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Abstract Over the past decades, advances in data collection and machine learning have paved the way
for the development of autonomous simulation frameworks. Among these, many are capable not only of
assimilating real‐time data to correct their predictive shortcomings but also of improving their future
performance through self‐optimization. In hydrogeology, such techniques harbor great potential for
informing sustainable management practices. Simulating the intricacies of groundwater flow requires an
adequate representation of unknown, often highly heterogeneous geology. Unfortunately, it is difficult to
reconcile the structural complexity demanded by realistic geology with the simplifying assumptions
introduced in many calibration methods. The particle filter framework would provide the necessary
versatility to retain such complex information but suffers from the curse of dimensionality, a fundamental
limitation discouraging its use in systems with many unknowns. Due to the prevalence of such systems in
hydrogeology, the particle filter has received little attention in groundwater modeling so far. In this
study, we explore the combined use of dimension‐reducing techniques and artificial parameter dynamics to
enable a particle filter framework for a groundwater model. Exploiting freedom in the design of the
dimension‐reduction approach, we ensure consistency with a predefined geological pattern. The
performance of the resulting optimizer is demonstrated in a synthetic test case for three such geological
configurations and compared to two Ensemble Kalman Filter setups. Favorable results even for deliberately
misspecified settings make us hopeful that nested particle filters may constitute a useful tool for geologically
consistent real‐time parameter optimization.

1. Introduction

Parameter estimation is an essential part of any simulation in which the demand for parameter information
outweighs its availability. In few environmental disciplines is this discrepancy as pronounced as in hydro-
geology: Any attempt to faithfully capture the intricacies of groundwater flow demands a realistic represen-
tation of often highly heterogeneous geology (Rubin & Hubbard, 2006). Unfortunately, the extent, nature, or
even existence of these features can scarcely be derived from the surface (e.g., De Marsily et al., 2005). Direct
measurements to ascertain their properties offer little relief, constituting a time‐ and resource‐intensive
endeavor with no guarantee to adequately delineate the flow‐relevant structure (Schöniger et al., 2012).

The task of parameter estimation is the inference of the properties from information of dependent states. In
hydrogeology, transient hydraulic heads often take this role. This topic has been explored in a large body of
literature over the years (e.g., Hill et al., 2000; McLaughlin & Townley, 1996; Yeh, 1986). Among these tech-
niques, batch‐calibration (or history‐matching) approaches—which rely on bulk processing a preexisting set
of observations—have been state of the art for decades and still remain highly popular today. Many of these
techniques, like the parameter estimation and uncertainty analysis tool PEST (Doherty, 1994, 2015), have
become widespread industry standard.

More recently, however, there has been a growing interest in the development of real‐time (or online) para-
meter estimation techniques (e.g., Hendricks Franssen &Kinzelbach, 2008). Sparked by increasing availabil-
ity of real‐time data from wireless sensor networks (e.g., Cardell‐Oliver et al., 2005) and satellite‐based
remote sensing (e.g., Houser et al., 1998), such algorithms assimilate a data stream of state measurements
to gradually improve parameters during active model operation. The advantage over batch‐calibration
approaches is evident: There is no need to wait until a sufficiently large body of data is collected. Instead,
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such algorithms may autonomously process data as they become available, theoretically providing a best
guess estimate at all times.

1.1. Limitations of the State of the Art

In pursuit of data assimilation and real‐time calibration, the Ensemble Kalman Filter (EnKF; Evensen, 1994,
2003) has established itself as one of the most popular approaches in environmental science. The reasons for
this algorithm's success are manifold: Ease of implementation (Iglesias et al., 2013), high computational effi-
ciency (Hu et al., 2013; Zovi et al., 2017), and relative robustness to violations of its fundamental assumptions
ofGaussianity and linearity (Iglesias et al., 2013; Katzfuss et al., 2016) equally contributed to its prevalence in
the data assimilation community.

Nonetheless, the EnKF is not without shortcomings: Its core assumptions are essentially never met in hydro-
geological practice, and in such cases its high efficiency comes at the price of excluding many possible solu-
tions. When mean and variance do not provide sufficient statistics for the probability density function (pdf)
under investigation, or the system propagation is nonlinear, the assumption of Gaussianity may be violated
and the EnKF will yield only approximate solutions (e.g., Amezcua & Van Leeuwen, 2014; Schillings &
Stuart, 2017), the usefulness of which has to be evaluated on a case‐by‐case basis.

Unfortunately, the pursuit of realistic geology during parameter estimation is a case in which these approx-
imations often prove insufficient. Parameter uncertainty due to ignorance of geological and sedimentary fea-
tures can take on several shapes: Often, not only the hydraulic properties of these features are unknown but
also their spatial extent and arrangement. From a mathematical perspective, the uncertainty originating
from the unknown arrangement of the geological features is characterized by distinct multimodality of
the parameters' pdf and thus poorly reflected by the EnKF's assumption of unimodal Gaussianity. It has been
shown that if a latent geological structure of the prior is not sufficiently informed by the observed states, the
EnKF updates tend to not (or only vestigially) preserve its characteristics (e.g., Zovi et al., 2017).

In a bid to address this issue, it has been proposed to employ Gaussian anamorphosis (GA, sometimes also
called normal score transformation), an approach converting non‐Gaussian marginal distributions to unim-
odal Gaussian ones for the duration of the assimilation step (e.g., Schöniger et al., 2012; Zhou et al., 2011).
While GA has been reported to alleviate this structural degeneration to a certain degree (Zovi et al., 2017),
it may come at the price of increased nonlinearity of the observation operator (Amezcua & Van Leeuwen,
2014) or the relationship between transformed variables (Zhou et al., 2011). When applied only to state
space, Schöniger et al. (2012) observed a more linear relationship between transformed states and untrans-
formed parameters. However, they remark that univariate transformations may only transform the margin-
als but cannot alter the multivariate dependence structures between the variables. For some types of data
(e.g., concentration data; see Schöniger et al., 2012) this dependence structure can be far from Gaussian
and in such cases univariate transformations will not yield multivariate Gaussian values.

An interesting alternative approach was proposed by Hu et al. (2013). Rather than calibrating the model
parameters directly, their EnKF implementation filters white noise fields instead. These noise fields are sub-
sequently used as random seeds in the generation of geostatistical parameter fields frommultipoint statistics
(MPS; e.g., Caers & Zhang, 2004). Since MPS generates fields consistent with a predefined geology—the
training image—their EnKF implementation retains consistency with the desired structure throughout
model calibration. Unfortunately, such indirect approaches introduce (further) nonlinearity. This might
affect the filter's performance, since the convergence of EnKF‐based parameter estimation depends on the
strength of the linear correlation between state observations and filtered parameters (Jafarpour &
Tarrahi, 2011).

1.2. Beyond Gaussianity

In an effort to overcome the assumption of Gaussianity and its limitations, the particle filter is a natural alter-
native to the EnKF. Based on a direct Monte Carlo representation of the underlying pdf, this filter makes no
assumptions about the shape of the pdf or the nature of the system dynamics (e.g., Doucet & Johansen, 2009;
Doucet & Tadić, 2003) and updates its ensemble through adjustments of the particles' retrieval weights.
Unfortunately, this flexibility comes at the price of the so‐called curse of dimensionality: The number of
Monte Carlo samples (particles) required to adequately represent the pdf increases exponentially with the
number of unknown variables (e.g., Bengtsson et al., 2008; Farchi & Bocquet, 2018; van Leeuwen, 2010).
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Hydrological numerical models may have millions of cells, and each cell may have different hydraulic para-
meters, so that naive applications of the particle filter have been deemed computationally infeasible (e.g.,
Aanonsen et al., 2009; Ruiz et al., 2013; Schöniger et al., 2012). Over the past decades, particle filters have
been assigned a niche role in hydrology, largely limited in their application to conceptual or lumped models
with only few unknown parameters (e.g., Moradkhani et al., 2005). Recently, their scope of application has
widened to include distributed models such as drought forecasting frameworks (Yan et al., 2017; Yan
et al., 2018).

