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Abstract 1 

Biotransformation of chemical contaminants is of importance in various natural and engineered 2 

systems. However, in complex microbial communities and with chemical contaminants at low 3 

concentrations, our current understanding of biotransformation at the level of enzyme-chemical 4 

interactions is limited. Here, we explored an approach to identify associations between micropollutant 5 

biotransformation and specific gene products in complex microbial communities, using association 6 

mining between chemical and metatranscriptomic data obtained from experiments with activated 7 

sludge grown at different solids retention times. We successfully demonstrate proportional 8 

relationships between the measured rate constants and associated gene transcripts for nitrification as a 9 

major community function, but also for the biotransformation of two nitrile-containing micropollutants 10 

(bromoxynil and acetamiprid) and transcripts of nitrile hydratases, a class of enzymes that we 11 

experimentally confirmed to produce the detected amide transformation products. Since these results 12 

suggest that metatranscriptomic information can indeed be quantitatively correlated with low abundant 13 

community functions such as micropollutant biotransformation in complex microbial communities, we 14 

proceeded to explore the potential of association mining to highlight enzymes likely involved in 15 

catalyzing less well-understood micropollutant biotransformation reactions. Specifically, we use the 16 

cases of nitrile hydration and oxidative biotransformation reactions to show that the consideration of 17 

additional experimental evidence (such as information on biotransformation pathways) increases the 18 

likelihood of detecting plausible novel enzyme-chemical relationships. Finally, we identify a cluster of 19 

mono- and dioxygenase fourth-level enzyme classes that most strongly correlate with oxidative 20 

micropollutant biotransformation reactions in activated sludge. 21 

  22 
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Introduction 23 

Biotransformation by microbial communities in natural and engineered systems serves to reduce 24 

chemical contaminant loads in the environment.1, 2 Considerable efforts have been undertaken to better 25 

understand the influence of various environmental parameters (e.g., temperature3, redox conditions4 or 26 

pH5) or operational parameters of wastewater treatment facilities6 (e.g., solids or hydraulic retention 27 

times) on the biotransformation capacity of involved microbial communities. However, at the 28 

mechanistic level of interactions between enzymes and chemicals, our current knowledge remains 29 

limited, leaving major parts of observed variability in the extent of biotransformation across study 30 

conditions unexplained.7 A more in-depth understanding of the causative agents of contaminant 31 

biotransformation (i.e., specific bacterial strains or enzymes) would not only support efforts to 32 

rationalize the influence of individual parameters, but, more generally, help to develop tools able to 33 

predict biotransformation pathways and half-lives, which is of interest for environmental risk 34 

assessment.8 35 

Conventionally, linkages between specific bacterial strains, genes or gene products and chemical 36 

contaminant biotransformation are established in pure or enriched cultures with the chemical in 37 

question serving as sole growth substrate (e.g., refs 9, 10). However, increasing evidence indicates that 38 

such experiments are often not a good model of the ability of complex environmental communities to 39 

biotransform contaminants present at low substrate concentrations (i.e., micropollutants).11, 12 Other 40 

approaches such as stable isotope probing (SIP)13, 14 or microautoradiography coupled with 41 

fluorescence in situ hybridization (MAR-FISH)15, 16 use isotope labeling to overcome the limitations of 42 

pure or enriched cultures. These methods allow probing for the microbial species in which labeled 43 

atoms are incorporated even in complex microbial communities.  However, micropollutant 44 

concentrations are most likely often insufficient to meet maintenance demands of individual 45 

metabolizing cells.17 The biotransformation of micropollutants is therefore assumed to result from a 46 

complex sequence of individual biotransformation reactions.17-19 In that case, microorganisms that 47 

incorporate and metabolize residues from the original chemicals may be distinct from the ones 48 

responsible for the initial transformation reaction.8 Therefore, data from experiments relying on label 49 
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incorporation may not always be helpful to identify the type of cells involved in the initial, rate-50 

determining transformation reactions.  51 

As an alternative approach to evaluate individual hypothesized relationships between genes or gene 52 

products and the biotransformation of micropollutants, enzyme inhibition20 or reverse transcription 53 

quantitative PCR (RT-qPCR)20, 21 have been applied. However, such targeted approaches are only 54 

feasible when there is robust knowledge on the enzyme(s) catalyzing the biotransformation of a 55 

specific contaminant. While such knowledge is indeed available for a number of legacy 56 

contaminants22 and some plant protection products,21 hardly any knowledge exists on the enzymes 57 

involved in the biotransformation of most other environmental contaminants, such as those contained 58 

in urban wastewater. Previously, Johnson et al.23 suggested association mining between the rate 59 

constants of observed biotransformation reactions and meta-omics data as an untargeted approach to 60 

generate hypotheses about potential causal linkages between enzymes and micropollutant 61 

biotransformation. Specifically, they suggest using metatranscriptomic data to describe the active 62 

functions present across microbial communities, mainly for two reasons. First, in earlier work, 63 

metatranscriptomic data have repeatedly been shown to correlate with protein abundance levels,24-26 64 

and, second, as of yet, metatranscriptomic analysis has higher sensitivity for detecting low abundance 65 

gene transcripts when compared to the ability of metaproteomics to detect the expressed protein.27 66 

