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Key Points:12

• On-site 4He analysis reliably substitutes for expensive and time-consuming lab-13

based 4He analysis.14

• We present a Bayesian groundwater mixing model explicitly considering un-15

known end-members and tracer-related uncertainties.16

• Unknown water sources can be identified by combining the Bayesian mixing17

model and 4He analyzed on-site.18
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Abstract19

Analyzing groundwater mixing ratios is crucial for many groundwater management20

tasks such as assessing sources of groundwater recharge and flow paths. However,21

estimating groundwater mixing ratios is affected by various uncertainties, which are22

related to analytical and measurement errors of tracers, the selection of end-members23

and finding the most suitable set of tracers. Although these uncertainties are well24

recognized, it is still not common practice to account for them. We address this issue25

by using a new set of tracers in combination with a Bayesian modeling approach, which26

explicitly considers the possibility of unknown end-members while fully accounting for27

tracer uncertainties. We apply the Bayesian model we developed to a tracer set which28

includes helium (4He) analyzed on-site to determine mixing ratios in groundwater.29

Thereby, we identify an unknown end-member, that contributes up to 84±9% to the30

water mixture observed at our study site. For the 4He analysis, we use a newly31

developed Gas Equilibrium Membrane Inlet Mass Spectrometer (GE-MIMS), operated32

in the field. To test the reliability of on-site 4He analysis, we compare results obtained33

with the GE-MIMS to the conventional lab-based method, which is comparatively34

expensive and labor intensive. Our work demonstrates that (i) tracer-aided Bayesian35

mixing modeling can detect unknown water sources, thereby revealing valuable insights36

into the conceptual understanding of the groundwater system studied and ii) on-site37

4He analysis with the GE-MIMS system is an accurate and reliable alternative to the38

lab-based analysis.39
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1 Introduction40

A groundwater sample usually consists of a mixture of water sources with dif-41

ferent renewal rates such as fossil groundwater, decadal-age groundwater or recently42

infiltrated river water (e.g., Turnadge & Smerdon, 2014). The degree of mixing mostly43

depends on the aquifer’s heterogeneity and the extent of the well screen (e.g., Jasechko,44

2016). Quantifying mixing ratios is key for assessing groundwater recharge (e.g., Bey-45

erle et al., 1999) and groundwater vulnerability to pollution (e.g., Jasechko, 2016), and46

is thus essential to manage water resources sustainably (Pelizardi et al., 2017).47

Groundwater mixing models rely on known concentrations of conservative tracers48

to quantify the fractions of different water sources contributing to a water sample49

(e.g., Carrera et al., 2004; Barthold et al., 2011; Cook & Dogramaci, 2019). Mixing50

ratios are estimated by comparing tracer concentrations in the sampled mixture with51

the concentrations of previously determined end-members (i.e., signatures of different52

water sources) by means of a mass balance approach (e.g., Christophersen et al.,53

1990; Hooper et al., 1990; Sanborn et al., 2016). In a bivariate tracer-tracer plot,54

end-members represent the most extreme values, with the sampled mixtures lying in55

between the end-member data points (Fig. S1 in the Supporting Information).56

The first step to estimate groundwater mixing ratios is to determine end-members.57

This is mostly a conceptual step based on a sound understanding of the respective58

groundwater system e.g., through previous research or water table heads (e.g., Rueedi59

et al., 2005). It can, however, be aided by methods based on Principal Component60

Analysis (PCA), which find the minimum number of end-members to sufficiently ex-61

plain the observed variability of a given tracer set (Christophersen & Hooper, 1992;62

Valder et al., 2012; Pelizardi et al., 2017). The second step consists of calculating63

the mixing ratios for the identified end-members based on the tracer concentrations64

of each sample using a mass-balance approach (in which by definition the fractions of65

each end-member for a mixed sample have to add up to 1).66
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Previous research has demonstrated that estimated mixing ratios derived from67

different tracers are not necessarily consistent (e.g., Carrera et al., 2004)—an issue68

which is usually handled by employing a least-squares approach to find the best fit of69

estimated mixing ratios (e.g., Christophersen et al., 1990). It has also been shown that70

tracer set size and composition as well as the correct identification of end-members71

have a substantial influence on the derived mixing ratios and that, in general, larger72

tracer sets yield more robust estimates (Barthold et al., 2011; Delsman et al., 2013).73

Such discrepancies stem not only from uncertainties related to inconsistencies74

in sampling and measurement procedures (i.e., during field work and with regard to75

analytical measurement precision), but also from the underlying assumptions regarding76

conventional end-member mixing itself. These assumptions include that: (i) a water77

sample can be explained as a linear mixture of end-members (e.g., Delsman et al.,78

2013), (ii) the tracers behave conservatively, at least in the sense that any chemical79

reaction is much slower than the mixing process itself (e.g., Valder et al., 2012), (iii)80

tracer signals of each species are sufficiently distinct (e.g., Pelizardi et al., 2017), (iv)81

the chemical signatures of end-members are constant over time (e.g., Hooper et al.,82

