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Abstract 29 

Conventional urban wastewater treatment plants (UWTPs) are poorly effective in the removal 30 

of most contaminants of emerging concern (CECs), including antibiotics, antibiotic resistant 31 

bacteria and antibiotic resistance genes (ARB&ARGs). These contaminants result in some 32 

concern for the environment and human health, in particular if UWTPs effluents are reused for 33 

crop irrigation.  Recently, stakeholders’ interest further increased in Europe, because the 34 

European Commission is currently developing a regulation on water reuse. Likely, conventional 35 

UWTPs will require additional advanced treatment steps to meet water quality limits yet to be 36 

officially established for wastewater reuse. Even though it seems that CECs will not be included 37 

in the proposed regulation, the aim of this paper is to provide a technical contribution to this 38 

discussion as well as to support stakeholders by recommending possible advanced treatment 39 

options, in particular with regard to the removal of CECs and ARB&ARGs. Taking into account 40 

the current knowledge and the precautionary principle, any new or revised water-related 41 

Directive should address such contaminants. Hence, this review paper gathers the efforts of a 42 

group of international experts, members of the NEREUS COST Action ES1403, who for three 43 

years have been constructively discussing the efficiency of the best available technologies 44 

(BATs) for urban wastewater treatment to abate CECs and ARB&ARGs. In particular, 45 

ozonation, activated carbon adsorption, chemical disinfectants, UV radiation, advanced 46 

oxidation processes (AOPs) and membrane filtration are discussed with regard to their 47 

capability to effectively remove CECs and ARB&ARGs, as well as their advantages and 48 

drawbacks. Moreover, a comparison among the above-mentioned processes is performed for 49 

CECs relevant for crop uptake. Finally, possible treatment trains including the above-discussed 50 

BATs are discussed, issuing end-use specific recommendations which will be useful to UWTPs 51 

managers to select the most suitable options to be implemented at their own facilities to 52 

successfully address wastewater reuse challenges. 53 
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List of abbreviations 58 

ARB= antibiotic resistant bacteria 59 

ARGs= antibiotic resistance genes 60 

AOPs= advanced oxidation processes 61 

BAC= biological activated carbon 62 

CBZ= carbamazepine 63 

CECs= contaminants of emerging concern 64 

CPC= compound parabolic collector 65 

DBPs= disinfection by products 66 

DCF= diclofenac 67 

DOC= dissolved organic carbon 68 

ERY= erythromycin 69 

FRC= free residual chlorine 70 

GAC= granular activated carbon 71 

HO•= hydroxyl radical 72 

LRV= Log removal value 73 

MDR= multi drug resistant 74 

MF= microfiltration 75 

NDMA= N-nitrosodimethylamine 76 

NF= nanofiltration 77 

PAC= powdered activated carbon 78 

RO= reverse osmosis 79 

TMP= transmembrane pressure 80 

UF= ultrafiltration 81 

SMX= sulfamethoxazole 82 

UWTPs = urban wastewater treatment plants  83 
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1. Introduction 84 

Wastewater reuse is one of the most important alternatives to conventional water sources to 85 

address water scarcity. As a matter of fact, around 1.2 billion people live in areas affected by 86 

serious water scarcity conditions (United Nations, 2014) and 1.8 billion people are expected to 87 

be living in countries or regions affected by water scarcity by 2025, according to United Nations 88 

reports (United Nations, 2014; FAO, 2014). Wastewater reuse for irrigation in agriculture is by 89 

far the most established end-use for reclaimed water (Dreschel et al., 2010a), in low-income 90 

countries as well as in arid and semi-arid ones (Dreschel et al., 2010b). However, whilst solving 91 

water scarcity, wastewater reuse can generate public health risks if treatment, storage and piping 92 

are not adequate. The main risk, in particular in low-income countries, is related to consumption 93 

of raw or undercooked vegetables contaminated with pathogenic microorganisms stemming 94 

from the use of untreated or poorly treated wastewater for crop irrigation (Fuhrimann et al., 95 

2016). In countries of higher income level, wastewater reuse for irrigation is regulated, at least 96 

in some of them (Paranychianakis et al., 2015), and concerns tend to shift from microbial risk 97 

(effective disinfection processes are typically included in the treatment train) to contaminants 98 

of emerging concern (CECs), such as pesticides, pharmaceuticals, illicit drugs, synthetic and 99 

natural hormones, personal care products, and resistant microorganisms (i.e. antibiotic resistant 100 

bacteria and genes (ARB&ARGs)). However, neither the release of CECs from urban 101 

wastewater treatment plants (UWTPs) into the environment (except for Switzerland) nor their 102 

occurrence in wastewater for agricultural reuse has been regulated so far. CECs monitoring in 103 

UWTPs effluents to reuse for crop irrigation is one of the main debated issues among scientists, 104 

policy makers and stakeholders at EU level (Christou et al., 2017a, Piña et al., 2018, Rizzo et 105 

al., 2018; Deng et al., 2019) even in relation to the regulation for wastewater reuse which is 106 

about to be approved by the Parliament (European Parliament, 2019). 107 

 108 
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According to scientific literature, conventional treatment trains in UWTPs are poorly effective 109 

to comprehensively remove CECs (Petrie et al., 2015; Falas et al., 2016; Krzeminski et al., 110 

2019), which can finally be released into the environment, constituting a particular concern 111 

when effluents are reused for crop irrigation. To be able to meet stringent limits for wastewater 112 

reuse as well as to effectively remove CECs, advanced treatment steps should be implemented 113 

in conventional UWTPs (Krzeminski et al., 2019; Rizzo et al., 2019a). However, while the 114 

effect of biological processes (Boshir Ahmed et al., 2017; Tiwari et al., 2017; Krzeminski et 115 

al., 2019) and advanced treatment technologies (Miklos et al., 2018; von Gunten, 2018; 116 

Roccaro, 2018; Marron et al., 2019; Rizzo et al., 2019a; Siegrist et al. 2019) on chemical CECs 117 

has been reviewed in different papers, less information is available about ARB&ARGs and, 118 

most importantly, on possible treatment trains combining several processes to successfully 119 

address these challenges. 120 

 121 

This review paper gathers the efforts of a group of international experts, members of the 122 

NEREUS COST Action ES14031 “New and emerging challenges and opportunities in 123 

wastewater reuse” (Fatta-Kassinos et al., 2015), who for three years have been constructively 124 

discussing the effect of the best available technologies (BATs) for urban wastewater treatment 125 

on CECs and ARB&ARGs. Accordingly, the objective of this paper is to introduce and discuss 126 

the BATs for advanced treatment of urban wastewater, as well as possible treatment trains to 127 

control the release of CECs, including ARB&ARGs, to produce wastewater for safe and 128 

sustainable reuse practices in agriculture. In particular, the capability of ozonation, activated 129 

carbon adsorption, chemical oxidants/disinfectants, UV radiation, advanced oxidation 130 

processes (AOPs) and membrane filtration to abate CECs and ARB&ARGs are discussed 131 

                                                
1 COST Action ES1403 New and emerging challenges and opportunities in wastewater reuse (NEREUS), 

http://www.nereus-cost.eu. 
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including the advantages and drawbacks of these processes. Moreover, a comparison among 132 

the above-mentioned processes is performed for CECs relevant for crop uptake. It is noteworthy 133 

that only results from investigations at pilot or full-scale on real wastewater were considered. 134 

Subsequently, possible treatment trains including the above-discussed BATs are presented and 135 

recommended for possible application in the EU and other developed countries. Finally, 136 

possible advantages, drawbacks and recommendations of the proposed treatment trains are 137 

summarized. 138 

 139 

2. Overview of the BATs for advanced treatment and reuse of urban wastewater: 140 

CECs abatement, effect on ARB&ARGs and process drawbacks 141 

The occurrence of CECs into the environment is related to different human activities (Verlicchi 142 

et al., 2015; Bilal et al., 2019a, b) and it has been associated to biological adverse effects on 143 

living organisms such as toxicity, endocrine disruption and antibiotic resistance in 144 

microorganisms (Manaia, 2017; López-Pacheco et al., 2019; Ma et al., 2019). Specifically, 145 

several CECs have been found to increase the risks for human-health, because they finally cause 146 

imbalance to hormonal and male/female reproductive systems and different disorders, namely 147 

metabolism, neurological, and immunological ones (López-Pacheco et al., 2019; Pedrazzani et 148 

al., 2019; Rueda-Ruzafa et al., 2019).  149 

In 2015, the European Commission established the EU Watch List (Decision 2015/495/EU) to 150 

monitor 17 CECs in water. The target CECs belong to different categories including antibiotics, 151 

estrogenic hormones, non-steroidal anti-inflammatory compounds, pesticides and herbicides, 152 

UV filters, and they were selected according to their potential to cause damage to aquatic 153 

environments and to pose a significant risk at European Union level, but for which monitoring 154 

data are insufficient to come to a conclusion regarding the actual posed risk.  155 

UWTPs are recognized among the main anthropogenic sources for the release of CECs and 156 

ARB&ARGs into the environment, therefore, taking into account the environment and human 157 

health concerns related to their occurrence in UWTPs effluents and into the environment, 158 

different advanced treatment technologies have been investigated so far to find effective 159 

solutions to minimize their release. In the following sub-paragraphs, the BATs for advanced 160 
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treatment of urban wastewater are introduced to evaluate their effect one CECs and 161 

ARB&ARGs. Possible advantages and drawbacks of these processes are also discussed 162 

according to the relevant scientific literature. 163 

 164 

2.1 Ozonation 165 

2.1.1 Abatement of CECs  166 

The oxidation capacity of the ozone process relies on the strong oxidation potential of both, 167 

molecular ozone and HO radicals (HO•) (2.07 and 2.8 V against standard hydrogen electrode, 168 

respectively). While ozone reacts selectively with compounds containing electron-rich moieties 169 

(such as olefins, deprotonated amines or activated aromatics), HO• exhibit a low selectivity and 170 

fast reaction with a wide range of organic and inorganic compounds (von Sonntag, 2007). 171 

Ozonation and other oxidation-based processes were originally applied for disinfection 172 

purposes in drinking water treatment, but have been widely investigated for the abatement of 173 

different CECs from urban wastewater since more than 10 years (Ternes et al., 2003). Based on 174 

the reaction rate constants with ozone and HO•, CEC abatement can be predicted in municipal 175 

wastewater (Lee et al. 2013). Hollender et al. (2009) and Bourgin et al. (2018) investigated the 176 

abatement of 220-550 micropollutants at two full-scale UWTPs upgraded with ozonation 177 