However, much progress has been made in the development of highly efficient filter techniques (Morzfeld
et al., 2017). Particularly for state estimation, the number of required particles can be drastically reduced:
Through manipulation of the proposal pdf, van Leeuwen (2010) reports a successful application of a filter
with only 20 particles to a 1000‐dimensional problem—an otherwise thoroughly hopeless task—and sur-
mises that “the curse of dimensionality may have a cure.” Recently, van Leeuwen et al. (2019) give an over-
view of particle filter variants for high‐dimensional geophysical applications, mostly focused on state
estimation, and Farchi and Bocquet (2018) provide an overview over local particle filters, suggested by
Snyder et al. (2008) to overcome obstacles of high‐dimensional particle filters. For parameter optimization,
some authors (e.g., Abbaszadeh et al., 2018; Zhu et al., 2018) transferred elements from genetic algorithms to
particle filters in order to alleviate the curse of dimensionality.

In general, the raw number of unknown variables may be a poor measure of the system's true complexity.
Especially in hydrogeology, the required number of model parameters may be significantly smaller than
the number of model cells. Such considerations already form the basis for dimension reduction in hydrogeo-
logical parameter estimation (e.g., Doherty et al., 2010) and would naturally extend to particle filtering. For
more complex priors, the size and shape of the geological features can be uncertain, too, so that geometrical
parameters may need to be included.

In the following sections, we will provide a brief conceptual overview of the particle filter and its limitations
and present a formal derivation and algorithmic implementation of the nested particle filter. With the frame-
work established, we will discuss hyperparameterization as a tool to exploit latent structural simplicity in the
numerical grid. To conclude, we will illustrate the performance of such an algorithm for different geological
conceptualizations using synthetic examples and compare it to results obtained from an EnKF.

2. Theory and Methods

In this section we will provide a general introduction to particle filters and their limitations. Subsequently,
we will present a formal derivation of the nested particle filter algorithm and a blueprint for its implementa-
tion. We conclude this section with a brief discussion of hyperparameterization and artificial parameter
dynamics. First, however, we will introduce the nomenclature used in this study.

2.1. Nomenclature

In many filtering applications a distinction is made between parameters and states. Parameters, in this work
denoted θ, are usually static model variables, such as hydraulic conductivities or porosities, properties which
generally do not depend on other variables. States, represented by x, are often time‐varying system variables
depending on parameters andmodel forcings: Hydraulic heads, temperatures, or concentrations all are com-
mon examples. Observations are treated as a third variable type, y, and are generally measurements of states.
For implementation‐related purposes, all model variables of a type are combined into a vector and inter-
preted as coordinates of a point in high‐dimensional space (parameter space or state space, respectively).
Particles occupy one such point and thus represent a full set of their respective variables required for a
model. Individual particles, or variables related to them, are assigned a superscript index in brackets, for
example, x(index). We use a point instead of an explicit index, for example, x(·), if we refer to all indices of a
given type. Specific time points are denoted by subscripts xtime, and ranges between a start and end point
are represented by xstart : end. A ~ should be read as sampled from.

2.2. The Particle Filter

Like many other parameter optimization approaches, the particle filter is based on a probabilistic frame-
work. It serves as a tool to represent uncertainty about (and inability to perfectly replicate) what we
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assume is an unknown, but fundamentally deterministic natural system. In a probabilistic framework, vari-
ables are not assigned a single value (the porosity is 0.24) but can theoretically take on all mathematically
possible values (the porosity is somewhere between −∞ and +∞). Since this formulation carries no specific
information, knowledge or belief about the plausibility of different variables is specified exclusively by a pdf
defined over all numeric values (plausible porosity values lie between 0 and 1 with these
probability densities).

In such a framework, any change in knowledge of the system must be reflected in a change of the corre-
sponding pdf. This process is formally described by Bayes' theorem:

p AjBð Þ ¼ p BjAð Þ p Að Þ
p Bð Þ : (1)

Bayes' theorem updates the prior pdf p(A), representing the belief about a given parameter predating an
observation B, to its more informed posterior pdf p(A|B). This operation is achieved by introducing the
likelihood p(B|A) of the observation B for a given value A. In order to ensure that the posterior prob-
ability density function p(A|B) integrates to unity, the numerator has to be normalized by the marginal
likelihood p(B).

In the general case it is practically impossible to pursue this Bayesian inference analytically. As a conse-
quence, one may either confine the analysis to a special case like the Kalman filter (Kalman, 1960), which
is restricted to Gaussian priors and likelihoods so that an analytic solution is available, or to forfeit an ana-
lytic solution altogether and approximate the pdfs involved through an ensemble of weighted, deterministic
Monte Carlo samples (e.g., Arulampalam et al., 2002).

The key idea behind the latter approach is that an unattainable analytic target distribution p(A) may be
approximated by a set of N deterministic independent and identically distributed (i.i.d.) samples thereof

bp Að Þ ¼ 1
N

∑
N

i¼1
δA ið Þ Að Þ →

N→∞
p Að Þ (2)

where δA ið Þ Að Þ is the Dirac delta distribution centered about A(i), with (i) = 1,…,N being the particle's index.
This superposition of Dirac delta distributions illustrates the surrogate properties of the Monte Carlo set:
Instead of sampling p(A), one could (at least in the limit ofN→∞) equivalently drawwith probability 1

N from
a sufficiently large, preexisting set of realizations thereof.

Particle filtering, then, is the technique of recursively updating this set of realizations to retain its surrogate
properties along otherwise intractable Bayesian inference operations. Provided that one could ensure that
the ensemble of Monte Carlo samples remains representative of p(A|B), it is theoretically possible to proceed
indefinitely without the need to ever recover an analytic expression. These recursive updates are achieved
with a procedure based on importance sampling; by adjusting the particles' retrieval weightswi (initially uni-
form 1

N), a set of particles drawn from one pdf could approximate a different distribution altogether. It should

be intuitive that this reweighting is useful in the context of Bayesian inference: The posterior bp AjBð Þmay be
approximated by the particles of the prior, bp Að Þ. Employing the nomenclature of importance sampling, one
can interpret bp Að Þ as the importance distribution, bp AjBð Þ as the nominal distribution and the normalized
likelihood as the importance weight. This yields:

bp Að Þ ¼ ∑
N

i¼1
wiδA ið Þ Að Þ (3)

with weights wi and ∑N
i¼1wi ¼ 1.

In theory, this operation could be repeated indefinitely, continuously adjusting the particle weights to reflect
the latest posterior. In practice, however, this approximation will become increasingly inefficient and with-
out an infinite ensemble size eventually only one particle will retain any significant weight. To counteract
this particle degeneracy, it is common practice to resample the particles (Figure 1). This duplicates highly
weighted particles but leads to a loss of variation in the ensemble (sample impoverishment).
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In transient stochastic systems, this loss of diversity is counteracted by the forecast's random component,
mapping duplicated state particles to slightly different positions. For the physically often static parameters,
however, no such dynamic exists. Common approaches to reintroduce diversity to the parameters (rejuvena-
tion) include MCMC steps (e.g., Chopin et al., 2013), jittering, or a combination of the two. In our study we
will follow the second path by explicitly defining artificial parameter dynamics, which we will outline in
section 2.4. First, however, we introduce the specific particle filter used in this study.

2.3. The Nested Particle Filter

The key idea behind a nested particle filter is to separate the filtering of states and parameters (Chopin et al.,
2013; Crisan &Miguez, 2018). This is achieved in a hierarchicalmanner, whereby a single outer particle filter
performs parameter inference, while several inner particle filters—one assigned to each parameter particle
—conduct the state inference. This arrangement constitutes the nested structure and provides valuable
information to both variable types: The state particle filters inherit their parent's parameter values and
may treat them as fixed for the forecast, and the parameter particle filter can evaluate its particles' otherwise
intractable likelihoods.

It may be worthwhile to note how the nested particle filter relates to the classic particle filter approach for
joint state‐parameter estimation in hydrology. By reducing the ensemble size of the inner filter to a single
particle, one would retrieve the more commonly used particle filter with an augmented state vector (e.g.,
Montzka et al., 2011; Moradkhani et al., 2005). Larger inner ensemble sizes trade computational efficiency
for better parameter likelihood estimates and can furthermore enable the use of more sophisticated particle
filter algorithms (see van Leeuwen et al., 2019, for examples), which may not trivially extend across
parameter space.

