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Adverse	Outcome	Pathway	Bayesian	Networks	(AOPBNs)	are	a	promising	avenue	for	developing	22	
predictive	toxicology	and	risk	assessment	tools	based	on	Adverse	Outcome	Pathways	(AOPs).	23	
Here	we	describe	a	process	for	developing	AOPBNs.	AOPBNs	use	causal	networks	and	Bayesian	24	
statistics	to	integrate	evidence	across	key	events.	In	this	paper,	we	use	our	AOPBN	to	predict	25	
the	occurrence	of	steatosis	under	different	chemical	exposures.	Since	it	is	an	expert-driven	26	
model,	we	use	external	data	(i.e.,	data	not	used	for	modeling)	from	the	literature	to	validate	27	
predictions	of	the	AOPBN	model.	The	AOPBN	accurately	predicts	steatosis	for	the	chemicals	28	
from	our	external	data.	In	addition,	we	demonstrate	how	end	users	can	utilize	the	model	to	29	
simulate	the	confidence	(based	on	posterior	probability)	associated	with	predicting	steatosis.	30	
We	demonstrate	how	the	network	topology	impacts	predictions	across	the	AOPBN,	and	how	31	
the	AOPBN	helps	us	identify	the	most	informative	key	events	that	should	be	monitored	for	32	
predicting	steatosis.	We	close	with	a	discussion	of	how	the	model	can	be	used	to	predict	33	
potential	effects	of	mixtures	and	how	to	model	susceptible	populations	(e.g.,	where	a	mutation	34	
or	stressor	may	change	the	conditional	probability	tables	in	the	AOPBN).	Using	this	approach	35	
for	developing	expert	AOPBNs	will	facilitate	the	prediction	of	chemical	toxicity,	facilitate	the	36	
identification	of	assay	batteries,	and	greatly	improve	chemical	hazard	screening	strategies.	37	
	38	
	39	
	40	
	41	
SUMMARY:	Bayesian	Networks	+	Adverse	Outcome	Pathways	=	improved	predictive	toxicology	42	
and	causal	understanding	for	single	chemicals,	mixtures,	and	susceptible	populations.	43	
	44	
	45	
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1.	INTRODUCTION		47	
The	integration	of	data	from	high	content	and	high	throughput	assays	remains	a	key	challenge	48	
in	chemical	safety	prediction,	especially	with	respect	to	understanding	the	biology	underlying	49	
pathogenesis.	The	challenge	in	data	integration	is	balancing	the	net	benefits	of	reduced	overall	50	
costs	(including	decreased	animal	use)	against	the	disadvantages	associated	with	having	51	
sufficient	biological	knowledge	to	make	the	causal	arguments	required	for	hazard	52	
characterization,	especially	when	an	apical	endpoint	may	not	be	observed.	At	this	point,	AOPs	53	
are	a	good	starting	point	for	leveraging	these	data.	54	
	55	
Adverse	outcome	pathways	(AOPs)	describe	pathogenesis	from	the	molecular	initiating	event	56	
(MIE)	through	a	series	of	key	events	(KEs)	causally	linked	by	key-event	relationships	(KERs)	and	57	
to	the	apical	adverse	outcome.	KEs	generally	occur	at	the	molecular,	cellular	and	tissue	levels	58	
but	also,	in	some	cases	at	the	organ,	organism	and	population	levels	as	well.	(Ankley	et	al.,	59	
2010;	Villeneuve	et	al.,	2014).	Thus,	AOPs	describe	the	causal	chain	moving	from	the	chemical-60	
receptor	interaction	to	the	adverse	outcome.	Recently,	AOPs	have	been	used	to	make	61	
predictions	about	whether	or	not	a	chemical	causes	steatosis	or	skin	sensitization	(Burgoon,	62	
Druwe,	Painter,	&	Yost,	2016;	Strickland	et	al.,	2016).	In	fact,	the	skin	sensitization	AOP	has	63	
changed	how	chemicals	are	tested	under	the	REACH	annexes	(European	Chemicals	Agency,	64	
2019).	By	combining	multiple	AOPs	together,	we	can	build	AOP	Networks,	which	are	more	65	
complete	descriptions	of	the	routes	that	lead	to	a	particular	adverse	outcome	(Villeneuve	et	al.,	66	
2014).	67	
	68	
In	this	study,	we	focused	on	the	AOP	network	describing	hepatic	steatosis,	or	fatty	liver.	69	
Steatosis	has	an	estimated	human	prevalence	of	21.4%	in	the	United	States	(Lazo	et	al.,	2013).	70	
Drug-induced	liver	injury,	which	includes	drug-induced	steatosis,	may	hamper	drug	71	
development	or	approval	(Kullak-Ublick	et	al.,	2017).	In	addition,	the	US	EPA	has	cited	steatosis	72	
as	a	serious	liver	injury	that	is	considered	when	developing	toxicity	reference	values	in	the	73	
Integrated	Risk	Information	System,	the	US	EPA	program	that	evaluates	toxicity	information	74	
independent	of	the	regulatory	program	offices	(e.g.,	IRIS	assessments	of	dichloromethane).	75	
	76	
AOP	networks	can	be	modeled	using	expert-driven	Adverse	Outcome	Pathway	Bayesian	77	
Networks	(AOPBNs)	as	a	way	to	make	probabilistic	predictions	(i.e.,	predictions	based	on	a	78	
probability	of	occurrence	that	communicates	the	uncertainty	of	the	prediction,	like	the	79	
probability	of	rain	at	a	certain	time)	of	adverse	outcomes	and	probabilistic	weight	of	evidence	80	
data	integration	to	support	hazard	identification	and	risk	assessments.	AOPBNs	combine	81	
multiple	AOPs	together	into	a	network	and	add	tables	that	represent	the	probability	of	moving	82	
from	one	key	event	to	another	(this	includes	moving	from	MIE	to	the	first	KE	through	83	
intermediary	KEs	to	the	last	KEs	and	ultimately	to	the	AO).	84	
	85	
By	using	causal	networks	we	can	identify	the	minimally	sufficient	set	of	key	events	(MinSSKE)	86	
that	need	to	be	measured	to	predict	an	adverse	outcome	(Burgoon	et	al.,	2016).	We	can	also	87	
look	at	the	network	topology	and	devise	scenarios	to	identify	other	less	statistically	certain	sets	88	
of	key	events	than	the	MinSSKEs	that	may,	after	taking	costs	into	account,	become	more	89	



	

	

optimal	to	run	as	assay	batteries.	This	in	turn	allows	us	to	design	efficient	predictive	toxicity	90	
assay	batteries	that	only	test	the	key	events	necessary	to	make	a	prediction.	It	is	important	to	91	
note	that	given	a	particular	AOPBN	this	may	be	one	or	more	nodes/key	events.	92	
	93	
The	AOPBN	for	steatosis	that	we	describe	here	was	developed	for	both	predictive	toxicology	94	
and	mechanistic	investigation	in	support	of	hazard	identification.	We	outline	our	process	of	95	
developing	the	AOPBN,	starting	with	existing	AOPs	and	metabolic	and	disease	pathways.	We	96	
then	demonstrate	its	ability	to	accurately	predict	chemical	effects	using	in	vitro	assay	data	as	97	
inputs	to	the	model.	98	