(followed by sand filtration). Compounds such as sulfamethoxazole, diclofenac, or 178 

carbamazepine with high apparent second-order rate constants at pH 7 (kO3,pH7>103) were 179 

abated by more than 80% at a specific ozone dose of 0.4 g O3/g dissolved organic carbon 180 

(DOC). Compounds more refractory to oxidation by ozone (kO3,pH7=102-103), such as 181 

bezafibrate and benzotriazole, were abated by 80% only at a higher ozone dose (∼0.6 g O3/g 182 

DOC). The high efficiency of ozonation in the abatement of CECs from wastewater was also 183 

confirmed in other studies on a smaller group of compounds (e.g., Antoniou et al. 2013; 184 

Magdeburg et al. 2014). After ozonation, a biological post-treatment (sand filter or biological 185 
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activated carbon (BAC) filter) is recommended to elimine possible negative ecotoxicological 186 

effects or by-products generated during ozonation (Von Gunten, 2018; Bacaro et al. 2019). 187 

 188 

2.1.2 Effect on ARB&ARGs 189 

Mechanisms for disinfection or inactivation of bacteria by ozone exposure include the 190 

disruption of bacterial cell walls (leading to the release of intracellular constituents), damage of 191 

nucleic acids (breaking aromatic structure), and breakage of carbon-nitrogen bonds of proteins 192 

leading to depolymerisation (Alexander et al., 2016, Michael-Kordatou et al., 2018). The 193 

inactivation efficiency by ozonation depends on the susceptibility of the target organism and 194 

ozone exposure, which is a function of the wastewater characteristics and transferred ozone 195 

dose. Unlike CECs, the effect of ozonation on ARB&ARGs has not been investigated 196 

systematically and thoroughly so far. Alexander et al. (2016) observed diverse patterns of 197 

resistances and susceptibilities of opportunistic bacteria and accumulations of some ARGs 198 

during ozone treatment (0.9 ± 0.1 g O3/g DOC) of treated wastewater. Ozone affected 199 

microorganisms in different ways, with a high susceptibility of enterococci (almost 99% 200 

reduction) compared to Pseudomonas aeruginosa, that displayed only minor changes in 201 

abundance after treatment. The investigated ARGs demonstrated an even more diverse pattern 202 

with 2 orders of magnitude reduction of erythromycin resistance gene (ermB) but a 203 

simultaneous increase in the abundance of ARGs (vanA, blaVIM) within the surviving 204 

wastewater population. Ozonation operated at high contact time (40 min) with an ozone dose 205 

of 0.25 g O3/g DOC was capable of inactivating total as well as antibiotic (sulfamethoxazole 206 

and trimethoprim) resistant Escherichia coli (E. coli), with the simultaneous reduction of the 207 

abundance of the examined genes (Iakovides et al., 2019). Accordingly, the studies published 208 

so far confirm that the ozonation process is effective in the inactivation of ARB and to some 209 

extent in the removal of ARGs (Lüddeke et al., 2014; Zhuang et al., 2015; Alexander et al., 210 
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2016; Zheng et al., 2017; Sousa et al., 2017), but it seems that the process may also select for 211 

bacterial population (Alexander et al., 2016; Sousa et al., 2017; Czekalski et al., 2016). 212 

Regrowth of ARB during biological sand-filtration following ozonation was found to partly 213 

compensate inactivation during ozonation (Czekalski et al., 2016). Moreover, mobile genetic 214 

elements may reach pre-treatment levels after some days of storage (Sousa et al., 2017), which 215 

can be of concern for wastewater reuse practice where treated effluents may be stored for some 216 

days before use (Iakovides et al., 2019).  217 

 218 

2.1.3 Formation of oxidation by-products  219 

Ozonation can result in the formation of biologically potent (e.g. toxic, mutagenic) oxidation 220 

by-products. Among them, N-nitrosodimethylamine (NDMA) and bromate are of particular 221 

concern for human health because they are potentially carcinogenic. Therefore, NDMA and 222 

bromate need to be measured to test the feasibility of ozonation as an option for advanced 223 

wastewater treatment at a specific location (Schindler Wildhaber et al., 2015). Only if the 224 

concentrations expected after dilution of discharged effluents are clearly below (potential) 225 

drinking water standards (10 µg/L for bromate, 10 ng/L for NDMA, Bourgin et al., 2018), 226 

ozonation is considered suitable. Bromate results from the reaction of O3 and HO• with 227 

bromide. NDMA can be formed from the reaction of amine precursors (e.g. containing 228 

hydrazine, sulfamide, and dimethylamino functional groups) with generally low yields but that 229 

can reach up to ≥ 50% in exceptional cases (Kosaka et al. 2009; Schmidt and Brauch 2008; von 230 

Gunten et al. 2010; Krasner et al. 2013, Sgroi et al., 2014). Because precursors are mostly 231 

unknown or unidentified in wastewater, the formation of NDMA cannot be excluded a priori. 232 

NDMA can also already be present in the UWTP influent.  233 
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To minimize the release of biodegradable compounds including e.g. transformation products of 234 

CECs formed during ozonation, a subsequent treatment by biologically active sand filtration 235 

(or adsorption) is recommended. For the evaluation of the water quality after ozonation, specific 236 

and unspecific toxicity of the treated wastewater needs to be measured with bioassays 237 

(Schindler Wildhaber et al., 2015). 238 

 239 

2.1.4 Application at full-scale as advanced treatment of urban wastewater 240 

Ozonation is well established in drinking water treatment, but only recently has been applied at 241 

full-scale as advanced treatment of urban wastewater in Europe for the removal of CECs before 242 

discharge into the environment. In particular in Switzerland, ozonation is considered as one of 243 

the BATs to meet the requirement of the new Swiss water protection Act (micropollutants 244 

removal by 80% relative to the raw wastewater; Eggen et al. 2014, Bourgin et al. 2018), which 245 

requires an upgrade of selected UWTPs until 2040. A website of the Swiss Water Association 246 

provides updated information on European UWTPs that are planning or running full-scale 247 

advanced treatment for CEC removal (www.micropoll.ch). 248 

The occurrence of organic matter (measured as DOC) and other readily oxidizable compounds 249 

(such as nitrite) in the effluent of biological treatment affect ozone exposure and should be 250 

considered when defining the ozone dose for the abatement of CECs. An ozone dose in the 251 

range of 0.4 – 0.6 g O3/g DOC (in the absence of nitrite) was found to be suitable to efficiently 252 

abate micropollutants (Hollender et al. 2009, McArdell et al. 2015, Bourgin et al. 2018). Cost 253 

evaluations are shown later (section 2.2.3) in comparison to treatment with activated carbon. In 254 

the US and in Australia, ozonation followed by a BAC filter has been successfully applied as 255 

low-cost potable reuse option (Gerrity et al. 2014; Reungoat et al. 2012; Stanford et al. 2017); 256 

 257 
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2.2 Activated Carbon adsorption 258 

2.2.1 Removal of CECs 259 

Unlike oxidation, adsorption is a separation process which does not result in the formation of 260 

by-products. Activated carbon is the most used adsorbent in water treatment for the removal of 261 

organic and inorganic pollutants dissolved in water. Activated carbon treatment for the removal 262 

of CECs from wastewater has been widely investigated (Boehler et al., 2012; Grassi et al., 2013; 263 

Rizzo et al., 2015; Ahmed, 2017; Kovalova et al., 2013, Michael et al., 2019). Packed bed 264 

adsorption reactors with granular activated carbon (GAC) as adsorbent material are commonly 265 

used in drinking water treatment. Due to process costs, their application at full-scale as 266 

advanced urban wastewater treatment only recently has attracted the interest of UWTPs 267 

managers and professionals, as the concern for possible effect on human health and 268 

environment of CECs has increased (Rizzo et al., 2019a; Siegrist et al. 2019). Its advantage 269 

compared to powdered activated carbon (PAC) is that operationally it is easier to use, and it can 270 

be recovered and regenerated when its adsorption capacity is exhausted. However, the process 271 

requires an adequate monitoring strategy, since adsorption competition results in a reduced 272 

CEC removal or even desorption of less adsorbable CECs with increasing treated bed volumes 273 

due to a decrease in available adsorption sites. PAC can be applied as a post-treatment or dosed 274 

into the biological unit in UWTPs and, due to its smaller particle size (higher specific surface 275 

area), is more efficient compared to GAC in the removal of water pollutants and specifically 276 

CECs (Nowotny et al., 2007, Boehler et al., 2012).  277 

 278 

2.2.2 Effect on ARB&ARGs 279 

Even though adsorption is not a disinfection process and not designed to remove bacteria and 280 

mobile genetic elements, a contribution to the reduction of antibiotic resistance in wastewater 281 
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effluent can be expected due to possible entrapment of ARB&ARGs inside the pores of 282 

adsorbent particles (Zhang et al., 2017; Ashbolt et al., 2018; Bürgmann et al. 2018). 283 

 284 

2.2.3 Application at full-scale as advanced treatment of urban wastewater 285 

Activated carbon adsorption has been recently applied at full-scale for advanced treatment of 286 

urban wastewater as alternative to ozonation, particularly in Switzerland and Germany, for the 287 

removal of CECs before effluent discharge into the environment (Rizzo et al., 2019a). 288 

Depending on DOC and operation technology, a dose of 10-20 mg/L PAC can be recommended 289 

to protect the aquatic environment (Boehler et al. 2012). A post-treatment is also needed in 290 

PAC treatment for separation of residual PAC material. The use of GAC-packed reactors is 291 

more restricted since it does not allow to react to certain conditions (e.g. rainy periods), whereas 292 

PAC dose can be increased (Siegrist et al., 2019). However, GAC in combination with other 293 

treatment is used successfully for many years, but just for direct potable reuse application 294 

(Vaidya et al. 2019; Piras et al., 2020). As far as operation costs are concerned, feasibility 295 

studies conducted in the state of North Rhine-Westphalia (Germany) in the years 2009–2016 296 

resulted in similar median costs (0.04 €/m3) for ozonation (16 plants), PAC (11) and GAC (9) 297 

processes (Figure SI4 in Rizzo et al., 2019a), with highest variability for GAC treatment. 298 

Overall costs, including investment and operation, vary substantially with the size of the 299 

UWTP. For mid-scale plants (~50.000 PE), the costs are in the range of 0.10 to 0.15 €/m3 treated 300 

wastewater, decreasing further with increasing plant size even below 0.05 €/m3, with PAC 301 

treatment being slightly more expensive than ozonation (Figure 4, Rizzo et al. 2019a). 302 