Application of metatranscriptomic analysis to better understand micropollutant biotransformation is 67 

largely unexplored, with only select studies providing examples for individual contaminants,23, 28 likely 68 

because massively-parallel sequencing has only become more broadly accessible in the last few years. 69 

In a recent study, Helbling et al.29 were able to uncover a linear and proportional relationship between 70 

measured biotransformation rates and relative gene transcript abundances of a gene previously spiked 71 

into an activated sludge community, independent of whether the gene transcript abundances were 72 

quantified by metatranscriptomic analysis or RT-qPCR. Whereas these results demonstrated that gene 73 

transcript abundances of an exogenously added microbial function quantified using 74 

metatranscriptomic analysis could feasibly be used in quantitative correlation analysis and hence 75 

association mining, it remained to be shown whether the same was true for non-spiked, native 76 



4 
 

functions. Another potential limitation of association mining between gene transcript abundances and 77 

contaminant biotransformation rate constants, which has not been addressed in previous studies, is the 78 

potentially large number of false positives. If large numbers of candidate enzymes are considered 79 

across a (comparably small) number of microbial communities, then it becomes increasingly probable 80 

that strong correlations could emerge by chance, highlighting non-causal relationships.23  81 

Recently, we described trends in rate constants and biotransformation pathways for 42 micropollutants 82 

along a gradient of solids retention time (SRT) comprising six activated sludge communities.30 83 

Notably, we found that trends along the SRT gradient varied but were rather consistent within groups 84 

of chemicals undergoing the same type of initial biotransformation reactions, suggesting that shared 85 

enzymes or enzyme systems that are similarly regulated catalyze biotransformation reactions within 86 

such groups. In parallel, we performed metatranscriptomic sequencing to allow for functional 87 

characterization of the microbial communities.31 In the present study, we combine the information 88 

previously obtained from biological and chemical analyses to further explore the potential of 89 

association mining between metatranscriptomic and micropollutant biotransformation information to 90 

generate hypotheses about potential causal linkages between enzymes and micropollutant 91 

biotransformation. Specifically, we first ask whether metatranscriptomic information for gene 92 

transcripts encoding previously described reactions can indeed quantitatively predict the rate of the 93 

associated observed micropollutant biotransformation reaction in complex microbial communities. If 94 

this were the case, then it follows that association mining can plausibly be employed to identify 95 

enzyme candidates that catalyze other observed reactions. Given the large efforts and costs involved in 96 

generating both biotransformation and metatranscriptomic data for a large number of microbial 97 

communities, we then proceed to ask whether consideration of additional information on the type of 98 

enzymatic reaction can increase the probability of detecting plausible enzyme candidates and hence 99 

address the challenge of low sample sizes. Through these analyses, we aim to highlight the potential 100 

but also limitations of association mining to uncover causative agents of micropollutant 101 

biotransformation, and to thus provide a roadmap for its wider adoption. 102 
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Methods 103 

Full details on reactor operation, analysis of chemicals, determination of rate constants and 104 

metatranscriptome analysis are provided elsewhere.30, 31 In the following subsections, a summary of 105 

the applied methods is provided. 106 

Cultivation of activated sludge at SRTs between 1 and 15 days 107 

Six fully-automated 12-L sequencing batch reactors were operated in parallel at SRTs of 1, 3, 5, 7, 10 108 

and 15 days and a hydraulic retention time of 12 hours. The reactors were inoculated with activated 109 

sludge from a municipal wastewater treatment plant (ARA Niederglatt, Switzerland) and operated 110 

with local wastewater. At two time points during reactor operation (48 days (Exp1) and 187 days 111 

(Exp2) after start-up of the reactors), biotransformation batch experiments were conducted with a 112 

broad selection of micropollutants. For the batch experiments, micropollutants were spiked into the 113 

activated sludge communities (to yield an initial batch concentration of 6 µg/L for each compound), 114 

and, for each batch, 11 (Exp1) or 9 (Exp2) samples for chemical analysis were collected over three 115 

days.30 Activated sludge samples for metatranscriptome analysis were collected 5 hours after the start 116 

(i.e., addition of micropollutants) of both experiments and immediately frozen using liquid nitrogen.31 117 

The sampling time point was chosen to allow sufficient time for transcriptional responses due to the 118 

addition of micropollutants, yet to capture the functions that were active during the experimental 119 

period during which we observed biotransformation for all biotransformed compounds, including the 120 

comparably fast degrading ones. Parallel to both Exp1 and Exp2, chemical control experiments were 121 

conducted with autoclaved activated sludge and autoclaved activated sludge filtrate to estimate the 122 

degree of adsorption (to sludge solids) and abiotic transformation, respectively. 123 

Micropollutant biotransformation rate constants 124 

Samples for chemical analysis were measured using liquid chromatography coupled to high-resolution 125 

mass spectrometry (LC-HRMS). From the obtained concentration-time series, first-order rate 126 

constants (kobs) were determined that were then normalized by total suspended solids concentrations 127 

(TSS) as proxies for biomass concentration in each reactor to obtain second-order biotransformation 128 
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rate constants (kbio). Biomass-normalized rate constants were calculated for all micropollutants for 129 

which abiotic degradation was minor (<20%), no strong sorption to activated sludge solids was 130 

observed (<20%) and first-order degradation was observed.30 In total, kbio-values were obtained for 33 131 