As explained in section 2.2, the introduction of new diversity is crucial to the reversal of ensemble collapse.
Since numerical models are never perfect replications of reality, knowledge about states should degrade dur-
ing the forecast between successive inference steps. In particle filters, this loss of information (increase of
entropy, pushing the pdf toward uniformity) is generally represented by diffusion through an additive
random error component, which—from a practical perspective—rejuvenates the particles. For the physi-
cally static parameters, however, no such natural source of diversity exists. To avoid nonreversible

Figure 1. Conceptual scheme of Bayesian inference with a particle filter. The lower row (b) depicts a histogram represent-
ing the particle approximation of the analytic solution depicted in the upper row (a). First, the prior is approximated by
equally weighted i.i.d. samples, visualized as blocks (left); during Bayesian updating, the particles are reweighted (illu-
strated by adjusting the block heights) so that the ensemble approximates the posterior pdf (middle); finally, new samples
may be drawn from the weighted particles to yield a new, equally weighted ensemble, resetting the cycle (right).
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ensemble collapse, we employ artificial parameter dynamics in this study.We note that this source of noise is
introduced out of computational convenience rather than reflecting a physical process and account for it
explicitly in the filter's derivation in the following section. The consequences of and opportunities created
by artificial parameter dynamics are explored in more detail in section 2.4. In this section, we will first
present the formal background of the nested particle filter with time‐varying parameters, followed by its
algorithmic implementation.
2.3.1. Formal Justification
The core objective of the algorithm presented in this study is the estimation of model parameters θ given a
predefined geological characterization. Due to the introduction of noise through artificial parameter
dynamics, these parameters become a time‐varying quantity described by their trajectory through time
θ0 : m ∶ = (θ0,…, θm). Further introducing a sequence of state observations y1 : t ∶ = (y1,…, yt) and a likeli-
hood function p(y1 : t| θ1 : m) allows for basic Bayesian inference:

p θ0:mjy1:tð Þ ¼ p θ0:mð Þp y1:tjθ1:mð Þ
p y1:tð Þ (4)

where the discrete time step indices c = 0,…,m and s = 1,…,t illustrate the possibility for parameter and state
dynamics, respectively, to operate on different time scales. In this instance we define parameter dynamics
slower than its state counterpart, with each cycle c being comprised of L state time increments. The likeli-
hood of the observation trajectory conditional on the parameter trajectory p(y1 : t| θ1 : m) is a property that
can be difficult to infer directly. Instead, one may expand the numerator by introducing the evolution of
the predicted model state vector x0 : t ∶ = (x0,…, xt) to the likelihood and integrating it out immediately.
We further recognize that the denominator is the integral of the numerator over the parameter trajectory,
whose purpose is the normalization of the numerator, allowing us to formulate the expression to proportion-
ality (∝). This yields:

p θ0:mjy1:tð Þ∝∫p θ0:mð Þp y1:t; x0:tjθ1:mð Þdx0:t (5)

Reformulating the likelihood in terms of the observation trajectory conditional on the trajectory of the pre-
dicted model states yields

p θ0:mjy1:tð Þ∝∫p θ0:mð Þp y1:tjx1:tð Þp x0:tjθ1:mð Þdx0:t: (6)

Now, we may introduce a sequential solution by defining cycles c= 1,…,m, each composed of substeps u= 1,
…,L. The state time increments s are replaced by cycle‐dependent subscripts z= (c− 1)L+u. We further intro-
duce the state forecast operator f(xz| xz − 1, θc), the likelihood function g(yz| xz), and the artificial parameter
dynamics k(θc| θc − 1):

p θ0:mjy1:tð Þ∝∫p θ0ð Þp x0ð Þ∏
m

c¼1
k θcjθc−1ð Þ∏

L

u¼1
f xzjxz−1; θcð Þg yzjxz

� �� �� �
dx0:z (7)

2.3.2. Algorithmic Implementation
We implement equation (7) as a nested particle filter. As previously elaborated, this approximates the ana-
lytically intractable parameter pdf by a set of Nθ particles drawn from the prior, which are then recursively
reweighted, resampled, andmutated. Equivalently, the state pdf is approximated byNθ ensembles ofNx state
particles each. Superscripts (nθ) = 1,…,Nθ and (nx) = 1,…,Nx refer to specific particles of the parameter and

state ensembles. Particles with multiple superscripts, for example, x nθ;nxð Þ , should be interpreted like this:
State particle (nx) of the inner filter belonging to parameter particle (nθ). To aid intuition, we will discuss
the implementation subdivided into its two main constituents: The outer particle filter for the parameters
and the inner particle filters for the states.
2.3.2.1. Inner Particle Filters
Since each inner particle filter is assigned to a parent parameter particle, there are a total ofNθ such filters in
parallel. In the following, we will consider only one of these filters as a blueprint for all others and hence

assume its parent particle θ nθð Þ
c as given. We start by drawing Nx i.i.d., equally weighted initial state
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particles from a suitable prior. This prior does not necessarily have to have an analytic form but could be
obtained from, say, an interpolation of randomly perturbed observations or steady state simulations
with a probabilistic error.

Then, the state particles are propagated individually via the forecast operator f x nθ;nxð Þ
z jx nθ ;nxð Þ

z−1 ; θ nθð Þ
c

� 	
to the

next time step at which observations are available. In practice, the forecast operator is constructed of two

parts: First, the deterministic numerical groundwater model M x nθ;nxð Þ
z−1 ; θ nθð Þ

c

� 	
, which uses x nθ;nxð Þ

z−1 as the

initial conditions and θ nθð Þ
c as the parameters. Uncertain forcings or boundary conditions could also be con-

sidered at this point but are assumed known in this synthetic study for the sake of simplicity. The second part

is an error term εmodeleN 0; σ2model

� �
, which, in our case, consists of a homogeneously applied Gaussian noise

with mean 0 and variance σ2model:

x nθ;nxð Þ
z ¼ M x nθ ;nxð Þ

z−1 ; θ nθð Þ
c

� 	
þJεmodel (8)

where J ¼ 1;…; 1ð ÞT is a vector of ones with the same dimensions as the vector x. The choice of this error
term is not trivial to determine and thus often left to the modeler's discretion. The choice of error we made
above bears two advantages over other commonly used error types: (i) A homogeneous error may only alter
large‐scale absolute deviation in the model's state budget but has little influence on relative state distribu-
tions, thereby reducing interference of the model error on the characteristic flow responses of different para-
meter particles to a minimum: A sufficiently large spatially correlated error (for example, a Gaussian
random field) could create artificial gradients in the head field by allowing the filter to repeatedly resample
state particles with perturbations, which add or remove water in certain regions of the model domain,
whereas a sufficiently large spatially uncorrelated error could cause numerical instability. (ii) Applying
the error homogeneously, on the other hand, restricts the state perturbation onto a diagonal line of slope
1 in state space irrespective of its dimensionality, effectively rendering the error one‐dimensional at the cost
of limiting the algorithm's ability to correct state predictions.

Once all state particles are propagated and a new observation vector yz is obtained, the particles can be

weighted. First, determine the likelihood g yzjx nθ ;nxð Þ
z

� 	
of the observations conditional on the predictions

for each updated state particles. Assuming independent normal observation errors εobseN μ ¼ 0; σ2
obs

� �
,

the full likelihood function can be treated as a composite likelihood (e.g., Varin et al., 2011) calculated from
the product of Nobs likelihoods—one for each individual observation. Each such component is evaluated
according to

l nθ ;nx ;oð Þ
z ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πσ2obs
p exp −

x nθ ;nx ;oð Þ
z −y oð Þ

z

� 	2

2σ2obs

0B@
1CA (9)

where superscript (o) = 1,…,Nobs denotes an index of a specific observation in the observation vector yz or the
index of the corresponding prediction in the state vector x nθ;nxð Þ

z . The composite likelihood ℓ nθ;nxð Þ
z for each

state particle is calculated as the product over all independent likelihood components:

ℓ nθ;nxð Þ
z ¼ ∏

Nobs

o¼1
l nθ ;nx ;oð Þ
z : (10)

This composite likelihood can be used to determine the unnormalized weight of the corresponding state par-

ticle x nθ;nxð Þ
z . In this study, we use the prior as the proposal distribution (Chopin et al., 2013) but note that

other choices are possible (e.g., van Leeuwen, 2010). Assuming that the prior weights are equal, we can nor-
malize the likelihoods to retrieve normalized weights:

w nθ ;nxð Þ
z ¼ ℓ nθ ;nxð Þ

z

∑Nx
nx¼1ℓ

nθ ;nxð Þ
z

: (11)

