain outcomes. In case the preferences are uncertain, too – i.e., the 

utility function has an uncertain structure or parameters – this results in a distribution of 

expected utilities. Expected utility theory does not provide a rationale how to select or order 

alternatives based on such distributions of utilities. 

To overcome this limitation, we propose to use the concept of expected expected utility 

(EEU), as has been formalized by Boutilier (2003). If a stakeholder is unsure about her or his 

utility function, she or he is unsure which expected utility she or he will receive when choosing an 

alternative. A rational decision-maker would now select the alternative with the highest expected 

value of these expected utilities, this means, the highest EEU. 

The EEU of an alternative 𝑎𝑎, with the probability of outcomes 𝒙𝒙 given by 𝑝𝑝𝑎𝑎(𝒙𝒙), for a 

stakeholder 𝑚𝑚  with a parameterized utility function 𝑢𝑢(𝒙𝒙,𝝍𝝍)  and a distribution of these 

parameters 𝑝𝑝𝑚𝑚(𝝍𝝍), can be written as: 

𝐸𝐸𝐸𝐸𝐸𝐸(𝑎𝑎,𝑚𝑚) = � ��𝑢𝑢(𝒙𝒙,𝝍𝝍
𝒙𝒙

) 𝑝𝑝𝑎𝑎(𝒙𝒙) dx�𝑝𝑝𝑚𝑚(𝝍𝝍) dψ
𝝍𝝍

= � �𝑢𝑢(𝒙𝒙,𝝍𝝍
𝒙𝒙

) 𝑝𝑝𝑎𝑎(𝒙𝒙) 𝑝𝑝𝑚𝑚(𝝍𝝍) dx dψ
𝝍𝝍

 



Accepted manuscript: Haag et al. 2019. Integrating uncertainty...  
https://doi.org/10.1016/j.jenvman.2019.109652 

7 

(Equation 4) 

The inner integral – ∫ 𝑢𝑢(𝒙𝒙,𝝍𝝍𝒙𝒙 ) 𝑝𝑝𝑎𝑎(𝒙𝒙) dx – is simply the expected utility for speci�ic parameter 

values 𝜓𝜓 (Equation 1). 

Boutilier (2003) has shown that under speci�ic conditions EEU can be justi�ied by appeal to 

the foundational axioms of decision theory. More precisely, all the considered utility functions 

have to be extremal equivalent. This means that all utility functions need to assign the same value 

to the best outcome (e.g. 1) and the same value to the worst outcome (e.g. 0). In our practical 

application this is given. However, this is an important condition, as in expected utility theory the 

utilities are only unique up to an af�ine transformation. This degree of freedom must be 

constrained if we are taking the expectation over a distribution of utilities. 

3. Implementation 

3.1. Application: a regional merger of wastewater treatment plants 

3.1.1. Decision problem, stakeholders, and process 
The decision case concerned a potential regional merger of wastewater treatment plants 

(WWTPs) in Switzerland. In a merger the number of WWTPs is reduced and the sewer lines are 

adapted correspondingly. In the presented case, the fragmented organizational structures would 

be merged in parallel with the WWTPs. At the moment, there are four WWTPs in the region. 

Three (NW, AZ, GM) discharge their treated wastewater into the larger river RA (Figure 1). One 

(BB) discharges into the smaller stream NZ. 

As the �irst country worldwide, Switzerland demands certain WWTPs to take measures to 

remove micropollutants such as pharmaceuticals or pesticides (Eggen et al. 2014; Logar et al. 

2014). Currently, none of the WWTPs in the region has a speci�ic treatment for micropollutants. 

The WWTP BB is required to take measures until 2025, because the stream NZ is small and 

potentially negatively impacted. Micropollutants could be eliminated at WWTP BB if an additional 

treatment step was built. Alternatively, the wastewater could be rerouted to another WWTP and 

the WWTP BB could be decommissioned. This prompted a search process for a regional solution 

for the wastewater system with the year 2040 as the time horizon. 

Currently, all WWTPs have mechanical and biological treatment, including nitri�ication and 

denitri�ication (Table SI 1). The WWTPs have some idle capacity concerning the pollution load, i.e., 

they are designed to treat a higher load than they currently receive. However, in case of mergers, 

extensions may be required. Currently, a lot of parasitic water (water that would not need 

treatment, for instance groundwater) enters the system (28%–69%). By reducing this amount, 

increases in the required hydraulic capacity due to mergers could be absorbed. At three WWTPs 

(BB, NW, GM), the sludge that accumulates in the treatment processes is digested for biogas 
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production. The gas is used in a combined heat and power plant at BB and GM, and at NW the 

biogas is utilized for a district heating system (Table SI 1). 

 
Figure 1: Conceptual map of the spatial con�iguration of the wastewater treatment plants 
(WWTP) in the case study. Further information on the WWTPs is given in Table SI 1. 

The decision process was initiated by the cantonal authorities responsible for wastewater 

(stakeholder CT, Table 1). Four organizations that each operate a WWTP in the region were the 

other main stakeholders (Table 1). These organizations are responsible for the wastewater 

treatment of 9 to 18 associated municipalities each and represented their interests in the decision 

process. A decision committee was set up in which each of the �ive organizations had one or two 

delegates. An engineering consultancy facilitated the multi-organizational group decision process. 

Two further engineering of�ices were involved as consultants. The research team acted as adjunct 

consultants who conducted a MCDA and gave inputs. 

Table 1: Organizations that were stakeholders in the decision process. The organizations’ names 
are anonymized. The persons interviewed for this study were all delegates to the decision 
committee, with exception of the operator of organization GM. 

Stakeholder / 
organization 

Municipalities af�iliated 
with organization 

Inhabitants 
represented Interviewees in this study 

CT n/a n/a The department head of the 
responsible cantonal authority 

BB 13 15500 The president and the vice-
president of the organization 

GM 12 13500 The president of the organization 
and the chief plant operator 

NW 9 8500 The chief plant operator 

AZ 18 41000 Not interviewed 

The decision process was organized in several phases. For the �irst phase, which took place in 

2017, the aim was to structure the problem, generate alternatives, and select a subset of feasible 

alternatives for further analysis. In several meetings, the representatives of the organizations, the 
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cantonal authorities, the consulting engineers, and two of the authors met to discuss. The project 

aim for us as researchers was to support the selection of alternatives by building and analyzing a 

decision model. For this, we elicited preferences of representatives that were delegates in the 

decision committee (Table 1). From organization AZ, no representative was available for an 

interview at the time. Therefore, the possibility of extrapolation of the individual results to the 

group level is limited. We aimed at determining promising alternatives, given the high uncertainty 

in the preferences of the stakeholders and in the long-term consequences. 

3.1.2. Decision objectives, attributes, and alternatives 
Objectives were identi�ied by the stakeholders in a workshop in April 2017 by simple 

brainstorming. The research team carried out a preliminary structuring using clustering and 

means-ends networks (Keeney 1992). The set of objectives was further developed by the lead 

engineering of�ice. In a meeting in August 2017, the involved actors agreed to use this system of 

objectives for evaluation. For our MCDA we made two adaptions: we split the objective of water 

protection into one objective regarding micropollutants and one regarding the ecological state 

and removed the objective of political feasibility, as this is a constraint for the feasible set of 

alternatives rather than an objective. This led to a system of 14 objectives (Table 2). 

Due to time constraints, the attributes (Table 2) were selected by the lead engineering of�ice 

and the research team and not de�ined jointly with all stakeholders. Many ful�ill the criteria for 

useful attributes as proposed by Keeney and Gregory (2005). However, for some objectives, such 

as the “Long-term solution” or “Flexibility to react”, we had to resort to proxy attributes. 

Table 2: System of objectives for a good wastewater disposal for the region in 2040. The 
description of how the attributes were predicted is given in Table SI 3; a visualization of the 
objectives hierarchy in Figure SI 2. WWTP: wastewater treatment plant; Nm3: normal cubic 
meter. 

Higher 
level 

objective 
Objective Short 

name Description Attribute 

Economic 
viability Low annual cost cost 

Annual cost for the wastewater 
treatment for the whole region 
(operational costs, depreciation, 
interest) in 2040. 

Annual cost in 2040  
[mio. CHF/year] 

Environ-
mental 
protection 

Good ecological 
state of stream NZ ecology_nz 

Water protection is an important legal 
objective in Switzerland. Stream NZ is 
small and thus sensitive to the impacts 
of (treated) wastewater. 

Ecological state of river 
NZ as given by the 
Swiss modular stream 
assessment* [points] 

High removal of 
micropollutants 

micropollut
ants 

Certain WWTPs are obligated to 
implement additional treatment to 
remove micropollutants. Beyond this 
legal requirement, this is also a 
general objective for the improvement 
of water quality. 