(Exp1) and 42 (Exp2) micropollutants and 5 (Exp1) and 6 (Exp2) different SRTs (because of the low 132 

biomass concentration in Exp1 for the reactor at 1 day SRT, this reactor was not considered when 133 

calculating kbio values). Additionally, a suspect transformation product screening was conducted to 134 

identify the major initial biotransformation reactions these chemicals were undergoing (details on 135 

reaction type characterization are provided elsewhere).30 136 

Metatranscriptomic analysis 137 

The samples collected for metatranscriptomic analysis were stored at -80 °C until processing. For 138 

RNA extraction, a phenol-chloroform extraction method was used, followed by DNA removal 139 

(TURBO DNase Kit, Invitrogen) and purification (MoBIO RNA Pro Clean-Up Kit, MoBio).31 Prior to 140 

sequencing, a ribosomal RNA (rRNA) removal step was conducted to enrich the messenger RNA 141 

(mRNA) fraction of the samples (RiboZero Epidemiology Kit, Illumina). Sequencing was performed 142 

on the Illumina NextSeq platform (Illumina TruSeq Single-End-Read 150 bp) and the raw data are 143 

freely available at EMBL-EBI (https://www.ebi.ac.uk) under the study number ERP024418. The raw 144 

reads (41.2-54.3 million reads per sample; because of similar sampling depths, the data was not 145 

rarefied) were trimmed and filtered and additional rRNA was removed using the software 146 

SortMeRNA.32 Using the software DIAMOND33 (minimum bitscore cutoff of 50), the sequences were 147 

annotated with the descriptors provided in the Enzyme Commission (EC) Number Uniprot database, 148 

resulting in 5.1-9.8 million reads being annotated per sample. The full Uniprot-TrEMBL database was 149 

downloaded on March 6th, 2018. The read counts were aggregated per EC number. The read counts for 150 

all EC numbers were normalized by the total number of reads identified to encode a protein to account 151 

for variability in annotation efficiency between samples. Because variability in annotation efficiency 152 

was found to be higher than variability in sampling depth, we preferred this normalization procedure 153 

to raw read rarefaction to minimize information loss. Descriptions for EC categories were obtained 154 

from the BRENDA database (http://www.brenda-enzymes.org/), downloaded on May 1st, 2018. 155 
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Additionally, the metatranscriptomic analysis assigned a putative taxonomic read origin based on the 156 

identity of the best matching sequence, allowing to estimate the fraction of reads originating from 157 

eukaryotic and bacterial organisms or, more specifically, from different taxonomic genera.  158 

Correlation analysis between EC numbers and biotransformation rate 159 

constants 160 

Pearson correlation coefficients (denoted r) were calculated using the software R (version: 3.3.0). 161 

Reported p-values of the respective correlations correspond to two-tailed tests. To account for multiple 162 

hypothesis testing (here, testing gene transcript read abundances of n different ECs against a given 163 

micropollutant rate constant), the Benjamini-Hochberg method was applied to control the false 164 

discovery rate and to obtain adjusted p-values, denoted PBH.34 Because of the explorative character of 165 

many analyses presented in this work, providing new hypotheses about linkages between genes and 166 

micropollutant biotransformation reactions that we propose to further assess in future work, we are not 167 

only concerned about false positive detection (type I error) but we also want to minimize false 168 

negative results (type II error). Therefore, the Benjamini-Hochberg procedure was preferred over more 169 

conservative methods. To statistically assess whether higher correlation coefficients (here defined as r 170 

> 0.5) were overrepresented in certain subsets of the correlation tables, bootstrapping was used. 171 

Therefore, sampling with replacement (n = 1000) was performed, and we tested whether the fraction 172 

of r values > 0.5 of a given distribution lies within the empirical 95% confidence interval of the 173 

sampled entity (corresponding two-tailed p-values are denoted PB). Shifts in median correlation 174 

coefficients were assessed in the same way. 175 

In the EC number classification scheme, enzymatic reaction types are typically defined at the 3rd level 176 

(sub-subclasses) of the four-digit EC numbers, whereas the 4th digit characterizes substrate 177 

specificity.35, 36 We performed correlation analysis at the level of individual ECs (4th level EC 178 

numbers) because gene transcript abundances between individual ECs within each sub-subclass level 179 

class were not always strongly correlated. Correlation coefficients between gene transcript abundances 180 

and biotransformation rate constants were calculated for Exp1 (across 5 SRTs, n = 5) and Exp2 (across 181 

6 SRTs, n = 6) separately. For chemicals that were only included in Exp2 (iprovalicarb, amisulprid, 182 
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irgarol, isoproturon, metoxuron, MMclB, BEclB and terbutryn), only one correlation coefficient was 183 

obtained. To construct a correlation heatmap, correlation coefficients were averaged if available from 184 

both experiments, and hierarchical clustering was performed using Euclidean distances and complete 185 

linkages (using the R package ‘pheatmap’, v1.0.10). 186 

Unless stated otherwise, a relative abundance threshold of 10-6 was applied, and ECs were only 187 

considered when their relative abundance exceeded this threshold in at least one sample of both 188 

experiments. This threshold corresponds to a minimum of 12 to 22 reads annotated to the respective 189 