At the end of each data assimilation step, the state particles are resampled. We select Nx new state particles

from the multinomial distribution weighted according to w nθ;·ð Þ
z (e.g., Gordon et al., 1993; Figure 1). After
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each state particle x nθ ;nxð Þ
z is independently assigned an ancestral index a = 1,…,Nx, it copies the states of its

respective ancestor x nθ;að Þ
z , and the state particle weights are reset to uniformity. The filter then proceeds to

the next time step increment z+1 and repeats from equation (9).
2.3.2.2. Outer Particle Filter
Similarly to the state particle filters, we initiate the parameter particle filter by drawing samples from a sui-
table prior. Like the inner particle filters, the process starts with mutating the particles. As previously estab-
lished, this is achieved through the artificial parameter dynamics k(θc| θc − 1). The precise nature of these
dynamics will be explored in detail in section 2.4, but assume for now that they yield a slightly mutated par-

ticle θ nθð Þ
c for each progenitor θ nθð Þ

c−1 :

θ nθð Þ
c ek θ nθð Þ

c jθ nθð Þ
c−1

� 	
: (12)

The next step is the evaluation of the likelihoods, which are extracted from composite likelihoods of the

inner particle filtersℓ nθ;·ð Þ
z before the state particles are resampled. Since each cycle is composed of L substeps

u = 1,…,L, we form the product of the composite likelihoods over the current cycle, then form the Monte

Carlo integral over the inner particle filter to retrieve the cycle's marginal likelihoodL nθð Þ
c for each parameter

particle:

L nθð Þ
c ¼ 1

Nx
∑
Nx

nx¼1
∏
L

u¼1
ℓ nθ;nxð Þ
z : (13)

Assuming prior equal weights, this marginal likelihood may serve as an unnormalized weight for the para-
meter particles and yields normalized weights according to

w nθð Þ
c ¼ L nθð Þ

c

∑Nθ
nθ¼1L

nθð Þ
c

: (14)

Finally, the weighted parameter particles are resampled equivalently to the procedure of the inner particle
filters. Each resampled particle inherits not only its ancestor's parameter values but also its ancestor's state
particle filter. After resampling, the filter proceeds to the next cycle c+1 and repeats from equation (13). The
pseudocode for the algorithm is provided in Figure S1 in the supporting information.

2.4. Artificial Parameter Dynamics

Introducing artificial parameter dynamics carries the explicit assumption that the model parameters evolve
(randomly) in time. This approach is not a new idea (Doucet & Tadić, 2003; Li et al., 2014) and has been used
in a variety of applications (e.g., Crisan &Miguez, 2018; Kitagawa, 1998; Reichert & Mieleitner, 2009). Some
EnKF variations, such as the one suggested by Pathiraja et al. (2018), also employ explicit random parameter
dynamics for active covariance inflation. Other EnKF inflation methods such as damping of the analysis
(e.g., Hendricks Franssen & Kinzelbach, 2008; Keller et al., 2018) or linear scaling (Anderson &
Anderson, 1999) achieve a similar effect deterministically. Even if no covariance inflation is used, practically
all EnKF applications with joint parameter inference nonetheless render the parameters time‐varying
through the analysis step, although this is rarely stated. A notable exception to this is the Restart EnKF
(Gu & Oliver, 2007), designed specifically to address this issue by restarting the simulation with a time‐
constant parameter set following the analysis step.

Rendering otherwise static parameters time varying is a potentially dangerous assumption: In general, these
artificial dynamics will have no physical equivalent and may thus risk leading to inconsistencies between
states and parameters. Time‐varying parameters can, however, be justified in sufficiently dissipative settings,
which tend to forget their history and thus prevent the accumulation of error (groundwater flow, following a
diffusion equation, is generally dissipative).

We note that alternative approaches to address ensemble collapse in particle filters exist, such as the
Metropolis‐Hastings Markov chain Monte Carlo jumps employed by the SMC2 algorithm (Chopin et al.,
2013). This technique does not require the assumption of time‐varying parameters and is invariant with
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respect to the target distribution but comes at the cost of steadily increasing computational effort, rendering
it ill‐suited for online application.

Beyond these considerations, however, the introduction of artificial dynamics is attractive in several ways.
Primarily, it permits the parameter particle ensemble to rejuvenate itself by introducing a form of covariance
inflation. Cycles of resampling followed by slight mutations allow the ensemble to gradually explore regions
of parameter space not sampled by the initial particles. Unfortunately, an efficient exploration of parameter
space based on random mutation is still precluded by the curse of dimensionality. Hyperparameterization
offers a way to alleviate this issue and provides additional interesting opportunities we will explore in
the following.
2.4.1. Hyperparameterization
Recall that it is often possible to reduce the effective dimensionality of systems, for example, by principle
component analysis (e.g., Wold et al., 1987). In the case of discretized subsurface models, dimension reduc-
tion is often achieved through the use of pilot points (e.g., Doherty et al., 2010; RamaRao et al., 1995), more
conventional zonation into geological units (or facies) of shared properties (e.g., Carrera & Neuman, 1986;
Franssen et al., 2009; Yeh, 1986), or interpolation techniques such as kriging, inverse distance weighting,
or splines (Robinson & Metternicht, 2006; Yeh, 1986). These reduced parameter sets are able to generate
the fully dimensional parameter field required by the model via a predefined set of rules. They can thus
be interpreted as hyperparameters—parameters describing other parameters. The set of rules by which the
hyperparameters relate to the full parameter field equivalent will subsequently be called a field generator.
An illustration of this process is provided in Figure 2.

Adopting a hyperparameterization carries several distinct advantages. First, it allows the user to reduce the
dimensionality of the model's parameterization to the degree of complexity demanded by the geological fea-
tures rather than the numerical grid. The schema in Figure 2 illustrates that the number of hyperparameters
is substantially lower than the number of parameters (six opposed to 460) and the parameterization becomes
independent of grid resolution. More importantly, the field generator guarantees conformance with pre-
scribed geological structures through construction by restricting the exploration of parameter values to a dif-
ferent, possibly simpler space. Conversely, all parameter fields, which cannot be created by the field
generator, are no longer possible outcomes, which may be welcome in pursuit of geological realism. We

Figure 2. Conceptual scheme of hyperparameterization: A limited number of hyperparameters (primary axis length, sec-
ondary axis length, position, rotation, and two conductivities) can generate a full parameter field via a field generator
(green arrows). Randomly mutating the hyperparameters (orange arrows) can efficiently alter aspects of the corre-
sponding parameter field while maintaining the prescribed geological pattern—in this case, a lens embedded in a back-
ground sediment.
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note that many more sophisticated object‐based field generators such as HyVR (Bennett et al., 2019) or
FLUVSIM (Deutsch & Tran, 2002) have been developed and could be adapted to interface with optimizers
such as the one presented in this study.
2.4.2. Random Dynamics in Hyperspace
The reduced dimensionality of the auxiliary hyper (parameter)space permits a simpler exploration of the
parameter space, for example, via Gibbs sampling (e.g., Kruschke, 2014). To implement the artificial
parameter dynamics, we employ custom mutation operators designed to efficiently and randomly explore
the hyperspace. These operators are largely based on Gibbs updates but may include more intricate
actions designed to capitalize on predefined expectations of system response. Beyond the Gibbs updates,
some of the more complex operators like swapping node conductivities (a reflection in hyperspace) find
equivalents in mutation operators of genetic algorithms (interchanging, swap, or Twors mutation; see,
e.g., Abdoun et al., 2012; Sivanandam & Deepa, 2007). Others like removing lenses or adding nodes (a
removal or addition of hyperspace dimensions) are only rarely encountered in evolutionary algorithms,
since most problem statements assume a fixed dimensionality of the parameter space (Lee &
Antonsson, 2000). Formally incorporating hyperparameterization into the framework derived in
section 2.3 could be achieved in two ways: (i) To entirely replace the parameters with hyperparameters,
and interpret the field generator as a deterministic part of the numerical model (a hyperspace‐based
perspective), or (ii) to incorporate them as a latent logic underlying the artificial random dynamics in
parameter space (a parameter space‐based perspective). Both views are different interpretations of the
same process.

