# 1 Relating Metatranscriptomic Profiles to the

# 2 Micropollutant Biotransformation Potential of

# 3 Complex Microbial Communities

4 5 **Supporting Information** 6 Stefan Achermann, 1,2 Cresten B. Mansfeldt, 1 Marcel Müller, 1,3 David R. Johnson, 1 Kathrin 7 Fenner\*,1,2,4 8 9 <sup>1</sup>Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, 10 Switzerland. <sup>2</sup>Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland. <sup>3</sup>Institute of Atmospheric and Climate Science, ETH Zürich, 8092 11 <sup>4</sup>Department of Chemistry, University of Zürich, 8057 Zürich, 12 Zürich, Switzerland. Switzerland. 13 14 \*Corresponding author (email: kathrin.fenner@eawag.ch) 15 S.A and C.B.M contributed equally to this work. 16 17 18 19 20 21 This supporting information (SI) is organized in 4 sections (S1-S4) with a total of 10 pages and 22 comprises 7 figures (Figure S1-S7) and 4 tables (Table S1-S4). 23 24 25

### **S1 Data normalization**





**Figure S1.** Relative fractions of gene transcripts originating from eukaryotes and bacteria.

# 

Table S1. Relative standard deviation (RSD) for commonly used reference genes across all samples (n=12).

| EC number                    | mean fraction bacteria (%) | RSD (%) | RSD bacteria (%) | RSD eukaryotes (%) |
|------------------------------|----------------------------|---------|------------------|--------------------|
| 2.7.7.6 (RNAP)               | 80                         | 16      | 6                | nd <sup>a</sup>    |
| 5.99.1.2 (DNA topoisomerase) | 90                         | 11      | 9                | nd <sup>a</sup>    |
| 5.99.1.3 (DNA gyrase)        | 92                         | 16      | 10               | nd <sup>a</sup>    |
| 1.2.1.12 (GAPDH)             | 37                         | 39      | 6                | 32                 |

and indicates not determined.

### S2 Nitrile hydration



**Figure S2:** Pearson correlation coefficients r for rate constants of bromoxynil and acetamiprid with gene transcripts of ECs describing nucleophilic reactions of water with nitriles. Rate constants ( $k_{bio}$ ) obtained from Monte Carlo error propagation described elsewhere allowed to calculate a distribution of correlation coefficients (repeated sampling (n=1000) of  $k_{bio}$  values and calculation of r). Bars represent median values and estimated 95% confidence intervals, showing that the inferior correlation for bromoxynil in Exp2 may originate from uncertainties in  $k_{bio}$ .



**Figure S3:** The relative abundance of nitrile hydratase (EC: 2.4.1.84) gene transcripts in dependence of  $k_{\text{bio}}$ -values for bromoxynil (**a** and **b**) and acetamiprid (**c** and **d**) in Exp1 (**a** and **c**) and Exp2 (**b** and **d**). The dashed lines were obtained from linear regression analysis providing estimates for the confidence interval (95% confidence level) of the estimated intercept (indicated by gray bar).



**Figure S4:** (a) Measured concentrations (triplicate measurements) of acetamiprid and bromoxynil with and without a blend of nitrile hydratases (NHases) after 72 h of incubation. In presence of NHases, bromoxynil concentrations were below the limit of quantification (which was below 300 ng/L but not exactly determined). (b) In parallel, higher peak areas at the expected m/z values of bromoxynil amide were detected after 72 h in the NHase treated reactor as compared to the control.



**Figure S5:** Evidence for the formation of acetamiprid amide was detected in a separate experiment with two individual nitrile hydratases at different dilutions of the enzymes (i.e., 10- and 100-fold dilution, with the highest enzyme concentration "conc 1" corresponding to 3 mg/mL). The bars represent peak areas at the expected m/z values of acetamiprid amide, showing higher values at higher enzyme concentrations at which also a higher degree of acetamiprid removal was observed.

#### S3 Oxidation reactions

#### Table S2: Sub-subclasses containing monooxygenases and dioxygenases.

| sub-subclass | number of detected 4 <sup>th</sup> level ECs |
|--------------|----------------------------------------------|
| 1.12.99      | 1                                            |
| 1.13.11      | 28                                           |
| 1.13.12      | 5                                            |
| 1.13.99      | 1                                            |
| 1.14.11      | 14                                           |
| 1.14.12      | 13                                           |
| 1.14.13      | 45                                           |
| 1.14.14      | 9                                            |
| 1.14.15      | 7                                            |
| 1.14.16      | 4                                            |
| 1.14.17      | 3                                            |
| 1.14.18      | 3                                            |
| 1.14.99      | 12                                           |
|              | -                                            |

# Table S3: Median values of distributions of correlation coefficients between oxidative reactions (19 micropollutants) and different selections of EC categories.