Consistently with the numbers determined in Germany, overall costs for PAC (0.10-0.15 303 

CHF/m3, 1 CHF being 0.88 € on January 18th, 2019, for dosing 10 mg/L PAC in a large plant 304 

with 590,000 p.e.) were estimated to be higher than for ozonation (0.04-0.06 CHF/m3, for 305 
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dosing 5 mg/L ozone in a large plant) in Switzerland (McArdell et al., 2015, Abegglen et al. 306 

2012).  307 

 308 

2.3 Chemical oxidants/disinfectants 309 

Chlorination is by far the most common method of wastewater disinfection, but the concern for 310 

human health and the environment related to the formation of toxic by-products (e.g., 311 

trihalomethanes, haloacetic acids and related contaminants) is increasing the interest towards 312 

alternative chemical disinfectants, such as peracids. Among them, peracetic acid (PAA) already 313 

finds different applications at full-scale in UWTPs, particularly in Italy (Formisano et al., 2016; 314 

Di Cesare et al., 2016a) and in the USA (Bell and Wylie, 2016; Stewart et al., 2018). 315 

Accordingly, chlorination and PAA disinfection are discussed in the subsequent sub-316 

paragraphs. Neither of the two technologies is applied for CEC abatement as they are not 317 

economic and produce problematic effluents. 318 

 319 

2.3.1 Chlorination 320 

Wastewater disinfection by chlorine is typically performed by chlorine gas (in medium – large 321 

UWTPs) or hypochlorite (either calcium or sodium). Limited studies have focused on the 322 

abatement of CECs by chlorine, which was found to be quite poor, in particular if compared to 323 

oxidation/disinfection processes with higher oxidation potential such as ozone and other AOPs 324 

(Anumol et al., 2016; Hua et al., 2019). For example, Li and Zhang (2011) reported abatement 325 

of antibiotics during wastewater treatment with chlorine in the range of 18% (roxithromycin) 326 

to 40% (trimethoprim), while cephalexin and ampicillin were abated by 99% and 91%, 327 

respectively. However, the chlorine dose was not reported in this study, and cephalexin and 328 

ampicillin are beta-lactam antibiotics that hydrolyze very quickly, so these results do not allow 329 
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to discriminate hydrolysis contribution from chlorine oxidation effects. Contrasting results are 330 

documented in the scientific literature for sulfamethoxazole (SMX). Whilst Gao et al. (2014) 331 

observed an almost complete abatement of SMX (initial concentration in the range 0.05–2 332 

mg/L) within 15 min contact time and 2.0 mg/L of chlorine, de Jesus Gaffney et al. (2016) 333 

observed only 20% abatement (pH 6–7, 2 mg/L of free chlorine) of SMX after 2 h contact time. 334 

However, when reaction kinetics of SMX were investigated in different water matrices, the 335 

results achieved in real wastewater ([SMX]0 = 2.0 × 10-6 M), pH 7.3, free residual chlorine 336 

(FRC) 11 mg/L) confirmed the substantial degradation of SMX observed in deionized water 337 

(half-life of 23 s was measured under pseudo-first-order conditions ([FRC]0 = 20 μM (1.4 338 

mg/L)) (Dodd and Huang, 2004). This expectation is supported by existing observations at full-339 

scale UWTPs, where 89.6% SMX abatement was observed (Renew and Huang, 2004). Despite 340 

the fact that single compounds are degraded by chlorination, a broad abatement of CECs cannot 341 

be achieved; for example, poor or no abatement of diclofenac or carbamazepine was observed 342 

(Hua et al. 2019).   343 

Chlorination can result in the formation of toxic by-products, including trihalomethanes and 344 

haloacetic acids (Richardson et al., 2007). Moreover, in effluents with incomplete nitrification, 345 

chlorine combines with ammonia to form chloramines or so-called combined chlorine. 346 

Chloramine chemistry is complex and will not be discussed further here, but it is noteworthy 347 

that chloramines are weaker oxidants and disinfectants compared to free chlorine. NDMA is a 348 

typical disinfection byproduct when chloramines are generated in wastewater effluents (Sgroi 349 

et al., 2018). It can be concluded that chlorination is not an option for CECs abatement and 350 

could produce an adverse effect on effluent organic composition when used for disinfection. 351 

The effect of chlorination on ARB is being investigated since the 70’s (Grabow et al., 1976). 352 

Although the chlorination process was found to effectively decrease antibiotic resistant E. coli 353 

in wastewater, it may select bacterial population by increasing antibiotic resistant E. coli strains 354 
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compared to the corresponding total population (Fiorentino et al., 2015). However, when the 355 

effect of chlorination on ARGs was investigated, different results were observed. For example, 356 

ARGs ereA and ermB persisted in chlorinated (15 mg Cl2 min/L) urban wastewater samples 357 

(Yuan et al. 2015) and chlorination was found to be effective in ARGs removal (3.16 Log for 358 

sulI and 3.24 Log for tetG after 120 min treatment) only at non-realistic chlorine concentration 359 

(160 mg/L) (Zhuang et al., 2015). On the opposite, Zheng and colleagues (2017) observed that 360 

chlorination can reduce ARGs (tetA, tetM, tetO, tetQ, tetW, sulI and sulII) abundance to some 361 

extent (less than 1 Log unit for tetA) even under realistic operating conditions (5 mg/L of 362 

chlorine, 30 min contact time). Moreover, Yoon et al. (2017) observed 4 Log reduction of ARGs 363 

concentration (two differing amplicons located in the commercially available plasmid pUC4K 364 

i.e., ampR and kanR) with 33-72 (mg·min)/L chlorine dose at pH 7 in urban wastewater. In 365 

particular, intracellular ARGs showed lower rates of damage compared to the extracellular 366 

ARGs, possibly due to the protective roles of cellular components. However, when process 367 

efficiency was investigated in full-scale UWTPs, chlorination did not prove to have significant 368 

contribution to ARGs (tetA, tetW, tetO, ermB, qnrS, blaTEM sulI) removal (Munir et al., 2011; 369 

Gao et al., 2012; Di Cesare et al., 2016b). 370 

 371 

2.3.2 Disinfection with peracetic acid 372 

PAA is a strong and broad-spectrum disinfectant, with a high reduction-oxidation (redox) 373 

potential and strong biocidal effects on bacteria. Because of the formation of toxic by-products 374 

in chlorination, PAA is increasingly replacing chlorine in UWTPs as it shows a broad-spectrum 375 

efficiency and comparable way of application (Antonelli et al., 2013; Formisano et al., 2016; 376 

Di Cesare et al., 2016a). 377 
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In spite of no significant formation of disinfection by products (DBPs) resulting from 378 

wastewater disinfection by PAA when low doses are used (<5-10 mg/L) (Nurizzo et al., 2005), 379 

PAA was found to be toxic for bacteria and crustaceans, even at concentrations lower than the 380 

ones commonly used in wastewater disinfection (2-5 mg/L). But when PAA was compared to 381 

other disinfection processes, a lower toxicity against aquatic organisms was observed. In 382 

particular da Costa et al. (2014) compared PAA (5 mg/L, 20 min contact time), UV light 383 

(average UV dose at 254 nm 670.8 mJ/cm2, 120 s contact time), ozone (29.9 mg/L, 5 min 384 

contact time), and sodium hypochlorite (2.5 mg/L, 20 min contact time) against Ceriodaphnia 385 

silvestrii, Daphnia similis, Chironomus xanthus, and Danio rerio and toxicities after treatment 386 

were in the order of free chlorine > ozone > UV > PAA after the respective disinfection 387 

treatments had been applied to secondary effluent. 388 

Due to its lower oxidation potential compared to ozone and hydroxyl radicals, possible 389 

abatement of CECs in wastewater by PAA has not attracted the interest of the scientific 390 

community. As matter of fact, PAA effect on CECs has been investigated only as control test 391 

compared to UV/PAA process (Rizzo et al., 2019b). Unlike carbamazepine (no abatement 392 

observed even after 300 min contact time), diclofenac was effectively oxidized by 2 mg PAA/L 393 

already after 60 min (80% abatement), while SMX was abated at a lower percentage (52% after 394 

300 min). As PAA effect on ARB is of concern, the limit of detection was achieved within 15 395 

min treatment in groundwater inoculated with an antibiotic resistant E. coli strain by 1 mg/L 396 

and 2 mg/L of PAA (Rizzo et al., 2019b). However, the water matrix strongly affects bacterial 397 

inactivation efficiency. As a matter of fact, Huang et al. (2013) observed lower inactivation in 398 

reclaimed water with a higher PAA initial dose (20 mg/L). In particular, inactivation was higher 399 

for ampicillin-resistant bacteria (2.3 Log) than for total heterotrophic bacteria (2.0 Log) and 400 

tetracycline resistant bacteria (1.1 Log) after 10 min treatment. Moreover, the regrowth of 401 

chloramphenicol-and tetracycline-resistant bacteria, as well as total heterotrophic bacteria was 402 
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more than 10-fold compared to those in the untreated wastewater sample (22 h stilling culture 403 

after exposure to 2 or 5 mg PAA /L as for 10 min). Di Cesare et al. (2016a) evaluated the fate 404 

of diverse ARGs, heavy metal resistant genes and of a mobile element (the class I integron) in 405 

three UWTPs using different disinfection processes. In 2 (sulII and tetA) out of 4 (ermB and 406 

qnrS) of the quantified ARGs, a decrease was observed after PAA treatment. 407 

 408 

2.4 UV radiation 409 

UV radiation (250-270 nm) is widely used for urban wastewater disinfection either for effluent 410 

discharge or reuse (Munir et al., 2011; Di Cesare et al., 2016a). UV radiation can damage DNA, 411 

resulting in the inhibition of cell replication and, in case of lethal doses, in loss of the ability of 412 

reproduction. The effectiveness of a UV disinfection system depends on the characteristics of 413 

the wastewater, the UV fluence (intensity × irradiation time), the type of microorganisms and 414 

reactor configuration. Since turbidity and suspended solids drastically decrease UV disinfection 415 

efficiency, conventional depth filtration should be used before UV disinfection (not necessary 416 

when applied following a membrane biological reactor (MBR)). 417 

 418 

2.4.1 Abatement of CECs 419 

UV radiation is not at all or is poorly effective in the abatement of most of CECs from water 420 

and wastewater, but it can abate some antibiotics and other CECs at very high UV doses (Kim 421 

et al., 2009; Rizzo et al., 2019b). For example, an almost complete abatement of tetracyclines 422 

and ciprofloxacin was achieved but only at high UV doses (11,000-30,000 mJ/cm2) (Yuan et 423 

al., 2011) and high abatement efficiencies (86-100%) were also observed for sulfonamides 424 