1990), and (v) all end-members are identified correctly (Carrera et al., 2004; Delsman83

et al., 2013). These assumptions must either be justified or systematic uncertainties84

must be accounted for (in addition to tracer-related uncertainties). Although it is85

widely acknowledged that mixing ratios are associated with high uncertainties (e.g.,86

Hooper, 2003; Carrera et al., 2004; Rueedi et al., 2005; Delsman et al., 2013), few87

attempts have been made to account for them. Hooper et al. (1990) calculated the88

uncertainty of the mixing ratios based on linear approximation. Brewer et al. (2002)89

build a hierarchical Bayesian model that allows us to infer the tracer uncertainty of90

the end-member concentrations. The approach of Delsman et al. (2013) is similar,91

however, it is based on an informal likelihood function, which is constructed based to92

the measurement uncertainties. In contrast, Christophersen et al. (1990) and Hooper93

(2003) tested by means of a PCA if a data set could be at all explained by a mixing94
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model (without defining the end-members). This can be seen as a test of the fifth95

assumption. Neglecting systematic uncertainties related to the assumptions mentioned96

above leads to overconfident estimates of groundwater mixing ratios, which can result97

in false and unreliable conclusions. While assumptions (i)–(iv) can typically be well98

defended, assumption (v) is most critical.99

Besides traditional end-member mixing models, different Bayesian approaches100

have evolved in isotope hydrology and geochemistry to constrain source contributions101

of various Earth surface processes (e.g., Soulsby et al., 2003; Erhardt & Bedrick, 2013;102

Arendt et al., 2015; Davis et al., 2015; Blake et al., 2018; Parnell & Inger, 2019).103

We present a newly developed Bayesian groundwater mixing model that builds104

on existing Bayesian approaches by adding two new features to better represent and105

describe the aforementioned uncertainties: first, our model explicitly considers uncer-106

tainties originating from sampling and measuring of tracer species; second, the model107

accounts for the possibility of principally unknown end-members (from here on re-108

ferred to as residual end-member). Not only can our approach express the resulting109

uncertainties of the estimated end-member mixing ratios, it also allows to quantify the110

mixing ratios of the residual end-member and its tracer concentrations. Separating111

these two error sources is important for the interpretation, as otherwise any model112

mismatch would be “explained” by poor measurements alone. While it is possible to113

reach similar conclusions by carefully interpreting residuals of traditional end-member114

mixing models (e.g., Hooper, 2003), more indirect reasoning is required to weight the115

observation errors accurately.116

In addition to the development of the Bayesian mixing model, we introduce the117

use of 4He analyzed on-site as a tracer to estimate groundwater mixing ratios. The118

inert biochemical nature of the noble gas helium (mainly 4He) makes it an ideal tracer119

to study groundwater dynamics, e.g., such as recharge and surface water–groundwater120

interactions (e.g., Price et al., 2003; Marty et al., 1993; Kulongoski et al., 2008; Gardner121
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et al., 2011; Müller et al., 2016; Batlle-Aguilar et al., 2017). Typically, conventional122

lab-based 4He analysis is costly and labor-intensive, therefore, only a few specialized123

laboratories can carry out such analyses on a routine basis. Here, we use 4He data124

analyzed in the field with a recently developed portable mass spectrometry system125

(Brennwald et al., 2016) to estimate mixing ratios. Moreover, to test and validate126

the suitability of the new system, we compare 4He concentrations obtained in the field127

with concentrations analyzed at the noble gas laboratory of the Swiss Federal Institute128

of Technology in Zurich, Switzerland.129

Our study aims (i) to derive a novel methodology for estimating groundwater mix-130

ing ratios by explicitly accounting for the potential presence of unknown end-members131

and tracer uncertainties and (ii) to assess the suitability of on-site 4He analysis using132

a portable mass-spectrometry system by comparing it to conventional lab-based noble133

gas analysis.134

2 Site Description and Conceptual Model135

Our study site, the Hardwald, is located in north-western Switzerland in close136

proximity to the Rhine river and the city of Basel and covers about 10 km2 of mainly137

urban and industrial areas (Fig. 1).138

The conceptual hydrogeological model (based on previous research; Moeck et139

al., 2016; Moeck, Radny, Popp, et al., 2017) assumes two main aquifers at the site140

(Fig. 2): an unconfined Quaternary sand-gravel aquifer, which is overlying a karstified141

Upper Muschelkalk aquifer (Moeck et al., 2016). The former consists of unconsoli-142

dated, highly conductive (k∼270 m/d), fluvial Quaternary sediments (Spottke et al.,143

2005). The latter mainly consists of low-conductive limestone (k∼10 m/d), is frac-144

tured and partly confined (Spottke et al., 2005; Moeck et al., 2016). In both aquifers,145

groundwater generally flows from southeast to northwest in the direction of the Rhine146

River. Towards the Rhine, an impermeable boundary formed of limestone of the147
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Figure 1. Study site showing the Hardwald with the infiltration system of channels and ponds

(blue), and its surrounding area. Sampling points are marked as symbols containing black dots,

the point in magenta indicates the inlet of Rhine water to the infiltration system.
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Figure 2. Conceptual model of the hydrogeological setting and flow system showing the local

groundwater mound caused by the artificial infiltration, and the mixing between recently infil-

trated Rhine water (i.e., end-member 1, E1 in blue), regional groundwater (i.e., end-member 2,

E2 in red) and potential unknown water sources (i.e., residual end-member, Eres in gray).