Population for which 
micropollutants will be 
removed 
[number of people] 

Low impairment of 
protected areas 

protected_a
reas 

Minimize impacts to legally protected 
areas such as nature, landscape, or 
river banks. Extensions of WWTPs or 
other new buildings can impact such 

Number of protected 
areas that could be 
impaired 
[areas impaired] 



Accepted manuscript: Haag et al. 2019. Integrating uncertainty...  
https://doi.org/10.1016/j.jenvman.2019.109652 

10 

Higher 
level 

objective 
Objective Short 

name Description Attribute 

protected zones.  

High amenity of the 
landscape landscape 

The visual amenity of the landscape 
can be negatively impacted by large 
buildings of WWTPs, for example 
digester towers. 

Number of buildings of 
WWTPs higher than 
10m 
[buildings] 

Protection 
of resources 

Low electrical 
energy 
consumption 

electricity 

The wastewater treatment itself 
requires electrical energy. 
Additionally, energy is required for 
pumping wastewater and 
micropollutant removal. 

Gross electrical energy 
required 
[MWh/year] 

High utilization of 
energy in sludge 

sludge_utili
zation 

Sewage sludge contains considerable 
amounts of energy, which should not 
be wasted. The sludge can be digested 
for producing biogas. Drained sludge 
can also be thermally utilized, either 
after a digestion or directly. 

Production of biogas 
from sludge 
[thous. Nm3/year] 

Little land 
consumption 

land_consu
mption 

Little land should be used for 
buildings of wastewater 
infrastructure. Sometimes, additional 
land would need to be acquired, which 
can be dif�icult. 

Land requirements for 
infrastructure 
[m2] 

Social 
compatibilit
y 

Preservation of 
jobs in the 
wastewater sector 

jobs The jobs in the wastewater sector of 
the region should be preserved. 

Jobs in the wastewater 
sector in the region 
[full time equivalents] 

High degree of co-
determination for 
municipalities 

co_determi
nation 

Co-determination and direct 
democracy are important values in 
Switzerland. People should be able to 
in�luence decisions concerning 
wastewater management. 

Number of 
municipalities in the 
largest organizational 
unit in the region 
[municipalities] 

Few nuisances to 
residents  residents 

Wastewater treatment can have 
effects such as noise, odor, or traf�ic 
that affect nearby residents. 

Number of residents in 
1 km radius around 
WWTP that will 
possibly be negatively 
affected by a system 
change 
[residents] 

Long-term 
perspective 

Long-term solution long_term 

The alternative should be robust, i.e., 
it should be functional in 2040, even 
when changes in the surrounding 
conditions occur. This also should 
reduce the burden to coming 
generations. 

Estimate of long-term 
suitability of the 
alternative on a four 
point scale 
[points] 

Flexibility to react �lexibility 
The system should remain �lexible to 
be changed when new changes in 
surrounding conditions occur. 

Number of further 
alternatives that remain 
feasible once the 
alternative has been 
realized 
[paths] 

Synergies with 
district heating for 
organization NW 

district_hea
ting 

The organization NW has a district 
heating system which also uses biogas. 
This biogas is produced directly at 
their WWTP. The sludge from 
wastewater is one important energy 
source. 

Local production of 
biogas from sludge at 
WWTP NW 
[thous. Nm3/year] 
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In a workshop in April 2017, the stakeholders and consultants generated conceptual alternatives 

and the lead engineering of�ice speci�ied them further. In a next meeting, consensus on the 

alternatives to investigate was reached. Five strategies remained which were speci�ied as ten 

concrete alternatives (Table 3). Some can be realized in a step-wise manner. For instance, it is 

possible to �irst divert the treated ef�luent of WWTP BB from stream NZ to the large river RA 

(alternative 1B) and later extend this rerouting to a larger WWTP and decommission WWTP BB 

(alternatives 3 and 4). 

Further alternatives had been discussed, but were not pursued (Table SI 2). Additional 

clari�ication or “back-of-the-envelope” calculation showed that they would likely be dominated by 

other alternatives or were infeasible within the required time frame. Of course, a premature 

exclusion of alternatives, narrow thinking, and a �ixation on the status quo can be detrimental for 

good decisions and is a common bias in decision-making (Payne et al. 1999; Gregory et al. 2012; 

Montibeller and von Winterfeldt 2015). For this study, we introduced a do-nothing alternative (0) 

for comparison, even though it would not achieve the regulatory requirements. 

Table 3: Alternatives under consideration in this study. See Figure 1 for a spatial overview and 
Table SI 1 for the status quo of the wastewater treatment plants (WWTPs). 

Type Alternative Description 

0 0 “Do nothing”. Keep the con�iguration of four WWTPs as it is. Only 
maintenance and rehabilitation work and, if needed, extension. 

1 

Keep the general con�iguration of four WWTPs as is. Only the WWTP BB will take measures to 
reduce the discharge of micropollutants to stream NZ; all other WWTPs remain unchanged. 

1A A treatment step for micropollutant removal will be built for WWTP BB.  

1B 
A gravity pipeline will be built to route the treated wastewater from WWTP 
BB to the larger river RA., so that no treated wastewater �lows into the stream 
NZ. The pipeline would be built along the stream NZ. 

2 2 
Wastewater arriving at WWTP BB will be pumped to WWTP NW; these two 
systems and organizations will be merged. WWTP BB will be 
decommissioned. The other two WWTPs will remain independent.  

3 

Wastewater arriving at WWTP BB will be pumped to WWTP AZ; these two systems and 
organizations will be merged. WWTP BB will be decommissioned. The other two WWTPs will 
remain independent. 

3A The sludge treatment at WWTP AZ will be kept as is. 

3B A sludge digestion will be built at WWTP AZ. 

4 

Wastewater arriving at WWTP BB and at WWTP NW will be pumped to WWTP AZ; these three 
systems and organizations will be merged. WWTP BB and NW will be decommissioned. WWTP 
GM remains independent. 

4Aa The sludge treatment at WWTP AZ will be kept as is. 

4Ab The sludge treatment at WWTP AZ will be kept as is. 
In addition, a micropollutant removal step for WWTP AZ will be built. 
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Type Alternative Description 

4Ba A sludge digestion will be built at WWTP AZ. 

4Bb A sludge digestion will be built at WWTP AZ. 
In addition, a micropollutant removal step for WWTP AZ will be built. 

5 5 

Merger of all WWTPs to one system and organization. The site for this one 
WWTP remains open (possibly the WWTP AZ). The WWTP will have state-of-
the-art micropollutant removal and sludge utilization. All other WWTPs will 
be decommissioned. 

3.2. Generation and modeling of predictions and their uncertainties 
The research team and the lead engineering of�ice quanti�ied the predictions and their 

uncertainty for each alternative and each attribute. The predictions were based either on simple 

models, expert estimates, or resulted directly from the de�inition of the alternatives (details are 

provided in Table SI 3). External uncertainty, e.g., concerning the future development of the 

region, was included where feasible. For instance, we calculated with uncertain population 

growth between 0 and 25 percent for predicting micropollutant removal, electricity consumption, 

and biogas production. The temporal framing was the situation in the year 2040. A regional 

perspective was taken: Impacts were calculated jointly for the region, not for individual 

organizations. Theoretically, a fair allocation of bene�its and costs should later be possible if the 

situation was improved overall. 

The uncertain predictions for the attributes were modeled with different probability 

distributions. Independence of the distributions for different attributes was assumed. The joint 

probability density of all attributes was thus calculated as the product of the probability densities 

of the individual attributes. Probability distributions with tails extending to in�inity, for instance, 

all normal distributions, were truncated to reasonable ranges1. The value functions were de�ined 

over these ranges.  

The distributions were constructed by different methods: (1) some prediction models 

returned a distribution of outputs. For convenience, we used Monte-Carlo simulation to create an 

output sample and then �itted a parametric distribution – usually a normal distribution – to this 

sample. Histogram plots were used to evaluate the �it. (2) If a central point and a range was given 

(e.g. for costs), we assumed a normal distribution centered on this point with a standard 

deviation of ¼ of the range (i.e., about 95% of the values lie within the range). (3) If there were 

discrete possible outcomes (e.g. between 7 and 9 buildings), we modeled them with a uniform 

distribution. 