2.5. EnKF Setups

To provide a comparison to more prevalent algorithms in hydrogeological literature, we also consider two
different EnKF setups: A classical augmented state‐vector EnKF and an augmented state‐vector EnKF with
GA. Both EnKF setups are initialized with parameter fields created by the field generators but subsequently
operate in joint state‐parameter space (for the standard EnKF setup) or the transformed joint state‐
parameter space (for the GA‐EnKF setup). This approach is a widely used in subsurface hydrology (e.g.,
Tang et al., 2015; Zhou et al., 2011; Zovi et al., 2017), often with initial parameter fields generated by
MPS. In our study, both setups are implemented with covariance localization following the approach of
Hamill et al. (2001) with a length scale dloc of 120 m:
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where Z is the localization matrix, λ ¼ dloc
ffiffiffiffiffiffiffiffiffiffi
10=3

p
, and dij is the Euclidian distance between cells i and j.

Furthermore, both setups employ a Kalman gain damping factor of α = 0.5. In combination, we calculate
the Kalman gain K as follows:

K ¼ α C∘Zð ÞHT H C∘Zð ÞHT þ R
� �−1

(16)

where C is the augmented state vector covariance matrix, ∘ denotes elementwise multiplication, H is the
operator extracting the observation locations, and R is the (diagonal) observation error covariance matrix.
For the GA‐EnKF, C and R are replaced by their respective transformed equivalents. The GA was imple-
mented following the procedure prescribed in Schöniger et al. (2012), using the anamorphosis function
extrapolation rule of Keller et al. (2018) and the observation error covariance transformation approach
of Geppert (2015) and transforming both state and parameter spaces, back‐transforming after each ana-
lysis step.

We further consider a hybrid setup, replacing the nested particle filter's inner filter with EnKFs for the states
only, with dloc = 120m, α= 0.01, and no GA. This setup is designed to capitalize on the comparatively linear
dynamics and Gaussian uncertainties in state space, while retaining the particle filter's flexibility for the
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more demanding parameter inference. The state particle likelihoods ℓ nθ;nxð Þ
z required for the outer filters

(equation (13)) are extracted from the inner EnKFs just before the analysis step.

3. Synthetic Case Study
3.1. Model Setup

We test the algorithm in a synthetic, horizontal 2‐D case study allowing for perfect knowledge of the refer-
ence reality. The model domain is tessellated with hexagonal grids to maximize structural isotropy while
minimizing cell count. The studied aquifer is unconfined, and its synthetic geology features a high‐
conductive paleochannel embedded within low‐conductive background material (Figure 3). Observations
of hydraulic head are taken at 16 wells distributed regularly in a 4 × 4 grid by extracting the corresponding
nodal values and adding uncorrelated Gaussian noise with zero mean and a standard deviation of
σobs = 0.02 m. The geology was assumed known at only three of these wells. Flow in the system is driven
by periodic recharge draining to the western fixed‐head (Dirichlet) boundary. This causes the hydraulic
heads to approach dynamic steady state after a sufficiently large number of cycles, implying that they are
transient but time periodic. The initial state particles were generated by individually perturbing the initial
state observations with the observation error and interpolating and extrapolating to all other cells. Further
relevant model and filter properties are listed in Table S1 (supporting information). The algorithm was
implemented in Python, interfacing with MODFLOW‐USG (USG: unstructured grid; Panday et al., 2013)
through the Python package FloPy (Bakker et al., 2016). Parameters to be estimated were hydraulic conduc-
tivities, and the observed and predicted states were hydraulic heads.

3.2. Field Generators and Mutation Operators

We test the nested particle filter algorithm for three hyperparameterizations corresponding to three different
geological conceptual models against the same synthetic reference. The motivation for investigating these
scenarios is that geological characterizations of field sites are essentially always imperfect. The hyperpara-
meterizations considered are based on pilot points, lenses embedded in background sediment, and a mean-
dering paleochannel embedded in background sediment. The latter two scenarios feature Gaussian
heterogeneity independently within the background sediments and features (channels/lenses), which was
deliberately mischaracterized: The correlation length of the synthetic test case is 3 times larger than its repre-
sentation in the model used in data assimilation (Figure 4).

Following the concepts introduced in section 2.4, each scenario corresponds to a unique hyperparameteriza-
tion with its own field generator and mutation operator. When called, the mutation operators carry out none
(5% chance), one (55% chance) or two (40% chance) of a selection of actions which are listed in Table S2

Figure 3. Schematic overview of the synthetic reference. The geology consists of a high‐conductive paleochannel in low‐
conductive background material (a). Observations are taken at 16 locations, but the geology is assumed known at only
three wells. The northern, eastern, and southern boundaries are no‐flow, while the western boundary with a fixed head of
1 m serves as the system's only sink. The system's mean water table (b) is established by periodic recharge boundary
condition (c).

10.1029/2018WR024408Water Resources Research

RAMGRABER ET AL. 9734



(node‐based), Table S3 (lens‐based), and Table S4 (meander‐based) in the supporting material. The no‐
mutation chance is added to ensure that the ensemble can remain within an optimum, once located.
3.2.1. Node‐Based Field Generator
The first field generator is based on a classical interpolation approach: A selection of nodes is randomly
placed in the model domain, each of which is assigned a hydraulic conductivity. Creation of the full para-
meter field follows from interpolation and extrapolation according to the nodes' and cells' spatial positions
using inverse distance weighting with a high power factor (Shepard, 1968). This yields parameter fields very
similar to what would be obtained through Voronoi tessellation (e.g., Aurenhammer & Klein, 2000). The
hyperparameters are the number of nodes and the position and hydraulic conductivity of each node.
Points of known geology are represented by fixed nodes with immutable, perfectly known hydraulic conduc-
tivity. On average, this scenario features 100 hyperparameters.
3.2.2. Lens‐Based Field Generator
This field generator creates geological patterns based on distributing elliptical lenses of defined geometric
properties over the model domain. Creation of the full parameter field is achieved by assigning each cell
one of two sediment facies, depending on its placement with respect to the lenses. Parameters are then
assigned based on two separate facies‐specific conductivity maps for each particle, each of which is defined
over the whole model domain with a specified mean, standard deviation, and variogram. The hyperpara-
meters are the conductivity mean for both facies maps, the number of lenses, and the position, size, rotation,
and aspect of each lens. Points of known geology are limits enforcing one of the two facies types, whose inter-
nal heterogeneity is—as described above—mischaracterized. On average, this scenario features
42 hyperparameters.
3.2.3. Meander‐Based Mutation Kernel
The third field generator is conceptually similar to the lens‐based field generator, but it generates meander‐
like features. First, the field generator generates a meander from the hyperparameters. The creation of the
full parameter field is based on assigning each grid cell a sediment facies depending on whether it is located
within or outside the meander. This scenario also employs two facies maps, with the same fundamental mis-
characterization of internal heterogeneity. The creation of themeander from the hyperparameters is a multi-
step process illustrated in Figure S2 (supporting information). Hyperparameters are the mean hydraulic
conductivity for both facies maps and several parameters specifying the meander: The position and orienta-
tion of the start point and end point, the meander phase shift, the meander width, and the channel width.
Points of known geology are represented as guaranteed adherence to one of the two facies types. Due to
the complex nature of this field generator, an iterative procedure is required to ensure conformance with
points of known geology. After mutation, the meander's phase shift is randomly adjusted until a conforming
facies distribution is found. If no such move is possible, the proposed mutation is rejected. This scenario fea-
tures nine hyperparameters.

3.3. Computational Setup

The algorithmwas tested on two desktop computers using a 64‐bit Windows 7 OS, with Intel® Core™ i7‐2600
CPU @ 3.4GHz and Intel® Core™ i7‐3770 CPU @ 3.4GHz processors and 8 GB of RAM. The simulation of

Figure 4. Mischaracterization of the synthetic reference's facies heterogeneity. The isotropic correlation length of the
Gaussian heterogeneity in the synthetic reference's geology (a) is 3 times as large as assumed in the geological charac-
terization (b).
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the full synthetic calibration period of 750 days for the nested particle filter scenarios and the hybrid scenario
was achieved using 200 parameter particles with five state particles each. For the EnKF scenarios, the
ensemble was initialized with 1,000 joint state‐parameter realizations.

Computation times for the nested particle filter varied depending on the hyperparameterization used: The
node‐ and lens‐based scenarios required about 18 core hours for a full run, well below the available time
in a field application. The meander‐based hyperparameterization runs required significantly more time
due to the iterative nature of its mutation operator, demanding about 49 core hours of computation time.
The simulation times reported above were obtained for a sequential implementation of the algorithm. A par-
allelized setup was tested but dismissed as ineffective after increasing the computation time by a factor of 4
due to overhead. Each scenario was repeated with 10 different random seeds to test the reproducibility of the
results obtained. A full run for the EnKF setups required about 18 core hours each. This time requirement
was constant for all hyperparameterizations, since the field generators were only called once during the initi-
alization of the algorithm.