2.	MATERIALS	AND	METHODS	99	

2.1.	Model	construction	100	

An	AOPBN	describing	the	biological	events	in	the	human	liver	leading	to	steatosis	was	101	
constructed	from	pathways	described	in	Reactome	(Fabregat	et	al.,	2018)	and	the	peer-102	
reviewed	literature	(see	Results	section	for	full	information).	The	AOPBN	for	steatosis	consists	103	
of	a	series	of	conditional	probabilities	for	each	node.	See	the	supplemental	table	for	more	104	
details.	105	
	106	
More	specifically,	we	started	with	the	AOP	described	by	Burgoon	et	al.	(2016)	and	combined	it	107	
with	information	from	Reactome,	and	the	literature.	We	used	literature	information,	especially	108	
knock-out,	knock-in,	and	knock-down	information	to	facilitate	the	expert-driven	development	109	
of	the	conditional	probability	tables	–	see	the	supplemental	information	for	more	details	and	110	
references.	Note	that	these	conditional	probabilities	are	generated	using	expert	judgment	to	111	
ascertain	the	uncertainty	and	thus	the	probability,	of	the	conditional	events.	This	is	common	112	
when	developing	expert	models	to	be	used	as	Bayesian	Networks.	113	
	114	
The	model	has	been	implemented	in	the	Bayesian	Inference	for	Substance	and	Chemical	115	
Toxicity	tool	(BISCT).	BISCT	is	freely	available	and	open	source	software	that	can	be	downloaded	116	
from	GitHub	(https://github.com/DataSciBurgoon/bisct/releases/tag/1.1.4)	and	cited	with	a	117	
DOI	(DOI:	10.5281/zenodo.3349914).	118	
	119	
By	using	the	literature	and	existing	expert-driven	AOPs,	our	AOPBN	is	classified	as	an	expert	120	
model,	as	opposed	to	a	computationally	driven	reversed	engineered	model.	The	model	is	based	121	
on	expert	judgment	and	analysis	of	literature	and	available	data.	We	evaluated	model	122	
performance	using	previously	published	external	data	in	Angrish,	et	al.	(2017).	123	
 124	

2.2.	Data	for	Model	Validation	125	

Data	were	taken	without	reanalysis	from	Angrish,	et	al.	(2017).	We	converted	threshold	data	126	
from	continuous	to	binary	TRUE/FALSE	values	using	the	same	threshold	values	as	the	original	127	



	

	

author	(Table	I).	For	instance,	fatty	acid	beta	oxidation	(as	measured	using	the	Seahorse	Mito	128	
Stress	Test	with	exogenous	palmitate)	was	detected	following	exposure	to	all	chemicals,	so	they	129	
all	scored	TRUE.	Cytosolic	fatty	acids	(measured	using	fluorescence	intensities	and	the	dyes	Nile	130	
Red	and	Hoechst	33342,	see	Angrish,	et	al.	(2017)	for	details)	were	decreased	for	only	certain	131	
chemicals	therefore	those	were	scored	as	FALSE.	We	also	only	used	the	results	for	the	highest	132	
concentrations	as	this	is	a	hazard	identification	case	study	where	we	desired	to	detect	any	133	
potential	ability	to	cause	steatosis.		134	
	135	
Note	that	the	efforts	described	here	and	those	in	Angrish,	et	al.	(2017)	were	completely	136	
separate;	none	of	the	information	from	the	Angrish,	et	al.	(2017)	study	was	used	to	develop	the	137	
AOPBN	presented	here,	making	that	data	external	to	this	validation	study.	138	
	139	

2.3.	Testing	Mathematical	Sufficiency	140	

For	predictive	toxicology	and	hazard	assessment,	we	can	use	causal	networks	to	identify	the	141	
minimal	set	of	nodes	within	the	AOPBN	that	are	sufficient	to	infer	that	the	adverse	outcome	142	
will	occur.	We	call	this	the	Minimally	Sufficient	Set	of	Key	Events	(MinSSKE).	We	used	Pearl’s	143	
backdoor	algorithm	(Pearl,	2010)		to	identify	the	minimal	set	of	sufficient	key	events.	We	144	
verified	it	by	testing	whether	activation/deactivation	of	those	nodes	is	sufficient	to	predict	the	145	
adverse	outcome.		146	
	147	
2.3.1.	Backdoor	Algorithm:		148	

1. Create	an	empty	set,	called	SufficientNodes,	to	collect	the	sufficient	nodes	149	
2. Place	new	undirected	edges	connecting	parent	nodes	that	share	a	child	node	(parent	150	

nodes	are	those	nodes	that	are	upstream	and	feed	into	a	child	node).		151	
3. Find	shortest	path	from	adverse	outcome	to	molecular	initiating	event	152	
4. With	adverse	outcome	as	the	first	node	in	the	shortest	path,	the	second	node	is	a	153	

sufficient	node	154	
5. Add	sufficient	node	to	set	SufficientNodes,	and	remove	this	sufficient	node	155	
6. Repeat	from	Step	2	until	all	paths	have	been	explored	from	the	adverse	outcome	to	the	156	

molecular	initiating	event	157	
	158	
Note	that	the	AOPBN	contains	many	MIEs.	This	means	that	there	are	several	potential	entry	159	
points	for	chemical-receptor	interactions	to	jump-start	the	AOPBN.	160	
	161	
3.	RESULTS	162	

3.1.	Description	of	the	AOPBN	for	Steatosis	163	

Steatosis	is	when	there	is	too	much	fat	in	the	cytoplasm	of	hepatocytes.	This	occurs	either	164	
because	lipids	are	not	being	metabolized	fast	enough,	lipids	are	not	being	exported	fast	165	
enough,	or	both.	Thus,	lipids	are	either	being	shuttled	into	the	cell	too	quickly	(influx),	being	166	



	

	

created	too	fast	(lipogenesis),	not	being	shuttled	out	fast	enough	(problems	of	efflux),	not	being	167	
metabolized	fast	enough	(problems	with	fatty	acid	beta	oxidation;	FABO),	or	a	combination	of	168	
all	of	these.		169	
	170	
The	AOPBN	for	steatosis	has	a	number	of	possible	MIEs,	including	farsenoid	X	receptor	(FXR),	171	
peroxisome	proliferator-activated	receptor	(PPAR)	alpha	(PPARA),	PPAR-gamma	(PPARG),	liver	172	
X	receptor	(LXR),	and	insulin	receptor	(IR).	The	adverse	outcome	is	steatosis.	The	conditional	173	
probability	tables	are	listed	in	the	Supplemental	Materials.	The	structure	of	the	AOPBN	is	given	174	
in	Figure	1.	175	
	176	
Nuclear	factor	erythroid	2-related	factor	(Nrf2)	mediates	protection	from	developing	steatosis	177	
in	one	branch	of	our	AOPBN.	Here,	Nrf2	activates	FXR	dependent	induction	of	small	178	
heterodimer	partner	(SHP).	SHP	likely	outcompetes	LXR	for	binding	to	retinoid	X	receptor	(RXR)	179	
which	in	turn	represses	LXR-mediated	gene	expression	(Kay	et	al.,	2011;	Kim	et	al.,	2009).	In	180	
addition,	SHP	inhibits	liver	receptor	homolog-1	(LRH1/LRH-1)	(Goodwin	et	al.,	2000).	LRH1	181	
serves	as	a	cofactor	that	increases	the	ability	for	LXR	to	drive	fatty	acid	synthase	(FAS)	182	
transcription	(Matsukuma,	Wang,	Bennett,	&	Osborne,	2007).	Thus,	SHP	activation	would	lead	183	
to	less	FAS	expression	and	activity,	leading	to	a	decrease	in	lipogenesis,	thus	avoiding	steatosis	184	
(Kay	et	al.,	2011;	Matsukuma	et	al.,	2007).	We	also	note	that	PPAR-gamma	knockout	mice	185	
(Cre/flox	mice)	had	decreased	expression	of	FAS	(Matsusue	et	al.,	2003),	and	that	knockout	of	186	
PPARG	protected	mice	from	developing	steatosis	when	treated	with	rosiglitazone.		187	
	188	
Mutation	analysis	identified	a	functional	FXR-binding	site	in	the	PPAR-alpha	gene	regulatory	189	
region	(Pineda	Torra	et	al.,	2003).	SHP	has	been	noted	to	augment	the	transcriptional	activity	190	
of	PPAR-alpha	by	itself	(Kassam,	Capone,	&	Rachubinski,	2001).	There	is	some	evidence	that	191	
LXR-PPAR-alpha	heterodimers	can	form,	thus	resulting	in	the	overall	decrease	in	PPAR-alpha	192	
activity	(Ide	et	al.,	2003).		193	
	194	
Hydroxysteroid	17-beta	dehydrogenase	(HSD17B4)	is	a	PPAR-alpha	target	gene	(Corton	et	al.,	195	
1996;	Fan,	Cattley,	&	Corton,	1998;	Rakhshandehroo,	Knoch,	Muller,	&	Kersten,	2010).	196	
HSD17B4	performs	beta-oxidation	of	various	fatty	acids	(Möller,	van	Grunsven,	Wanders,	&	197	
Adamski,	2001).	It	is	known	that	inhibition	of	beta-oxidation	leads	to	steatosis	and	198	
steatohepatitis	(Rao	&	Reddy,	2001;	Reddy,	2001),	and	that	loss	of	HSD17B4	activity,	a	key	199	
component	of	the	beta-oxidation	machinery,	is	sufficient	to	infer	steatosis	(Burgoon	et	al.,	200	
2016).	201	
	202	
Our	AOPBN	contains	another	branch	that	starts	at	IR.	Here,	IR	activation	leads	to	mammalian	203	
target	of	rapamycin	(mTOR)	complex	2	(mTORC2)	activation	(Laplante	&	Sabatini,	2009).	204	
Activated	mTORC2	activates	protein	kinase	B	(AKT)	(Laplante	&	Sabatini,	2009),	which	activates	205	
cascades	that	drive	a	pro-steatotic	environment.	This	includes	AKT	activation	of	liver-type	fatty	206	
acid	binding	protein	(L-FABP)	which	drives	fatty	acid	influx	(Chattopadhyay,	Selinger,	Ballou,	&	207	
Lin,	2011),	and	AKT	activation	of	mTOR	complex	1	(mTORC1)	which	mediates	sterol	regulatory	208	
element-binding	protein	1	(SREBP-1)	activation	(Laplante	&	Sabatini,	2009),	which	upregulates	209	
the	expression	of	and	thus	likely	activates	stearoyl-coA	desaturase	1	SCD1	(Ruiz	et	al.,	2014)	210	