                                                             
1 The minimum of the range was determined by subtracting twice the standard deviation from 
the mean values of alternatives and taking the minimum and vice versa for the maximum of the 
range. These numbers where then rounded. 
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3.3. Elicitation and modeling of preferences and their uncertainties 

3.3.1. The preference model 
Based on the empirical data gathered in the case study, we built a preference model as 

described in section 2.1. The objectives were structured hierarchically (Table 2, Figure SI 2). The 

model has the form: 

𝑢𝑢(𝑥𝑥1, … , 𝑥𝑥14 ,𝜽𝜽,𝒘𝒘,𝜸𝜸, 𝑟𝑟) = 𝑢𝑢(𝐹𝐹0 ( 

𝑣𝑣1(𝑥𝑥1,𝜃𝜃𝑣𝑣1), 

𝐹𝐹2(𝑣𝑣2(𝑥𝑥2,𝜃𝜃𝑣𝑣2), 𝑣𝑣3(𝑥𝑥3,𝜃𝜃𝑣𝑣3),𝑣𝑣4(𝑥𝑥4,𝜃𝜃𝑣𝑣4), 𝑣𝑣5(𝑥𝑥5,𝜃𝜃𝑣𝑣5),𝒘𝒘𝐹𝐹2,𝛾𝛾𝐹𝐹2),  

𝐹𝐹3(𝑣𝑣6(𝑥𝑥6,𝜃𝜃𝑣𝑣6), 𝑣𝑣7(𝑥𝑥7,𝜃𝜃𝑣𝑣7),𝑣𝑣8(𝑥𝑥8,𝜃𝜃𝑣𝑣8),𝒘𝒘𝐹𝐹3,𝛾𝛾𝐹𝐹3), 

𝐹𝐹4(𝑣𝑣9(𝑥𝑥9,𝜃𝜃𝑣𝑣9), 𝑣𝑣10(𝑥𝑥10,𝜃𝜃𝑣𝑣10),𝑣𝑣11(𝑥𝑥11,𝜃𝜃𝑣𝑣11),𝒘𝒘𝐹𝐹4,𝛾𝛾𝐹𝐹4), 

𝐹𝐹5(𝑣𝑣12(𝑥𝑥12,𝜃𝜃𝑣𝑣12),𝑣𝑣13(𝑥𝑥13,𝜃𝜃𝑣𝑣13),𝑣𝑣14(𝑥𝑥14,𝜃𝜃𝑣𝑣14),𝒘𝒘𝐹𝐹5,𝛾𝛾𝐹𝐹5), 

                𝒘𝒘𝐹𝐹0,𝛾𝛾𝐹𝐹0), 𝑟𝑟)        (Equation 5) 

with lowest-level value functions 𝑣𝑣𝑖𝑖, aggregation functions 𝐹𝐹𝑗𝑗, and a utility conversion function 𝑢𝑢. 

In public infrastructure decisions usually multiple stakeholders are involved. Since utility 

theory focuses on individuals, each stakeholder could have their own model structure. In practice, 

it often makes sense to develop the model structure jointly, as this facilitates discussion. We also 

assumed a common model structure. 

Based on the statements of the stakeholders (Table SI 5), the lowest level value functions 𝑣𝑣𝑖𝑖 

were modeled as (i) exponential functions (as in Scholten et al. 2015), (ii) sigmoid functions, or 

(iii) linear functions. The exponential function (i) has the form: 𝑣𝑣(𝑥𝑥𝑖𝑖 ,𝜃𝜃) = �
1−exp (−𝜃𝜃⋅𝑥𝑥�𝑖𝑖)
1−exp (−𝜃𝜃)

𝑥𝑥�𝑖𝑖

 𝑓𝑓𝑓𝑓𝑓𝑓 𝜃𝜃≠0

𝑓𝑓𝑓𝑓𝑓𝑓 𝜃𝜃=0
, 

with 𝑥𝑥𝑖𝑖 ∈ [𝑥𝑥𝑖𝑖+,𝑥𝑥𝑖𝑖−], 𝑥𝑥�𝑖𝑖 = (𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−)/(𝑥𝑥𝑖𝑖+−𝑥𝑥𝑖𝑖−), and 𝜃𝜃 ∈ ℝ. For the sigmoid function (ii), we used the 

cumulative density function of the beta distribution with parameters 𝛼𝛼,𝛽𝛽: 𝑣𝑣(𝑥𝑥𝑖𝑖,𝛼𝛼,𝛽𝛽) = 𝐵𝐵(𝑥𝑥𝑖𝑖;𝛼𝛼,𝛽𝛽)
𝐵𝐵(𝛼𝛼,𝛽𝛽)

 

with 𝐵𝐵(𝑥𝑥;𝛼𝛼,𝛽𝛽) = ∫ 𝑡𝑡𝛼𝛼−1(1 − 𝑡𝑡)𝛽𝛽−1𝑑𝑑𝑡𝑡𝑥𝑥
0  and 𝐵𝐵(𝛼𝛼,𝛽𝛽) = ∫ 𝑡𝑡𝛼𝛼−1(1 − 𝑡𝑡)𝛽𝛽−1𝑑𝑑𝑡𝑡1

0 . The linear function (iii) 

is: 𝑣𝑣(𝑥𝑥𝑖𝑖) = (𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−)/(𝑥𝑥𝑖𝑖+−𝑥𝑥𝑖𝑖−). All the lowest-level value functions were single-attribute value 

functions. 

𝐹𝐹𝑗𝑗 is an aggregation function. We decided to not only use the weighted arithmetic mean of 

the additive model. Evidence is growing that in practice non-additive preferences are an 

important phenomenon (e.g., Rowley et al. 2012; Langhans and Lienert 2016; Haag et al. 2019a; 

Reichert et al. subm.). Instead, we chose to use the weighted power mean 

𝐹𝐹𝑗𝑗�𝒗𝒗,𝒘𝒘,𝛾𝛾𝑗𝑗� = �∑ 𝑤𝑤𝑖𝑖𝑣𝑣𝑖𝑖
𝛾𝛾𝑗𝑗𝑛𝑛

𝑖𝑖=1 �
1
𝛾𝛾𝑗𝑗       (Equation 6) 

with parameters 0 < 𝛾𝛾𝑗𝑗 ≤ 1 and 𝒘𝒘 a vector of weights, which sum to one. We call the parameter 

𝛾𝛾𝑗𝑗  the non-additivity parameter, as it determines the degree of non-additivity. The function would 

take on further parameter values for 𝛾𝛾𝑗𝑗; however, by restricting 𝛾𝛾𝑗𝑗  to ]0,1] it is already able to 
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represent a wide range of relevant behaviors from the geometric mean (𝛾𝛾𝑗𝑗 → 0) to the arithmetic 

mean (𝛾𝛾𝑗𝑗 = 1). In a previous study, the preferences of decision-makers always indicated values of 

𝛾𝛾𝑗𝑗  in the range of 0.2 to 1 (Haag et al. 2019a). For a constant value of 𝛾𝛾𝑗𝑗 , i.e., 𝛾𝛾𝑗𝑗 = 𝑐𝑐 ∀ 𝑗𝑗, the weighted 

power mean is decomposable, given proper normalization of weights. 

At the highest hierarchical level, the multi-attribute value function was converted to a 

utility function using an exponential function: 

𝑢𝑢(𝑣𝑣(𝑎𝑎)) = �
1−exp (−𝑓𝑓⋅𝑣𝑣(𝑎𝑎))
1−exp (−𝑓𝑓)
𝑣𝑣(𝑎𝑎)

 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓≠0

𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓=0
       (Equation 7) 

with 𝑟𝑟 ∈ ℝ (e.g. Keeney and Raiffa 1976). For 𝑟𝑟 = 0 the stakeholder is risk-neutral, for 𝑟𝑟 < 0 the 

stakeholder is risk-averse (concave utility function), for 𝑟𝑟 > 0 the stakeholder is risk-seeking 

(convex utility function). 

3.3.2. Elicitation of preference model parameters  
The preferences of the stakeholders were elicited in face-to-face interviews. We used 

paper-based tools similar as described elsewhere (Scholten et al. 2015; Zheng et al. 2016), but 

implemented these in the form of cards that could be moved around by the stakeholders (Figure 

SI 3). We interviewed one representative of each of the organizations NW and CT, and two 

representatives of each of the organizations GM and BB (Table 1). The interviewees were asked to 

answer the questions in their role as representatives of the organizations. In case two 

interviewees were present, they discussed until they reached consensus. 

Single attribute value functions: Value functions were elicited with the bisection method 

(mid-value splitting method) (Keeney and Raiffa 1976). Due to the inclusion of the do-nothing 

alternative and improvements in prediction modeling during the project, we had to extend or 

shift the ranges of four attributes after elicitation. A total of four elicited value functions needed to 

be transformed to these ranges using linear extrapolation (see Table SI 5 for details). We had no 

indication that a more sophisticated extrapolation would be better. For time reasons, we only 

elicited the value functions concerning objectives with the highest weights. Depending on the 

stakeholder, we collected preference information for 2–8 value functions. 

Aggregation parameters: We elicited weights with the Swing method (Eisenführ et al. 

2010). Because hierarchical weighting can lead to biases (Marttunen et al. 2018), we elicited 

weights in a non-hierarchical way. First, participants ranked and gave points to objectives in each 

branch separately; secondly, the highest-ranked objectives of each branch were compared and 

evaluated with Swing (Figure SI 3). From these 𝑛𝑛 − 1 comparisons we calculated the weights. To 

account for the extension of ranges, an adjustment factor was included for three weights (see 

Table SI 5 for details). We did not quantify the non-additivity parameters 𝛾𝛾𝑗𝑗  in the interviews, but 

assumed a distribution that covers the expected range, including additive aggregation (Table 4). 
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Risk attitude: The assumptions about the distribution for the risk attitude at the highest 

level, which we used in the modeling (Table 4), was informed by the risk attitude for single 

attributes. We elicited this risk attitude for one or two attributes via the certainty equivalent (CE) 

method with a lottery question (Eisenführ et al. 2010). From this, we determined the risk attitude 

parameter 𝑟𝑟 (Table SI 6). We propagated the uncertainty in the value functions to obtain the 

empirical distributions of risk attitudes. 