EC in individual samples. For oxidative biotransformation reactions, the results were tested for 190 

robustness against higher (10-5) and lower (10-7) thresholds (see results and Figure S6 in the 191 

Supporting Information (SI)). 192 

Nitrile hydratase experiments 193 

A mix of nine different nitrile hydratases was purchased as selectAZyme™ enzyme screening kit 194 

(Almac). Batch experiments were performed in 1.5-mL HPLC vials filled with the nitrile hydratase 195 

solutions (200 µL, 15 mg/mL of total enzyme concentration in 0.05 M phosphate buffer, blend of all 196 

nine nitrile hydratases or individual nitrile hydratases), micropollutant containing solution (50 µL, 1.5 197 

mg/L of each contaminant in water) and phosphate buffer (750 µL, 0.1 M solution provided with the 198 

enzyme screening kit). The batch reactors (initial concentration of each micropollutant: 75 µg/L) were 199 

placed on a shaker table (220 rpm) in a temperature-controlled environment (30 °C). The experiment 200 

was performed in triplicates and for a runtime of 72 hours. Sample workup for chemical analysis using 201 

liquid chromatography coupled to mass spectrometry (LC-MS) was performed according to Polson et 202 

al.37 In short, 200 µL of the reaction mixture were added to 200 µL trichloroacetic acid (20% in 203 

water), mixed by vortexing, incubated at 4 °C for 25 minutes and centrifuged (10 min, 1700 × g, 4 204 

°C). In total, 200 µL of supernatant were transferred to 800 µL of water, internal standard was added 205 

and the samples were measured within 7 days as detailed elsewhere.30  206 
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Results and Discussion 207 

Evaluation of data treatment procedure and validation of correlation analysis 208 

for nitrification 209 

In total, gene transcripts assigned to 4165 different ECs were detected, of which 2760 ECs were found 210 

in at least one sample from both Exp1 and Exp2 with a relative abundance of at least 10-6. Prior to the 211 

analysis of correlations between gene transcript read abundances of individual EC categories and 212 

contaminant biotransformation rate constants, we assessed the validity of (i) our metatranscriptome 213 

normalization procedure by comparison with ECs representing previously used reference genes, and 214 

(ii) the correlation analysis by testing it for a well-characterized metabolic function, i.e., nitrification. 215 

Normalized gene transcript abundance. To normalize gene expression data obtained in other methods 216 

such as RT-qPCR, reference genes are frequently used.38 When a reference gene represents a function 217 

that is present in all microorganisms contained in our activated sludge samples and that does not show 218 

much variability in expression levels amongst different microorganisms and conditions, a constant 219 

relative abundance can be expected in all samples if our normalization procedure is valid. Therefore, 220 

we calculated the relative standard deviation (RSD), defined as the standard deviation of the relative 221 

abundance over the mean relative abundance, for the EC categories representing specific, frequently 222 

used reference genes, namely DNA-directed RNA polymerase (RNAP, EC 2.7.7.6), DNA 223 

topoisomerase (5.99.1.2), DNA gyrase (5.99.1.3) and glyceraldehyde-3-phosphate dehydrogenase 224 

(GAPDH, 1.2.1.12), across all samples (n = 12) (Table S1).38 RSDs thus calculated were found to 225 

range between 11−39% initially. Because the first three reference genes have primarily been used for 226 

bacteria, the respective fractions of eukaryotes and bacteria were additionally estimated for all samples 227 

(Figure S1). Based on the total number of reads assigned to EC categories, we observed an increase in 228 

gene transcripts that were predicted to be of eukaryotic origin towards higher SRTs (Exp1: from 11 to 229 

40%, Exp2: from 19 to 38%), which is in accordance with previous reports of longer SRTs tending to 230 

promote the growth of higher forms of life and increased abundances of different protozoa species at 231 

higher SRTs.39-42 Because fractions of the read abundances of the ECs 2.7.7.6, 5.99.1.2 and 5.99.1.3 232 
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originated from eukaryotes, we recalculated their RSDs for the bacterial fractions only (after 233 

calculating the relative abundances of reads originating from bacteria), leading to smaller RSD values 234 

in the range of 6 to 10% (Table S1). This low variability in abundance for the tested reference genes 235 

provides empirical support for the here applied normalization procedure. For EC 1.2.1.12, the RSD 236 

was also considerably smaller when the bacterial and eukaryotic fractions were considered separately 237 

(RSD bacteria: 6%, RSD eukaryotes: 32%), but remained relatively high for eukaryotes. The latter 238 

might be because of fluctuating expression levels in eukaryotic organisms under different conditions 239 

including stress levels,43 or it might result from the overall low relative abundance of eukaryotes at 240 

low SRTs, which might lead to increased uncertainties when calculating RSD values for eukaryotes. 241 

Correlation of amo gene transcripts with nitrifying activity. We selected nitrifying activity to test the 242 

validity of the correlation analysis approach because (1) we had a strong hypothesis regarding the 243 

main enzymes involved, (2) we measured nitrifying activity and observed a strong trend with SRT 244 

across the samples, and, (3), as for the biotransformation rate constants, we could calculate a biomass-245 

normalized nitrifying activity. In wastewater treatment, a certain minimal SRT is known to be required 246 

to achieve nitrification because ammonia oxidizing bacteria are slow-growing and are washed out at 247 

low SRTs.44 In the transformation of ammonium to nitrate, the initial step (the oxidation of 248 

ammonium) is typically rate-limiting and performed by the enzyme ammonia monooxygenase (amo, 249 