	

	

and	leads	to	increased	lipogenesis	(Strable	&	Ntambi,	2010).	Phosphoinositide	3-kinase	(PI3K)	211	
also	plays	a	role,	where	it	can	activate	atypical	protein	kinase	C	(aPKC)	to	lead	to	SREBP-1	212	
activation	(Matsumoto	et	al.,	2003;	Schmitz-Peiffer	&	Biden,	2008,	p.),	as	well	as	activate	AKT	213	
(Laplante	&	Sabatini,	2009)	and	L-FABP	(Chattopadhyay	et	al.,	2011).	214	
	215	

3.2	Validating	the	Expert-Driven	AOPBN	Using	Existing	Data	216	

We	validated	the	model	differently	than	when	we	use	machine	learning	or	data-driven	217	
approaches	to	develop	the	model	as	our	AOPBN	is	expert-driven,	and	not	model	driven.	218	
Specifically,	we	used	existing	information	(see	previous	section)	to	build	our	model.	Next,	we	219	
ran	real-world	data	through	the	model	to	assess	the	performance	of	the	model.	In	this	case	we	220	
are	using	data	from	Angrish,	et	al	(2017).	Note	that	the	data	used	for	validation	was	not	used	in	221	
model	development.	222	
	223	
This	dataset	consists	of	6	chemicals,	where	2	are	known	to	cause	steatosis.	The	investigators	in	224	
that	study	sought	to	develop	assays	that	represent	key	events	within	a	steatosis	AOP	–	which	225	
fits	well	with	our	purposes	for	validating	our	model.	Table	I	lists	the	chemicals	that	were	tested	226	
as	well	as	the	activation/inactivation	of	specific	key	events	(TRUE	or	FALSE,	respectively).	227	
Angrish,	et	al	(2017)	confirmed	that	T0901317	and	cyclosporin	A	both	caused	steatosis;	the	rest	228	
of	the	chemicals	did	not.	229	
	230	
Predictions	from	the	AOPBN	for	steatosis	agreed	with	the	results	published	in	Angrish,	et	al	231	
(2017)	(Table	II).	It	is	important	to	recall	that	the	AOPBN	is	completely	independent	of	the	data	232	
from	Angrish,	et	al	(2017)	therefore	this	test	represents	a	true	model	validation.	233	
	234	
In	addition,	we	also	wanted	to	demonstrate	how	one	could	use	information	about	chemical	235	
actions	to	see	what	the	model	would	predict.	This	gave	us	another	opportunity	to	validate	the	236	
model.	Kawano	and	Cohen	(2013)	noted	that	microsomal	triglyceride	transfer	protein	(MTP)	237	
inhibitors	shut	down	fatty	acid	efflux	from	hepatocytes,	leading	to	steatosis.	When	we	ran	a	238	
simulation	where	we	inhibited	MTP	in	our	model	we	noticed	that	the	model	predicted	that	239	
steatosis	would	occur	(probability	of	74.2%).	This	is	consistent	with	the	literature	(Ksander	et	240	
al.,	2001;	Liao,	Hui,	Young,	&	Davis,	2003;	Welty,	2014).	241	

3.3	Identifying	Key	Events	as	Sufficient	for	Predicting	Steatosis	242	

We	identified	fatty	acid	influx,	lipogenesis,	fatty	acid	beta	oxidation,	and	fatty	acid	efflux	as	one	243	
MinSSKE	using	the	backdoor	algorithm.	Here,	sufficient	nodes	means	that	these	are	the	only	244	
nodes	that	need	to	be	measured	to	make	predictions	about	whether	or	not	steatosis	will	occur.		245	
	246	
To	test	the	sufficiency,	we	created	nine	scenarios:	247	

1. Fatty	acid	beta	oxidation	=	FALSE;	fatty	acid	influx	=	TRUE;	lipogenesis	=	TRUE;	fatty	acid	248	
efflux	=	FALSE	–	this	is	what	we	expect	will	lead	to	steatosis	249	



	

	

2. FXR	=	FALSE;	PPAR-alpha	=	FALSE;	PPAR-gamma	=	TRUE;	LXR	=	TRUE;	insulin	receptor	=	250	
TRUE	–	this	should	also	lead	to	steatosis	251	

3. FXR	=	FALSE;	PPAR-alpha	=	FALSE;	PPAR-gamma	=	TRUE;	LXR	=	TRUE;	insulin	receptor	=	252	
TRUE;	fatty	acid	efflux	=	FALSE	253	

4. Fatty	acid	beta	oxidation	=	FALSE	254	
5. Fatty	acid	beta	oxidation	=	FALSE;	fatty	acid	efflux	=	FALSE	255	
6. Fatty	acid	beta	oxidation	=	FALSE;	PPAR-gamma	=	TRUE	256	
7. Fatty	acid	beta	oxidation	=	FALSE;	lipogenesis	=	TRUE	257	
8. PPAR-gamma	=	TRUE,	insulin	receptor	=	TRUE,	LXR	=	TRUE	258	
9. FXR	=	FALSE,	PPAR-alpha	=	FALSE	259	