3.3.3. Characterization of preference uncertainties 
From the statements elicited from the interviewees (Table SI 5), we inferred the parameters 

of the preference model and their uncertainty distributions for each stakeholder (Table 4, 

“Uncertain information”). Because elicitation time was limited, we extrapolated uncertainty 

statements to cases where we did not elicit information. Even though the level of detail was 

higher than in many applications, the preference information was still rather rough, especially 

regarding the parameter distributions. Ideally, the parameters and the parametric uncertainty 

can both be inferred from statements of stakeholders (e.g., Haag et al. 2019a). 

To explore how the level of detail in the preference information in�luences the results, we 

determined a second set of assumptions for each group of parameters (Table 4, “Simplifying 

assumptions”). For the lowest-level value functions, this assumption was linearity. For the 

weights, we assumed that (A) there was no uncertainty, and (B) only a ranking was known. For 

the aggregation functions, we assumed the weighted arithmetic mean for all nodes (the additive 

model). Lastly, for the risk attitude we assumed risk neutrality. The effect of these simpli�ications 

was tested (section 3.4.2). 

Table 4: Preference information used for modeling. The uncertain information (left) is based on 
elicitation in stakeholder interviews. The simplifying assumptions (right) are often assumed in 
practice applications and require less elicitation effort. 

Preference 
element Uncertain information Simplifying assumptions 

Lowest-
level value 
functions 

a) Shape convex or concave: 
a1) x for 𝑣𝑣(𝑥𝑥) = 0.5 and shape known: 
Determine 𝜃𝜃∗ of exponential function based 
on the one point. Modeling as exponential 
function with 𝜃𝜃 normally distributed with 
𝜇𝜇 = 𝜃𝜃∗, 𝑠𝑠𝑑𝑑 = 0.25. 
a2) Only shape known: Modeling as 
exponential function with 𝜃𝜃 uniformly 
distributed in [0, 5] if concave or [-5, 0] if 
convex.  

b) Shape linear: Modeling as exponential 
function with 𝜃𝜃 normally distributed with 
𝜇𝜇 = 0, 𝑠𝑠𝑑𝑑 = 0.25 

c) Shape sigmoid: Propagate uncertainty in 
𝑥𝑥0.1, 𝑥𝑥0.5, 𝑎𝑎𝑛𝑛𝑑𝑑 𝑥𝑥0.9 to �ind empirical 
distributions of function parameters 𝛼𝛼,𝛽𝛽. 
Fitting of separate normal distributions to 
these empirical distributions. 

Assumption of linear value functions, 
no uncertainty. 
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Preference 
element Uncertain information Simplifying assumptions 

d) No information on shape: Modeling as 
exponential function with 𝜃𝜃 uniformly 
distributed in [-5,5]. This was the case for 6–12 
value functions, depending on the 
stakeholder. 

Weights 

Non-hierarchical Swing weight elicitation. 
Forward propagation of uncertainty in assigned 
Swing points to calculate the empirical 
distribution of global weights. Uncertainty in 
assigned points: If a range was given by 
stakeholder, assumption of normal distribution 
with 𝜇𝜇 middle of range and 𝑠𝑠𝑑𝑑 = ¼ of range. If 
point estimate was given, assumption of normal 
distribution with 𝜇𝜇 = point estimate and 
𝑠𝑠𝑑𝑑 = 0.05. Calculation of hierarchical local weights 
by summation and normalization. Global weights 
are shown in Figure SI 4. 

A) Using precise weights and 
disregarding uncertainty in the 
statements. 
B) Ranking weights: The ranking of 
weights on each hierarchical level was 
based on the Swing weights. On each 
level with 𝑚𝑚 objectives, sampling from 
a uniform distribution in the m-
dimensional simplex considering the 
rank constraints. Weights were jointly 
sampled since they were dependent. 
The Hit-And-Run Markov Chain Monte 
Carlo sampling algorithm was used as 
implemented by Tervonen et al. (2013). 
In addition to respecting the ranking 
constraints, this ensured that each 
weight was in [0,1] and the weights 
summed to one. 

Aggregatio
n 
parameter 
𝜸𝜸 

On each hierarchical level and for each 
aggregation node 𝑗𝑗: Assumption of 𝛾𝛾𝑗𝑗  to be beta 
distributed on the interval [0.1, 1] with 𝛼𝛼 = 1.5 and 
𝛽𝛽 = 1. This results in an expected value of 𝛾𝛾 ≈
0.64. With this value of 𝛾𝛾 the function is slightly 
non-additive, but not as extreme as the geometric 
mean (𝛾𝛾 → 0). 

Assumption of additive model, i.e. 
𝛾𝛾𝑗𝑗 = 1 for all nodes.  

Overall 
risk 
attitude 

Assumption that decision makers are generally 
not risk-seeking in infrastructure decisions. 
Assumption of the overall risk parameter to be 
uniformly distributed on the interval [0,4]. The 
elicited risk parameters were all <4 (Table SI 6). 

Assumption of risk neutrality. Risk 
parameter 𝑟𝑟 = 0. 

3.4. Analysis 

3.4.1. Modeling 
The inputs and the parameters of our decision model were all uncertain, but speci�ied by 

probability distributions. Sometimes these distributions were empirical distributions created by 

forward propagation of uncertainties, sometimes they were speci�ied directly. To propagate the 

uncertainties through our model we used Monte Carlo simulations with 10000 samples. Each 

input and parameter was sampled independently, except for the weights in the ranking 

information case, which were sampled jointly (see Table 4). We randomly drew from the 

speci�ied distributions and calculated the overall utility of each alternative with this sample. 

Thereafter, we calculated the EEU for each alternative and stakeholder (Equation 4). In practice, 

this meant taking the arithmetic mean of the utility over all Monte Carlo runs. By comparing the 

EEU of different alternatives we created a ranking. 
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For the comparison with ranking-based indices (see Figure SI 5), we drew subsamples with 

size 1000 of both the prediction and preference parameters. For each of the 1000 

parametrizations of the preference model we calculated the EU given the prediction sample. 

Based on the EUs we calculated the ranking of alternatives and the rank distributions. Based on 

these distributions several indices could be calculated. 

The modeling was conducted in R (R Core Team 2018). We used base R and “tidyverse” 

functionalities (https://www.tidyverse.org/) for most data handling and modeling, and the 

package “utility” (Reichert et al. 2013) for lowest-level value functions. 

3.4.2. Sensitivity to assumptions about preferences 
To test the sensitivity to the level of detail of preference information as described in Table 

4, we repeated the analysis for six different layouts: (1) Uncertain information for all parameters, 

left column of Table 4; (2) assumption of linear value functions, uncertain information otherwise; 

(3) disregarding uncertainty in weights and using precise weights, uncertain information 

otherwise; (4) only ranking information on weights, uncertain information otherwise; (5) 

assumption of additive model, uncertain information otherwise; (6) assumption of risk neutrality, 

uncertain information otherwise; and (7) using all these simpli�ications (with precise weights), 

right column of Table 4. To determine the similarity in the rankings of alternatives for these 

parameter sets, we used Kendall’s rank correlation coef�icient 𝜏𝜏 (Kendall 1938) as a similarity 

measure (e.g. Zheng et al. 2016). 

3.4.3. Sensitivity to leaving out objectives 
To determine the sensitivity to the different objectives, we used a form of leave-one-out 

cross-validation. This meant, we excluded one of the 14 objectives from the decision model, 

renormalized the weights to one, and evaluated the changes in the outcomes by simulation. This 

allowed determining the contribution of the objective to differentiating alternatives. The 

sensitivity of the result to including or excluding an objective depends on the objective’s weight, 

the dissimilarity of the alternatives performance with regard to that objective, and, in non-

additive models, on the degree of interaction with other objectives. Thus, this is more 

conveniently explored by simulation than analytically. To determine the similarity in the rankings 

of the alternatives for different models, we again used Kendall’s 𝜏𝜏 (see above). 

3.5. Comparison to actual choices 
In a concluding workshop of the �irst project phase in November 2017, the participating 

representatives of the organizations made a direct choice about which alternatives to investigate 

in more detail in a second phase. We term this holistic choice. The stakeholders assigned green 

points to alternatives that they believed should be investigated further and red points to 

alternatives that they would exclude. By subsequent discussion, which included argumentation 
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for choosing or not choosing an alternative, a consensus was found. Not all interviewed 

representatives attended the meeting and of organization NW only a representative who we did 

not interview attended. 

The stakeholders did not know the decision model results when they made their holistic 

choice. This gave us the chance to compare this choice and the model results. Depending on how 

many green and red points the stakeholders allocated, we selected the corresponding number of 

best and worst alternatives based on their ranking for each stakeholder (Table SI 7). 