Middle Muschelkalk exists (Moeck et al., 2016). This boundary fosters up-welling148

of groundwater from the Upper Muschelkalk aquifer into the Quaternary sand-gravel149

aquifer towards the northern part of the study area (see Spottke et al., 2005 and Moeck150

et al., 2016 for more details). Moreover, groundwater mixing between both aquifers151

is most likely amplified by groundwater pumping (Moeck, Radny, Popp, et al., 2017).152

The Upper Rhine Graben—a highly deformed flexure zone—constitutes the western153

boundary of the study area (Moeck et al., 2019). There the complex hydrogeological154

features (i.e., fault zones and fractures) result in high uncertainties in the hydraulic155

conductivity distribution (Moeck et al., 2019; see Fig. S2 for a simplified illustration156

of the bedrock units mentioned above).157

Since the 1950s, groundwater has been abstracted from a pumping well field158

(Fig. 1) within the Hardwald site to produce drinking water. In response to an in-159

creased water demand caused by a growing population and industry, managed aquifer160

recharge (MAR) was introduced in 1958 by taking raw water from the Rhine and divert-161
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ing it through channels and ponds (Figs. 1 and 2). From there the water naturally infil-162

trates into the underlying Quaternary aquifer with an average rate of 95 000 m3/day.163

As the artificial recharge exceeds the water withdrawal by a factor of two, a local164

groundwater mound forms at the recharge site (Fig. 2; Moeck, Affolter, et al., 2017).165

This groundwater mound serves as a natural barrier against water inflow from up-166

stream areas by reversing the natural groundwater flow direction—a crucial feature167

to protect the drinking water production area as the upstream region is exposed to168

several potential sources of contamination (e.g., surrounding industry; Fig. 1).169

Figure 2 also shows potential mixing pathways between the artificially infiltrated170

water (i.e., Rhine water, E1), unknown end-members (Eres) and regional groundwa-171

ter (E2), which is known to contain certain contaminants (Moeck, Radny, Popp, et172

al., 2017). Traces of these contaminants can be found in the abstracted drinking173

water (Moeck et al., 2016). The admixture of undesirable regional groundwater to174

the abstracted drinking water is likely to occur given the hydrogeological setting and175

groundwater withdrawal. The fraction of regional groundwater admixed to the ab-176

stracted drinking water might differ, though, depending on the specific well location.177

Therefore, a spatially resolved, quantitative assessment of the admixture of regional178

groundwater in the abstracted water is key for the future management of this MAR179

site, which provides drinking water for more than 200 000 people living in the agglom-180

eration of Basel.181

3 Material and Methods182

To determine groundwater mixing ratios, we analyzed a set of environmental183

tracers. From August 15th to August 25th in 2016, we sampled 20 groundwater ob-184

servation and pumping wells all over the study area as well as the infiltration channel185

from which the Rhine water is being distributed (Fig. 1). On December 5th 2017, we186

sampled another three pumping wells within the study area for the same parameters.187
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For sampling, we either used already pre-installed pumps at the pumping wells or a188

submersible pump (MP1, Grundfos) for the observation wells. We started sampling189

after purging all wells three times according to their volume and after field parameters190

(O2, EC, temperature, pH) had reached a stable level (i.e., at least three consecutive191

measurements with same concentrations within analytical uncertainty; analyzed with192

a calibrated HACH HQ40D portable multi meter). Details for the sampling procedure193

for the individual tracers are given below and in the Supporting Information. All194

tracer data, well locations and well depths are available in the Supporting Information195

(Dataset S1).196

During our sampling campaigns, the MAR system was operated under standard197

conditions (i.e., average water infiltration and abstraction rates which govern the hy-198

draulic head distribution). Thus, hydraulic conditions representative for the standard199

operation of the MAR site were guaranteed.200

3.1 Hydro-Chemical Parameters201

Rock-water interactions lead to an increase in hydro-chemical species (Ca2+,202

Mg2+, Na+, K+, Cl−, H4SiO4, SO2−
4 , EC, alkalinity, total hardness and pH) in ground-203

water with respect to precipitation, which leave characteristic chemical fingerprints204

(Piper, 1944; Cook & Herczeg, 2000). These fingerprints render such hydro-chemical205

species suitable to identify water flow paths and mixing of waters of different origin206

(e.g., Currell & Cartwright, 2011; Dogramaci et al., 2012; Skrzypek et al., 2013). We207

acknowledge that the parameters EC, pH, alkalinity and total hardness are correlated208

with the concentrations of dissolved ions present in a solution. They were, however,209

analyzed independently (see Table S2), and are thus accounted for as individual trac-210

ers.211

We collected samples to analyze all hydro-chemical parameters as unfiltered wa-212

ter samples in one liter Schott glass flasks. The flasks were immediately cooled after213
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sampling and analyzed the following day at Eawag (for methods, limits of quantifica-214

tion and analytical errors please see Table S2).215

3.2 Analysis of 4He216

Helium is a noble gas, which has often been used to quantify groundwater resi-217

dence times and aquifer recharge (e.g., Kulongoski et al., 2008; Gardner et al., 2011;218