| EC selection <sup>a</sup>         | sub-subclasses <sup>b</sup> | <b>EC</b> <sup>c</sup> | ECs filtered <sup>d</sup> | Pearson's r oxidation |
|-----------------------------------|-----------------------------|------------------------|---------------------------|-----------------------|
| all ECs                           |                             | 7341                   | 2760                      | 0.12                  |
| sub-subclasses monoox. f          | 9                           | 476                    | 101                       | 0.45                  |
| sub-subclasses diox.f             | 8                           | 508                    | 118                       | 0.43                  |
| peroxygenase                      | 1.11.2                      | 0                      | 0                         |                       |
| sub-subclasses mono- or diox. f,g | 13                          | 598                    | 144                       | 0.47                  |

<sup>a</sup>Monooxygenases, dioxygenases and peroxygenases were selected based on the EC descriptions obtained from BRENDA database. <sup>b</sup>Indicates the code or the number of sub-subclasses when the selection was based on sub-subclasses. <sup>c</sup>Number of ECs selected directly or contained within the selected sub-subclasses indicated in the respective column on the left. <sup>d</sup>Number of ECs detected (after applying relative abundance threshold filter (10<sup>-6</sup>)). <sup>e</sup>Median values of distributions of correlation coefficients (r values) obtained when correlating filtered ECs with 19 micropollutants or with SRT. <sup>f</sup>All detected 4<sup>th</sup> level ECs of sub-subclasses containing at least one 4<sup>th</sup> level EC of the respective category (mono- or dioxygenase) were considered. <sup>9</sup>Selection of sub-subclasses containing either mono- or dioxygenase ECs. Due to sub-subclasses containing both mono-, and dioxygenases, the total of selected sub-subclasses and ECs in this category is less than the sum of the selection of only mono- or dioxygenase containing sub-subclasses.



**Figure S6:** (a-c) Distribution of correlation coefficients (Pearson's r) for oxidative biotransformation reactions (19 micropollutants and 144 ECs associated with oxygenases) and (d-f) distribution of correlation coefficients between all detected ECs and the 19 micropollutants undergoing oxidative reactions. In all distributions (a-f), ECs were selected using the indicated relative abundance threshold values ( $10^{-5}$ ,  $10^{-6}$  or  $10^{-7}$ ) applied as detailed in the methods section.