	260	
We	hypothesized	that	the	posterior	probability	from	using	the	activation/inactivation	of	the	261	
sufficient	set	of	key	events	leading	to	steatosis	should	be	higher	than	the	posterior	probability	262	
of	using	just	information	about	the	MIEs	alone.	Thus,	activation/inactivation	of	the	minimal	set	263	
of	sufficient	key	events	leading	to	steatosis,	should	result	in	a	high	posterior	probability,	near	264	
99%.	In	the	case	of	the	molecular	initiating	events	only	scenarios,	the	posterior	probability	265	
should	be	considerably	lower.	If	the	molecular	initiating	events	only	scenario	still	results	in	a	266	
near	99%	posterior	probability,	then	it	suggests	the	molecular	initiating	events	are	also	267	
sufficient	to	infer	steatosis.	268	
	269	
The	results	are	shown	in	Table	III.	The	first	scenario,	where	the	minimal	set	of	sufficient	key	270	
events	are	the	only	ones	used,	yields	a	99%	probability	of	steatosis.	If	we	use	only	the	most	271	
distant	MIEs,	FXR	and	PPAR-alpha	(Scenario	9),	we	see	the	posterior	probability	of	steatosis	272	
drop	to	67.3%.	If	we	only	use	the	molecular	initiating	events	that	are	closest	to	the	adverse	273	
outcome	(Scenario	8),	we	see	a	posterior	probability	of	97.1%.	This	demonstrates	the	key	point	274	
of	the	Markov	property	–	we	have	the	most	certainty	about	whether	or	not	there	will	be	275	
steatosis	if	we	measure	assays	that	are	closest	to	steatosis.	The	further	the	key	events	are	from	276	
the	adverse	outcome,	the	greater	the	uncertainty.		277	
	278	
Another	key	lesson	of	the	Markov	property:	the	value	of	information	from	an	assay	to	predict	279	
an	adverse	outcome	decreases	as	the	distance	from	the	adverse	outcome	increases.	In	other	280	
words,	value	of	information	is	inversely	proportional	to	the	distance	between	the	key	event	and	281	
the	adverse	outcome.	Consider,	the	information	gain	we	obtain	going	from	Scenario	8	282	
(molecular	initiating	events	closest	to	steatosis)	to	Scenario	2	(all	molecular	initiating	events;	283	
Table	III).	We	go	from	a	posterior	probability	of	97.1%	in	Scenario	8	to	a	posterior	probability	of	284	
97.3%	in	Scenario	2	–	adding	in	the	assays	furthest	from	the	adverse	outcome	only	increased	285	
our	certainty	of	predicting	steatosis	by	0.2%	in	our	model.		286	
	287	
Scenario	4	tests	if	we	need	to	use	the	sufficient	key	events	as	a	set,	or	if	we	can	just	use	one	of	288	
the	sufficient	key	events	alone.	In	this	case,	just	having	knowledge	of	fatty	acid	beta	oxidation	289	
being	inhibited	results	in	a	posterior	probability	of	having	steatosis	of	just	66%.	Adding	on	fatty	290	
acid	efflux	inhibition	in	Scenario	5	raises	the	posterior	probability	to	96.8%.	In	Scenario	6,	we	291	
take	Scenario	4	and	add	on	PPAR-gamma	activation.	This	results	in	a	posterior	probability	of	292	



	

	

90.5%.	Adding	on	lipogenesis	activation	to	fatty	acid	beta	oxidation	(Scenario	7)	also	only	raises	293	
the	posterior	probability	modestly,	to	76.8%.		294	
	295	
The	Bayesian	Network	approach	also	allows	us	to	see	the	probabilities	that	any	node/key	event	296	
is	active	or	inactive.	In	Table	IV	we	show	the	probability	of	the	node	being	active	for	Scenario	1.	297	
This	is	helpful	in	tracking	down	potential	modes	of	action,	or	building	hypotheses	for	additional	298	
testing.	299	
	300	

4.	DISCUSSION	301	
AOPBNs	drive	the	AOP	concept	toward	utility	as	predictive	toxicology	and	mechanistic	302	
investigation	tools.	As	they	stand,	AOPs	are	a	knowledge	source	that	summarizes	mechanistic	303	
pathways	leading	from	chemical-receptor	interaction	through	regulatory	adverse	outcomes.	304	
However,	AOPs	themselves	have	limited	utility	for	predictive	toxicology.	The	most	obvious	305	
reason	is	that	AOPs	are	focused,	on	purpose,	to	make	them	more	manageable.	Thus,	any	306	
individual	AOP	is	likely	to	ignore	other	AOPs	that	share	key	events,	or	that	may	intersect	in	307	
some	other	way	to	impact	each	other	(e.g.,	transrepression	mechanisms).	AOP	Networks	308	
represent	the	best	way	to	integrate	AOPs	together,	to	better	reflect	the	cross-talk	and	309	
integration	of	signals	from	several	AOPs	that	may	modulate	the	same	adverse	outcome.		310	
	311	
AOPBNs	are	AOP	Networks	with	a	probability	twist	–	because	they	are	causal	networks,	they	312	
can	be	represented	as	Bayesian	Networks,	with	conditional	probabilities	at	each	edge	between	313	
the	key	event	nodes.	314	
	315	
Generally	speaking,	the	minimal	set	of	sufficient	key	events	is	unlikely	to	include	the	MIEs.	This	316	
can	become	a	source	of	confusion	for	some,	who	believe	that	one	must	understand	the	MIEs	to	317	
predict	hazards.	However,	knowledge	of	which	MIEs	are	activated	is	not	necessarily	relevant	for	318	
risk	assessment	or	hazard	identification	–	knowledge	of	the	potential	adverse	outcome	is.	Also	319	
biology	is	complicated	–	signals	can	intervene	within	a	network	to	interfere	with	the	signaling	320	
that	starts	at	an	MIE.	This	means	that	in	a	network	context,	a	chemical	may	activate	the	MIE,	321	
but	if	another	signal	from,	say	another	chemical	within	a	mixture,	or	from	an	ongoing	biological	322	
process,	shunts	the	signal	from	the	MIE,	then	the	key	events	just	prior	to	the	adverse	outcome	323	
may	not	be	perturbed.	This	would	result	in	a	lack	of	AO	activation.		324	
	325	
Ultimately,	the	most	informative	key	events	in	the	AOPBN	for	predicting	adverse	outcomes	will	326	
be	those	closest	to	the	adverse	outcome.	This	is	a	result	of	the	Markov	property	which	states	327	
that	the	probability	that	a	node	will	be	active	or	inactive	is	solely	determined	by	its	parents.	In	328	
the	case	of	AOPBNs,	that	means	that	the	nodes	that	feed	into	the	adverse	outcome	are	those	329	
that	determine	if	the	adverse	outcome	will	occur	or	not.	The	Markov	property	is	true	for	all	330	
causal	networks	(Pearl,	2010).	Thus,	the	MinSSKE	will	always	by	definition	include	those	nodes	331	
which	are	the	parents	of	the	adverse	outcome.	We	can	see	the	Markov	property	at	work,	when	332	
we	compare	the	information	gain	in	probabilistic	certainty	(posterior	probability)	comparing	333	
various	scenarios	in	Table	III.	334	



	

	