Müller et al., 2016; Batlle-Aguilar et al., 2017). 4He is slowly produced by α decay of219

238U, 235U and 232Th in the rock matrix and continuously accumulates in groundwa-220

ter, which makes it an excellent indicator of long groundwater residence times, in the221

order of several hundreds to thousands of years, depending upon aquifer material and222

geology (e.g., Gardner et al., 2011). Please see Texts S2.1 and S2.2 of the Supporting223

Information for a description about the on-site and lab-based 4He analyses.224

3.3 Selection of End-Members225

The commonly used end-member mixing analysis—EMMA—was first presented226

for estimating mixing ratios in stream waters (Christophersen et al., 1990) and is227

still mainly applied in surface water studies (e.g., Hooper, 2003; Bernal et al., 2006;228

Barthold et al., 2011; Valder et al., 2012). EMMA often involves PCA to elucidate the229

minimum number of end-members of a water sample. However, PCA is not appropriate230

for a small number of samples, which is often the case for groundwater studies.231

In groundwater samples, the identification and selection of potential end-members232

is commonly better constrained than in surface waters due to the dampening effect of233

temporal tracer variations within an aquifer (Carrera et al., 2004). Thus, tracer con-234

centrations in groundwater systems show less temporal variability compared to tracer235

concentrations in surface waters. We therefore argue that for estimating mixing ratios236

in groundwater, identifying potential end-members based on expert knowledge such237

as a conceptual model (e.g., pre-existing data or previous studies) and by screening238

through bivariate tracer-tracer plots is a valid and robust approach.239
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Consequently, we selected end-members according to our conceptual model of240

the field site, which is based on previous research conducted in this area (Spottke et241

al., 2005; Moeck et al., 2016; Moeck, Radny, Popp, et al., 2017). Our selected end-242

members generally confirmed our conceptual model by representing the most extreme243

values in bivariate tracer-tracer distribution for most tracers used in this study (Fig.244

S1). We thereby identified two end-members: end-member E1, which represents the245

infiltrated Rhine water (sample taken from the channel from which the Rhine water246

is distributed), and end-member E2, which represents regional groundwater being247

sampled from observation well 21.J.100 deep (Fig. 1). This well is located in the south-248

western area of the study site, which is hardly affected by the artificial infiltration and249

is therefore representative for the regional groundwater component (Fig. 2).250

Although most samples fall well within the linear mixing lines of the two pre-251

defined end-members (Fig. S1), we principally cannot exclude the presence of an un-252

known water source. In cases where the data are not well reproduced by binary mixing253

of the two end-members considering tracer uncertainties, our model assigns a residual254

end-member component (Eres) to explain the observed tracer concentrations (see next255

section for a comprehensive description).256

3.4 Bayesian Mixing Model257

Conventional end-member mixing models (e.g., Christophersen et al., 1990) es-258

timate the concentration C[t] of a tracer substance t at a given well as a mixture of259

M pre-selected end-members Em, with corresponding concentrations CEm [t]:260

C[t] = r1 CE1 [t] + · · ·+ rM CEM
[t] + εt, t = 1 . . . T (1)

where rm, m = 1 . . .M are non-negative mixing ratios that sum up to one, and T is the261

number of tracer substances. The mixing rations are usually estimated by minimizing262

the errors εt with a non-negative least-squares approach. We emphasize that this263
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error term allows no direct interpretation because it lumps together all sources of264

uncertainties.265

To achieve an explicit handling of uncertainties, we extend the classical model266

(Equation 1) by first incorporating observational errors due to tracer-related uncer-267

tainties, and by second accounting for systematic biases due to potentially unobserved268

end-members.269

3.4.1 Observation Errors270

All measured tracer concentrations are subject to errors. The characteristics for271

these errors for any tracer species can be described by means of an observation model,272

p(Cobs | C), which is the conditional probability distribution of the observed but273

erroneous concentrations Cobs if one knew the true observation C. Such distributions274

are either derived from repeated measurements or expert knowledge (i.e., a realistic275

estimation of the overall tracer uncertainty of a sample). For this study we defined276

the observation model as277

p(Cobs | C) = N(C, ρC)

i.e., a normal distribution with a standard deviation of ρ times the mean. This is a very278

simplistic choice. However, other—potentially non-Gaussian—observation models can279

readily be used instead.280

With the help of the observation model the “true” but unknown concentrations281

C are inferred from the tracer data. To achieve this, the true concentrations C are282

treated as additional model parameter, similar to the Bayesian total error analysis283

approach from surface hydrology (Kavetski et al., 2006). The observation model is284

part of the likelihood function and accounts for all tracer-related uncertainties. The285

advantage of this approach is that for the rest of the model derivation we can pretend286

to know the true, error-free concentration C.287
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In our case, we assume an overall tracer uncertainty of ρ = 10% for each indi-288

vidual tracer concentration based on an analytical error of 1-5% (depending on the289

tracer species) plus uncertainties due to inconsistencies in the sampling and analytical290

procedure. For end-member E1 (Rhine water) we assume an overall tracer uncertainty291