4. Results and Discussion

We first report the parameter fields obtained at the end of the data assimilation period. Subsequently, we
investigate the head and conductivity discrepancies between the ensemble results and the synthetic refer-
ence. Finally, we investigate the deterministic prediction performance of the obtained parameter fields
and conclude with a discussion of the results.

4.1.. Optimized Parameter Fields

Figure 5 depicts a selection of parameter fields at different points in time as obtained by the nested particle
filters. The first column (Figures 5a, 5d, and 5g) illustrates selected samples from the initial parameter fields,
created by the different field generators with randomized hyperparameter input. The second column
(Figures 5b, 5e, and 5h) shows the expectation of the final cycle's ensemble for selected random seeds.
The third column (Figures 5c, 5f, and 5i) illustrates the average parameter field over all 10 random seeds
obtained at the end of the calibration period. A comparison with Figure 2 reveals that even the structurally
mischaracterized field generators (node‐based and lens‐based) seem to evolve their hyperparameters in a way
allowing for the creation of a structure functionally similar to the reference meander.

Results for the hybrid nested particle filters with inner EnKFs match the findings of these scenarios
(Figures S3 to S5, supporting information). This can be explained by collapse of state uncertainty in the first
quarter of the simulation time (Figures S6 to S8, supporting information), after which there are no more
functional differences between the two particle filter setups.

Note that the mean parameter fields (Figure 5, second column; Figures S3 to S5) are more crisp than one
would expect from an ensemble‐based optimizer. This results from a weight‐based ensemble collapse of
the outer filter during every calibration cycle, right before new diversity is created by the artificial parameter
dynamics. Contributing factors are the parameter cycle length, the number of observation points, the obser-
vation error standard deviation, the sensitivity of the predictions to changes in the parameter values, and the
magnitude of parameter changes proposed by the artificial parameter dynamics. While this study's model
and setup resulted in repeated collapses, other systems and sites may be less prone to degeneration and could
preserve more of the probabilistic information. For interested readers, a quantitative analysis of this collapse
considering the setup of the nested particle filter is provided in Appendix A. It is worth noting, however, that
the optimization of the parameter fields proceeds despite the loss of most probabilistic information. This
becomes evident in the posterior parameter fields' tendency to express hydraulic conductivity distributions
functionally similar to the synthetic reference field (Figure 5, third column).

Figure 6 summarizes the results for the two EnKF scenarios. The first, second, and third rows correspond to
the node‐based, lens‐based, and meander‐based scenarios. Columns one to four illustrate results of the stan-
dard EnKF scenarios, columns five to eight those of the GA‐EnKF scenarios. The first and fifth columns
show individual parameter realizations at the end of the assimilation period, the columns to their right
the corresponding ensemble average. The third and seventh columns illustrate the final standard deviation
of the hydraulic conductivities, and the fourth and eighth columns the standard deviations of the hydraulic
heads at the end of the assimilation period.
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Inspecting the optimized parameter fields of the EnKF scenarios, we observe that both scenarios have iden-
tified the general structure of the reference conductivity field. Unfortunately, however, we also note that the
realizations of the final ensemble (Figure 6, columns 1 and 5) have all but lost the geological features defined
in the initial field generation. In the standard EnKF, remnants of the initial structural features still remain
(Figure 6, column 1), whereas the GA‐EnKF seems to have completely erased the structural differences. The
standard deviations of parameter uncertainty (Figure 6, columns 3 and 7) for the lens‐based and meander‐
based hyperparameterizations (Figure 6, rows 2 and 3) further indicate regions in the southeastern quadrant
for which the ensemble seemed to have collapsed against the prescribed lower bound of the hydraulic con-
ductivity, in turn also collapsing the local state uncertainties (Figure 6, columns 4 and 8). This effect is more
pronounced for the standard EnKF than for the GA‐EnKF scenario. Finally, we note that for both EnKF sce-
narios the node‐based hyperparameterization appears to retain the highest state and parameter uncertainty
at the end of the data assimilation period.

4.2.. Parameter Estimation Performance

We now analyze the optimized parameter fields and their resulting state predictions. The perfect knowledge
of the synthetic model allows us to investigate the deviations from the reference even at locations where
otherwise no information would be available. In order to avoid overinterpreting statistical artifacts, we
investigate the parameter and state fields averaged over all 10 random seeds. Figure 7 illustrates the state
deviations (Figure 7, first column) and the parameter deviations (Figure 7, second column) for the node‐
based (Figure 7, first row), lens‐based (Figure 7, second row), and meander‐based (Figure 7, third row)

Figure 5. Selected parameter fields for the three field generators: Node‐based (a–c), lens‐based (d–f), and meander‐based
(g–i); the first column (a, d, and g) illustrates selected initial parameter particles; the second column (b, e, and h)
shows expected final parameter fields for selected random seeds; the third column (c, f, and i) depicts mean final para-
meter fields through all 10 random seeds.
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scenarios. The corresponding standard deviations are illustrated in Figure S9, their counterparts for the two
EnKF scenarios are provided in Figures S10 to S13, and deviations for the hybrid nested particle filter are
illustrated in Figure S14 (supporting information).

Comparing the state deviations of the nested particle filters (default and hybrid setups), we note a few
interesting aspects: All three scenarios managed to reproduce the state observations along the synthetic
meander relatively well. This is a result of the high correlation between observed heads within the
meander and results in a heavy likelihood penalty should this continuous, high‐conductive structure
be broken or not created. We further note that on average both the node‐based and lens‐based scenarios
identify conductivity fields, which reproduce head observations at the observation points well but
deviate from the reference between measurement points. It is worth noting that the node‐based hyper-
parameterization develops larger state deviations in between observation points than the lens‐based case.
A possible explanation is that the node‐based approach allows an almost continuous adjustment of
hydraulic conductivity, whereas the lens‐based method is essentially binary. The meander‐based case
succeeds in reproducing observations within the meander but deviates substantially for outlying
observation wells.

To explain this inability to reproduce the state observations farther into the background facies, it may help to
consider the parameter field deviations in the light of the mischaracterization of heterogeneity (Figure 4).
While the optimization algorithm identifies the correct mean background conductivity, the state mismatch
suggests that this mischaracterization results in an underprediction of states compared to the reference. This
phenomenon is likely rooted in an inability to replicate the effects of the reference’s internal heterogeneity
patterns. The lens‐based scenario is subject to the same fundamental mischaracterization but the indepen-
dent placement of high‐conductive lenses at strategic locations within the background facies allows compen-
sating this structural error. A closer look at the internal background heterogeneity reveals that the optimizer
places clusters of high‐conductive lenses along the northeast or southwest of the model domain in the node‐
based and lens‐based scenarios. We believe that these placements compensate the unresolved internal varia-
bility of the background field. In the node‐based scenario, we find parameter fields with features similar to

Figure 6. Selected parameter fields (columns 1, 2, 5, and 6) and the standard deviations of conductivities (columns 3 and 7) and heads (columns 4 and 8) obtained by
the EnKF for the three field generators at the end of the data assimilation period: Node‐based (row 1), lens‐based (row 2), and meander‐based (row 3); the first
column (a, i, and q) illustrates selected realizations of the standard EnKF scenario; the second column (b, j, and r) shows the ensemble mean of the standard EnKF
scenario; the third (c, k, and s) and fourth column (d, l, and t) illustrate the standard deviations of parameters and heads; the fifth (e, m, and u), sixth (f, n, and v),
seventh (g, o, and w), and eighth (h, p, and x) are the corresponding entries of the GA‐EnKF scenario.
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the lens‐based case, despite much greater freedom in the distribution of conductivities. Recurring features
include high‐conductive clusters in the southwest, an underestimation of conductivity between the
second, third, sixth, and seventh observation wells (counting left to right, top to bottom) or in the
southeast. These recurrences suggest that a number of features of the reference conductivity field may not
be sufficiently informed by the head observations and that there likely are more stable, or more easily
identifiable, equivalent solutions to the reference.