	335	
For	instance,	the	key	events	that	are	the	furthest	from	the	adverse	outcome	have	the	least	336	
amount	of	information	–	they	change	the	overall	certainty	in	the	results	the	least.	This	was	337	
demonstrated	when	comparing	the	information	gain	(measured	as	change	in	posterior	338	
probability,	which	here	is	a	measure	of	certainty)	between	Scenario	2	(all	MIEs)	and	Scenario	8	339	
(only	the	MIEs	closest	to	the	adverse	outcome;	Table	III).	We	go	from	a	posterior	probability	of	340	
97.1%	in	Scenario	8	to	a	posterior	probability	of	97.3%	in	Scenario	2	–	adding	in	the	assays	for	341	
the	MIEs	furthest	from	the	adverse	outcome	(FXR	and	PPAR-alpha)	only	increased	our	certainty	342	
of	predicting	steatosis	by	0.2%	in	our	model.	This	is	also	demonstrated	when	comparing	343	
Scenario	8	to	Scenario	9	(MIEs	furthest	from	the	adverse	outcome)	where	we	see	a	difference	344	
in	information	gain	of	29.8%	or	comparing	Scenario	1	(the	MinSSKE)	to	Scenario	9	where	we	see	345	
a	difference	in	information	gain	of	31.7%.	346	
	347	
This	makes	it	clear	that	when	you	want	to	predict	the	adverse	outcome,	knowledge	of	the	most	348	
upstream	events	within	the	network	are	not	as	important	as	knowledge	of	the	downstream	349	
events	most	proximal	to	the	adverse	outcome;	this	is	a	demonstration	of	the	Markov	property.		350	
	351	
If	we	wish	to	consider	the	information	content	of	nodes	other	than	those	in	the	MinSSKE	(e.g.,	352	
perhaps	there	are	no	assays	for	the	MinSSKEs),	then	network	topology	matters	(and	for	clarity,	353	
topology	here	means	the	arrangement	of	nodes	with	respect	to	each	other,	and	the	conditional	354	
probabilities	at	each	edge	connecting	nodes).	For	instance,	we	can	see	that	measuring	all	of	the	355	
MIEs	and	nothing	else	results	in	a	steatosis	prediction	of	97.3%	(Table	III).	However,	in	previous	356	
versions	of	the	model	that	lacked	FoxO1	and	MTP,	the	performance	of	just	the	MIEs	was	357	
approximately	75%.	By	adding	in	FoxO1	and	MTP,	we	have	shortened	the	path	from	insulin	358	
receptor	to	steatosis	considerably,	increasing	the	value	of	the	information	we	obtain	from	359	
insulin	receptor.	360	
	361	
What	are	the	real	world	implications	of	all	this	causal	network	modeling,	Markov	properties,	362	
MinSSKEs,	and	using	the	model	to	identify	alternative	sets	of	potential	key	events	to	predict	the	363	
adverse	outcome?	We	can	exploit	these	properties	of	causal	networks	when	designing	assay	364	
batteries	based	on	AOPBNs	to	predict	the	adverse	outcome.	Specifically,	an	ideal	assay	battery	365	
should	be	efficient	–	it	should	balance	financial	constraints	and	predictive	performance.	We	366	
demonstrated	here	that	concentrating	on	the	sufficient	key	events	results	in	the	highest	367	
predictive	performance	for	an	assay	battery	(Table	III).	However,	the	scenario	results	also	368	
demonstrate	that	we	can	achieve	less	than	optimal,	yet	still	meaningful	and	high	certainty	369	
information,	if	we	use	assays	that	are	closer	to	the	adverse	outcome,	rather	than	those	that	are	370	
further	away.	In	addition,	our	network	approach	demonstrates	that	sometimes	the	molecular	371	
initiating	events	exist	within	the	middle	of	biological	networks	–	a	point	that	can	be	missed	372	
when	only	considering	linear	adverse	outcome	pathways.		373	
	374	
Thus,	we	recommend	that	end-users	consider	the	availability	of	technologies	and	assays	to	375	
measure	the	key	events,	especially	the	MinSSKEs,	costs	and	benefits	when	designing	ideal	assay	376	
batteries	for	their	adverse	outcomes	of	interest	with	predictive	performance	being	only	one	377	
consideration.	For	instance,	after	considering	cost,	the	most	optimal	approach	may	no	longer	378	



	

	

be	the	use	of	the	MinSSKEs	if	there	are	no	assays	that	exist.	Rather,	in	that	case,	the	most	379	
optimal	from	a	cost	and	certainty	(where	posterior	probability	of	adverse	outcome	is	the	380	
measure	of	certainty)	standpoint	may	actually	be	a	combination	of	assays	that	yield	less	381	
certainty,	but	where	the	assays	actually	exist,	or	they	may	be	of	such	significantly	lower	cost	382	
that	the	decrease	in	certainty	is	worth	the	cost	savings.	Approaches	for	considering	utility,	383	
combining	cost	and	predictive	performance,	are	beyond	the	scope	of	this	paper,	but	that	type	384	
of	operations	research	optimization	problem	is	something	we	may	work	on	in	the	future.	385	
	386	
We	are	confident	that	our	AOPBN’s	posterior	probabilities	for	developing	steatosis	can	be	used	387	
for	relative	ranking	of	chemicals.	For	instance,	given	a	list	of	otherwise	equally	efficacious	388	
chemicals	(i.e.,	they	meet	some	performance	criteria),	the	posterior	probabilities	could	be	used	389	
to	rank	and	prioritize	the	chemicals	for	further	development.	For	instance,	chemicals	with	lower	390	
posterior	probabilities	across	a	suite	of	AOs	may	be	better	candidates	for	development	than	391	
those	with	higher	posterior	probabilities	across	the	same	suite	of	AOs.	In	this	case	in	particular,	392	
we	might	recommend	pushing	forward	chemicals	that	have	the	lowest	posterior	probability	of	393	
causing	the	AO	at	the	dose/concentration	that	will	likely	be	used.	394	
	395	
What	about	those	cases	where	we	want	to	identify	potential	modes	of	action?	End	users	can	396	
use	the	full	model	output	from	the	AOPBN	to	look	at	the	posterior	probabilities	of	each	of	the	397	
nodes	in	the	AOPBN	being	active.	Using	that	information,	end	users	can	make	predictions	about	398	
what	may	have	happened	upstream	and	downstream.	For	instance,	in	the	case	of	Scenario	1	399	
(Table	III)	where	we	model	that	fatty	acid	influx	and	lipogenesis	are	occurring,	while	fatty	acid	400	
efflux	and	fatty	acid	beta	oxidation	are	not	occurring,	we	can	look	at	the	model	posterior	401	
probabilities	for	each	node	in	the	model	in	Table	IV.	Here	we	can	see	that	there	is	a	low	402	
likelihood	that	FXR	is	activated	(12%).	Likewise,	PPAR-gamma	is	most	likely	activated	(96%),	as	403	
is	FAS	(99%).	We	also	see	that	LXR	and	LRH1	are	both	likely	active	(92%	and	89%,	respectively).	404	
In	this	scenario,	we	also	anticipate	that	insulin	receptor	is	activated	(100%)	while	PPAR-alpha	is	405	
likely	inactivated	(4%).	Thus,	the	most	likely	hypothesized	mode	of	action	is	activation	of	insulin	406	
receptor,	LXR,	and	PPAR-gamma,	which	can	be	tested	more	directly	in	other	systems.	407	
	408	
AOPBNs	will	also	help	us	make	hypotheses	and	predictions	about	what	may	occur	following	409	
exposure	to	complex	mixtures	and	stressor	mixtures.	One	way	to	make	predictions	using	410	
AOPBNs	is	to	do	a	completely	theoretical	exposure.	We	could	start	with	protein	docking	models	411	
for	all	of	the	proteins	in	our	KEs.	For	instance,	we	might	find	that	benzo[k]flouranthene	(BkF)	is	412	
a	direct	or	allosteric	inhibitor	of	HSD17b4.	In	our	mixture,	we	might	also	find	that	413	
benzo[a]pyrene	(BaP)	has	much	lower	affinity	for	binding	to	PPARa,	but	benz[a]anthracene	414	
(BaA)	has	very	high	affinity	for	PPARa.	If	we	are	dealing	with	a	contaminated	site	that	is	415	
primarily	BaA,	with	less	BkF	and	BaP	then	we	would	anticipate	that	steatosis	is	not	likely	with	a	416	
probability	of	43.9%.		417	
	418	
If,	on	the	other	hand,	the	site	was	evenly	split	between	BaA,	BaP	and	BkF,	then	our	query	of	the	419	
model	would	probably	look	more	like	PPARa	being	activated	(since	BaA	has	more	affinity	for	420	
PPARa	than	BaP	it	is	unlikely	that	BaP	will	outcompete	BaA	for	binding	to	PPARa)	and	BkF	would	421	



	