### Table S4: ECs in sub-subclasses associated with mono- or dioxygenases

| EC         | EC description                                                | EC          | EC description                                |
|------------|---------------------------------------------------------------|-------------|-----------------------------------------------|
| 1.12.99.6  | hydrogenase (acceptor)                                        | 1.14.12.10  | benzoate 1,2-dioxygenase                      |
| 1.13.11.1  | catechol 1,2-dioxygenase                                      | 1.14.12.11  | toluene dioxygenase                           |
| 1.13.11.11 | tryptophan 2,3-dioxygenase                                    | 1.14.12.12  | naphthalene 1,2-dioxygenase                   |
| 1.13.11.15 | 3,4-dihydroxyphenylacetate 2,3-dioxygenase                    | 1.14.12.13  | 2-halobenzoate 1,2-dioxygenase                |
| 1.13.11.16 | 3-carboxyethylcatechol 2,3-dioxygenase                        | 1.14.12.14  | 2-aminobenzenesulfonate 2,3-dioxygenase       |
| 1.13.11.18 | persulfide dioxygenase                                        | 1.14.12.15  | terephthalate 1,2-dioxygenase                 |
| 1.13.11.2  | catechol 2,3-dioxygenase                                      | 1.14.12.17  | nitric oxide dioxygenase                      |
| 1.13.11.20 | cysteine dioxygenase                                          | 1.14.12.18  | biphenyl 2,3-dioxygenase                      |
| 1.13.11.24 | quercetin 2,3-dioxygenase                                     | 1.14.12.19  | 3-phenylpropanoate dioxygenase                |
| 1.13.11.27 | 4-hydroxyphenylpyruvate dioxygenase                           | 1.14.12.21  | benzoyl-CoA 2,3-dioxygenase                   |
| 1.13.11.29 | stizolobate synthase                                          | 1.14.12.3   | benzene 1,2-dioxygenase                       |
| 1.13.11.3  | protocatechuate 3,4-dioxygenase                               | 1.14.12.7   | phthalate 4,5-dioxygenase                     |
| 1.13.11.32 | 2-nitropropane dioxygenase                                    | 1.14.13.1   | salicylate 1-monooxygenase                    |
| 1.13.11.33 | arachidonate 15-lipoxygenase                                  | 1.14.13.100 | 25/26-hydroxycholesterol 7alpha-hydroxylase   |
| 1.13.11.34 | arachidonate 5-lipoxygenase                                   | 1.14.13.106 | epi-isozizaene 5-monooxygenase                |
| 1.13.11.37 | hydroxyquinol 1,2-dioxygenase                                 | 1.14.13.107 | limonene 1,2-monooxygenase                    |
| 1.13.11.39 | biphenyl-2,3-diol 1,2-dioxygenase                             | 1.14.13.111 | methanesulfonate monooxygenase                |
| 1.13.11.4  | gentisate 1,2-dioxygenase                                     | 1.14.13.113 | FAD-dependent urate hydroxylase               |
| 1.13.11.40 | arachidonate 8-lipoxygenase                                   | 1.14.13.114 | 6-hydroxynicotinate 3-monooxygenase           |
| 1.13.11.49 | chlorite O2-lyase                                             | 1.14.13.122 | chlorophyllide-a oxygenase                    |
| 1.13.11.5  | homogentisate 1,2-dioxygenase                                 | 1.14.13.127 | 3-(3-hydroxyphenyl)propanoate hydroxylase     |
| 1.13.11.52 | indoleamine 2,3-dioxygenase                                   | 1.14.13.129 | beta-carotene 3-hydroxylase                   |
| 1.13.11.53 | acireductone dioxygenase (Ni2+-requiring)                     | 1.14.13.131 | dimethyl-sulfide monooxygenase                |
| 1.13.11.54 | acireductone dioxygenase [iron(II)-requiring]                 | 1.14.13.132 | squalene monooxygenase                        |
| 1.13.11.6  | 3-hydroxyanthranilate 3,4-dioxygenase                         | 1.14.13.133 | pentalenene oxygenase                         |
| 1.13.11.63 | beta-carotene 15,15'-dioxygenase                              | 1.14.13.142 | 3-ketosteroid 9alpha-monooxygenase            |
| 1.13.11.64 | 5-nitrosalicylate dioxygenase                                 | 1.14.13.149 | phenylacetyl-CoA 1,2-epoxidase                |
| 1.13.11.79 | 5,6-dimethylbenzimidazole synthase                            | 1.14.13.151 | linalool 8-monooxygenase                      |
| 1.13.11.8  | protocatechuate 4,5-dioxygenase                               | 1.14.13.163 | 6-hydroxy-3-succinoylpyridine 3-monooxygenase |
| 1.13.12.16 | nitronate monooxygenase                                       | 1.14.13.172 | salicylate 5-hydroxylase                      |
| 1.13.12.19 | 2-oxoglutarate dioxygenase (ethylene-forming)                 | 1.14.13.178 | methylxanthine N1-demethylase                 |
| 1.13.12.21 | tetracenomycin-F1 monooxygenase                               | 1.14.13.199 | docosahexaenoic acid omega-hydroxylase        |
| 1.13.12.4  | lactate 2-monooxygenase                                       | 1.14.13.2   | 4-hydroxybenzoate 3-monooxygenase             |
| 1.13.99.1  | inositol oxygenase                                            | 1.14.13.20  | 2,4-dichlorophenol 6-monooxygenase            |
| 1.14.11.1  | gamma-butyrobetaine dioxygenase                               | 1.14.13.205 | long-chain fatty acid omega-monooxygenase     |
| 1.14.11.16 | peptide-aspartate beta-dioxygenase                            | 1.14.13.208 | benzoyl-CoA 2,3-epoxidase                     |
| 1.14.11.17 | taurine dioxygenase                                           | 1.14.13.22  | cyclohexanone monooxygenase                   |
| 1.14.11.18 | phytanoyl-CoA dioxygenase                                     | 1.14.13.225 | F-actin monooxygenase                         |
| 1.14.11.2  | procollagen-proline dioxygenase                               | 1.14.13.24  | 3-hydroxybenzoate 6-monooxygenase             |
| 1.14.11.21 | clavaminate synthase                                          | 1.14.13.25  | methane monooxygenase (soluble)               |
| 1.14.11.23 | flavonol synthase                                             | 1.14.13.30  | leukotriene-B4 20-monooxygenase               |
| 1.14.11.27 | [histone-H3]-lysine-36 demethylase                            | 1.14.13.38  | anhydrotetracycline monooxygenase             |
| 1.14.11.35 | 1-deoxypentalenic acid 11beta-hydroxylase                     | 1.14.13.40  | anthraniloyl-CoA monooxygenase                |
| 1.14.11.4  | procollagen-lysine 5-dioxygenase                              | 1.14.13.48  | (S)-limonene 6-monooxygenase                  |
| 1.14.11.42 | tRNAPhe (7-(3-amino-3-carboxypropyl)wyosine37-C2)-hydroxylase | 1.14.13.49  | (S)-limonene 7-monooxygenase                  |
| 1.14.11.45 | L-isoleucine 4-hydroxylase                                    | 1.14.13.50  | pentachlorophenol monooxygenase               |
| 1.14.11.7  | procollagen-proline 3-dioxygenase                             | 1.14.13.67  | quinine 3-monooxygenase                       |
| 1.14.11.8  | trimethyllysine dioxygenase                                   | 1.14.13.7   | phenol 2-monooxygenase (NADPH)                |
| 1.14.12.1  | anthranilate 1,2-dioxygenase (deaminating, decarboxylating)   | 1.14.13.70  | sterol 14alpha-demethylase                    |
|            |                                                               |             |                                               |