EC 1.14.99.39).45 In agreement with our expectations, higher nitrifying activity was observed at higher 250 

SRTs in our experiments30 and the abundance of amo gene transcripts increased with increasing SRT. 251 

Correlating the amo gene transcripts with the measured nitrifying activity resulted in correlation 252 

coefficients of 0.97 and 0.96 (Pearson’s r in Exp1 and Exp2, P <0.05; Figure 1). Furthermore, as 253 

earlier observed for a microbial function added at different relative levels into a community,29 the 254 

intercepts obtained from linear regression analysis are not significantly different from zero (Figure 1), 255 

supporting not only linearity but proportionality of the relationship. These results demonstrate that 256 

metatranscriptomic information can indeed quantitatively predict the native relative activity levels of a 257 

microbial community, at least with respect to a well-known metabolic function.  258 
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 259 

Figure 1. Relative gene transcript abundance of amo (EC 1.14.99.39) against the measured nitrifying 260 
activity in Exp1 and Exp2 (the applied methods for measuring nitrifying activity are described 261 
elsewhere30). Confidence intervals (confidence level: 95%) for the intercept (gray bar) were calculated 262 
after linear regression analysis (indicated by dashed line).  263 

Validation of correlation analysis for micropollutant biotransformation 264 

The validity of the correlation analysis approach for micropollutant biotransformation (a supposedly 265 

minor function of activated sludge communities) was assessed for three selected substance classes. 266 

They were selected because (i) we either had prior knowledge or, based on transformation product 267 

analysis, could generate a strong hypothesis on involved enzymes, and (ii) they had shown highly 268 

consistent within-substance-class patterns across the SRT gradient, suggesting that biotransformation 269 

for substances in these classes was catalyzed by a number of shared enzymes or enzyme systems that 270 

were similarly regulated30.  271 

Correlation analysis for the biotransformation of nitrile-containing compounds and confirmation 272 

of results by enzyme assays. In our experiments, bromoxynil and acetamiprid were both shown to 273 

react at the nitrile functional group, and, for both micropollutants, the corresponding primary amide 274 

transformation products were detected.30 Nitrile hydratase (EC 4.2.1.84) has been previously described 275 

to catalyze the nucleophilic attack of nitriles by water to form the corresponding amide. Reassuringly, 276 

strong and significant correlations were obtained between the biotransformation rate constants of the 277 

two nitrile-containing compounds and abundances of transcripts annotated as nitrile hydratase, i.e., 278 

r=0.95, P<0.05 (Exp1), r=0.78, P>0.05 (Exp2) for bromoxynil, and r=0.91, P<0.05  (Exp1), r=0.95, 279 
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P<0.05 (Exp2) for acetamiprid. The lower correlation observed for bromoxynil in Exp2 (r = 0.78) 280 

likely originates from a larger uncertainty in the corresponding kbio value (for an error estimation, see 281 

Figure S2). Furthermore, as for nitrification, the correlations with nitrile hydratase are in agreement 282 

with the proportionality assumption as shown in Figure S3. The proportional relationships between 283 

nitrile hydratase transcript abundances and biotransformation of two nitrile-containing compounds 284 

demonstrates that quantitative relationships can be uncovered not only for highly abundant community 285 

functions such as nitrification but also for biotransformation of low concentration chemicals (<6 µg/L) 286 

and for low relative gene transcript abundances (<0.001%) in a genuine complex community. To 287 

provide evidence for the causality of the thus demonstrated relationship, independent experiments 288 

were performed using commercially available nitrile hydratases. Incubation with a mix of nine nitrile 289 

hydratase enzymes for 72 h resulted in complete depletion for bromoxynil and a clear reduction in 290 

concentration by 47% (mean concentrations of triplicates) for acetamiprid (Figure S4). In parallel, 291 

formation of the corresponding amide transformation products could be observed. Although the 292 

transformation products could not be quantified due to a lack of analytical standards, increased peak 293 

areas at the expected m/z values were detected relative to control conditions when the nitriles were 294 

incubated either with the same mix of enzymes (Figure S4) or increasing concentrations of selected 295 

individual nitrile hydratases (Figure S5).  296 

Correlation analysis for acetanilide biotransformation. Acetanilide biotransformations have 297 

repeatedly been associated with glutathione-S-transferase (GST, EC 2.5.1.18).46, 47 Correlation analysis 298 

revealed positive, and for two compounds, significant, but, in comparison to the nitriles, weaker 299 

correlation coefficients (r: 0.3 – 0.95, P: 0.02−0.51; Figure S7). We hypothesize that mainly two 300 

reasons impede the direct correlation between gene transcript abundances and rate constants here. 301 