of 20% due to the higher variability of tracer concentrations in surface water relative292

to groundwater. This assumption is corroborated by the variance of time series data of293

hydro-chemical tracers (i.e., major ions, pH, EC, total hardness, alkalinity) observed294

at the Rhine monitoring station (located about 7 km downstream of our study area):295

time series data that most likely represent the time frame of infiltration (i.e., the last 3296

months before our sampling took place) show a mean variance of tracer concentrations297

between 10% and 15% (in 2016 and 2017, respectively).298

3.4.2 Residual End-Member299

As described above, total tracer-related uncertainties are 10% (20% for E1, re-300

spectively) accounting for sampling and measurements errors. Even if tracer concen-301

trations were error free, we would not expect the classical model to perfectly match our302

observations due to the systematic bias of not accounting for all end-members present303

in a system.304

To avoid this strong assumption of perfect end-member identification, we in-305

troduce a hypothetical residual end-member (Eres). One can easily imagine that a306

number of unknown end-members actually exist in any complex environmental sys-307

tem. Therefore, we extend the mixing model (1) with a residual end-member:308

C[t] = r1 CE1 [t] + · · ·+ rM CEM
[t] + rM+1 CEres [t], t = 1 . . . T (2)

As the concentrations CEres [t] of the unknown end-member cannot be observed, they309

are treated as additional model parameters. This approach has the advantage that310

not only the fraction rM+1 is acquired but also the concentration profile of Eres is311

revealed, which might allow to identify the hydrogeological origin of Eres.312
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r1[w], r2[w], rres[w]

for all wells w ∈ 1..W

for all tracers t ∈ 1..T

ρ

Eres

E2

E2
obs obs
E1

E1

[w,t] [w,t][w,t]

[t] [t]
[t]

[t] [t]

Figure 3. Graphical representation of the probabilistic mixing model for two end-members

(E1 and E2). Round nodes represent random variables, the square node a constant value, and the

boxes repetition over the index. The colored nodes are observations on which the other random

variables are conditioned on.

It is important to notice that Equation 2 only makes use of the true (inferred)313

concentrations so that the residual end-member corrects for systematic deviations that314

cannot be explained by tracer-related uncertainties.315

3.4.3 Parameter Inference316

The introduction of the observation model and the residual end-member consid-317

erably increase the number of parameters to estimate, so that in a frequentist setting318

(e.g., with maximum likelihood estimation) no unique best parameter values can be319

determined. However, well defined parameter distributions can still be inferred with320

Bayesian inference by using weak and intuitive prior distributions.321

Figure 3 provides a conceptual overview of the dependency of the involved quan-322

tities: all round nodes represent random variables whose distribution are defined by the323

model according to the values of the incoming nodes. For the colored nodes observa-324
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tions are available on which all the other nodes are conditioned (i.e., inferred) on. The325

boxes denote repetitions over the index. For example different “true” concentrations326

of the two end-members are estimated for each tracer. A separate concentration of the327

residual end-member is inferred for every tracer and well. The complete mathematical328

derivation of the corresponding likelihood function used for Bayesian inference can be329

found in the Supporting Information Text S2.330

Additional prior distributions are required for the inference of the unknown quan-331

tities. We define the following prior distributions: (i) a non-informative, flat prior332

U(0,∞) for the true end-member concentrations, (ii) a Dirichlet(1, . . . , 1) distribution333

for the mixing ratios, which defines an uninformative distribution over a simplex that334

guarantees
∑M+1

m=1 rm = 1 and 0 ≤ rm, m = 1, . . . ,M + 1 (see Delsman et al., 2013),335

and (iii) an informative prior for the residual end-member concentrations. For the336

latter, we selected uniform distributions with the lower and upper limits being ±20%337

of any observed tracer concentration.338

3.4.4 Implementation339

The model was implemented in STAN (Carpenter et al., 2017)—a probabilistic340

programming language well suited for Bayesian inference. We generated three indepen-341

dent Monte Carlo Markov Chains (Kruschke, 2015) with a length of 15 000, discarding342

the first 5 000 samples as burn-in. We pre-processed and visualized all data using R343

(R Core Team, 2018).344

4 Results345

4.1 Comparison between On-Site and Laboratory-Based 4He Analysis346

Due to the time demanded for the lab-based 4He analysis, we limited the analysis347

of copper tube samples to a subset (n=17) of the 23 wells analyzed in this study. With348

the GE-MIMS system, however, we analyzed 4He at all 23 wells. We compared the349
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Figure 4. Comparison between lab-based and on-site analysis of 4He concentrations. The

gray band shows the 95% confidence interval of a linear regression (neglecting one outlier marked

as a diamond); error bars represent analytical measurement uncertainties. The data indicate,

that 4He and EC concentrations increase simultaneously, suggesting higher mineralization with

increasing residence time.

two methods to test whether the GE-MIMS system can reliably substitute the lab-350

based 4He analysis. The high linear correlation (adjusted R2=0.98, RMSE=2.4e-8,351

p <0.001; n=16 after neglecting one outlier, with outlier adjusted R2=0.94, p <0.001)352

between the 4He analyses demonstrates that the GE-MIMS is well suited for high353

precision 4He analysis under field conditions (Fig. 4; data are available in Table S1).354