Secondly, we investigated whether the holistic choices could be approximated by decision 

models in which only few objectives were considered. In the full decision model, a broad range of 

concerns was included, speci�ied as fourteen objectives (Table 2). From discussions in the group 

and in the interviews, we concluded that few of these objectives had high salience for the 

stakeholders. For each stakeholder, we built a reduced decision model that only included a subset 

of objectives. These reduced models are not a truthful representation of the actual thinking of the 

stakeholders, but an exploration of potential models. We identi�ied possible important concerns 

of the stakeholders based on our knowledge and their statements in the interview and 

discussions. 

For stakeholder CT, assumed key concerns were an economically ef�icient and long-term 

solution, the ecological state was seen as a hard constraint: the objectives cost and long_term 

were included (see Table 2 for an explanation of the abbreviations). For stakeholder BB, next to 

cost and the solution of the issues for stream NZ, using the energy from sludge and keeping 

options open were important concerns: objectives cost, ecology_nz, sludge_utilization, and 

�lexibility were included. This was similar for stakeholder GM, but the sludge utilization was seen 

as less of an issue: objectives cost, ecology_nz, �lexibility were included. For stakeholder NW, the 

local district heating system was a key constraint; additionally, the basic problem of the river NZ 

should be solved: objectives ecology_nz and district_heating were included. Again, for each 

stakeholder we classi�ied the alternatives based on the resulting ranking with the reduced models 

(Table SI 10) and depending on the number of allocated points in the holistic choice. 

Lastly, we compared the fourteen objectives of the full decision model with the results of an 

online survey on the decision objectives stated by nine participants involved in this decision (two 

per organization BB, NW, MG, AZ, and CT). The online survey was conducted in May and June 

2018, about seven months after the concluding workshop; the details are given in Haag et al. 

(2019b). This survey was conducted in �ive different decisions on wastewater planning and aimed 

at testing different brainstorming methods to collect objectives online. 



Accepted manuscript: Haag et al. 2019. Integrating uncertainty...  
https://doi.org/10.1016/j.jenvman.2019.109652 

19 

4. Results 

4.1. Expected expected utility of alternatives 
When we evaluate our decision model conditional on the best available information 

concerning the uncertainty distributions of the outcomes (Table SI 4) and the preference 

parameters (Table 4), we receive a wide distribution of overall utilities for each alternative (violin 

plots, Figure 2). While tendencies regarding better and worse performing alternatives are visible, 

the uncertainty distributions largely overlap. The uncertainty in the risk attitude parameter was 

one major factor contributing to the overall uncertainty in utilities, as can be seen when 

comparing the uncertainty distributions to a situation where this parameter was �ixed (Figure SI 

6). 

 
Figure 2: Results of the decision model for the four stakeholders: CT, BB, GM, and NW (Table 1). 
The violin plots show the mirrored probability density of overall utilities (y-axis) of the 
alternatives (x-axis; Table 3). Uncertainties in attribute outcomes, lowest-level value functions, 
weights, aggregation parameter 𝛾𝛾, and risk attitude were propagated (Table 4). Diamonds 
indicate the expected expected utility of the alternatives. 

The EEU concept allows us to collapse the large uncertainty in the overall utilities to a 

single number (diamonds in Figure 2, Table SI 7). If we determine the ranking of alternatives 

based on the EEU, this allows us to identify promising alternatives (Figure 3). One possible 

consensus alternative emerged, which is among the best for all four stakeholders, namely 

alternative 1B. This would keep the system con�iguration largely unchanged; only WWTP BB 

would discharge ef�luent into a larger river instead of the stream NZ.  
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Figure 3: Ranks of alternatives (Table 3) based on their expected expected utility (Table SI 7), 
given the uncertain knowledge about predictions (Table SI 4) and preferences (Table 4, Table SI 
5) for four stakeholders (Table 1). Alternatives on x-axis are ordered from left to right by median 
rank across stakeholders. 

Such a unique ranking could alternatively be based on other indices with a different 

conceptual background. We found little difference between a ranking based on EEU and rankings 

based on the holistic rank acceptability index of SMAA (Tervonen and Figueira 2008) or based on 

expected ranks (Figure SI 5). However, the acceptability index of SMAA that only considers the 

best rank can produce a quite different result (Figure SI 5). 

4.2. Sensitivity to assumptions about preferences 
In a stepwise sensitivity analysis, we tested the effect of other distributions of the 

preference parameters (simplifying assumptions; Table 4), compared to the uncertain 

information obtained in preference elicitation interviews. We calculated the ranks of the 

alternatives based on their EEU (Table SI 7) and determined the similarity of rankings with 

Kendall’s rank correlation coef�icient τ. In addition, we determined the sensitivity of the top three 

ranks (Figure SI 7). 

The shape of the lowest-level value functions and the uncertainty distributions of their 

parameters (𝜃𝜃,𝑎𝑎, 𝑏𝑏) had a low sensitivity in general. The sensitivity was stronger for stakeholders 

BB and GM, indicated by τ coef�icients of 0.71 and 0.85, respectively (Figure 4). When using linear 

value functions for all lowest-level objectives, only for one stakeholder (BB) one change in the top 

three alternatives occurred (Figure SI 7). One explanation is that the differences between linear 

value functions and the elicited value functions were small. 

Disregarding the uncertainty in the weights and using precise weights had no in�luence on 

the resulting ranking (Kendall’s 𝜏𝜏 = 1 for all stakeholders, Figure 4). Since the expected value of 

the weights was the same for the uncertain information and the precise weights analysis, the 

effect of the uncertainty might have averaged out at the level of EEU. In contrast, using 
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uncertainty distributions based on ranking information of the weights strongly affected the 

ranking. The rank similarity coef�icient in comparison to the uncertain information case was in 

the range of 0.35–0.78 (Figure 4). For three stakeholders this led to one or two changes in the best 

three alternatives (Figure SI 7). A possible explanation is that the uncertainty distributions of 

weights were rather dissimilar between the two settings: For the ranking-based weights the 

resulting uncertainty in the weights was considerably larger. 

 
Figure 4: Similarity of alternatives’ rankings (Kendall’s τ) based on the alternatives’ EEU (Table SI 
7) for different preference sets (Table 4). Values closer to one and darker shading indicate higher 
similarity in ranking. We show the results for four stakeholders, CT, BB, GM, NW (Table 1). Uncert. 
info: uncertain preference information, corresponds to left column of Table 4; linear VF: all 
lowest-level value function assumed to be linear; precise weights: disregarding uncertainty in 
weights; rank weights: only ordinal information on weights is used; additive aggr: additive model, 
i.e. 𝛾𝛾 = 1 for all aggregation nodes; all simpl.: all simpli�ications are used at once, corresponding 
to right column of Table 4. 

The ranking of alternatives was also sensitive to the aggregation model. The rank 

correlation coef�icient was between 0.82–0.89 (Figure 4). However, only for one stakeholder (BB) 

one of the top three alternatives changed (Figure SI 7). The in�luence of the aggregation model 

depends on the assumptions about the values of the parameter 𝛾𝛾, which determines the strength 

of non-additivity. In our case, the expected value of 𝛾𝛾 was 0.64 for all nodes and stakeholders, 

which is not extremely non-additive. However, in individual runs the model could be strongly 

non-additive. 

The exact distribution of the risk attitude parameter (𝑟𝑟) had negligible effect (Kendall’s 

𝜏𝜏 ≥ 0.96, Figure 4). The reason is that the evaluations of the alternatives, i.e., the overall values, 

had a similar spread for each alternative. The risk attitude does not help distinguishing 
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alternatives if their risks are similar. Thus, while strongly affecting the utilities and the EEU 

(Figure 2), the risk attitude had little in�luence on the ranking. 

Taking all simplifying assumptions together – linear value functions, precise weights, 

additive model, risk neutrality – led to rankings with similarity coef�icients between 0.64–0.89 

(Figure 4) in comparison to the uncertain information case. For three of the stakeholders (BB, CT, 

GM), there were changes in the top three alternatives (Figure SI 7). 

Because we used non-additive value functions, we suspected that the hierarchical 

arrangement of objectives could in�luence the results. Therefore, we tested different 

modi�ications to the hierarchical structure (Figure SI 8). We assumed the same distribution of the 

aggregation parameter 𝛾𝛾𝑗𝑗  for each aggregation node, but sampled independently. Thus, 

depending on the actual parameter values, the hierarchical structure can have considerable 

in�luence on the result of a single run (Figure SI 9). However, this effect averaged out at the level 

of EEU. Given the uncertain distributions of preferences (Table 4), modi�ications to the 

hierarchical structure had negligible effect on the EEU (Figure SI 9, Table SI 8) and thus on the 

resulting ranking of alternatives. 

4.3. Sensitivity to leaving out objectives 
We determined the sensitivity of the results to individual objectives by leaving them out 

one by one. We assumed the “uncertain information” throughout (Table 4). The results were 

sensitive to the exclusion of some objectives, but less for others. The sensitivity differed 

considerably between the stakeholders. The EEU and resulting ranks for all model runs is given in 

Table SI 9. 