Figure 7. Mismatch between the synthetic reference and ensemble mean at the end of the data assimilation period for
hydraulic heads (a, c, and e) and hydraulic conductivities (b, d, and f), averaged over 10 random seeds for the nested
particle filter scenarios. Results are shown for the node‐based (a, b), lens‐based (c, d), and meander‐based (e, f) hyper-
parameterizations. Mind that the relation of colors to quantities is reversed between the state mismatch (a, c, and e) and
the parameter mismatch (b, d, and f) columns. This was a deliberate choice to visually underline the common relation of
parameter underestimation to state overestimation, and vice versa.
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4.3.. Predictive Performance

As the gradual improvement of model predictions is a major objective of the nested particle filter, it may be
worth investigating prediction performance without data assimilation and the explicit assumption of time‐
varying parameters. To do so, we extract the expected parameter values at the end of each cycle and repeat
a deterministic simulation over 90 recharge cycles for both the particle filter and EnKF scenarios. After a
dynamic steady state has been established, we determine the average root‐mean‐square error between the
states xpredicted and the corresponding synthetic reference xsynthetic at the observation points over the final
recharge period s = 1,…,100. We refer to this quantity as the prediction root‐mean‐square error (pRMSE)
and calculate it according to

pRMSE ¼ 1
Nobs

∑
Nobs

o¼1
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We furthermore calculate the percentage bias of the predicted states according to

pbias ¼ 1
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The results of this evaluation are visualized in Figure 8.

On average, we observe an increase in predictive performance across all hyperparameterization scenarios,
albeit with varying degrees of stability and fidelity. For the nested particle filter, the final pRMSEs of the
node‐based, lens‐based, and meander‐based scenarios fall approximately between 0.05 and 0.2 m, 0.1 and
0.4 m, and 0.15 and 0.3 m, respectively. The final relative biases of the predictions for the node‐based,
lens‐based, and meander‐based scenarios fall between ±10%, −10% to +20%, and ±10%, respectively.
Initially, all three scenarios display—for most random seeds—a positive bias but vary in the magnitude
of their respective pRMSEs. The discrepancies in initial pRMSEs can be explained by the nature of the
different hyperparameterizations, and how much they are constrained by prior geological information.
The node‐based scenario is barely constrained, with the contribution of the three nodes of known conduc-
tivity lost among the effect of 50 randomized nodes. The lens‐based scenario featured the highest prior
pRMSEs, as a replication of the reference's state distribution requires a specific arrangement of lenses
unlikely to emerge by chance. The meander‐based case displayed the lowest prior pRMSEs, owing to
the strong constraint placed on the meander's path—it has to pass through a specific well in the north-
west—and the overall low number of hyperparameters, increasing the chances of creating a prior para-
meter particle near an optimum. It is worth noting that we are free to adapt the ensemble size during
the optimization process. This would, for example, allow us to initialize the filter with a large ensemble
of prior particles, identify the best among them through weighting, and then resample (and proceed with)
a smaller ensemble.

Aside from long‐term optimization, however, we observe short‐term deviations from prevailing optima. The
occurrence of such instabilities is not surprising given the probabilistic nature of the artificial parameter
dynamics but is exacerbated by the limited cycle length. Across the scenarios, we observe a qualitative drop
in optimization stability from the node‐based, through the lens‐based, to the meander‐based hyperparame-
terization. The relative stability of the node‐based scenario is based in the absence of hyperparameters with a
large‐scale impact on the conductivity field, effectively limiting the damage from resampling a subpar muta-
tion. Conversely, the instability of the meander‐based scenario (observed in both the default and hybrid
setup) can be explained by the strong interaction between its hyperparameters, none of which can be altered
without large‐scale consequences. This also provides an explanation for the apparent presence of local
optima, which become evident by prolonged sequences during which proposed mutations are repeatedly
rejected (e.g., Figure 8 c, random seed 5). The lens‐based scenario appears to be as stable as the node‐based
one, but occasionally expresses larger deviations, most likely because some of its hyperparameters have a lar-
ger impact on the resulting parameter field. We note that themagnitude of this instability could be alleviated
by reducing the strength of themutations over time, a common practice inmethods like simulated annealing
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(e.g., Kirkpatrick et al., 1983). In general, the hybrid scenarios with inner EnKFs yield similar performance
to the other nested particle filter setups.

For the full EnKF scenarios, optimization performance was generally more stable. Both standard EnKF
and GA‐EnKF showed similar performance, although the standard EnKF seemingly optimized quicker.
More significant deviations in performance were found between the different geological scenarios.
Since the EnKF scenarios only uses the field generators during the generation of the prior ensemble
and then updates the ensembles as if they were multi‐Gaussian, the observed differences must originate
from variations in the properties of the prior covariance matrices. Extracting the eigenvalues of these
matrices (Figure S15), we note that the node‐based covariance matrix has the highest, the meander‐

Figure 8. Development of pRMSE (a, c, and e) and percentage bias (b, d, and f) through time for the node‐based (a, b),
lens‐based (c, d) and meander‐based (e, f) scenarios and 10 different random seeds, the Inner EnKF scenario, and the
two EnKF scenarios.
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based case the lowest, and the lens‐based case an intermediate effective dimensionality. For the node
based scenarios—offering the largest initial parameter uncertainty with the least spatial correlation—opti-
mization performance was quick and precise, matching or surpassing the nested particle filters. For the
lens‐based hyperparameterization, the standard EnKF appears to outperform the GA‐EnKF in both
pRMSE and relative bias and matches the best of the nested particle filters. The GA‐EnKF performs worse
than all nested particle filters, although Figures 8c and 8e suggest steady improvement until the end. This
is likely owed to filter collapse, as Figures 6f and 6h show that the parameter uncertainty collapsed for
both scenarios toward the end. A similar collapse seemingly occurred for the meander‐based hyperpara-
meterization (Figures 6j and l): Both EnKF scenarios feature worse pRMSEs and relative biases than the
nested particle filters, although steady improvements are observed until the end. This ensemble collapse
could be remedied with active covariance inflation.

4.4.. Discussion

The results obtained suggest the nested particle filter can optimize even highly complex hyperparameteriza-
tions, but different degrees of optimization performance divide the investigated scenarios in three classes:
An overflexible setup (node‐based), a balanced setup (lens‐based), and an overconstrained
setup (meander‐based).

Despite given the correct geological structure, the meander‐based scenario performed poorest. Unable to
compensate for a fundamental mischaracterization of the background facies heterogeneity, we found that
the hyperparameterization could not generate parameter fields adequately replicating the synthetic refer-
ence's hydraulic head distribution. Furthermore, high dependence among the hyperparameters suggests
the presence of numerous local optima and unstable optimization performance.

Despite featuring an erroneous geology and being subject to the same fundamental mischaracterization of
heterogeneity, the lens‐based hyperparameterization performed favorably. Its optimized parameter fields
revealed that the lenses can arrange themselves to form features functionally similar to the reference's
high‐conductive meander and even compensated for the mischaracterized heterogeneity. While the predic-
tion performance did not fully measure up to the node‐based scenario, its geological characterization
resulted in smaller deviations from the reference at points where no information would otherwise
be available.

Unencumbered by constraints of complex geology and with many virtually independent hyperparameters,
the node‐based scenario permitted the most flexible adjustment of the conductivity field. While this scenario
best replicated the reference's state observations, a comparison to the synthetic reference's latent states
revealed substantial deviation in‐between observation wells. This suggests that the quality of the fit was at
least partially afforded by over‐parameterization.

Results for the hybrid nested particle filter with inner EnKFs were similar to those obtained with the normal
nested particle filters, owed to an irreversible collapse of state uncertainty, which eliminated differences
between the two setups early on. In a real setting with nonnegligible forecast errors and uncertain forcing,
we expect that these sources of entropy would retain more uncertainty and permit the hybrid filter to better
leverage the efficiency of its inner EnKF.