Overall, these results show that the two methods yield similar concentrations, which355

consequently allows for the use of on-site analyzed 4He concentrations as tracer to356

estimate groundwater mixing ratios.357
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4.2 Model Sensitivity Analysis using Different Tracer Sets358

Theoretically, any set of conservative tracers to calculate mixing ratios can be359

used. Given the various tracers obtained by us, we explore the effect of different—360

in number and composition—sets of tracers to test their influence on the estimated361

mixing ratios. In particular the contribution (rM+1) of the residual end-member (Eres)362

is of fundamental interest, because it can be interpreted as a measure of how internally363

consistent a tracer set is with regard to the assumed binary mixing hypothesis.364

Table 1 specifies all the different tracer set sizes and compositions we assessed.365

The tracer sets differ from “easy to measure” tracers (i.e., feasible to obtain data with366

a hand-held probe) such as pH and EC (tracer set 1: TS1 ), to more advanced sets367

consisting of standard hydro-chemical tracers such as major ions, alkalinity and total368

hardness (TS2–TS4 ).369

We also tested one tracer set (TS5 ) that includes all tracers obtained including370

4He but also less conservative species (i.e., nitrate and sulfate), which are sometimes371

used to calculate mixing ratios (e.g., Soulsby et al., 2003; Delsman et al., 2013; Moeck,372

Radny, Auckenthaler, et al., 2017). TS6 consists only of 4He concentrations determined373

in the field. Finally, TS7 includes all tracers except for nitrate and sulfate.374

The results of this sensitivity analysis using different tracer sets demonstrate375

that model uncertainties (i.e., amount of Eres) vary depending on the tracer set used376

(Fig. 5). These findings indicate that, in general, uncertainty tends to decrease with377

increasing numbers of tracers. This is, however, only true as long as the tracers are378

consistent, which is not the case for TS5.379

The simplest tracer set (TS1 ) has, with about 20%, the highest average contri-380

bution of Eres. Using more than two tracers (e.g., TS2 ) or adding more tracers to TS1381

(TS3–4 ) considerably decreases the model uncertainty. TS5 reveals that including the382

less conservative species nitrate and sulfate results in higher model uncertainties.383
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Table 1. Mixing model sensitivity analysis by testing different tracers sets. The mean esti-

mated ratio of an unknown end-member (Eres) indicates the goodness of fit of the mixing model

depending on the respective tracer set.

Tracer Set Used Tracers Number of Tracers

TS1 pH, EC 2

TS2 hydro-chemical species (Ca2+, Mg2+, Na+, K+, Cl−, H4SiO4) 6

TS3 pH, EC, hydro-chemical species 8

TS4 pH, EC, hydro-chemical species, alkalinity, total hardness 10

TS5 pH, EC, hydro-chemical species, alkalinity, total hardness, nitrate, sulfate, 4He 13

TS6 4He 1

TS7 pH, EC, hydro-chemical species, alkalinity, total hardness, 4He 11

Only using 4He concentrations as a single tracer (TS6 ) shows that despite a low384

variability in Eres, the mean fraction of Eres is higher than in TS2-4. Overall, TS7385

yields the most robust results: it can explain most data by binary mixing of E1 and386

E2 and allocates higher fractions of an unknown end-member (31±8–84±9%) only to387

four wells (Fig. 5). Consequently, we used TS7 to estimate the mixing ratios given its388

apparent robustness compared to other tracer sets.389

When comparing TS4 (no 4He) and TS7 (TS4 + 4He), one could argue that390

both yield similarly acceptable results and that TS4 is a reasonable approximation391

to estimate mixing ratios. However, when looking at specific wells (e.g., 21.C.206,392

first column in Fig. 6), we note that including 4He concentrations actually results in393

a considerably higher fraction of Eres. For the other two wells illustrated in Figure 6,394

adding 4He concentrations only has a marginal effect. Figure 6 also clearly indicates395

that even though wells 21.A.17 and 21.A.18 are located adjacent to each other, their396

respective mixing ratios differ. Please see Figures S5 to S7 for the ternary diagrams397

showing mixing ratios of all wells for tracer sets 1, 4 and 7.398
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Figure 5. Sensitivity test of different sets of tracers shown in box plots: lower fractions of

Eres indicate a better explanation of the available data with two end-members (i.e., E1 and E2)

only (see Table 1 for information on the tracer sets and Fig. S4 for labels on all data points).