### 100 Table S4: (continued)

| EC         | EC description                                                                   | EC         | EC description                           |
|------------|----------------------------------------------------------------------------------|------------|------------------------------------------|
| 1.14.13.72 | methylsterol monooxygenase                                                       | 1.14.14.17 | squalene monooxygenase                   |
| 1.14.13.8  | flavin-containing monooxygenase                                                  | 1.14.14.18 | heme oxygenase (biliverdin-producing)    |
| 1.14.13.81 | magnesium-protoporphyrin IX monomethyl ester (oxidative) cyclase                 | 1.14.14.3  | bacterial luciferase                     |
| 1.14.13.82 | vanillate monooxygenase                                                          | 1.14.14.46 | pimeloyl-[acyl-carrier protein] synthase |
| 1.14.13.84 | 4-hydroxyacetophenone monooxygenase                                              | 1.14.14.5  | alkanesulfonate monooxygenase            |
| 1.14.13.9  | kynurenine 3-monooxygenase                                                       | 1.14.14.9  | 4-hydroxyphenylacetate 3-monooxygenase   |
| 1.14.13.90 | zeaxanthin epoxidase                                                             | 1.14.15.1  | camphor 5-monooxygenase                  |
| 1.14.13.92 | phenylacetone monooxygenase                                                      | 1.14.15.11 | pentalenic acid synthase                 |
| 1.14.99.1  | prostaglandin-endoperoxide synthase                                              | 1.14.15.12 | pimeloyl-[acyl-carrier protein] synthase |
| 1.14.99.28 | linalool 8-monooxygenase                                                         | 1.14.15.13 | pulcherriminic acid synthase             |
| 1.14.99.29 | deoxyhypusine monooxygenase                                                      | 1.14.15.21 | zeaxanthin epoxidase                     |
| 1.14.99.3  | heme oxygenase (biliverdin-producing)                                            | 1.14.15.3  | alkane 1-monooxygenase                   |
| 1.14.99.33 | DELTA12-fatty acid dehydrogenase                                                 | 1.14.15.7  | choline monooxygenase                    |
| 1.14.99.36 | beta-carotene 15,15'-monooxygenase                                               | 1.14.16.1  | phenylalanine 4-monooxygenase            |
| 1.14.99.39 | ammonia monooxygenase                                                            | 1.14.16.2  | tyrosine 3-monooxygenase                 |
| 1.14.99.44 | diapolycopene oxygenase                                                          | 1.14.16.4  | tryptophan 5-monooxygenase               |
| 1.14.99.46 | pyrimidine oxygenase                                                             | 1.14.16.5  | alkylglycerol monooxygenase              |
| 1.14.99.5  | stearoyl-CoA desaturase                                                          | 1.14.17.1  | dopamine beta-monooxygenase              |
| 1.14.99.50 | gamma-glutamyl hercynylcysteine S-oxide synthase                                 | 1.14.17.3  | peptidylglycine monooxygenase            |
| 1.14.99.7  | squalene monooxygenase                                                           | 1.14.17.4  | aminocyclopropanecarboxylate oxidase     |
| 1.14.14.1  | unspecific monooxygenase                                                         | 1.14.18.1  | tyrosinase                               |
| 1.14.14.11 | styrene monooxygenase<br>3-hydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione | 1.14.18.3  | methane monooxygenase (particulate)      |
| 1.14.14.12 | monooxygenase                                                                    | 1.14.18.5  | sphingolipid C4-monooxygenase            |

# 101102

## **S4 Substitution-type reactions**

#### 104

103

#### Correlation with EC 2.5.1.18



105106

**Figure S7:** Correlation between the 5 investigated acetanilides and glutathione-S-transferase (EC 2.5.1.18). Significant correlations (P < 0.05) are indicated with an asterisk.

### References

108

- 109 1. Achermann, S.; Falås, P.; Joss, A.; Mansfeldt, C. B.; Men, Y.; Vogler, B.; Fenner, K., 110 Trends in micropollutant biotransformation along a solids retention time gradient. 111 *Environ. Sci. Technol.* **2018**, *52*, 11601–11611.
- 112 2. Kanehisa, M.; Goto, S., KEGG: kyoto encyclopedia of genes and genomes. *Nucleic Acids Res.* **2000**, *28*, 27-30.