	

likely	inhibit	the	hsd17b4	activity.	In	this	case,	the	probability	of	steatosis	is	only	53.8%,	which	is	422	
still	practically	equivocal.		423	
	424	
Using	similar	types	of	logic,	we	can	assign	evidence	as	to	what	may	be	happening	at	a	KE	based	425	
on	genetic	and	other	factors.	For	instance,	there	may	be	a	mutation	that	causes	hsd17b4	to	426	
have	lower	affinity	for	BkF.	Or	there	may	be	a	mutation	that	causes	PPARa	to	bind	more	427	
strongly	to	its	DNA	binding	sites,	thus	increasing	the	likelihood	of	transcription	following	428	
activation	by	an	agonist.	We	can	model	these	types	of	situations	by	turning	the	evidence	on	or	429	
off	more	often.	430	
	431	
We	could	also	model	entire	populations.	In	that	case	rather	than	have	simple	probability	tables,	432	
we	would	use	probability	distributions.	We	would	then	perform	Monte	Carlo	analysis	to	433	
generate	a	population	of	individuals	and	look	at	how	the	chemicals	are	impacting	each	member	434	
of	the	population.	These	types	of	analyses	are	more	computationally	intensive	to	implement	435	
than	these	simple	Bayesian	networks.	436	
	437	
One	note	to	consider	is	that	our	AOPBN	works	well	under	most	circumstances	based	on	the	438	
literature	we	reviewed.	However,	an	important	caveat	with	respect	to	Nrf2	is	that	there	is	439	
evidence	that	in	some	instances	Nrf2	activity	will	lead	to	steatosis.	It	appears	that	these	440	
situations	are	mostly	in	aging	rodents	(Chambel,	Santos-Gonçalves,	&	Duarte,	2015).	The	441	
applicability	of	this	dual	nature	of	Nrf2	to	humans	remains	unclear.	442	
	443	
In	addition,	there	may	be	concerns	about	converting	high	throughput	screening	(HTS)	data	into	444	
strictly	binary	(1	vs	0)	data	to	draw	conclusions.	Becker	et	al	(2017)	rightly	claim	that	IARC’s	445	
approach	(IARC,	2018)	to	using	HTS	data	led	to	conclusions	that	weren’t	much	better	than	446	
random	chance.	IARC’s	approach	discretized	the	HTS	data	to	1s	when	a	chemical	was	“active”	in	447	
an	assay	and	0	when	it	was	“inactive”,	and	then	they	summed	those	values	up	in	a	type	of	448	
evidence	integration.	We	want	to	make	clear	that	IARC’s	use	of	binaries	is	not	the	same	as	our	449	
use	of	binaries.	Our	use	of	binary	responses	is	consistent	with	the	idea	that	there	are	thresholds	450	
below	which	chemicals	are	not	likely	to	have	a	biological	response.	That	is	why	we	focused	on	451	
the	high	dose	phenomena	from	the	Angrish	et	al	(2017)	paper	where	they	quite	clearly	did	or	452	
did	not	see	a	biological	response	in	their	assays.	This	is	akin	to	the	idea	of	tipping	points	(Shah	453	
et	al.,	2016),	or	concentrations/doses	at	which	cells	are	not	likely	to	return	to	a	normal	state,	454	
which	is	itself	consistent	with	the	idea	of	toxicity	thresholds.	At	issue	in	the	IARC	monograph	is	455	
that	IARC	uses	the	fact	that	a	chemical	activates	an	HTS	assay	as	evidence	to	state	that	a	456	
phenotype	characteristic	of	cancer	is	present.		457	
	458	
We	do	not	agree	with	using	this	type	of	binary	approach	for	evidence	integration.	Rather,	for	459	
evidence	integration	we	would	recommend	authors	use	a	Bayesian	approach	to	integrate	the	460	
information,	such	as	a	bootstrap	meta-regression	used	by	Burgoon	et	al	(Burgoon	et	al.,	2016)	461	
to	generate	a	reasonable	distribution	of	concentration-response	curves	for	identifying	the	462	
threshold.	Any	concentrations	above	the	threshold	would	be	assigned	a	1,	and	concentrations	463	
below	would	be	assigned	a	value	of	0.	Those	would	then	form	the	basis	of	the	inputs	to	the	464	
AOPBN.	The	AOPBN	would	then	output	the	posterior	probability,	of	steatosis	in	this	case,	on	a	465	



	

	

per-concentration	basis.	For	the	adventurous,	formal	Bayesian	approaches	would	be	superior	466	
for	evidence	integration	compared	to	our	AOPBN;	however,	the	AOPBN	would	be	a	decent	467	
approximation.	468	
	469	

5.	CONCLUSION	470	
We	have	discussed	an	approach	for	developing	AOPBNs	and	ways	in	which	AOPBNs	can	be	used	471	
to	predict	the	probability	of	an	adverse	outcome	based	on	assay	data.	The	AOPBNs	can	be	used	472	
to	develop	and	simulate	assay	battery	results.	That	information	combined	with	cost	473	
information	could	provide	a	measure	of	utility,	which	would	help	decision-makers	in	applying	474	
predictive	toxicology	to	screen	and	prioritization	of	chemicals,	and	to	predict	hazards.	475	
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7.	APPENDIX	A	485	
Listed	below	are	the	conditional	probability	tables	and	the	explanations	for	the	probabilities.	486	
	487	
	488	
Table A1. Nrf2 489	
Active	 0.50	
Inactive	 0.50	
We	make	no	assumptions	of	whether	Nrf2	is	active	or	inactive.	Thus,	it	has	an	equal	probability.	490	
	491	
Table A2. Insulin receptor 492	
Active	 0.50	
Inactive	 0.50	
We	make	no	assumptions	of	whether	insulin	receptor	is	active	or	inactive.	Thus,	it	has	an	equal	493	
probability.	494	
	495	
	496	
Table A3. PI3K 497	
Active	 0.50	



	

	

Inactive	 0.50	
We	make	no	assumptions	of	whether	PI3K	is	active	or	inactive.	Thus,	it	has	an	equal	probability.	498	
	499	
Table A4. Fatty acid efflux 500	
Active	 0.50	
Inactive	 0.50	
We	make	no	assumptions	of	whether	fatty	acid	efflux	is	active	or	inactive.	Thus,	it	has	an	equal	501	
probability.	502	
	503	
Table A5. FXR 504	
	 FXR	
Nrf2	 Active	 Inactive	
Active	 0.95	 0.05	
Inactive	 0.05	 0.95	
Nrf2	activation	has	been	shown	to	lead	to	the	activation	of	FXR	(Kay	et	al.,	2011).		505	
 506	
Table A6. SHP 507	
	 SHP	
FXR	 Active	 Inactive	
Active	 0.95	 0.05	
Inactive	 0.05	 0.95	
FXR	activation,	via	Nrf2,	has	been	shown	to	activate	SHP	(Kay	et	al.,	2011).	508	
	509	
	510	
Table A7. LXR 511	
	 LXR	
SHP	 Active	 Inactive	
Active	 0.05	 0.95	
Inactive	 0.95	 0.05	
LXR	is	inactivated	via	SHP,	likely	by	SHP	outcompeting	LXR	for	binding	to	RXR	(Kay	et	al.,	2011;	512	
Kim	et	al.,	2009).	513	
	514	
Table A8. PPAR-alpha 515	
	 	 	 PPAR-alpha	
FXR	 SHP	 LXR	 Active	 Inactive	
Active	 Active	 Active	 0.50	 0.50	
Active	 Active	 Inactive	 0.95	 0.05	
Active	 Inactive	 Active	 0.05	 0.95	
Active	 Inactive	 Inactive	 0.95	 0.05	
Inactive	 Active	 Active	 0.50	 0.50	
Inactive	 Active	 Inactive	 0.95	 0.05	
Inactive	 Inactive	 Active	 0.05	 0.95	



	

	