4.3 Estimated Mixing Ratios and their Uncertainties399

Figure 7 illustrates the spatial distribution of estimated fractions of end-members400

(E1, E2 and Eres) based on TS7. As expected, most wells in proximity to the infil-401

tration area show a large fraction of recently infiltrated Rhine water (E1, e.g., up to402

97±1% at 21.C.215 ; Fig. 7). Further away from the artificial recharge area, e.g., at403

pumping well 21.A.16, the fraction of Rhine filtrate slightly decreases to 94±2%. In-404

terestingly, the close-by pumping well 21.A.17 shows with 88±4% a comparatively low405

fraction of recently infiltrated water.406

Towards the western border of the study area, which is (according to previous407

studies, Moeck et al., 2016; Moeck, Radny, Popp, et al., 2017) less impacted by the408

artificial recharge, the fraction of Rhine filtrate further decreases (e.g., 21.A.7 with409

70±4% or 21.A.33 with 85±3% of E1). Observation well 21.C.206—located at the410

western border of the study area—shows with 27±7% an exceptionally low fraction411

of E1 (compared to surrounding wells like 21.A.4 with 89±2%) but simultaneously412
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Figure 6. Ternary diagrams of the mixing ratios (%) of three different wells (21.C.206,

21.A.17, 21.A.18 ) for TS1, TS4 and TS7, (representing tracer sets with increasing complex-

ity, see Table 1). The assessment shows that with increasing tracer set size (from TS1 to TS4 to

TS7) model uncertainty is reduced. Green contour lines show the probability density representing

the estimated uncertainty.
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also has a relatively high fraction (36±7%) of an unknown end-member (Eres). The413

by far highest fractions of Eres were detected in wells 21.J.101 high (84±9%) and414

21.J.101 deep (66±12%). The mixing model attributed higher fractions of Eres only415

to one other well (21.C.36 with 31±8%). All wells with a considerable fraction of Eres416

are being located at the western border of the study area.417

Apart from these wells, three other wells (21.A.17, 21.A.7, 21.C.218 ) show mod-418

erate contributions (6±5%–12±8%) of an unknown water source. The remaining wells419

exhibit only small fractions of Eres (≤4±4%). All estimated mixing ratios and their420

uncertainties are illustrated in Figure S3 (based on Dataset S2). Overall, for most421

tracer species model-based estimates of tracer concentrations are in good agreement422

with the measured concentrations (see Fig. S8).423
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5 Discussion424

5.1 Substituting Lab-Based with On-Site 4He Analysis425

The two methods compared for analyzing 4He differ regarding sampling volume426

and technique, analytical procedure, calibration and data processing. Thus, the as-427

sumption that both methods yield in fact comparable results for 4He concentrations428

is not straightforward.429

Nonetheless, the statistically significant correlation between the two 4He concen-430

tration data sets demonstrates that the results of the simple GE-MIMS system are as431

satisfying as those of the highly sophisticated lab-based method. Thus, these findings432

validate the accuracy and suitability of 4He analysis using the GE-MIMS system and433

confirm that on-site methods can reliably substitute for conventional lab-based 4He434

analysis, which is comparatively time demanding and labor intensive.435

Moreover, we would like to highlight that during field work the portable MS436

guided the selection of the most interesting wells in quasi real-time, which allowed for437

very efficient sampling of an access restricted area.438

5.2 Tracer Set Selection, Validity of Mixing Model and Study Limita-439

tions440

We assessed the sensitivity of the mixing model outcome by testing different441

tracer sets. This approach shows that the most consistent results (i.e., most data can442

be explained by our selected end-members E1 and E2) are obtained by applying all443

analyzed tracers (including 4He), except for the less conservative ones (nitrate and444

sulfate). These results highlight once more that using a combination of multiple,445

diverse tracers with different geochemical behavior is the most robust approach to446

quantify water mixing (e.g., Abbott et al., 2016; Tetzlaff et al., 2015). Thus, using a447

combination of geochemically different tracers is crucial to evaluate whether a mixing448

model yields meaningful and robust results. Furthermore, our findings show that less449
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conservative tracers should strictly be avoided when calculating mixing ratios because450

their use tends to increase mixing model uncertainties.451

The ability of our mixing model to estimate the contribution of unknown resid-452

ual end-members (Eres) and to account for tracer uncertainty separately turned out453

to be valuable. We acknowledge, however, that the implementation of such a Bayesian454

model also requires more assumptions to be pre-described explicitly. For example,455

uncertainties for each individual tracer analyzed at each individual well have to be de-456

termined and a prior distribution for the concentrations of the residual end-members457

must be defined. We explicitly state that these assumptions are to some degree subjec-458

tive. However, they increase transparency and avoid over-interpretation of the results,459

and allow to test different assumptions. For instance, in our study, the concentrations460

of the residual end-members were not fixed across the wells allowing for the mixing461

model to estimate Eres and its geochemical composition for each well independently.462

We chose this approach because we had no expectation regarding the number of un-463

observed end-members present in our system.464

By ascribing an overall tracer concentration uncertainty of 10% (and 20% for the465

infiltration water), we believe to conservatively account for all associated uncertainties466

including systematic biases, from sampling in the field to the final concentrations. A467

limitation of this study is that due to access restrictions to the drinking water protec-468

tion site, we sampled the tracers only once. Thus, we have to assume that the temporal469

variability of tracer concentrations is neglectable or accounted for within the ascribed470

uncertainties. Since the attributed overall uncertainties are rather conservative, the471

estimated fractions of Eres also represent rather conservative estimates of unknown472

water sources present in our system. Moreover, we argue that the sampled tracer con-473

centrations are representative as the site is artificially controlled by managed aquifer474

recharge and was sampled under standard operating conditions. To entirely rule out475
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the possibility of time variable end-members, one would need to acquire time series476

data of the groundwater end-members, which is beyond the scope of this study.477

5.3 Adjustment of the Conceptual Model478

In principle, our results are in line with previous studies conducted at the study479

site. By means of a cluster analysis, Moeck et al. (2016) identified observation well480