(SMX and sulfadimethoxine) and quinolones (norfloxacin and nalidixic acid) (Kim et al., 425 
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2009). Iodinated X-ray contrast media were abated by more than 90% at 720 mJ/cm2 (Kovalova 426 

et al. 2013). 427 

 428 

2.4.2 Effect on ARB&ARGs 429 

The effect of UV radiation on ARB&ARGs in urban wastewater has been increasingly 430 

investigated in the last years at lab and full-scale (Munir et al., 2011; McKinney and Pruden, 431 

2012; Rizzo et al., 2013; Guo et al., 2013; Zhuang et al., 2015; Di Cesare et al., 2016a). Process 432 

efficiency strongly depends on the applied UV dose and target ARB&ARGs, and possibly this 433 

is the main reason to explain differences between lab- and full-scale evidences. 434 

Efficient removal of heterotrophic bacteria harboring resistance to erythromycin and 435 

tetracycline was observed (Guo et al., 2013) (equivalent Log reduction being 1.4 and 1.1 at a 436 

UV dose of 5 mJ/cm2). As UV dose was further increased to 20 and 50 mJ/cm2, respectively, 437 

ARB were below the detection limit (1 CFU/mL).  438 

The UV dose also affects the removal of ARGs. UV doses ranging from 200 to 400 mJ/cm2 (at 439 

least one order of magnitude higher than those for the inactivation of host bacterial cells) were 440 

required to remove 3 or 4 Log units of ARGs, namely ampC, mecA, tetA and vanA (McKinney 441 

and Pruden, 2012). Actually, also lower UV doses (5-10 mJ/cm2) were found to be effective in 442 

the removal of ARGs (namely ereA, ereB, ermA, ermB, tetA, tetO) but starting from lower 443 

initial ARGs copies per mL (Guo et al., 2013). The relative abundance of selected ARGs 444 

increased with low doses of UV (Zhuang et al., 2015). Less than one order of magnitude 445 

removal of five tetracycline resistance genes (tetA, tetM, tetO, tetQ, tetW) and two sulfonamide 446 

resistance genes (sulI, sulII) were observed in UV disinfection (UV fluence 10-160 mJ/cm2) of 447 

wastewater samples taken from the secondary sedimentation tank of a UWTP in Hangzhou, 448 

China (Zheng et al., 2017). The removal efficiency of the five tet genes was between 52.0% 449 
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and 73.5% at the lower fluence UV disinfection (40 mJ/cm2 or less), and between 79.7%, and 450 

92.0% at high fluence (160 mJ/cm2). Lower removal efficiencies were observed for sulI, sulII 451 

(78.1% and 71.1% respectively, at the higher fluence). 452 

In full-scale monitoring (5 UWTPs in the USA), UV radiation employed for disinfection did 453 

not prove to have a significant contribution to ARGs (tetw, tetO, sulI) and ARB reduction 454 

(Munir et al., 2011). These results were confirmed in a subsequent study at full-scale, where no 455 

significant difference in ARGs (namely, ermB, qnrS and tetA) was observed before and after 456 

UV disinfection, while for sulII even an increase was observed after disinfection (Di Cesare et 457 

al., 2016a).  458 

 459 

2.5 Advanced oxidation processes 460 

Advanced oxidation processes (AOPs) rely on the formation of hydroxyl radicals that can abate 461 

a wide range of CECs (Rizzo, 2011; He et al., 2020) as well as inactivate microorganisms 462 

(Dunlop et al., 2010; Fiorentino et al., 2015). A possible classification of AOPs includes two 463 

groups: homogeneous processes (e.g., UV/H2O2, UV/Fe/H2O2, O3, O3/H2O2 etc.) and 464 

heterogeneous (solid semiconductors + light source, e.g., UV/TiO2, UV/ZnO) photocatalytic 465 

processes. Homogeneous processes have been widely investigated as advanced treatment of 466 

urban wastewater effluents and either are already applied at full-scale (e.g., O3, see section 2.1) 467 

or are characterized by short-/mid-term perspective application (e.g., UV/H2O2, UV/Fe/H2O2) 468 

as opposed to heterogeneous photocatalytic processes (Rizzo et al., 2019a; Maniakova et al., 469 

2020). The main reason why heterogeneous photocatalytic processes are not ready for full-scale 470 

application as advanced urban wastewater treatment are related to photocatalyst preparation 471 

costs, photocatalyst quantum yield (effectiveness) and reactor configuration (Iervolino et al., 472 

2020). In particular, heterogeneous photocatalytic processes can be operated under two main 473 
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configurations: (i) with the photocatalyst suspended in the reactor (i.e., slurry system) or (ii) 474 

attached to a support (i.e., immobilized system). Due to the higher specific surface area 475 

available, a slurry system is more effective than an immobilized one, but a subsequent 476 

expensive separation process (e.g., coagulation, filtration, membrane) is necessary to recover 477 

the photocatalyst before effluent discharge or reuse (Fernández-Ibáñez et al., 2003). 478 

Immobilized photocatalytic systems have relatively lower quantum efficiency than slurry ones, 479 

which results in longer treatment time and consequently larger water volume to treat (Spasiano 480 

et al., 2015). Some homogeneous photo-driven AOPs can also be operated under natural 481 

sunlight (solar/H2O2 or solar/Fe/H2O2) thus saving energy costs (Klamerth et al., 2010; Ortega-482 

Gomez et al., 2014; Ferro et al., 2015; Giannakis et al., 2016) and this can be considered as an 483 

attractive option for small UWTPs in areas with sufficient sunlight.  484 

 485 

2.5.1 Abatement of CECs 486 

Due to their high redox potential hydroxyl radicals oxidize a wide spectrum of organic 487 

contaminants, accordingly, AOPs successfully degrade several organic micropollutants 488 

(Klavarioti et al, 2009; Rizzo, 2011). The most common AOPs studied are UV/H2O2, O3/H2O2, 489 

O3/UV, Fenton (Fe/H2O2), photo-Fenton (UV/Fe/H2O2) and heterogeneous photocatalysis (e.g., 490 

UV/TiO2, UV/ZnO). Although UV/H2O2, is more efficient than UV alone to abate CECs, still 491 

more energy is needed compared to ozonation (Rizzo et al., 2019a). O3/H2O2 does not improve 492 

abatement of CECs compared to ozone alone in UWTP effluents, since effluent ozonation can 493 

be considered an intrinsically AOP due to the high HO• generation potential of the organic 494 

matrix (Buffle et al., 2006), at the same time HO• are scavenged by the matrix (Acero and von 495 

Gunten, 2001; Kovalova 2013). Fenton and photo-Fenton processes are typically effective 496 

under acidic conditions (pH 3) and the abatement of three antibiotics, namely SMX, 497 

erythromycin (ERY) and clarithromycin, from urban wastewater was investigated (Karaolia et 498 
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al., 2017). SMX and ERY were efficiently abated from UWTP secondary effluents by solar 499 

photo-Fenton in continuous flow operation with >80% abatement at a hydraulic residence time 500 

of 20 min in non-concentrating raceway pond reactors (Arzate et al., 2017). Nonetheless, this 501 

operation mode at full-scale would result in additional process cost and salinity increase 502 

because pH has to be first decreased and subsequently neutralized before effluent discharge or 503 

reuse. However, photo-Fenton has also been successfully investigated under almost neutral pH 504 

conditions and solar radiation for the abatement of CECs from urban wastewater with the 505 

addition of complexing agents. As a matter of fact, the (solar driven) photo-Fenton process 506 

allowed to effectively decrease CECs from urban wastewater under so-called mild conditions, 507 

i.e. under low Fe (< 5 mg/L) and H2O2 (< 20 mg/L) concentrations and pH 5-6, thus avoiding 508 

the necessity for final separation of soluble iron species from the treated wastewater (Klamerth 509 

et al., 2010; De la Obra et al., 2017). The use of organic chelating agents makes the process 510 

feasible and effective even under neutral pH conditions (De Luca et al., 2014; Fiorentino et al. 511 

2018; Soriano-Molina et al., 2018). Unlike photo-Fenton, solar-UV/H2O2 process can be 512 

operated at neutral pH without chelating agents, and it can successfully abate some CECs, but 513 

longer reaction time compared to photo-Fenton is needed (Ferro et al., 2015). 514 

 515 

2.5.2 Effect on ARB&ARGs 516 

AOPs can successfully inactivate ARB in urban wastewater (Karaolia et al., 2014; Rizzo et al., 517 

2014a; Fiorentino et al., 2019). As a matter of fact, sunlight/H2O2 process resulted in a total 518 

inactivation of multi drug resistant (MDR) E. coli (resistant to a mixture of three antibiotics: 519 

ampicillin, ciprofloxacin and tetracycline), after 90 min of treatment (Fiorentino et al., 2015). 520 

Noteworthy, longer treatment time (120 min) was necessary to achieve a complete inactivation 521 

of the total E. coli population, despite the percentage of MDR E. coli ((total E. coli – MDR E. 522 

coli)x100/total E. coli)) increased as total E.coli population decreased with treatment time. 523 
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However, the release of mobile genetic elements from bacterial cells, that may take place after 524 

disinfection process, and the potential to transfer antibiotic resistance through horizontal 525 

mechanism, have been poorly investigated. Photo-driven AOPs have recently been investigated 526 

to evaluate if they can be more effective in the removal of ARGs than conventional disinfection 527 

processes, such as chlorination and UV radiation. Ferro et al. (2016) investigated the effect of 528 

UV/H2O2 (broad-band spectrum UV lamp with main emission in the range 320-450 nm), under 529 

realistic conditions for wastewater treatment (natural pH (7.6) and 20 mg H2O2/L), on antibiotic 530 

resistance transfer potential in urban wastewater. The investigated process resulted in bacterial 531 

inactivation and a decrease of ARGs in intracellular DNA after 60 min treatment, but UV/H2O2 532 

did not remove ARGs effectively. Actually, an increase up to 3.7 × 103 copies/mL (p > 0.05) 533 

of blaTEM gene was observed in total DNA after 240 min treatment, while no difference (p > 534 

0.05) was found for qnrS gene between the initial (5.1 × 104 copies/mL) and the final sample 535 

(4.3 × 104 copies/mL). In UV/H2O2 process (pH 7, 50-130 mJ/cm2), 4 Log reduction of ARGs 536 

(ampR and kanR) concentration was observed in urban wastewater (Yoon et al., 2017). 537 