For four objectives, the rank similarity for having them in the analysis and leaving them out 

individually was high across all stakeholders (average 𝜏𝜏 ≥ 0.90, Table 5): cost, electricity, land 

consumption, and amenity of landscape (see Table 2 for a description of objectives). This suggests 

that these objectives contributed little to differentiate the ranking of alternatives and they were 

individually less relevant for the decision. These four objectives could individually be removed 

from the model without affecting the top three alternatives for three of the four stakeholders 

(Figure SI 10). 

On the other hand, excluding �lexibility, micropollutant removal, or sludge utilization had a 

strong in�luence on the rank correlation (average 𝜏𝜏 ≤ 0.68, Table 5). Thus, these objectives were 

key factors for determining the ranking of alternatives, given our current knowledge about 

predictions and preferences. If the micropollutant objective was excluded, the advantage of the 

larger mergers of WWTP that would include micropollutant removal (alternatives 4b and 5) 

diminished. For stakeholders for which some of these alternatives were among the top three (CT, 

BB, GM), none of the alternatives 4Ab, 4Bb, or 5 were among the top three anymore (Figure SI 9). 
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Table 5: Similarity of alternatives’ rankings (Kendall’s τ) based on their EEU (Table SI 9) for 
preference models in which one objective was left out in comparison to the full set of 14 
objectives (Table 2). Values closer to one indicate higher similarity in ranking. Results are given 
for four stakeholders (Table 1) and ordered by increasing average rank similarity. 

Objective left out BB CT GM NW Average 
landscape  0.89 0.93 0.96 1 0.95 
electricity  0.96 0.96 0.85 0.96 0.94 
cost  0.89 0.85 0.89 1 0.91 
land_consumption  0.82 0.89 0.93 1 0.91 
jobs  0.96 1 0.64 0.93 0.88 
long_term  0.75 0.78 0.96 1 0.87 
ecology_nz  0.85 0.64 0.93 0.96 0.85 
residents  0.6 0.93 0.85 0.85 0.81 
co_determination  0.93 1 0.45 0.82 0.8 
district_heating  0.67 1 0.89 0.6 0.79 
protected_areas  0.82 0.89 0.67 0.71 0.77 
sludge_utilization  0.71 0.78 0.31 0.93 0.68 
micropollutants  0.38 0.49 0.56 0.75 0.55 
 flexibility 0.27 0.78 0.35 0.56 0.49 

Alternative 4Bb, the merger of four WWTPs, which was highly ranked for three stakeholders (CT, 

BB, NW), has two advantages. One is the micropollutant removal compared to alternatives 4Ba, 

and the second the higher sludge utilization compared to alternative 4Ab. Excluding the sludge 

utilization objective resulted in the alternative losing its advantage compared to alternative 4Ab 

and descending to a medium rank while alternative 4Aa advanced. 

The exclusion of the �lexibility objective (average 𝜏𝜏 = 0.55, Table 5), led to a different 

pattern depending on the stakeholder. For stakeholders CT and BB, alternatives that keep options 

open, but do not change the general situation (0 and 1B) were now ranked lower (Figure SI 10). 

For stakeholders GM and NW the do-nothing alternative 0 was also ranked lower, but alternative 

1B remained among the top three. The main reason why alternative 0 would be ranked well is 

because it allows postponing decision-making, not due to other characteristics. 

This type of analysis is powerful to identify the key objectives needed to differentiate 

alternatives and explain the performance of alternatives in terms of objectives. This supports 

focusing discussions on the relevant trade-offs. It also indicates on which objectives an alternative 

would need to improve to receive a better ranking. For instance, if co-determination could be 

maintained in alternative 5, this alternative would become considerably more attractive for 

stakeholders GM and NW. 

4.4. Comparison to actual choices 
The holistic choice of the stakeholders which alternatives should or should not be further 

considered differed from the recommendations of the full decision model (Figure 5). Using 

reduced decision models (see section 3.5) to mimic the choice heuristic of the stakeholders 
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mitigated some of these discrepancies. In the reduced models, only few objectives were included, 

based on statements of the stakeholders in personal interviews and discussions. 

In the meeting in which the choice was made, the stakeholders agreed to eliminate 

wastewater from the stream NZ. Therefore, alternative 1A was excluded; the do-nothing 

alternative 0 had been dismissed before. However, these alternatives were among those with the 

highest EEU for stakeholders NW and GM in the full decision model (Figure 2). They allow 

continuing the operations of WWTPs NW and GM without signi�icant changes. Using the reduced 

decision models for evaluation, these two alternatives performed poorly for all stakeholders 

because the objective of stream ecology received relatively more weight. 

Alternative 1B – the building of a pipe to divert the treated ef�luent of WWTP BB from 

stream NZ to the large river RA (Figure 1) – emerged as a top alternative for all interviewed 

stakeholders in the full decision model (Figure 3). Based on the modeling, this could be a 

promising consensus alternative. However, it was not considered a viable alternative in the 

meeting by stakeholders CT and AZ (Figure 5); they argued that this was not a long-term solution 

for the regional situation, but only an intermediate step. This holistic choice could be explained by 

the reduced model for stakeholder CT, which only considered cost and the long-term viability. In 

the project, it was decided that alternative 1B will be further considered as an intermediate step. 

The full decision model and the group discussion agreed about excluding the direct merger 

between NW and BB (alternative 2). This alternative had been the initial suggestion by the 

authorities in 2014. For stakeholder NW this was still a conceivable option in the holistic choice. A 

reduced decision model for stakeholder NW, which only included the district heating system of 

NW and the ecological state of river NZ, matched this opinion. 

The merger of three WWTPs (alternatives 4) was controversial. For stakeholder NW, this 

merger did not perform well, neither in the holistic choice, nor in the reduced decision model, nor 

in the full model – with exception of alternative 4Bb. It would entail giving up the local treatment 

plant of NW, with unknown consequences for the district heating system. For stakeholder BB, the 

limited usage of the energy contained in the sludge was the main argument to refuse the 4A 

alternatives in the holistic choice. The technically minimal alternative 4Aa was among the worst 

in the full model for three of four stakeholders (Figure 3). However, alternative 4Aa was among 

the best according to the holistic choice for stakeholders CT and AZ, given that it could be the 

alternative with lowest yearly cost. Accordingly, in the reduced model for stakeholder CT – which 

only included the objectives of cost and of long-term orientation – alternative 4Aa performed 

well. 

None of the stakeholders chose one of the 4b alternatives that foresee micropollutant 

treatment in their holistic choice. They argued that they would not invest in it now, as long as 

micropollutant removal for such a WWTP is not compulsory. In contrast, based on the preference 
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statements in the interviews, the state-of-the-art alternative 4Bb with micropollutant removal 

was among the best in the full decision model. 

 
Figure 5: Comparison of the selection of alternatives (Table 3) (i) in a holistic choice in a group 
meeting, (ii) based on the full decision model, and (iii) based on reduced decision models. The 
holistic choice was made by stakeholders of the �ive organizations (CT, BB, NW, GM, and AZ, Table 
1). Depending on how many “green” (to consider further) and “red” alternatives (to discard) each 
stakeholder identi�ied in the meeting, we selected the corresponding number of p best and q 
worst alternatives based on their ranking results of the full and reduced decision models (Table SI 
7 and Table SI 10). For stakeholder AZ only results for the holistic choice were available. In the 
reduced models, only few objectives were included (see section 3.5). For stakeholder CT: cost, 
long_term; BB: cost, ecology_nz, sludge_utilization, �lexibility; GM: cost, ecology_nz, �lexibility; NW: 
ecology_nz, district_heating. *The do-nothing alternative 0 was not considered in the group 
discussions; it was included in the modeling for comparison. 

Based on the full decision model, the consensus solution across the interviewed 

stakeholders would be to focus on alternatives 1B, 3A, and 4Bb as they did not perform poorly for 

anyone. The conclusion from the holistic choice was to �irst focus on alternatives 3A and 4A and 



Accepted manuscript: Haag et al. 2019. Integrating uncertainty...  
https://doi.org/10.1016/j.jenvman.2019.109652 

26 

then compare the better one with 3B or 4B, respectively. However, stakeholder AZ, who 

participated in the holistic choice, was not included in the modeling because they were not 

available for an interview in time. Using the reduced decision models, the consensus would be 

more similar to the holistic choice (Figure 5). 

Discrepancies between the holistic choice and the full decision model could also arise 

because objectives were missing in the model. We compared the included objectives with results 

from a survey about objectives among the same stakeholders (Haag et al. 2019b). In the survey, 

thirty-three distinct objectives were stated by representatives of the �ive organizations. Of the 15 

objectives that were perceived as most important for the decision in the survey, only half were 

part of the full decision model (see Figure SI 11). However, decision models that compare relative 

performance need to only include objectives which contribute to differentiating alternatives 

(Marttunen et al. 2019a). Some objectives that were perceived as important in the survey, such as 

the protection of ground water resources, were likely not relevant, as we would not expect 

substantial differences between the alternatives. 