First, although the oxanilic acid (OXA) and ethanesulfonic acid (ESA) transformation products that 302 

were reported to form after an initial substitution by GST were detected, additional transformation 303 

products related to reductive dehalogenation were observed.30 If multiple initial biotransformation 304 

reactions occur in parallel, separate rate constants for each pathway would be required to obtain 305 

meaningful linear correlations since the relative importance of parallel reactions might change across 306 

conditions. To properly quantify these, separate spike experiments with transformation product 307 
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standards would have been needed, which were outside the scope of this study.  The second reason for 308 

the insignificant correlations in some of the cases is the relatively small variation in kbio for the 309 

acetanilides (kbio,max/kbio,min <3, except for flufenacet which actually showed the highest correlation 310 

coefficient) and also in GST gene transcript abundances (GSTmax/GSTmin <3) across all samples. 311 

Whereas the consistency of low variations in both biotransformation rate constants and gene transcript 312 

abundances actually supports the hypothesized proportionality, it likely impedes the detection of a 313 

significant correlation given that various experimental and analytical uncertainties introduce scatter 314 

into the data.  315 

Correlation analysis for sulfonamide biotransformation. Relatively low variations in 316 

biotransformation rate constants were also observed for the five investigated sulfonamide antibiotics 317 

(mean kbio,max/kbio,min of 2.6) and (except for sulfathiazole) negative associations with SRT were 318 

observed.30 In a recent study, the biotransformation of sulfonamide antibiotics has been associated 319 

with folic acid synthesis and, more specifically, dihydropteroate synthase (DHPS, EC 2.5.1.15), which 320 

catalyzes one of the essential steps in folic acid synthesis.48 However, correlations between 321 

sulfonamide biotransformation rate constants with transcripts of DHPS did not indicate a strong 322 

relationship (r ranging from -0.52 to 0.31). Again, this may be caused by a lack of sufficient variation 323 

between the different SRT conditions with respect to the function in question. Indeed, 324 

DHPSmax/DHPSmin was 1.4 across all samples, consistent with the fact that any bacteria growing need 325 

to express DHPS to a certain degree. 326 

Taken together, results for the three selected substance classes support the notion that quantitative 327 

relationships indeed exist between gene transcript abundances derived from metatranscriptomic 328 

information and specific micropollutant biotransformation functions in complex microbial 329 

communities. However, these only manifest themselves as strong and significant correlations if the 330 

function of interest shows sufficient variation across the microbial communities investigated. This was 331 

the case for nitrile hydrolysis (i.e., kbio,max/kbio,min > 3, except for bromoxynil in Exp2), a function with 332 

low abundance in our metatranscriptomic data (i.e., relative gene transcripts ranging between 1–8×10-333 

6), and which so far has been reported to be associated with only a low number of bacterial species 334 
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(e.g., of the only 2937 annotated sequences available in the UNIPROT database, 1161 originate from 335 

the single bacterial class of Rhizobiales). Therefore, the capacity for nitrile hydrolysis can be expected 336 

to strongly depend on community composition. In contrast, functions such as acetanilide and 337 

sulfonamide biotransformation are most likely catalyzed by enzymes intimately linked to cellular 338 

function (i.e., stress response49 and cellular metabolism and growth50, in the case of GST and DHPS, 339 

respectively) and are therefore widely distributed across bacterial species. This seems to be confirmed 340 

by the orders of magnitude higher relative gene transcript abundances in our data compared to nitrile 341 

hydratase genes (i.e., gene transcripts range between 3–6×10-4 and between 0.7–2×10-3, for GST and 342 

DHPS, respectively) and explains why biomass normalization was sufficient to explain most of the 343 

variation in acetanilide and sulfonamide biotransformation rate constants. As a consequence, causal 344 

linkages to such more widely distributed functions do not lend themselves to be uncovered through 345 

correlation analysis. 346 

 347 

Application of correlation analysis for association mining 348 

Given the results discussed so far, we concluded that association mining can plausibly be employed to 349 

identify enzyme candidates that catalyze observed reactions in the much more abundant case where 350 

such knowledge is lacking, if the biotransformation of interest shows sufficient variation across the 351 

microbial communities studied. However, as pointed out previously, unless metatranscriptomic and 352 

biotransformation kinetics data are available for large numbers of different microbial communities, 353 

such an analysis runs the risk of generating many false positive associations.23 Since such data are still 354 

very costly to generate, and, accordingly, our number of experimentally characterized communities, 355 

i.e., the six communities grown along a SRT gradient, was too small to prevent false positive 356 

associations, we used our data set to test whether the consideration of additional experimental 357 

information on the general enzymatic reaction type could increase the probability of detecting 358 

plausible enzyme candidates. In the following, we will first demonstrate this for the case of nitrile-359 

containing compounds, and then apply the approach to identify specific fourth-level enzyme classes 360 

potentially involved in oxidative transformations. 361 
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In the case of nitrile-containing compounds, not only nitrile hydratase, but also nitrilases (sub-subclass 362 

EC 3.5.5), of which we detected transcripts for ECs 3.5.5.1, 3.5.5.4, 3.5.5.7 and 3.5.5.8, have 363 

previously been described to hydrolyze nitriles, yet to yield carboxylic acids as final products.51 When 364 

considering all 5 ECs and accounting for multiple hypothesis testing (at the 95% confidence level, 365 