According to the results previously discussed for the chlorination process, intracellular ARGs 538 

showed lower rates of damage compared to extracellular ARGs due to cell protective roles and 539 

significant HO• radical scavenging by cellular components. Zhang et al. (2016a) showed that 540 

UV/H2O2 can effectively remove ARGs (2.8-3.5 logs removal of sul1, tetX, and tetG, within 541 

30 min treatment) but only under conditions that seem unrealistic for full-scale implementation 542 

(pH 3.5 and 340 mg H2O2/L), moreover UV fluence was not provided.  543 

Solar driven photo-Fenton process is effective in the inactivation of ARB Karaolia et al., 2017; 544 

Fiorentino et al., 2019). When the process (5 mg Fe2+/L, 50 mg H2O2/L, pH 3) was operated at 545 

pilot scale through a compound parabolic collector (CPC) based reactor, on the effluent of an 546 

MBR, a complete inactivation of the low initial bacterial population (E. coli = 2 CFU/100 mL, 547 

P. aeruginosa = 4 CFU/100 mL, Klebsiella spp. = 3 CFU/100 mL), including antibiotic-tolerant 548 
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and susceptible bacteria, was observed, after 54 min of solar radiation intensity normalized time 549 

(Karaolia et al., 2017). On the other hand, repair of P. aeruginosa was observed, with 2 550 

CFU/100 mL growing on the selective media 24 h after solar Fenton oxidation. Solar photo-551 

Fenton process was also investigated in raceway pond reactors, at neutral pH conditions (20 mg 552 

Fe2+/L, 50 mg H2O2/L), in real urban wastewater and an effective inactivation of E. coli and 553 

Enterococcus sp. cefotaxime resistant bacteria was observed (detection limit (1 CFU/mL) 554 

achieved after 30-40 min, 3.2-4.7 kJ/L) (Fiorentino et al., 2019). However, both solar driven 555 

photo Fenton processes (CPC reactor at pH 3 and raceway ponds at neutral pH) did not 556 

effectively remove the target ARGs.. 557 

The effect of heterogeneous photocatalysis with TiO2 on ARB&ARGs has been investigated in 558 

slurry and immobilized systems. According to the results observed for homogenous photo-559 

driven AOPs, even heterogeneous photocatalytic processes, while effective in the inactivation 560 

of different antibiotic resistant bacterial populations (Tsai et al., 2010; Rizzo et al., 2014a, Rizzo 561 

et al., 2014b; Dunlop et al., 2015; Zammit et al., 2019) may not be effective in the removal of 562 

some ARGs (Karaolia et al., 2018).  563 

 564 

2.6 Membrane filtration 565 

Membrane separation processes include microfiltration (MF), ultrafiltration (UF), 566 

nanofiltration (NF) and reverse osmosis (RO), which may be operated separately or in 567 

combination with other processes as a part of integrated technologies such as MBR. NF and 568 

RO are effective in the removal of both organic and inorganic CECs (Bellona et al., 2004; 569 

Alturki et al., 2010; Garcia et al., 2013), while MF or UF are typically used as pre-treatment of 570 

either NF or RO to control membrane fouling as well as for disinfection and solids removal. 571 

NF and specifically RO provide the opportunity to reduce the effluent salinity, which can be 572 
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necessary depending on the downstream application of the treated effluent. However, a waste 573 

stream containing the separated salts and other pollutants is generated as well. 574 

 575 

2.6.1 Removal of CECs 576 

Removal of CECs by membrane processes is primarily based on size exclusion, although 577 

electrostatic interactions between charged solutes and negatively charged membranes typically 578 

have an important role in the removal (Bellona et al., 2004). Hydrophobic trace contaminants 579 

have been shown to absorb to membrane surfaces reducing the rejection of these contaminants 580 

through both RO and NF. This has been shown to be particularly relevant in NF processes. 581 

Several other factors typically also affect the removal of the target CECs (such as phenolic 582 

aromatic compounds) by membrane processes (Bellona et al., 2004). Depending on the type of 583 

membrane, the range of rejections of CECs by both RO and NF is quite broad, but the rejection 584 

can be higher than 99% for high rejection RO membranes (Krzeminski et al., 2017). However, 585 

in these membrane processes the CECs are accumulating in the rejected concentrate. The 586 

discharge of the concentrate to the environment can be problematic, as the original salt and 587 

pollutant load of the secondary effluent, while not having increased in absolute mass, is now 588 

concentrated typically by a factor of 3 to 7, depending on the permeate water recovery 589 

percentage of the membrane process. The presence of the contamination in concentrated form 590 

can also be an opportunity for targeted treatment since pollutants are more effectively treated 591 

by advanced oxidation processes (usually governed by first order kinetics) as initial 592 

concentration increases (Miralles-Cuevas et al., 2016). 593 

Full-scale applications of RO technology are reported in potable reuse treatment trains, e.g. the 594 

Orange County Groundwater Replenishment System (California, USA), NEWater facilities at 595 

the Bedok, Kranji, Ulu Pandan and Changi facilities in Singapore and the Torreele Reuse 596 



27 
 

Facility in Belgium (Raffin et al., 2013; Gerrity et al. 2013). RO is also used in direct potable 597 

reuse treatment trains, along with MF or UF, in Cloudcroft (New Mexico) and Big Spring 598 

(Texas) in USA (Gerrity et al. 2013). NF typically removes CECs in the 300-1,000 molecular 599 

weight (MW) range, rejecting selected salts and most organic constituents and microorganisms, 600 

operating at higher recovery rates and lower pressures than RO processes. Accordingly, and 601 

when feasible, NF can be used instead of RO to save some energy, chemical and concentrate 602 

disposal costs (Yangali-Quintanilla et al., 2010). While offering very high removal efficiencies 603 

for CECs, specifically RO, on the downside these technologies exhibit high energy 604 

consumption. 605 

 606 

2.6.2 Effect on ARB&ARGs 607 

As the separation principle is purely based on size, the removal of ARB can be expected to 608 

behave very similar to the removal of those not carrying antibiotic resistance. MF and UF are 609 

commonly applied barriers for pathogens, with MF being very effective against protozoa and 610 

bacteria, while due to a larger pore size, it is not very effective in removing viruses. UF removes 611 

all three classes of pathogens to a very high extent (2 to 4 Log removal values (LRV)) (Hai et 612 

al. 2014). NF and RO membranes present in theory an even smaller pore size and should be 613 

“perfect filters”. In fact, > 6 LRV virus removal has been observed at pilot-scale. However, due 614 

to the modular engineering approach system breaches cannot be per se excluded and finding 615 

appropriate surrogate measurements remains a challenge to ensure disinfection during 616 

operation, at least at levels beyond e.g. the removal of electrical conductivity (Pype et al, 2016). 617 

The effect of membrane filtration, in particular NF and RO, on ARB&ARGs, thus far, has been 618 

little discussed in the literature as the existing studies have focused mostly on MBRs and MF 619 
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and UF membranes (Munir et al. 2011; Riquelme Breazeal et al., 2013; Rizzo et al., 2013; Yang 620 

et al., 2013; Sun et al., 2016; Threedeach et al., 2016; Li et al., 2019). 621 

As previously mentioned, membranes can remove bacteria due to membrane retention, thus 622 

contributing to reducing the spread of multiple antibiotic resistant strains (Verlicchi et al. 2015). 623 

For example, filtration of ARGs spiked UWTP effluent through the 100, 10 and 1kDa 624 

membranes in the lab-scale stirred ultrafiltration cell reduced vanA and blaTEM ARGs by 0.9, 625 

3.5 and 4.2 Log, respectively (Riquelme Breazeal et al., 2013). The removal of plasmid-626 

associated ARGs improved further at the presence of colloidal material in the water matrix and 627 

the colloids influence became more apparent as the membrane pore size decreased. The DNA 628 

removal was attributed to membrane retention and following mechanisms: i) size exclusion of 629 

the DNA, ii) size exclusion of DNA-colloid complexes, or iii) interactions with the membrane 630 

material (Riquelme Breazeal et al., 2013).  631 

Arkhangelsky et al. (2008, 2011) studied, in lab-scale dead-end membrane cell, penetration of 632 

plasmid DNA through UF membranes and demonstrated that despite electrostatic repulsion and 633 

a significant size difference between plasmid and pore sizes, DNA can penetrate through the 634 

UF membrane, indicating that UF did not provide absolute barrier for DNA retention. Also, 635 

Riquelme Breazeal et al. (2013) observed that 1 kDa membrane did not completely retain 636 

plasmid and pointed out that the effective size of DNA is smaller than predicted by molecular 637 

weight because DNA is a long, thin and flexible molecule. Although the penetration mechanism 638 

is not yet clear, Arkhangelsky et al. (2011) suggested that plasmid stretches into long hair-639 

shaped flexible strands and penetrates pores based on ‘snake-like’ movement due to 640 

hydrodynamic pressure (transmembrane pressure, TMP) with gradual pore blocking. The 641 

proposed penetration mechanism is in accordance with the findings of other studies on DNA 642 

(Marko et al., 2011; Travers, 2004). In addition, plasmid transportation levels are linearly 643 

correlated to the TMP. 644 
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Böckelmann et al. (2009) studied three artificial recharge systems in Europe. Combination of 645 

UF and RO proved to be an efficient barrier for the elimination of ARGs. ARGs tetO and ermB 646 

detected in UWTP effluent at concentrations of 1.05x107 ± 3.54x106 gene copies/100mL and 647 

1.92x105 ± 1.06x104 gene copies/100mL, respectively, were removed during the UF-RO 648 

process applied in the Torreele Reuse Facility. Noteworthy, tetO were detected again, at low 649 

concentrations, in subsequent sampling points: in the infiltration water before transport 650 

(5.92x103 ± 1.39 x103 gene copies/100mL) and in the groundwater after infiltration (3.13x103 651 

± 1.52x103 gene copies/100mL). In a recent work, a wastewater reuse treatment train including 652 

MBR with MF membranes followed by RO provided up to 3.8 Log removal of the ARGs down 653 

to absolute abundance of 4.03x104 copies/mL (Lu et al., 2020). MF was capable of 2-3 Log 654 

removal of ARGs whereas subsequent RO provided additionally up to 1.5 Log removal. 655 

Another recent full-scale study investigating the removal of ARGs in a full-scale wastewater 656 

treatment plant including biological and physicochemical treatment located on a swine farm 657 

showed very high removals for ARGs in both, NF and RO. The removals achieved depended 658 

on the ARG and ranged from 5 to 8 Log removals compared to raw sewage (Lan et al., 2019).  659 