Inactive	 Inactive	 Inactive	 0.50	 0.50	
Mutation	analysis	identified	a	functional	FXR-binding	site	in	the	PPAR-alpha	gene	regulatory	516	
region	(Pineda	Torra	et	al.,	2003).	SHP	has	been	noted	to	augment	the	transcriptional	activity	517	
of	PPAR-alpha	by	itself	(Kassam	et	al.,	2001).	There	is	some	evidence	that	LXR-PPAR-alpha	518	
heterodimers	can	form,	thus	resulting	in	the	overall	decrease	in	PPAR-alpha	activity	(Ide	et	al.,	519	
2003).	We	have	decided	that	when	FXR	and	LXR	are	active	that	the	probability	of	PPAR-alpha	520	
also	being	active	is	5%.	However,	given	that	SHP	may	augment	PPAR-alpha	activity,	we	give	the	521	
FXR	+	SHP	+	LXR	state	a	50/50%	activation	for	PPAR-alpha.	When	FXR,	SHP,	and	LXR	are	all	522	
inactive,	we	have	significant	uncertainty	about	the	state	of	PPAR-alpha,	so	we	also	give	this	a	523	
50/50%	activation.	524	
 525	
Table A9. HSD17B4 526	
	 HSD17B4	
PPAR-alpha	 Active	 Inactive	
Active	 0.95	 0.05	
Inactive	 0.05	 0.95	
HSD17B4	is	a	PPAR-alpha	target	gene	(Corton	et	al.,	1996;	Fan	et	al.,	1998;	Rakhshandehroo	527	
et	al.,	2010).	528	
	529	
	530	
Table A10. Fatty Acid Beta Oxidation (FABO) 531	
	 FABO	
HSD17B4	 Active	 Inactive	
Active	 0.99	 0.01	
Inactive	 0.01	 0.99	
HSD17B4	is	one	part	of	the	FABO	enzymatic	process	(Rakhshandehroo	et	al.,	2010).	532	
	533	
Table A11. LRH1 534	
	 LRH1	
SHP	 Active	 Inactive	
Active	 0.05	 0.95	
Inactive	 0.95	 0.05	
SHP	activation	has	been	shown	to	inhibit	LRH1	(Goodwin	et	al.,	2000).	535	
	536	
Table A12. mTORC2 537	
	 mTORC2	
Insulin	Receptor	 Active	 Inactive	
Active	 0.99	 0.01	
Inactive	 0.01	 0.99	
mTORC2	is	activated	by	the	insulin	receptor	likely	via	the	PI3K;	however	additional	study	is	538	
warranted	(Laplante	&	Sabatini,	2009).	539	
	540	



	

	

Table A13. AKT 541	
	 	 AKT	
PI3K	 mTORC2	 Active	 Inactive	
Active	 Active	 0.95	 0.05	
Active	 Inactive	 0.05	 0.95	
Inactive	 Active	 0.95	 0.05	
Inactive	 Inactive	 0.05	 0.95	
AKT	is	known	to	be	activated	by	both	PI3K	and	mTORC2	(Laplante	&	Sabatini,	2009).	542	
 543	
Table A14. LFABP 544	
	 LFABP	
AKT	 Active	 Inactive	
Active	 0.95	 0.05	
Inactive	 0.05	 0.95	
Knock-out	of	p110	(a	catalytic	component	of	PI3K)	resulted	in	decreased	expression	of	LFABP	in	545	
mice	fed	a	high	fat	diet	(Chattopadhyay	et	al.,	2011).	As	AKT	is	the	downstream	partner	of	546	
PI3K	that	mediates	its	functionality,	we	have	assigned	these	probabilities	to	AKT.	547	
	548	
Table A15. Fatty Acid Influx 549	
	 Fatty	Acid	Influx	
LFABP	 Active	 Inactive	
Active	 0.99	 0.01	
Inactive	 0.01	 0.99	
LFABP	is	responsible	for	fatty	acid	influx	(Chattopadhyay	et	al.,	2011).	550	
	551	
	552	
Table A16. PPARG 553	
	 PPARG	
LFABP	 Active	 Inactive	
Active	 0.95	 0.05	
Inactive	 0.05	 0.95	
PPARG	has	been	shown	to	interact	with	LFABP	in	a	mammalian	two-hybrid	screen,	and	PPARG	554	
transactivation	decreased	as	LFABP	concentrations	decreased	(Wolfrum,	Borrmann,	Borchers,	555	
&	Spener,	2001).		556	
	557	
	558	
Table A18. FAS 559	
	 	 	 FAS	
LRH1	 LXR	 PPARG	 Active	 Inactive	
Active	 Active	 Active	 0.95	 0.05	
Active	 Active	 Inactive	 0.75	 0.25	
Active	 Inactive	 Active	 0.75	 0.25	



	

	

Active	 Inactive	 Inactive	 0.50	 0.50	
Inactive	 Active	 Active	 0.75	 0.25	
Inactive	 Active	 Inactive	 0.50	 0.50	
Inactive	 Inactive	 Active	 0.50	 0.50	
Inactive	 Inactive	 Inactive	 0.01	 0.99	
Fatty	acid	synthase	(FAS)	transcription	is	driven	by	LXR.	LRH-1	serves	as	a	cofactor	that	560	
increases	the	ability	for	LXR	to	drive	FAS	transcription	(Matsukuma	et	al.,	2007).	It	has	also	561	
been	noted	that	PPARG	knockout	mice	(Cre/flox	mice)	had	decreased	expression	of	FAS	562	
(Matsusue	et	al.,	2003),	and	that	knockout	of	PPARG	protected	mice	from	developing	steatosis	563	
when	treated	with	rosiglitazone.	Thus,	it	is	clear	that	FAS	expression	is	complicated.	Using	this	564	
information,	it	was	our	best	judgement	that	when	LRH1	and	LXR	are	present	together,	we	are	565	
likely	to	see	increases	in	FAS,	but	not	as	maximally	as	we	might	see	if	LRH1,	LXR,	and	PPARG	566	
were	all	active.	Thus,	in	the	former	case	we	said	there	was	a	75%	chance	for	FAS	being	active,	567	
to	reflect	our	uncertainty,	and	a	95%	chance	in	the	latter	case.	In	those	cases	where	only	one	of	568	
LRH1,	LXR,	or	PPARG	are	active,	we	equivocate	the	probability	of	FAS	being	active	to	50%	to	569	
reflect	our	uncertainty.	570	
	571	
Table A19. mTORC1 572	
	 mTORC1	
AKT	 Active	 Inactive	
Active	 0.95	 0.05	
Inactive	 0.05	 0.95	
mTORC1	is	regulated	by	AKT	(Laplante	&	Sabatini,	2009).	573	
	574	
	575	
Table A20. APKC 576	
	 APKC	
PI3K	 Active	 Inactive	
Active	 0.99	 0.01	
Inactive	 0.01	 0.99	
APKC	is	activated	by	activated	PI3K	(Schmitz-Peiffer	&	Biden,	2008,	p.).	577	
	578	
	579	
Table A21. SREBP1 580	
	 	 SREBP1	
mTORC1	 APKC	 Active	 Inactive	
Active	 Active	 0.99	 0.01	
Active	 Inactive	 0.99	 0.01	
Inactive	 Active	 0.99	 0.01	
Inactive	 Inactive	 0.01	 0.99	
SREBP1	is	driven	in	part	by	APKC,	as	demonstrated	in	knockout	mice	(Matsumoto	et	al.,	2003).	581	
mTORC1	also	regulates	SREBP1	(Laplante	&	Sabatini,	2009)	and	SREBP1	is	active	in	mice	582	
where	mTORC1	is	constitutively	active,	and	inhibited	when	mTORC1	is	inhibited	by	rapamycin	583	



	

	