Benjamini-Hochberg method34), only one significant result was obtained (EC 4.2.1.84 in Exp2 for 366 

acetamiprid, Figure 2). In contrast, when only EC 4.2.1.84 was considered as justified using the 367 

additional evidence from transformation product analysis and literature, additional significant 368 

correlations in Exp1 emerged for both chemicals. This example illustrates how additional 369 

experimental evidence on the products of the enzymatic transformation can reduce the number of 370 

considered hypotheses and lead to more statistical power when searching for meaningful associations 371 

with gene transcript abundances.  372 

 373 

Figure 2. Pearson correlation coefficients for bromoxynil and acetamiprid with ECs describing 374 
nucleophilic reactions of water with nitriles. Asterisks indicate a significant correlation after correcting 375 
for multiple hypothesis testing (PBH <0.05, n=5). 376 

 377 

Association mining for compounds undergoing oxidative transformation reactions. In our 378 

experiments, for 19 out of 42 analyzed micropollutants, an initial oxidation reaction was confirmed by 379 

chemical analysis as detailed previously.30 Most of these oxidative transformations displayed clear 380 

trends of increasing degradation with SRT and in more than two third of cases considerable variation 381 

(i.e., kbio,max/kbio,min > 3). 30 Consistently, the majority of the observed oxidation reactions, i.e., 382 

* 
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dealkylation, S-/N-oxidation and hydroxylation, are typically catalyzed by monooxygenases,52  which 383 

are known to be rather rare (i.e., not widespread among different bacterial species) and highly 384 

differentially expressed.53 For these reasons, we chose to use the case of oxidative micropollutant 385 

biotransformation as a case study to illustrate the potential, but also limitations of using association 386 

mining to detect enzyme candidates plausibly involved in catalyzing these oxidative transformations. 387 

Differently from nitrile hydrolysis, a large number of ECs designated as monooxygenases may 388 

catalyze the different types of observed oxidation reactions. Also, certain dioxygenases54, 55 and 389 

peroxygenases56, 57 have been shown to catalyze the types of monooxygenation reactions observed. For 390 

three micropollutants, dihydroxylated transformation products were observed alongside dealkylated 391 

products, additionally suggesting a potential direct relevance of dioxygenases in the investigated 392 

experimental system.30 We therefore searched for EC sub-subclasses associated with monooxygenases 393 

and dioxygenases and selected all 144 detected 4th level ECs contained therein (Table S2). No 394 

peroxygenase ECs (sub-subclass EC 1.11.2) were detected above the minimum relative abundance 395 

threshold. 396 

In the following, we compared the results of association mining for the 19 micropollutants undergoing 397 

oxidation reactions, if their rate constants were correlated with gene transcript abundances across all 398 

2760 ECs or only across those 144 4th level oxygenase ECs plausibly associated with the observed 399 

oxidative transformation reactions. The distribution of correlation coefficients resulting from 400 

correlation analysis against the selected oxygenases showed, on average, significantly higher values 401 

(median r = 0.47, fraction of r > 0.5: 40%, Figure S6b) than the distribution of correlation coefficients 402 

resulting from correlation analysis against all ECs (median r = 0.12, fraction of r > 0.5: 32%, Figure 403 

S6e) (PB < 0.05). The same was also true when correlating gene transcript abundances of individual 404 

selections of sub-subclasses containing either only mono- or only dioxygenases against rate constants 405 

of oxidative transformation reactions  (monooxygenases: median r = 0.45; dioxygenases: median r = 406 

0.43) (Table S3, PB < 0.05 relative to the all ECs case). This statistically significant overrepresentation 407 

of ECs showing strong correlations with oxidation reactions (see Table S3) within the group of 408 

oxygenase ECs, which was observed independent of the applied minimum abundance threshold 409 
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(Figure S6), supports the validity of restricting the EC search space for association mining based on 410 

the observed transformation reactions to increase the probability of detecting plausible enzyme 411 

candidates. 412 

Finally, to allow for a more detailed inspection of individual correlations between ECs and oxidation 413 

reactions, we constructed a heatmap (Figure 3). Because all oxidation reactions (except for the 414 

micropollutant MMclB) showed increasing trends with increasing SRT, the variability across the 415 

micropollutants is relatively small compared to the differences observed among the analyzed ECs. We 416 

therefore applied hierarchical clustering and detected three clusters showing strong (cluster A, 98 417 

ECs), moderate (B, 20 ECs) or mostly anti-correlations (C, 26 ECs). For several micropollutants, 418 

statistically significant correlations were observed with ECs of cluster A as marked in Figure 3. The 419 

selection of ECs in Figure 3 provides an opportunity for comparison with oxygenase-related ECs that 420 

have previously been associated with micropollutant biotransformation. Reassuringly, both Amo (EC 421 

1.14.99.39)20, 58-61 and vanillate monooxygenase (EC 1.14.13.82)62, which both have both been linked 422 

to micropollutant biotransformation earlier, are found in cluster A. In the human liver, the most 423 

important enzyme systems responsible for oxidative biotransformation of xenobiotics are the 424 

cytochrome P450 (CYP) family and flavin-containing monooxgenases (FMOs).63 Members of both 425 

families are also represented in cluster A, for instance EC 1.14.13.8 (FMO) or EC 1.14.14.1 426 