Above 99.2% removal of free DNA from UWTP effluent by NF membrane in the lab-scale 660 

system was reported (Slipko et al., 2019). Similar removal rates were observed both in water 661 

and in effluent. According to the authors, besides size exclusion mechanism, electrostatic 662 

repulsion plays also important role in removal of free DNA in NF and RO.  663 

 664 

2.7 Comparison among BATs for the removal of CECs relevant for crop uptake 665 

During the last years, several classes of CECs have been proven to taken up through roots and 666 

translocated to the aerial parts of crop plants irrigated with treated wastewater, grown under 667 

hydroponic or greenhouse control conditions, as well as soils irrigated with treated wastewater 668 
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in real agricultural systems. The uptake is largely dependent on CECs’ bioavailability in soil 669 

pore water near the rhizosphere and thus on their physicochemical properties and the properties 670 

of the soil environment. Once taken up, the transport of CECs within the plant vascular 671 

translocation system (xylem and phloem) mainly depends on their lipophilicity and electrical 672 

charge, as well as the physiology and transpiration rate of crop plants and environmental 673 

conditions (i.e. drought stress), (Nereus COST Action ES1403, Deliverable 11). Accordingly, 674 

different crops have different potential for CECs uptake, for example, uptake potential is 675 

generally higher for leafy vegetables compared to fruit vegetables or cereal crops. The main 676 

biotic factors that may affect the uptake of CECs by plants are the plant itself (including the 677 

species, the variety and cultivar, the genotype, and the physiological state of the plant), and the 678 

soil fauna, which constitute the main cause for the biodegradation and biotransformation of 679 

CECs within the soil (Ahuja et al., 2010; Goldstein et al., 2014). Climatic conditions and other 680 

environmental perturbations (such as temperature, wind speed, UV radiation, salinity, drought, 681 

environmental pollution, etc.) constitute the main abiotic factors that influence the potential for 682 

CECs uptake by crop plants (Dodgen et al., 2015; Zhang et al., 2016b). The majority of studies 683 

with regard to CECs uptake, either conducted in controlled laboratory or greenhouse conditions 684 

or under field or simulated conditions, employed mostly (a) vegetables (leafy vegetables such 685 

as lettuce and cabbage, fruit vegetables such as tomato and cucumber, and root vegetables such 686 

as carrot and radish) and (b) cereals and fodder crops (i.e. maize, wheat, alfalfa). Experimental 687 

results revealed that the potential for CECs uptake by crop plants decreased in the order of leafy 688 

vegetables > root vegetables > cereals and fodder crops > fruit vegetables. Though, the uptake 689 

of CECs by important crop plants, such as fruit trees, has not yet been evaluated. Fruit trees, 690 

such as citrus, bananas, apple and other fruit bearing trees, have high net irrigation requirements 691 

and evapotranspiration rates, which may render them as plants with moderate to high potential 692 

for CECs uptake (similar to that of fruit vegetables), (Christou et al. 2019). Therefore, the 693 
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recommendation on the BAT should consider both the soil and the type of the crop species to 694 

be irrigated by reclaimed water. 695 

Consistently with the aim of the present review paper, a comparison among the above-696 

mentioned BATs was performed according to the chemical CECs relevant for crop uptake by 697 

considering results from investigations at pilot or full-scale on real wastewater. According to 698 

the list compiled by NEREUS COST Action ES1403, 27 CECs are relevant for crop uptake 699 

(Krzeminski et al., 2019). The Action also applied selected criteria to establish a prioritised list 700 

with CECs which include the following: 1) high frequency of detection in treated effluents, 701 

which is related to high patterns of use and recalcitrance during the wastewater treatment 702 

process, 2) environmental, agricultural and/or health concern; at least one of the following 703 

criteria should be met by the target CECs: a) DT50 (time necessary to degrade the 50% of the 704 

original contaminant concentration) in soil > 14 d, b) phytotoxicity at environmental relevant 705 

concentrations, c) promote a selection pressure to soil microbiota, d) potential human health 706 

effects according to threshold contaminant concentration criteria, 3) significant uptake rate by 707 

crops (usually bioconcentration factors (RCF = [root]/[growing medium]; LCF = 708 

[leaf]/[growing medium]; FCF = [fruit]/[growing medium]) higher than 1). The list of 709 

prioritised CECs includes carbamazepine (CBZ), diclofenac (DCF), enrofloxacin, SMX, 17α-710 

ethinyl estradiol, lamotrigine and trimethoprim, (Nereus COST Action ES1403, Deliverable 7; 711 

Boxall et al., 2012; Calderón-Preciado et al., 2012; Christou et al., 2017b; Goldstein et al., 2014; Miller 712 

et al., 2016; Tanoue et al., 2012; Wu et al., 2015; Zhang et al., 2016b). However, out of 27 crop 713 

relevant CECs only for 3 compounds, namely CBZ, DCF and SMX, literature was found on 714 

their removal from wastewater matrices during different advanced technologies (Table 1). For 715 

SMX, high removal efficiencies (>80-100%) were observed during RO and NF, UV radiation, 716 

chlorination (HOCl), ozonation and other AOPs, while lower efficiencies (<64%) were 717 

observed for PAA and PAC treatment. High DCF removal efficiencies (80-100%) were 718 

observed during RO and NF, UV radiation, PAA treatment, ozonation and other AOPs, good 719 
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removals (≅ 70%) for PAC, lower (60%) for chlorination. Finally, high CBZ removal 720 

efficiencies (90-100%) were observed for PAC, ozonation, and RO, a wide range of efficiencies 721 

(>24-100%) for AOPs and NF, depending on the process and operating conditions, UV 722 

radiation resulted in a poor efficiency (16%), and no removal was observed for chlorination and 723 

PAA treatment under the investigated conditions.  724 

 725 

Table 1 726 

 727 

3. Multi-barrier approach for a safe treated wastewater reuse in agriculture 728 

3.1 Treatment trains for a safe reuse 729 

To make wastewater reuse safe for crop irrigation, a multi-barrier approach to wastewater 730 

treatment is necessary. These barriers should include typical processes for urban wastewater 731 

treatment (namely, primary mechanical pre-treatment, possible primary settling, biological 732 

treatment etc.) and advanced treatments. Possible options of treatment trains (TTs) providing 733 

different effluent qualities are presented in Figure 1.  734 

As matter of fact, no specific regulation on CECs (except in Switzerland) and ARB&ARGs is 735 

in force that can justify a prioritization for these contaminants with respect to more traditional 736 

parameters (in particular bacteria indicators such as total coliforms and E. coli) regulated in 737 

different countries and guidelines for wastewater reuse. In particular, as ARB are of concern, 738 

total E. coli population was suggested to be a good indicator for the inactivation of the antibiotic 739 

resistant fraction (Fiorentino et al., 2015). 740 

The minimum treatment scheme for safe reuse should include a conventional depth filtration 741 

downstream of a biological process (or an UF membrane as in case of MBR, Fig.1, b), followed 742 
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by a disinfection unit with UV radiation (Fig.1, a). This TT should effectively allow to address 743 

typical parameters (e.g., biochemical oxygen demand (BOD), chemical oxygen demand (COD), 744 

total suspended solids (TSS), E. coli etc.) set in wastewater reuse regulation and guidelines. 745 

Chemical disinfection (in particular by chlorine) (Fig.1, c) is cheaper compared to other 746 

disinfection options but the formation of DBPs should be considered, and the TT may become 747 

expensive compared to other options if DBPs are removed before reuse.  748 

It has to be noted that, chemical disinfectants (such as chlorine and PAA) as well as an MBR 749 

with UF membrane and UV radiation are poorly effective in the removal of CECs. 750 

 751 

Figure 1 752 

 753 

Therefore, if (i) the corresponding limit for bacterial indicators is so stringent that UV 754 

disinfection is not sufficient and/or (ii) CECs contamination should be effectively minimized, 755 

other, more effective treatment technologies need to be considered (Fig.1, d-g). 756 

Among AOPs, ozonation and photochemical processes showed interesting results in the 757 

removal of CECs and ARB. In particular, in the short term, ozonation and UV/H2O2 processes 758 

are more attractive options (Fig.1, d) compared to other photo-driven AOPs to abate CECs as 759 

well as to effectively inactivate bacteria (Rizzo et al., 2019a) because: 760 

1. their efficiency has been confirmed by different works available in scientific literature. 761 

However, ozonation needs considerably less energy compared to UV/H2O2 treatment 762 

for the same CEC abatement level and shows full-scale application; 763 

2. other homogeneous photocatalytic processes (such as photo-Fenton) may request 764 

additional costs (e.g., pH adjustment, chelating agents’ addition) and/or have not yet 765 
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been exhaustively investigated (e.g., UV/free chlorine, UV/PAA, sulfate radical based 766 

AOPs); 767 

3. heterogeneous photocatalytic processes still have serious technological barriers for full-768 

scale application. 769 

It is important to note that ozonation and AOPs typically ask for a biological post-treatment, 770 

i.e. a biological sand or activated carbon filtration, to remove biodegradable oxidation by-771 

products and transformation products (Fig.1, d). Rapid depth filtration or alternatively a 772 

dissolved air flotation treatment may be used as pre-treatment method just before AOP in the 773 

event that residual suspended solids should interfere with subsequent processes. 774 

Adsorption to GAC in packed reactors followed by UV disinfection (unlike O3 and UV/H2O2, 775 

adsorption is not a disinfection process) is another option to improve the quality of effluent 776 

wastewater before reuse (Fig.1, e). In order to prevent GAC packed reactors from a fast 777 

clogging and increase back flushing intervals, cloth or rapid sand filtration may be used to 778 

remove suspended solids before the adsorption process. 779 

If PAC adsorption is used in combination with the biological process (by adding PAC into the 780 

biological treatment) or as a separated unit thereafter, either depth filtration and/or MF/UF 781 

membrane processes should be used to remove residual PAC particles before discharge 782 