Two objectives related to the topic of justice might have been neglected in the MCDA. The 

objective of intergenerational equity was partly covered by the objectives of long-term solution 

and �lexibility to react, but it was not discussed what this objective concretely meant to the 

stakeholders. The fair distribution of burdens and costs was perceived as one of the most 

important issues in the survey. It was disregarded in the MCDA, because a fair allocation of costs 

and bene�its should be possible if an overall improved regional solution would be found. 

However, what such a fair allocation would mean was not discussed with the stakeholders. This 

might have in�luenced their holistic choice, prompting them to focus on alternatives with direct 

bene�its for their own organization. 

5. Discussion 

5.1. Expected expected utility 
To obtain a ranking of non-dominated alternatives in decisions with uncertainty, we need 

to employ a decision criterion. The EU criterion has a strong conceptual foundation (e.g., Keeney 

and Raiffa 1976) and is useful when predictions are uncertain, yet quanti�iable by probabilities, 

and the preferences are known. However, alternative decision criteria have been proposed, for 

example, the maximin criterion. 

The EEU concept is an extension of EU for uncertain preferences. In practice, preferences 

are generally uncertain. Accordingly, EEU can be useful in many MCDA applications. With EEU a 

unique ranking can be found in a way that is consistent with the axioms of utility theory, given 

speci�ic assumptions (Boutilier 2003). We are not aware of other measures to aggregate uncertain 

utilities with this strong conceptual underpinning. Again, other decision criteria can be used, for 
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example those developed around the SMAA family of methods (Tervonen and Figueira 2008). On 

a more general level, different robustness criteria could be used to reason about the best 

alternatives for decisions under uncertainties (Roy 2010). Practically, the ranking of alternatives 

was relatively robust to basing it on the EEU or alternatively on the holistic rank acceptability 

index or on expected ranks (Figure SI 5). The acceptability index of SMAA often resulted in a 

different ranking; it does not consider the whole distribution of ranks but only the best rank and 

is thus more similar to a maximax criterion. 

The unique ranking provided by EEU is conditional on the assumptions regarding model 

structures and prior probability distributions. It is important to investigate the robustness of the 

ranking regarding these assumptions to assess the uniqueness of the result and identify whether 

alternatives exist with similar performance than the one ranked best. In this study, we addressed 

this by sensitivity analysis. While a unique ranking can be relevant, inspecting the underlying 

distributions of expected utilities or of resulting rankings can also be instructive for decision-

making. This information is lost when basing a decision on an aggregate measure such as EEU. 

The EEU concept assumes risk neutrality with regard to uncertain expected utilities. A 

narrow distribution of expected utilities and a wide distribution of expected utilities can yield the 

same EEU. This might not always be the preference of stakeholders. However, it can be expanded 

for stakeholders who are not risk neutral in that regard. Houlding and Coolen (2011) have termed 

such a preference “trial averse” or “trial seeking” and have provided an interesting sketch of this 

concept. A practical application will require further developments, such as ways to elicit the 

degree of trial aversion from stakeholders. 

In this study, we used EEU in analyzing the sensitivity to using different distributions for 

preference parameters and the sensitivity to leaving out objectives (sections 4.2 and 4.3). 

However, the potential is much greater. The EEU is a convenient variable to use in global, 

regional, and local sensitivity analysis of decision models. It can also be a target variable for a type 

of sensitivity analysis called value of information analysis (Borgonovo et al. 2016) that can be 

particularly insightful for decision models. Chajewska et al. (2000) provide an application. 

Given a decision model with speci�ied uncertainty distribution of predictions and 

preferences, the practical application of EEU is straightforward. It is ef�iciently calculated by 

jointly sampling from the space of uncertainties in predictions and preferences and Monte Carlo 

simulation. The dif�iculty rather lies in specifying the decision model and inferring its parameters 

as well as their uncertainties. 

Estimating the uncertainty in the elicited statements is not necessarily more effort during 

the elicitation. Ideally, the uncertainties are estimated in the process of parameter inference 

(Haag et al. 2019a). However, often information is insuf�icient for such an approach. Instead, 

assumptions about the distributions can be made based on the preference statements themselves 

(Scholten et al. 2015). For instance, stakeholders may be asked to give interval statements (and a 
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best guess) instead of precise points. This information might actually be easier to provide than 

precise points. From such information an uncertainty distribution can be constructed. 

5.2. Sensitivity of results 
We tested the sensitivity of the obtained results – the ranking of alternatives based on EEU 

– to (1) different distributions of preference parameters, (2) the hierarchical structuring of 

objectives, and (3) leaving out objectives. 

(1) The sensitivity of the results is in�luenced by the sensitivity of the model to the 

parameters, but also by the magnitude of changes in the distributional assumptions of the 

parameters. The results are, therefore, case-dependent. Changing all lowest-level value functions 

to linear value functions had minor impact. Similar observations have been made in other cases 

(Lahdelma and Salminen 2012; Zheng et al. 2016). In our case, few of the elicited value functions 

were strongly non-linear and for not-elicited value functions the expected value of the curvature 

parameter corresponded to linearity. This might explain the insensitivity. Disregarding 

uncertainty in the weights and using precise weights had no effect on the ranking. The effect due 

to uncertainty might have averaged out. In contrast, using only ranking information on weights 

instead of weights obtained by the Swing procedure had a large effect on the results. It seems that 

the ordinal information was not suf�icient to specify the distributions narrowly enough. Using the 

commonly used weighted arithmetic mean for aggregation – instead of power means with an 

additional non-additivity parameter – had a moderate in�luence. So far, only few promising 

methods to practically estimate parameters of non-additive models exist (see Haag et al. 2019a). 

Finally, assuming an uncertain risk attitude, from risk aversion to risk neutrality, had almost no 

in�luence on the results compared to the assumption of risk neutrality. This can be expected when 

the risk of alternatives is similar. In these cases, there might not be added value in eliciting the 

risk attitude in detail (also see Scholten et al. 2015; Zheng et al. 2016). 

(2) Generally, the exact hierarchical structure of the same objectives (e.g., �lat or organized 

with several sub-levels, Figure SI 8), will affect the results when the overall aggregation function 

is not decomposable (see section 2.1). When the overall aggregation function is decomposable, the 

hierarchical structuring does not matter, given a proper normalization of weights. This is the case 

for preference models using the weighted power mean as aggregation function with the 

parameter γ constant across all aggregation nodes. Thus, this is also true for the special case of 

the additive model, where everywhere γ=1. In our application, we assumed the same uncertainty 

distribution of the γ parameter for each node; this may explain why effects due to the hierarchical 

structure averaged out at the level of EEU. 

(3) The inclusion or exclusion of objectives may change results severely, as our analysis 

showed. In our analysis, we identi�ied objectives that could be excluded without changing the 

conclusions from the model. Thus, given our current knowledge about these objectives, it would 
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be possible to simplify the decision model. One candidate for exclusion was the objective of low 

annual cost, even though it was among those with the highest perceived importance for the 

stakeholders in the discussions. Of course, an objective’s relevance for a decision can change, if 

the knowledge about impacts on the objective or the stakeholders’ preferences towards it change. 

5.3. Conclusions for the case study 
In the case study region in Switzerland one WWTP was legally obligated to minimize its 

discharge of micropollutants to a small stream. While wastewater disposal in the region is 

generally functional, the situation might be optimized in the long-term with a regional approach. 

The initial suggestion by the authorities had been alternative 2: the merger of WWTP BB with 

WWTP NW. During the decision process and in our MCDA, it turned out that it was unlikely that 

this was the best alternative. 

Alternative 1B emerged as potential consensus solution from the decision modeling (Figure 

3). The treated ef�luent from WWTP BB would be discharged to a larger river instead of the 

stream NW, while keeping the regional con�iguration and organization of WWTPs as it currently 

is. This may seem simplistic, but would minimize impacts of the treated wastewater to the stream. 

The pipe that would be built could later be utilized as part of a rerouting to a larger treatment 

plant (alternatives 3, 4, and 5). In light of maintaining �lexibility in wastewater systems (Spiller et 

al. 2015), this alternative could be promising as it reduces path dependencies and does not 

preclude later mergers. However, the actual �lexibility would depend on the investments made at 

the WWTPs in the region, e.g., for rehabilitation, as long periods of depreciation limit 

opportunities for changes. Stakeholders CT and AZ considered the alternative 1B unsuitable as a 

long-term option for the year 2040 because it is not economically optimal given the applied cost 

calculation. The reduced decision model for stakeholder CT which only considered these two 

objectives came to the same conclusion (Figure 5). 

For the treatment of wastewater, large mergers of WWTPs are attractive due to economies 

of scale (Abbott and Cohen 2009). Treatment performance for wastewater and sludge generally 

increases, while costs and resource needs per population equivalent might be lower, for instance, 

the speci�ic energy consumption for treatment. However, if the entire wastewater system is 

considered, this becomes debatable. In the case study, the merger of four WWTPs (alternative 5) 

had higher yearly cost than mergers between three WWTPs. The results of our full decision model 

indicate that a merger of treatment plants is also not an a priori solution when a broader range of 

objectives is considered. In the decision model, the bene�its of mergers could be outweighed by 

factors such as increased energy consumption for wastewater transport or the loss of �lexibility. 