For the full EnKF reference scenarios, we note that the best performance was achieved for the node‐based
scenario, closely followed by the lens‐based scenario. The lens‐based and the meander‐based scenarios both
suffered from ensemble collapse. This suggests that the EnKF optimization performs best if the initial
ensemble encloses a large volume of parameter space and may perform poorly in scenarios with larger spa-
tial correlations (lens‐based and meander‐based). Where the ensembles did not collapse, the EnKF can yield
parameter fields on par to or better than those from the nested particle filters. Unfortunately, the EnKF's
update procedure abandons the support of the geological prior in the process: The EnKF did not sufficiently
honor the initial geological features in all scenarios considered, yielding posterior parameter fields strongly
deviating from the prescribed geology. This suggests that if conformance with a geological prior is of the
essence, the use of data assimilation and calibration schemes, which implicitly rely smoothness or regularity
assumptions in conflict with the prior's support (e.g., Gaussianity for the EnKF), may not be advisable. In the
present study, we suggest geology‐obeying hyperparameterizations, but MPS with geologically realistic
training images may also work.
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Summarizing the results, we find that the nested particle filter can successfully optimize hyperparameters
whose relation to the state response is highly nonlinear or discontinuous. The scenarios investigated in this
study revealed a number of important aspects: While conformance to arbitrary geology can be enforced with
ease, it is important to leave the algorithm sufficient flexibility to compensate for potential (and in practice
inevitable) mischaracterizations of geology. In the case of the meander‐based field generator, further hyper-
parameters adjusting the mischaracterized heterogeneity might have improved the performance. A general
way to achieve this is by providing options to locally adjust parameter fields, as shown by the lens‐based and
node‐based scenarios. Acknowledging that this compensation for structurally wrong parameters (parameter
surrogacy; Doherty & Christensen, 2011) is often undesirable, its occurrence may nonetheless reveal funda-
mental conceptual errors.

5. Conclusions

In this study, we explored the use of a nested particle filter framework, a generalization of the classic particle
filter for joint state‐parameter estimation, for real‐time parameter optimization in distributed groundwater
models. We made use of hyperparameterized field generators to reduce the dimensionality of the optimiza-
tion problem and to guarantee conformance to a prescribed geology throughout the optimization process,
using variance inflation through artificial parameter dynamics to rejuvenate the parameter particles.
Examining the performance for three simple field generators, we identified versatile hyperparameterization
as a prerequisite for the algorithm's success in mischaracterized settings.

We then compared the optimizer to two classic EnKF setups—a standard state‐vector augmented EnKF and
a state‐vector augmented EnKF with GA, both initialized with samples from the different field generators.
While their optimization performance can be equal or even superior with sufficient initial variability in
the parameter ensemble, none of the scenarios considered sufficiently preserved the prescribed geological
structures. This is a consequence of the EnKF updating its ensembles as if they were multi‐Gaussian in com-
bination with the highly non‐Gaussian support of the parameter priors in grid parameter space. Where geo-
logical fidelity is essential, we thus suggest to combine field generators (e.g., MPS, object‐based generators)
with optimization routines capable of reliably navigating the prior's support. As such, our results make us
believe that the nested particle filter—if adequately (hyper)parameterized—could constitute a valuable com-
plement to other real‐time parameter estimation methods, particularly in scenarios where the conservation
of complex geological features is critical.

We would like to remark that it would theoretically also be possible to have an EnKF operate on a joint state‐
hyperparameter space. This would likely impose a number of restrictions on the design of the field generator
to ensure sufficient regularity and possibly require postanalysis sanity checks to ensure consistency with
geological conditioning data. It is furthermore to be expected that the linear relation between state response
and hyperparameters would be weakened. The design of such EnKF‐friendly hyperparameterizations was
beyond the scope of the present study. It remains open to what degree the efficiency of the EnKF justifies
these self‐imposed restrictions, but we note that this could be an interesting avenue for future research.
Hybrid solutions such as the inner EnKF scenarios considered in this study are also a promising way to lever-
age the EnKF's efficiency for the state updates while retaining the particle filter's generality for the
parameter updates.

A limitation of this study is the lack of uncertainty retained in the particle ensemble, a consequence of the
filter's ensemble collapse, although the framework is in principle capable of sustaining such information and
may do so in different settings or with different likelihood functions. A further limitation is the use of arti-
ficial parameter dynamics, which may preclude an application in systems with longer memory if physical
consistency between states and parameters is of concern. Continuing research could address these issues
by adapting the cycle length across the optimization period, adjusting mutation magnitude and initializing
the filter with a larger parameter ensemble size. Applications in less dissipative settings, such as the simula-
tion of remediation efforts, could be approached by employing a nested particle filter with a different reju-
venation mechanism such as SMC2. The arbitrary nature of parameter dynamics also provides an
adaptive interface to other field generators, for example, MPS. The flexibility of the nested particle filter fra-
mework encourages experimentation with different numerical models, parameter dynamics, states, and
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(hyper)parameters. The algorithm presented herein extends trivially to 3‐D, as none of its elements places a
restriction on the spatial dimensionality of the numerical model.

Appendix A: Investigation of the Ensemble Collapse
In section 4.1. we noted that the outer particle filter in this study collapses during each parameter cycle. In
pursuit of uncertainty information pertaining the parameter distribution, this is of course undesirable. In
this appendix, we investigate the ensemble collapse with a back‐of‐the‐envelope calculation to identify the
reasons for this persistent collapse and how the framework would have to be parameterized to allow for a
better conservation of parameter uncertainty.

As we established in section 2.2, the ensemble collapses if only one particle retains any significant nonzero
weight. According to equation (14), the parameter particle weights are proportional to the marginal likeli-
hood derived over the arithmetic mean of its inner particle filter's likelihoods. We summarize:

w nθð Þ
c ∝L nθð Þ

c ¼ 1
Nx

∑
Nx

nx¼1
∏
L

u¼1
∏
Nobs

o¼1
l nθ;nx ;noð Þ
z (A1)

Since we want to learn about the relations required to prevent degeneracy, it may be useful to consider a sim-

plified case in which l nθ;nx ;noð Þ
z ¼ l nθð Þ ;∀nx ;no;u, which leads to the following simplification:

w nθð Þ
c ∝

1
Nx

∑
Nx

nx¼1
∏
L

u¼1
∏
Nobs

o¼1
l nθ ;nx ;noð Þ
z ¼ l að ÞLNobs

(A2)

The prevention of the parameter filter collapse requires that at least some parameter particles retain a non-
zero weight ratio. Omitting the time subscripts from the notation for the sake of simplicity, we define a
weight ratio r:

r ¼ w bð Þ

w að Þ ; 0 ≤ r ≤ 1;w bð Þ≤ w að Þ (A3)

where a,b∈ 1,…,Nθ. Using the simplification introduced in equation (20), we can adapt the expression for the
likelihood (equation (9)):

l nθð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2obs

p e

−

nθð Þ
� 	2

2σ2
obs

0@ 1A
(A4)

where nθð Þ denotes the mismatch between state prediction and observation, which—in accordance with the
simplification introduced in equation (20)—is assumed equal for all state particles, observations, and time
steps for the sake of this exercise. Combining equations (A2)–(A4), we can derive an expression for the
weight ratio depending on the observation mismatches between two parameter particles a and b:

R ¼ e
LNobs

að Þð Þ2
2σ2

obs

−LNobs

bð Þð Þ2
2σ2

obs

� �
(A5)

which can be reformulated to yield an expression for the required relation between observation mismatches
given a weight ratio R:

2σ2
obslnR
LNobs

¼ að Þ
� 	2

− bð Þ
� 	2

: (A6)

As R is bounded between 0 and 1 and all other variables are positive, the term on the left‐hand side is either
zero or negative. Since we further defined w(b) ≤ w(a), we get (a) ≤ (b). We can reformulate equation (A6) into
an expression for (b) given (a):
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bð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að Þð Þ2− 2σ2obslnR

LNobs

s
: (A7)

Results for the values used in this study (L= 10,Nobs = 16, σobs = 0.02) are illustrated in Figure 9 for different

weight ratios. The larger a given particle's average observation mismatch að Þ, the less a second particle's aver-

age observation mismatch bð Þ is allowed to deviate from it to conform to the desired weight ratio. The order of
magnitude of δ reveals the reason for the observed ensemble collapse. Assuming that we deem a weight ratio
of 10% sufficient, and assuming that one particle has an average observation mismatch of 5 cm, a second
(inferior) parameter particle could deviate at most 1.15 μm from the average observation mismatch before
causing degeneracy—a highly improbable event.

Based on this simplified representation, we can determine a number of variables that can help prevent
weight degeneracy: Shortening the cycle length L is a possibility, but risks carry over effects arising from
insufficient dissipation. Decreasing Nobs or increasing σ2obs could also yield improvements, but both
variables are generally out of the user's hand. A more viable solution strategy may be to reduce the magni-
tude of changes proposed in the artificial parameter dynamics to reduce the resulting deviation in state
predictions.
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