(Fig.1, f). As in GAC treatment, a UV disinfection may have to be installed. 783 

Finally, membrane filtration with NF or RO followed by UV disinfection is another possible 784 

option for advanced treatment of wastewater before reuse (Fig.1, g). Pre-treatment by sand 785 

filtration can be used to remove suspended solids to control membrane fouling, although it is 786 

more common to filter settled effluent directly with MF or UF membranes. MF and UF 787 

membranes also provide suitable pre-treatment for the NF or RO step (in such a case final 788 

disinfection by UV radiation is not necessary for crop irrigation). It is worthy to mention that 789 
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RO treatment would be additionally beneficial for crop irrigation because of the removal of 790 

salts from the effluent. However, for membrane technologies to become sustainable there is 791 

need for a deep study of the adequate treatment and/or disposal of concentrates on a case by 792 

case basis. Implementation of effective concentrate treatment has the potential to enhance 793 

treatment efficiency, move towards a near zero-liquid discharge and avoid unwanted discharge 794 

of CEC.  795 

 796 

3.2 Advantages, drawbacks and recommendations of the treatment schemes 797 

The main objective of this discussion and analysis is to suggest the “best available technologies 798 

able to minimize the release of microcontaminants including ARB&ARGs, and biological risk, 799 

and fulfill requirements for a safe reuse for crop irrigation”. Important issues for all TT 800 

discussed before are summarized in Table 2. Accordingly, and considering that no exhaustive 801 

comparative studies addressing CECs and ARB&ARGs removal by advanced treatment 802 

methods are available in scientific literature (Rizzo et al., 2019a), a comparative economic 803 

evaluation would be questionable. In particular, advanced treatment methods have been 804 

compared in terms of either CECs removal, costs, disinfection efficiency, ARB and ARGs 805 

removal, formation of DBPs and oxidation reaction products, and final toxicity, but the whole 806 

impact on the environment through the simultaneous evaluation of all these issues has not been 807 

investigated (Rizzo et al., 2019a). A recommendation needs to be case-specific, taking into 808 

account possible regional regulations on wastewater reuse for crop irrigation, intake and 809 

required water quality, and local climate conditions, and the relative importance of each aspect 810 

needs to be carefully evaluated.  811 

 812 

Table 2 813 
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 814 

4. Concluding remarks 815 

The safety of treated wastewater to be reused for crop irrigation is a relevant issue worldwide. 816 

Recently the interest has increased at EU level and stimulated a discussion among policy 817 

makers, scientists, professionals, practitioners and other stakeholders, because the European 818 

Commission is about to approve a regulation on “Minimum requirements for water reuse” 819 

(European Parliament, 2019). Accordingly, the aim of this paper is to provide a technical 820 

contribution to this discussion by recommending possible advanced treatment options to make 821 

wastewater reuse safer, in particular with regard to the removal of CECs and ARB&ARGs. 822 

Different factors affect the choice of the most suitable treatment approach (i.e., water quality, 823 

local regulation/restrictions, process costs, type of crop, irrigation method, soil type, 824 

environmental footprint, social acceptance, etc.). Nevertheless, an attempt was made in this 825 

manuscript by discussing possible BATs for the advanced treatment of urban wastewater 826 

including their advantages and drawbacks.  827 

The main conclusion of this work, that gathers the efforts of a group of international experts, 828 

members of the NEREUS COST Action ES1403, is that a single advanced treatment method is 829 

not sufficient to minimize the release of chemical CECs and ARB&ARGs and make wastewater 830 

reuse for crop irrigation safer, but a smart combination of them (Figure 1) and a suitable 831 

monitoring program (Table 2) would be necessary. This conclusion stems from the awareness 832 

that each treatment method has its own weaknesses/drawbacks, for example: 833 

• a biological post-treatment to remove oxidation by-products may be necessary when 834 

ozonation or AOP is used as advanced treatment.; 835 

• ozonation and AOPs require toxicity monitoring because of possible formation of 836 

problematic oxidation reaction products; 837 
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• adsorption processes should be followed by an effective disinfection process (i.e., UV 838 

disinfection) to meet the stringent limits for wastewater reuse; 839 

• if PAC is used, a subsequent filtration or membrane process should be applied to remove 840 

the adsorbent particles; 841 

• chemical disinfection is not effective in the removal of CECs and ARGs, thus it should 842 

be coupled to other advanced treatment methods. Moreover, possible formation of DBPs 843 

(i.e., chlorination by products) should be considered, and a subsequent treatment for 844 

their removal may be necessary; 845 

• NF or RO membrane technology would require a pre-treatment (i.e., sand filtration) to 846 

prevent clogging and a sustainable solution for the management of membrane 847 

concentrate. 848 

Further comparative studies among different advanced treatment methods on real wastewater, 849 

using different criteria (i.e., CECs removal, ARB&ARGs, toxicity, DBPs, costs) are 850 

recommended. The results will be useful to UWTPs managers to select the most suitable options 851 

to be implemented at their own facilities to successfully address wastewater reuse challenges. 852 
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Table 1. Effect of BATs on the abatement of chemical CECs relevant for crop uptake. Only results from investigations at pilot or full-scale on real 

wastewater are presented (part of these data is extracted from Table 3 and supplementary information of “Rizzo et al., 2019a”). 

CEC Process Scale of 
study 

Water 
matrix1 

DOC (mg/L) CEC initial 
concentration 

Comments  CEC 
abateme
nt (%) 

Reference 

Sulfamethoxazole  PAC Pilot/full RMW 5-10  171 ng/L (data 
only from 1 paper) 

10-20 mg PAC/L. 0.3-1h 
contact time.  

58-64 Boehler et al. 
2012; Margot 
et al. 2013 

 GAC Pilot RMW 5.8  145 ng/L 7400 bed volumes treated. 
14 min EBCT. 

59 Bourgin et al. 
2018 

 O3 Pilot/full RMW 3.5-8.6 - 0.61±0.04 g O3/g DOC. 94-97 Hollender et 
al. 2009; 
Kreuzinger et 
al. 2015; 
Bourgin et al. 
2018.  

 Free chlorine Full RMW - 576 ng/L Neutral pH, sample taken 
from the effluent of 
chlorination unit (dose not 
provided) 

89.6 Renew and 
Huang, 2004 

 PAA Pilot RMW 24 100 µg/L 2.0 mg PAA/L, 300 min 52 Rizzo et al., 
2019b 

 UV Pilot RMW 24 100 µg/L 4.58 kJ/L 100 Rizzo et al., 
2019b 

 Solar photo-
Fenton (CPC 
rector) 

Pilot RMW/SR
MW 

10.2-42.7 5.5 ng/L – 1879 
µg/L 

Fe: 5 – 10 mg/L; H2O2: 20 – 
100 mg/L; pH: 2.8 or higher 
(5-6). 

>80-100 Klamerth et 
al., 2010; 
Karaolia et 
al., 2014, 
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2017; Prieto-
Rodríguez et 
al., 2013; 

 Solar photo-
Fenton (Raceway 
pond) 

Pilot RMW 40  282 ± 36.7 ng/L Continuous mode. Two liquid 
depths (5, 15 cm) and three 
HRTs (80, 40, 20 min); Fe: 5.5 
mg/L; H2O2: 30 mg/L. pH 2.8. 

81-100 Arzate et al., 
2017 

 Photo Fenton Pilot RMW 5-7.52 487 ng/L 30 mg H2O2/L; 2 mg Fe/L. pH 
6-7 (no chelating agents 
added). 5 low pressure 
mercury lamps (254 nm) of 
150 W each, incident light 70 
W/m2. 

82 De la Cruz et 
al., 2013 

 UV/H2O2 Pilot RMW 5-7.52 487 ng/L 30 mg H2O2/L. 5 low 
pressure mercury lamps (254 
nm) of 150 W each, incident 
light 70 W/m2. 

89 De la Cruz et 
al., 2013 

 sunlight/TiO2 
(CPC reactor) 

Pilot SRMW 13 100 µg/L TiO2 immobilized on glass 
spheres (0.335 g TiO2/L). 
k=0.03 1/min 

100 Miranda-
García et al. 
2011 

 RO Pilot Secondary 
treated 
wastewate
r 

RMW/prim
ary treated 
wastewate
r 

Secondary
/Tertiary 
treated 

- 

 

 

7.8 

 

- 

 

56 ng/L 

 

 

15-1800 ng/L 

 

805-1030 ng/L 

 

Saehan 4040 FL, Flux = 20 
L/(m2.h) 

 

Saehan 4040 FL, Osmonics 
AK4040, Flux = 17-20 
L/(m2.h) 

 

Hydranautics ESPA2  

>98 

 

 

94-99 

(based on 
2 studies) 

>99 

Snyder et al. 
2007 



66 
 

wastewate
r 

(based on 
2 studies) 

 RO Pilot RMW - 85-122 ng/L Filmtec TW30 25–40, Flux = 
22-31 L/(m2.h) 

Filmtec BW30–400, Flux = 
45 L/(m2.h) 

98 

98 

Sahar et al 
2011 

 RO Pilot RMW - 20-27 ng/L Ropur TR70-4021-HF >99 Dolar et al. 
2012 

 NF  

 

RO 

Pilot RMW - 100-500 ng/L Filmtec NF90, MWCO 200 
Da, Flux = 18 L/(m2.h) 

Hydranautics ESPA2, 
MWCO 100 Da, Flux = 18 
L/(m2.h) 

99 

100 

Mamo et al. 
2018 

Diclofenac  PAC Pilot RMW 7.3(±1.9) 1187 ng/L 10-20 mg PAC/L; 0.3-0.7h 
contact time. 

69 Margot et al. 
2013 

 GAC Pilot RMW 4.4 1008 ng/L 23400 bed volumes treated. 
14 min EBCT. 

72 Bourgin et al. 
2018 

 O3 Pilot/full RMW 3.5-8.6 - 0.61(±0.04) g O3/g DOC. 98-100 Hollender et 
al. 2009; 
Kreuzinger et 
al. 2015; 
Bourgin et al. 
2018. 

 Free chlorine Full RMW - - Neutral pH 60 Anumol et 
al., 2016 

 PAA Pilot RMW 24 100 µg/L 2.0 mg PAA/L, 60 min 80 Rizzo et al., 
2019b 
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 UV Pilot RMW 24 100 µg/L 2.22 kJ/L 90 Rizzo et al., 
2019b 

 Photo-Fenton Pilot RMW 5-7.52 925 ng/L 20-50 mg H2O2/L; 2-4 mg 
Fe/L. pH 6-7. 5 low pressure 
mercury lamps (254 nm) of 
150 W each, incident light 70 
W/m2. 

93-100 De la Cruz et 
al., 2013 

 Solar photo-
Fenton (CPC 
rector) 

Pilot RMW/SR
MW 

10.2-36 1 – 5100 µg/L Fe: 5 – 10 mg/L; H2O2: 20 – 
60 mg/L; pH: 2.8 or neutral 
(chelating agent used). 

80-100 Klamerth et 
al., 2010, 
2011; Prieto-
Rodríguez et 
al., 2013; 

 UV/H2O2 Pilot RMW 5-7.52 925 ng/L 20-50 mg H2O2/L. 5 low 
pressure mercury lamps (254 
nm) of 150 W each, incident 
light 70 W/m2.  