For the MCDA, some of these trade-offs were speci�ied by the stakeholders. The merger 4Bb, 

which foresees increased biogas production and micropollutant removal, performed well, but 
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despite lower cost mergers without both advancements (4Aa, 4Ab, 4Ba) were usually ranked 

considerably lower (Figure 3). 

5.4. Comparison between modeling and actual choice 
There are several, empirically mingled, explanations for the discrepancies between the 

results of our MCDA and the holistic choices by the stakeholders in a meeting. The decision model 

might have been insuf�icient in its structure or the parameter distributions might not have 

represented the actual situation with respect to the preferences or the predictions. Likewise, 

when making the holistic choice, the stakeholders might have made different consideration than 

in the interviews where the problem was decomposed into small steps. For instance, they might 

have focused on few or different objectives, they might have made different trade-offs, or might 

have had different expectations about outcomes in mind. 

Both the decision model as well as the heuristics employed by the stakeholders can suffer 

from the missing variable bias (Payne et al. 1999; Montibeller and von Winterfeldt 2015), i.e., an 

incomplete problem representation. As has been shown in section 4.3, excluding objectives can 

change the results. Conversely, the results might change if we had included further or other 

objectives, for example, those identi�ied in a survey for the same case, especially concerning the 

topic of justice (section 4.4, Haag et al. 2019b). The holistic choices of the stakeholders could 

largely be mirrored when using reduced decision models in which most objectives were excluded. 

This could indicate that the stakeholders made their choice based on narrow considerations and 

disregarded many objectives which they actually considered relevant in the preference elicitation 

interviews. 

The preference elicitation process itself can suffer from biases (Montibeller and von 

Winterfeldt 2015; Marttunen et al. 2018) and may also be a source of errors. The topic of 

micropollutants was the trigger for the decision problem. Due to this general importance, 

participants might have allocated too much weight to the respective objective when stating their 

preferences. In the holistic choice, alternatives that would treat micropollutants without legal 

obligation were dismissed. On the other hand, the cost objective might have received too little 

weight, as can regularly be observed in environmental decisions with many objectives 

(Marttunen et al. 2018). 

5.5. Practical recommendations 
Undertaking a structured decision-making process is certainly valuable in public planning, 

as the example of alternative 2 demonstrated, which was initially suggested in our case study, but 

turned out to be dispensable. The alignment of decision methods to the problem characteristics 

and requirements is decisive. The methods can range from mostly discursive (e.g., Dominguez et 

al. 2011; Franco 2013), to the use of quantitative prediction models and discussion among 
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stakeholders (e.g., Starkl et al. 2009; Gregory et al. 2012), to the speci�ication of quantitative 

prediction and preference models as in this study (and, e.g., Zheng et al. 2016; Scholten et al. 2017). 

We quanti�ied the predictions of outcomes and the preferences of stakeholders and used 

the EEU concept to integrate their uncertainties. This required effort, but if the stakes in a 

decision are high enough such an approach can have advantages: It ensures the treatment of 

decision elements and the uncertainties surrounding them in the well-established framework of 

rational decision-making. The model building process demands to make all data, assumptions, 

and preferences explicit. This makes the decision process transparent. Con�licts can be identi�ied 

and discussed at the appropriate level. Additionally, some insights only emerged with the 

modeling. Examples of this are: which objectives were actually decisive for the ranking of 

alternatives and which might be dismissed (section 4.3), or that the holistic choice might have 

neglected objectives that actually might be relevant for the stakeholders (section 4.4). 

The importance of the structuring phase of a decision model is well established (e.g., 

Keeney 1992; Gregory et al. 2012). This phase includes the elicitation and structuring of objectives. 

This requires an opening up phase where a comprehensive overview of concerns is generated 

(Haag et al. 2019b), but also a consolidation of these concerns and a selection of objectives to 

include in the model (Marttunen et al. 2019a). In our application, a sensitivity analysis (section 

4.3) indicated that we could perhaps have excluded some objectives at an earlier stage, which 

would have simpli�ied the decision problem. The simpli�ication process can be supported by 

methods such as an analysis of relevance (Marttunen et al. 2019a; Marttunen et al. 2019b). In 

practice, both the opening up and closing down phases can often be insuf�icient; therefore, we 

recommend applying structured procedures (see references above). 

For preference elicitation, the choice and framing of the attributes is crucial (e.g., Keeney 

and Gregory 2005). This was af�irmed in our interviews, where we received feedback from 

individual stakeholders that they had dif�iculty to specify their preferences for some attributes. 

For instance, for the energy objectives stakeholders were less interested in gross electricity 

demand, but cared more about the total net energy budget including sludge treatment, transport, 

etc., which we could not estimate with the given resources. As a result of these discussions, 

energy will be investigated in more depth in the next project phase of the case study. 

The effort for elicitation depends on the number of parameters and the detail we want to 

achieve in our model. However, estimating the uncertainty in the elicited statements is not 

necessarily more effort during the elicitation itself, as discussed in section 5.1. The sensitivity of 

the results to different elements of the model is case-dependent (see section 5.2). Nevertheless, 

we can derive some insights for elicitation from our study. 

We only elicited one point of the lowest-level value functions to receive an approximate 

shape for attributes with a high weight. It would be possible to elicit the shape in more detail. 

However, as our sensitivity analysis showed, and in line with earlier studies (see section 5.2), the 



Accepted manuscript: Haag et al. 2019. Integrating uncertainty...  
https://doi.org/10.1016/j.jenvman.2019.109652 

32 

exact shape of the single-attribute value functions rarely changed relevant parts of the resulting 

ranking of the alternatives. Often, it might be less relevant to invest large efforts into this 

elicitation step. Similarly, we conclude that the added value in eliciting the risk attitude in detail 

might often not be large (also see Scholten et al. 2015; Zheng et al. 2016). 

The opposite conclusion must be drawn for weight elicitation, which is often a major effort 

in real-world projects. We had hoped that ranking information on the weights could be suf�icient, 

which would be fast and easy to elicit. However, the sensitivity analysis indicated that using only 

ordinal information on weights instead of precise or uncertain weights obtained by the Swing 

procedure had a large effect on the results. We are not aware of other research that has focused 

on the effects of different degrees of knowledge about weights and suggest this should be 

investigated further. The same applies to the aggregation model where further research is needed 

to corroborate in which cases the commonly used additive model is indeed a suf�icient 

approximation of the stakeholders’ preferences or if non-additive models are required instead. 

To make best use of the decision model results, a more intensive discussion with the 

stakeholders would have been bene�icial in the sense of facilitated modeling (Franco and 

Rouwette 2011). This might bene�it from further research on the use of decision models in practice 

settings and on embedding decision analysis procedures into the actual political process of 

decision-making (French and Argyris 2018). 

6. Conclusions 
In this study, we demonstrated how stochastic decision models can be used in strategic 

regional planning of wastewater infrastructure. We built preference models based on multi-

attribute utility theory. Instead of using the additive model, we used the power mean as 

aggregation function. This allowed us to represent the additive model as a special case, but also 

varying degrees of non-additivity. In practice, the alignment of model complexity to the purpose 

of modeling is decisive, but relatively complex preference models to better represent stakeholder 

preferences can be feasible. While our study gives some guidance for practice (section 5.5), more 

work is required to systematically investigate in which cases which simpli�ications to the 

modeling are appropriate. 

Dealing with uncertainty is a challenge, but instead of ignoring it, we can embrace the 

inevitable. Once probability distributions have been speci�ied for the inputs and parameters of a 

decision model, their forward propagation to the results is straightforward. As we introduced, the 

EEU concept can be used for rational decision-making when predictions and preferences are 

uncertain. Implementing EEU requires the quanti�ication of the uncertainty in utilities (or utility 

parameters), but does not lead to a relevant increase in computational complexity. Using this 

concept allowed us to draw concrete and plausible conclusions on the alternatives. The top ranks 

of the alternatives were shown to be relatively robust against tested changes in distributional 
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assumptions of model parameters and risk attitude, except when only using ranking information 

about weights. The main conclusions did not differ when using ranking based indices instead of 

the EEU. In the future, it would be interesting to compare the EEU concept in more depth to 

alternative concepts for robust decision-making under uncertainty. 

Most objectives included in the model were relevant for determining the ranking of 

alternatives, but some could also be omitted without great impacts to the ranking. Conversely, the 

ranking might change if we had included further or other objectives. Analyzing the in�luence of 

the selection of objectives and the selection of attributes in comparison to other sources of 

uncertainty in a further study could prove insightful for focusing efforts in model building and 

determining an appropriate level of model complexity. 

The comparison of model results to choices in the actual decision process revealed some 

discrepancies. This can be the starting point to challenge the – perhaps simplistic – 

argumentation or heuristics by stakeholders as well as to challenge the model assumptions. In 

such an iterative fashion, decision models can bring rigor and clear thinking into dif�icult decision 

processes that are encountered in regional planning. 
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