21.C.206 to have a distinct geochemical signature that could not be classified with481

any other investigated well. Likewise, our assessment shows that 21.C.206 has an482

exceptional geochemical signature compared to most other wells (see Figs. 6 and 7).483

However, we can now explain these different geochemical characteristics by the pres-484

ence of a high ratio (36±7%) of a previously unknown water source.485

Moreover, pumping well 21.A.17 was found to exhibit a different hydrogeochem-486

istry and higher micro-pollutant concentrations compared to most other wells in its487

vicinity and to be hydraulically connected to the underlying aquifer (Moeck et al.,488

2016; Moeck, Radny, Popp, et al., 2017). According to our analysis, these differences489

might originate from a higher fraction of regional groundwater (E2) (6±2%) relative490

to the surrounding wells 21.A.16 and 21.A.18 (both 4±2%).491

Although Moeck, Radny, Auckenthaler, et al. (2017) report similar mixing ratios492

(based on the same selected end-members) compared to our study, they neglect the493

possibility of unknown end-members, which results in high standard deviations (more494

than 35%) in their estimated mixing ratios.495

Thus, we demonstrate that the existing conceptual model of binary mixing of496

two water sources (i.e., E1 and E2) is not valid for the entire system. These findings497

require an adjustment of the conceptual model by acknowledging the contribution of498

unknown water sources (Eres), which were previously neglected.499

Since Eres fractions are highest in the west (Fig. 7), we hypothesize that water500

of unknown origin occurs in the Hardwald site at its western boundary. The local501
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presence of Eres can therefore be interpreted as a third end-member and not as various502

different unknown water sources. As the Rhine Graben forms the western boundary of503

the study area (Fig. S2), it becomes apparent that Eres reflects water from this flexure504

zone, which provides a pathway for groundwater of deeper strata to ascend (Fig. 2).505

This conclusion is further reinforced since deep groundwater is expected to be high506

in helium (e.g., Stute et al., 1992). Wells (i.e., 21.C.36, 21.A.7, 21.C.206, 21.J.101.h,507

21.J.101.d, 21.A.7, 21.C.36, 21.C.206; see Dataset S1) located at the western edge of508

the study area show indeed elevated 4He concentrations.509

In conclusion, water mixing through the flexure zone might be of greater im-510

portance for the water management of the Hardwald site than previously assumed.511

Consequently, water mixing at the study site can only be explained by at least three512

groundwater components and not by two as previously assumed.513

6 Conclusions514

According to Tetzlaff et al. (2015), there is an urgent need for a “more economic515

analysis of large sample numbers in conjunction with novel, tracer-aided modeling ap-516

proaches” to improve our understanding of hydrological processes. By demonstrating517

the suitability of the portable GE-MIMS system as a substitute for the conventional518

lab-based analysis of 4He (Fig. 4), we are able to introduce a new, more efficient519

method for dissolved (noble) gas analysis. Beyond proving the suitability of on-site520

4He analysis, our study shows that 4He is as an excellent tracer to estimate groundwa-521

ter mixing ratios and can help to reduce model uncertainty and to identify unknown522

water sources, e.g., water mixing through fault zones (Figs. 5 and 6).523

Moreover, our sensitivity analysis emphasizes that mixing model uncertainties524

decrease with increasing numbers of conservative tracers (Fig. 5). By combining the525

most robust tracer set (TS7) with a Bayesian modeling framework, we can identify the526
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presence of a previously unknown water source and thereby improve our conceptual527

understanding of our study site (Figs. 7 and S3).528

7 Outlook529

The compact size of the portable GE-MIMS system allows for efficient (noble)530

gas analyses at remote locations (e.g., northern catchments, high altitudes) with a531

high spatio-temporal resolution. Therefore, it has great potential for a widespread532

application in locations where tracer data resolution is usually scarce due to time and533

cost limitations as well as access restrictions.534

Although, we applied the Bayesian mixing model presented in a groundwater535

context, it is generally applicable to a variety of mixing-related research questions,536

e.g., stream water mixing on a catchment scale. We hope that the available data537

set and source code will serve as a template for future studies to facilitate reliable538

estimates of groundwater mixing and ultimately improve water management.539
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. . . Semmens, B. X. (2018). A deconvolutional Bayesian mixing model ap-577

proach for river basin sediment source apportionment. Sci. Rep., 8 (1), 13073.578

doi: 10.1038/s41598-018-30905-9579

–29–



Accepted for publication in Water Resources Research (doi:10.1029/2019WR025677)

Brennwald, M. S., Schmidt, M., Oser, J., & Kipfer, R. (2016). A Portable580

and Autonomous Mass Spectrometric System for On-Site Environmen-581

tal Gas Analysis. Environ. Sci. Technol., 50 (24), 13455–13463. doi:582

10.1021/acs.est.6b03669583

Brewer, M. J., Soulsby, C., & Dunn, S. M. (2002). A Bayesian Model for Composi-584
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