99-100 De la Cruz et 
al., 2013 

 sunlight/TiO2 
(CPC reactor) 

Pilot RMW/SR
MW 

13-23 414 ng/L-100 
µg/L 

20 mg/L TiO2 and supported 
TiO2, neutral pH. 

80-100 Miranda-
García et al., 
2011; Prieto-
Rodríguez et 
al., 2012;   

 RO Pilot Secondary 
treated 
wastewate
r 

RMW/prim
ary treated 
wastewate
r 

Secondary
/Tertiary 

- 

 

 

7.8 

 

 

37 ng/L 

 

 

1.1-38 ng/L 

 

 

Saehan 4040 FL, Flux = 20 
L/(m2.h) 

 

Saehan 4040 FL, Osmonics 
AK4040, Flux = 17-20 
L/(m2.h) 

 

>97 

 

 

>93% 
(from 2 
pilots) 

 

Snyder et al. 
2007 
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treated 
wastewate
r 

- 

 

49-59 ng/L 

 

 

Hydranautics ESPA2  

 

>98 (from 
2 pilots) 

 RO Pilot RMW - 500-580 ng/L Filmtec TW30 25–40, Flux = 
22-31 L/(m2.h) 

Filmtec BW30–400, Flux = 
45 L/(m2.h) 

95-99 
(from 2 
pilots)  

Sahar et al 
2011 

 NF Pilot Effluent 
UWTP 

- 720 ng/L Flux = 1-2 LMH, TMP = 0.7 
bar 

60-65 Röhricht et 
al. 2009, 
2010 

 NF  

RO 

Pilot RMW - 260-440 ng/L FILMTEC NF90-4040, 200 
Da 

FILMTEC BW30-4040 

87-98 

88-96 

Cartagena et 
al. 2013 

 NF  

 

RO 

Pilot RMW - 100-500 ng/L Filmtec NF90 MWCO=200 
Da, Flux = 18 L/(m2.h) 

Hydranautics ESPA2 MWCO 
100 Da, Flux = 18 L/(m2.h) 

100 

100 

Mamo et al. 
2018 

Carbamazepine PAC Pilot/full RMW 5-10 221-461 ng/L 10-20 mg PAC/L; 0.3-1h 
contact time; data from 3 
papers.  

90-92 Boehler et 
al., 2012; 
Margot et al., 
2013; Mailler 
et al., 2015; 
Karelid et al., 
2017. 

 GAC Pilot RMW 4.4 110 ng/L 23400 bed volumes treated. 
14 min EBCT. 

72 Bourgin et al. 
2018 
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 O3 Pilot/full RMW 3.5-7.6 - 0.61±0.04 g O3/g DOC. 97-100 Hollender et 
al. 2009; 
Kreuzinger et 
al. 2015; 
Bourgin et al. 
2018. 

 Free chlorine Full RMW - - Neutral pH No 
removal 

Anumol et 
al., 2016 

 PAA Pilot RMW 24 100 µg/L 2.0 mg PAA/L, up to 300 min No 
removal 

Rizzo et al., 
2019b 

 UV Pilot RMW 24 100 µg/L 15.12 kJ/L 16 Rizzo et al., 
2019b 

 Solar photo-
Fenton (CPC 
rector) 

Pilot RMW/SR
MW 

10-36 70 ng/L- 100 µg/L Fe: 5 mg/L; H2O2: 50 – 60 
mg/L; pH: 2.8 or neutral 
(chelating agent used). 

>24-100 Klamerth et 
al., 2010, 
2011; Prieto-
Rodríguez et 
al., 2013; 

 Solar photo-
Fenton (Raceway 
pond) 

Pilot RMW 40 422 ± 54.9 ng/L Two liquid depths (5, 15 cm) 
and three HRTs (80, 40, 20 
min); Fe: 5.5 mg/L; H2O2: 30 
mg/L. pH 2.8 

86-96 Arzate et al., 
2017 

 Photo-Fenton Pilot RMW 5-7.52 333 ng/L 20-50 mg H2O2/L; 2-4 mg 
Fe/L. pH 6-7. 5 low pressure 
mercury lamps (254 nm) of 
150 W each, incident light 70 
W/m2. 

66-94 De la Cruz et 
al., 2013 

 UV/H2O2 Pilot RMW 5-7.52 333 ng/L 20-50 mg H2O2/L. 5 low 
pressure mercury lamps (254 
nm) of 150 W each, incident 
light 70 W/m2.  

82-99 De la Cruz et 
al., 2013 
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 sunlight/TiO2 
(CPC reactor) 

Pilot SRMW 13 100 µg/L TiO2 immobilized on glass 
spheres. 

50-80 Miranda-
García et al. 
2011 

 sunlight/TiO2 
(CPC reactor) 

Pilot RMW 15-50 56 ng/L 0.2 g TiO2 powder/L. 65-80 Bernabeu et 
al. 2011 

 RO Pilot Secondary 
treated 
wastewate
r 

RMW/prim
ary treated 
wastewate
r 

Secondary
/Tertiary 
treated 
wastewate
r 

- 

 

 

7.8 

 

 

- 

 

147 ng/L 

 

 

181-410 ng/L 

 

 

237-271 ng/L 

 

Saehan 4040 FL, Flux = 20 
L/(m2.h) 

 

Saehan 4040 FL, Osmonics 
AK4040, Flux = 17-20 
L/(m2.h) 

 

 

Hydranautics ESPA2  

 

>99 

 

 

>99 (from 
2 pilots) 

 

>99 (from 
2 pilots) 

 

Snyder et al. 
2007 

 RO Pilot RMW  64-99 ng/L Ropur TR70-4021-HF >99 Dolar et al. 
2012 

 NF Pilot Effluent 
UWTP 

- 640 ng/L Flat sheet, Flux = 1-3 
L/(m2.h), TMP = 0.3-0.7 bar 

12 Röhricht et 
al. 2009, 
2010 

 NF 

RO 

Pilot RMW - 300-380 ng/L FILMTEC NF90-4040, 200 
Da 

FILMTEC BW30-4040  

78-92 

82-93 

Cartagena et 
al. 2013 

 NF  Pilot RMW - 100-500 ng/L Filmtec NF90 MWCO=200 
Da, Flux = 18 L/(m2.h) 

79 Mamo et al. 
2018 



71 
 

RO Hydranautics ESPA2 MWCO 
100 Da, Flux = 18 L/(m2.h) 

100 

1RMW= real municipal wastewater; SRMW= spiked real municipal wastewater; 2TOC. 
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Table 2 Advantages, drawbacks and recommendations for each TT in Figure 1. 

TT 

(advanced 

treatment) 

Advantages  Drawbacks Recommendations  

a or b (UV) • Effective 
disinfection 
(including ARB 
inactivation) 

• No DBPs formation 
compared to 
chemical 
disinfection 
 

• If local standards for 
reuse are too 
stringent for residual 
bacterial density, UV 
may not be sufficient 

• Poor/no CECs 
removal 

• Partial removal of 
ARGs  

 

• Compliance with 
local residual 
bacterial density 
standards should be 
evaluated 

c (chemical 

disinfection) 

• Effective 
disinfection 
(including ARB 
inactivation) 

• Poor/no removal of 
CECs and ARGs  

• Formation of DBPs 
• If local standards for 

reuse are too stringent 
for DBPs, some 
disinfectant cannot be 
used (e.g., chlorine in 
Italy) 

• Toxicity tests 
recommended 

• DBPs (depending 
on the disinfectants 
used) should be 
monitored 

 

d (O3/AOP 

and 

biological 

post-

treatment) 

• Effective 
disinfection 
(including ARB 
inactivation) 

• CECs abatement 
high during 
ozonation and 
(solar) photo 
Fenton, moderate 
with UV/H2O2 

• Full-scale evidence 
on practicability 
only for O3 
 

• Formation of some 
DBPs (NDMA, 
bromate) during 
ozonation 

• Formation of 
oxidation 
transformation 
products during AOP 
and ozonation 

• partial ARGs 
removal 

• Toxicity tests 
recommended 

• NDMA and bromate 
should be monitored 
in O3 treatment 

 

e (GAC and 

UV) 
• effective 

disinfection by UV 
• high CECs removal 

by GAC 
• full-scale evidence 

on practicability  

• Poor/no removal of 
ARB&ARGs by 
GAC alone 

• for UV see above, TT 
a & b 

• Decreasing 
adsorption capacity 
with increasing bed 
volume should be 
taken into account 

f (PAC and 

UV) 

• Effective 
disinfection by UV 

• Poor/no removal of 
ARB&ARGs by PAC 
alone 
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• High CECs removal 
by PAC 

• Full-scale evidence 
on practicability for 
CEC removal by 
PAC 

• For UV see above, TT 
a & b 

g (NF or RO 

membrane 

filtration, 

with 

potential pre-

treatment 

with MF or 

UF 

membranes) 

• Effective 
disinfection for 
bacteria (incl. ARB) 
and protozoa for all 
membranes; viruses 
well removed by 
UF, NF & RO 

• ARGs well removed 
by NF and RO 

• CECs removal from 
poor (MF, UF) to 
very good (NF, RO) 
depending on 
membrane type,  

• RO and partially 
also NF reduce 
salinity 

• For post UV-C see 
TT a & b  

• Poor/no removal of 
ARGs at full-scale by 
MF (for UF some 
removal is expected)  

• Poor CECs removal 
for MF and UF 

• High energy 
requirements for NF 
and RO 

• Generation of a 
substantial 
concentrate waste 
stream by NF and 
RO 

• For post UV-C see 
TT a&b 

 

• Impact of 
membrane 
characteristics on 
disinfection, ARB, 
ARG, and CEC 
removal should be 
carefully considered 
in design 

• Consider AOP 
instead of UV 
disinfection if the 
risk of unknowns 
and spills is 
considered high 

• Consider high UV 
doses if NDMA can 
be suspected in the 
membrane effluent 
(e.g. following prior 
chloramination) 
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Figure 1. Different options of treatment trains for urban wastewater reuse to address traditional 

parameters set in wastewater reuse regulation and guidelines (e.g., BOD, COD, TSS, E. coli etc.) (a, 

b, c) and to effectively remove CECs in addition to the typical parameters (d, e, f, g). Advanced 

treatment in red lines; red dotted lines mean that process application should be evaluated case by case. 

“Biological process” followed by “depth filtration” may be replaced by “MBR” for treatment trains 

“d” and “e”. 
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