(Shao	&	Espenshade,	2012).	Thus,	when	both	are	active	together,	we	are	fairly	certain	we	will	584	
have	SREBP1	activation.	The	evidence	for	both	APKC	and	mTORC1	driving	SREBP1	alone	is	very	585	
certain.	Thus,	in	all	cases	where	either	mTORC1	or	APKC	is	active,	we	have	a	99%	certainty	that	586	
SREBP1	will	be	inactive.	587	
 588	
Table A22. SCD1 589	
	 SCD1	
SREBP1	 Active	 Inactive	
Active	 1.0	 0.0	
Inactive	 0.0	 1.0	
SREBP1	upregulates	the	expression	of	SCD1	(Ruiz	et	al.,	2014).	590	
	591	
Table A23. Lipogenesis 592	
	 	 Lipogenesis	
SCD1	 FAS	 Active	 Inactive	
Active	 Active	 0.95	 0.05	
Active	 Inactive	 0.05	 0.95	
Inactive	 Active	 0.95	 0.05	
Inactive	 Inactive	 0.05	 0.95	
Lipogenesis	is	regulated	by	SCD1	and	FAS	(Strable	&	Ntambi,	2010).		593	
	594	
Table A24. Steatosis 595	
	 	 	 	 Steatosis	
FABO	 Lipogenesis	 Influx	 Efflux	 Active	 Inactive	
Active	 Active	 Active	 Active	 0.50	 0.50	
Active	 Active	 Active	 Inactive	 0.99	 0.01	
Active	 Active	 Inactive	 Active	 0.50	 0.50	
Active	 Active	 Inactive	 Inactive	 0.50	 0.50	
Active	 Inactive	 Active	 Active	 0.50	 0.50	
Active	 Inactive	 Active	 Inactive	 0.80	 0.20	
Active	 Inactive	 Inactive	 Active	 0.01	 0.99	
Active	 Inactive	 Inactive	 Inactive	 0.20	 0.80	
Inactive	 Active	 Active	 Active	 0.50	 0.50	
Inactive	 Active	 Active	 Inactive	 0.99	 0.01	
Inactive	 Active	 Inactive	 Active	 0.50	 0.50	
Inactive	 Active	 Inactive	 Inactive	 0.99	 0.01	
Inactive	 Inactive	 Active	 Active	 0.50	 0.50	
Inactive	 Inactive	 Active	 Inactive	 0.99	 0.01	
Inactive	 Inactive	 Inactive	 Active	 0.01	 0.99	
Inactive	 Inactive	 Inactive	 Inactive	 0.50	 0.50	
Steatosis	is	by	definition	the	deposition	of	lipids	in	the	cytoplasm	of	hepatocytes.	Thus,	596	
steatosis	is	ultimately	the	result	of	inappropriate	increase	in	cytoplasmic	lipids.	This	means	that	597	



	

	

steatosis	is	the	result	of	lipids	not	being	metabolized	fast	enough,	not	being	exported	fast	598	
enough,	or	both.	Thus,	lipids	are	either	being	shuttled	into	the	cell	too	quickly	(influx),	being	599	
created	too	fast	(lipogenesis),	not	being	shuttled	out	fast	enough	(problems	of	efflux),	not	being	600	
metabolized	fast	enough	(problems	with	fatty	acid	beta	oxidation;	FABO),	or	a	combination	of	601	
all	of	these.	602	
 603	
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Table	I.	Assay	results	from	Angrish	et	al	(2017)	Converted	to	True/False	748	
Chemical	 FABO	 PPARG	 SREBP1	 Cytosolic	

Fatty	Acids	
Lipogenesis	

22(R)-hydroxycholesterol	 TRUE	 TRUE	 TRUE	 FALSE	 FALSE	
amiodarone	 TRUE	 TRUE	 TRUE	 FALSE	 FALSE	
cyclosporin	A	 TRUE	 TRUE	 TRUE	 TRUE	 TRUE	
T0901317	 TRUE	 TRUE	 TRUE	 TRUE	 TRUE	
Troglitazone	 TRUE	 TRUE	 TRUE	 FALSE	 FALSE	
Wyeth-14,643	 TRUE	 TRUE	 TRUE	 FALSE	 FALSE	
	 	749	



	

	

Table	II.	Comparison	of	Results	from	AOPBN	Model	to	Angrish	et	al	(2017)	750	
Chemical  Angrish et al (2017) 

Results for High 
Concentration 

AOPBN Model for 
Steatosis for High 
Concentration 

22(R)-hydroxycholesterol  No No (99% certain) 
amiodarone  No No (99% certain) 
cyclosporin A  Yes Yes (99% certain) 
Wyeth-14,643 No No (99% certain 
Troglitazone  No No (99% certain) 
T0901317  Yes Yes (99% certain) 
  751	



	

	

Table III. Various Scenarios to Test Node Sensitivity and Demonstrate AOPBN 752	
Capability 753	
Scenario	 Parameters	 Posterior	Probability	of	Steatosis		
1.	Sufficient	Key	
Events	

Fatty	acid	beta	oxidation	=	FALSE	
Fatty	acid	influx	=	TRUE	
Lipogenesis	=	TRUE	
Fatty	acid	efflux	=	FALSE	

99.0%	

2.	Molecular	
Initiating	Events	

FXR	=	FALSE	
PPAR-alpha	=	FALSE	
PPAR-gamma	=	TRUE	
LXR	=	TRUE	
Insulin	receptor	=	TRUE	

97.3%	

3.	Molecular	
Initiating	Events	+	
Fatty	Acid	Efflux	

FXR	=	FALSE	
PPAR-alpha	=	FALSE	
PPAR-gamma	=	TRUE	
LXR	=	TRUE	
Insulin	receptor	=	TRUE	
Fatty	acid	efflux	=	FALSE	

98.8%	

4.	Sufficient	Key	
Event	Subset	1	

Fatty	acid	beta	oxidation	=	FALSE	 66.0%	

5.	Sufficient	Key	
Event	Subset	2	

Fatty	acid	beta	oxidation	=	FALSE	
Fatty	acid	efflux	=	FALSE	

96.8%	

6.	Sufficient	Key	
Event	Subset	3	

Fatty	acid	beta	oxidation	=	FALSE	
PPAR-gamma	=	TRUE	

90.5%	

7.	Sufficient	Key	
Event	Subset	4	

Fatty	acid	beta	oxidation	=	FALSE	
Lipogenesis	=	TRUE	

76.8%	

8.	Molecular	
Initiating	Events	
Closest	to	
Adverse	Outcome	

PPAR-gamma	=	TRUE	
Insulin	receptor	=	TRUE	
LXR	=	TRUE	

97.1%	

9.	Molecular	
Initiating	Events	
Furthest	from	
Adverse	Outcome	

FXR	=	FALSE	
PPAR-alpha	=	FALSE	
	

67.3%	

10.	Molecular	
Initiating	Events	
Closest	to	
Adverse	Outcome	
+	Fatty	Acid	Efflux	

PPAR-gamma	=	TRUE	
Insulin	receptor	=	TRUE	
LXR	=	TRUE	
Fatty	acid	efflux	=	FALSE	

98.5%	
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Table IV. Probability That a Node/Protein Is Active in Scenario 1 755	
Node	Name Probability	Active 

nrf2 0.16 
ir 1.0 

pi3k 0.50 
fxr 0.12 
shp 0.08 
lxr 0.92 

ppara 0.04 
hsd17b4 0.01 

fatty_acid_beta_oxidation 0.0 
lrh1 0.89 

mtorc2 1.0 
foxo1	 0.003	
mtp	 0.001	
efflux 0.0 
akt 0.99 
lfabp 1.0 
influx 1.0 
pparg 0.96 
fas 0.99 

mtorc1 0.94 
apkc 0.50 
srebp1 0.96 
scd1 0.95 

lipogenesis 1.0 
steatosis 0.99 

 756	
757	



	

	

 758	
Fig.	1.	The	AOPBN	for	steatosis	is	a	combination	of	several	different	adverse	outcome	pathways	759	
and	disease	pathways.	The	molecular	initiating	events	include	FXR,	PPAR-alpha,	LXR,	PPAR-760	
gamma,	and	insulin	receptor.	The	adverse	outcome	is	steatosis.	Each	node/vertex	in	the	graph	761	
represents	a	protein	(e.g.,	PI3K),	metabolite	(e.g.,	cytosolic	fatty	acids),	or	action	(e.g.,	fatty	acid	762	
influx).	Edges	with	arrow	heads	represent	activation,	while	the	T-shaped	edges	represent	763	
inhibition.	Each	edge	represents	a	conditional	probability	that	the	child	node	is	764	
activated/deactivated	given	the	activation	of	the	parent	node.	The	conditional	probability	765	
tables	are	given	in	the	Supplemental	Materials.	766	