(unspecific monooxygenase), which are both reported to be rather unspecific and catalyze a broad 427 

range of substrates and reactions.63, 64 Whereas the presence of literature-reported unspecific 428 

monooxygenases in cluster A lends some support to the structure of the heatmap, likely, only a subset 429 

of the oxygenases in that cluster is responsible for the observed oxidation reactions. Whether a 430 

majority of micropollutants is biotransformed by a small number of different ECs or whether a larger 431 

number of ECs is more equally involved in the observed biotransformation reactions therefore remains 432 

unclear at present. Notably, if multiple ECs are involved in a specific biotransformation reaction, then 433 

the best correlation would not be expected for an individual EC-micropollutant pair but for a linear 434 

combination of involved ECs. However, testing the significance of different linear combinations is 435 

beyond what can be achieved given the sample size of the data set at hand. 436 
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 437 

 438 
Figure 3. Heatmap showing correlations between gene transcripts of 144 ECs in sub-subclasses 439 
associated with mono- or dioxygenases and rate constants of 19 micropollutants transformed by 440 
oxidation reactions. For micropollutants analyzed in Exp1 and Exp2, the mean r was calculated. The 441 
three indicated clusters represent groups of ECs showing mainly strong positive correlations (A), 442 
moderate correlations (B) or anti-correlation (C). The numbers in the heatmap represent significant 443 
correlations in Exp1 (1) or Exp2 (2) when accounting for multiple hypothesis testing (P < 0.05, n = 144 444 
for each micropollutant and experiment). ECs that are further discussed in the text are printed in bold. 445 
Descriptions of the EC numbers are provided in the SI (Table S4). 446 

 447 
 448 

A 

B 
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Implications 449 

For nitrification and the biotransformation of nitriles we observed significant proportional 450 

relationships between relative gene transcript abundances annotated to 4th level enzyme classes 451 

containing enzymes known or demonstrated to catalyze the respective transformation reactions and 452 

their chemical biotransformation rate constants in complex activated sludge communities. Whereas 453 

amo transcripts reach relative abundances of 0.2% of all annotated reads, the relative abundance of 454 

gene transcripts annotated as nitrile hydratases remained below 0.001% (10-5) in all samples. These 455 

results demonstrate that metatranscriptomic information can indeed quantitatively predict community 456 

functions such as micropollutant biotransformation in a genuine complex microbial community, even 457 

if the function is of low abundance. While these results are promising, one potential shortcoming of 458 

our data set is the lack of replicates for metatranscriptomic analysis. Reproducibility and precision of 459 

metatranscriptomic-based gene transcript abundances should therefore be further explored in 460 

subsequent work.  461 

Still, the application of metatranscriptomics-based association mining in micropollutant 462 

biotransformation research is potentially hampered by a lack of statistical power to detect meaningful 463 

associations. In this study, we therefore used the available data to illustrate, for the cases of nitrile 464 

biotransformation and oxidation reactions, how additional information from transformation product 465 

analysis, which allows characterizing general reaction types and hence selection of EC numbers that 466 

potentially catalyze the respective reactions, can increase the statistical power of association mining. 467 

Specifically, we found a number of ECs that are known to be associated with unspecific enzymes, e.g., 468 

EC 1.14.14.1 (unspecific monooxygenase), EC 1.14.13.8 (FMO) and EC 4.2.1.84 (nitrile hydratase), 469 

to strongly correlate with the rate constants of compounds undergoing the respective types of 470 

transformations. Furthermore, for oxidative reactions, the distributions of correlation coefficients were 471 

shifted towards higher correlation coefficients when selecting plausible ECs using prior knowledge. In 472 

analogy to terminology used in high-resolution mass spectrometry where a distinction between suspect 473 

and non-target analysis is made when searching for either somewhat expected (e.g., predicted 474 

transformation products) or completely unknown compounds,65 the approach presented here could be 475 
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considered a suspect association mining rather than a completely untargeted approach. In high-476 

resolution mass spectrometry-based transformation product analysis, suspect screening has been 477 

shown to capture >80% of the products discovered when using both suspect and non-target analysis 478 

jointly, while being much less data greedy and time consuming than non-target analysis.66 Based on 479 

our results, we are confident that suspect association mining based on additional experimental 480 

evidence from transformation product analysis (or also based on reaction-associated selections of ECs 481 

as derived from specialized databases, e.g., the Eawag-BBD22) is similarly promising in that it reduces 482 

data needs without losing too many true associations. 483 

Although a statistically significant correlation never implies causality, the established linkages provide 484 

a basis for further investigating the causality for individual enzyme-micropollutant relationships using 485 

orthogonal information, e.g., from studies with selective inhibitors or genetically modified cells that 486 

overexpress specific enzymes. Also, linkages may be of predictive value even when the causality 487 

remains unclear. To this end, we propose to further test the robustness of the here obtained correlations 488 

in future studies with activated sludge and microbial communities from different natural or engineered 489 

systems. With respect to oxidative biotransformation reactions, such orthogonal information will 490 

reveal whether a sub-selection of the identified 98 ECs correlating with oxidation reactions could 491 

serve as indicators of oxidative biotransformation capacity more generally, i.e., in different 492 

environments. Such an increased general understanding of the relationship between different 493 

biotransformation reactions and metatranscriptomic information may eventually allow predicting 494 

environment-specific biotransformation rates and pathways from metatranscriptomic data, which 495 

would strongly support environmental risk assessment of chemical contaminants in the future.  496 
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