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S1. Data 13 

This section provides additional details about the historical data (Section S1.1) and regional 14 

climate model simulations (Section S1.2) that were used to create the updated IDF curves in 34 15 

U.S. cities. 16 

S1.1. Historical data 17 

Table S1 presents the characteristics of the weather station where the data was obtained in each of 18 

the 34 cities used in this study, including elevation, latitude, longitude, and Bukovsky climate 19 

region. Observed data was available for the period 1950 to 2014 in all cities except Pittsburgh and 20 

Wichita, where data records begin in 1953 and 1954, respectively. For consistency, the historical 21 

period used in this study begins in 1954 in all cities. 22 

Table S1. Characteristics of cities and weather stations used in this study 23 

City State 
Bukovsky 
climate 
region 

NOAA station name Elevation 
(m) Latitude Longitude 

Albuquerque NM S. Rockies 
ALBUQUERQUE 
INTERNATIONAL 
AIRPORT NM US 

1619 35 -106.6 

Amarillo TX C. Plains AMARILLO 
AIRPORT TX US 1100 35.2 -101.7 

Baltimore MD Mid Atlantic 

BALTIMORE 
WASHINGTON 
INTERNATIONAL 
AIRPORT MD US 

13 39.3 -76.5 

Benavides TX Mezquital 
BENAVIDES TX US 
& BENAVIDES 2 TX 
US 

116 27.6 -98.4 

Billings MT N. Plains 
BILLINGS 
INTERNATIONAL 
AIRPORT MT US 

1087 45.8 -108.5 

Birmingham AL Deep South BIRMINGHAM 
AIRPORT AL US 188 33.6 -86.7 

Boise ID Great Basin BOISE AIR 
TERMINAL ID US 815 43.6 -116.2 
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Boston MA North 
Atlantic BOSTON MA US 4 42.4 -71 

Boulder CO S. Rockies BOULDER 2 CO US 1654 40 -105.3 

Charlotte NC Mid Atlantic 
CHARLOTTE 
DOUGLAS 
AIRPORT NC US 

234 35.2 -80.9 

Chicago IL Great Lakes 
CHICAGO 
MIDWAY AIRPORT 
3 SW IL US 

187 41.8 -87.8 

Detroit MI Great Lakes 
DETROIT 
METROPOLITAN 
AIRPORT MI US 

189 42.4 -83 

El Paso TX Mezquital 
EL PASO 
INTERNATIONAL 
AIRPORT TX US 

1201 31.8 -106.4 

Fargo ND N. Plains 
FARGO HECTOR 
INTERNATIONAL 
AIRPORT ND US 

273 46.9 -96.8 

Indianapolis IN Appalachia 
INDIANAPOLIS 
INTERNATIONAL 
AIRPORT IN US 

247 39.7 -86.3 

Jacksonville FL Southeast 
JACKSONVILLE 
INTERNATIONAL 
AIRPORT FL US 

12 30.4 -81.7 

Las Vegas NV Southwest 

LAS VEGAS 
MCCARRAN 
INTERNATIONAL 
AIRPORT NV US 

659 36.1 -115.2 

Los Angeles CA Pacific SW 
LOS ANGELES 
INTERNATIONAL 
AIRPORT CA US 

37 33.9 -118.4 

Memphis TN Deep South 
MEMPHIS 
INTERNATIONAL 
AIRPORT TN US 

79 35.1 -90 

Minneapolis MN Prairie 

MINNEAPOLIS ST 
PAUL 
INTERNATIONAL 
AIRPORT MN US 

254 44.9 -93.2 

Missoula MT N. Rockies 
MISSOULA 
INTERNATIONAL 
AIRPORT MT US 

972 46.9 -114.1 

New 
Orleans LA Southeast NEW ORLEANS 

AIRPORT LA US 6 29.9 -90.1 
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New York NY North 
Atlantic 

NY CITY CENTRAL 
PARK NY US 40 40.8 -74 

Oklahoma 
City OK S. Plains 

OKLAHOMA CITY 
WILL ROGERS 
WORLD AIRPORT 
OK US 

390 35.4 -97.6 

Phoenix AZ Southwest PHOENIX AIRPORT 
AZ US 337 33.4 -112 

Pittsburgh PA Appalachia PITTSBURGH INTL 
AIRPORT 367 40.4 -80 

Pocatello ID N. Rockies 
POCATELLO 
REGIONAL 
AIRPORT ID US 

1356 42.9 -112.6 

Portland OR Pacific NW 
PORTLAND 
INTERNATIONAL 
AIRPORT OR US 

6 45.6 -122.6 

Saint Louis MO Prairie  

ST LOUIS 
LAMBERT 
INTERNATIONAL 
AIRPORT MO US 

176 38.8 -90.4 

San Antonio TX S. Plains RANDOLPH AFB 
TX US 230 29.5 -98.3 

San Jose CA Pacific SW SAN JOSE CA US 29 37.3 -121.9 

Seattle WA Pacific NW 
SEATTLE TACOMA 
INTERNATIONAL 
AIRPORT WA US 

113 47.4 -122.3 

Wichita KS C. Plains 

WICHITA DWIGHT 
D. EISENHOWER 
NATIONAL 
AIRPORT KS US 

406 37.7 -97.4 

Yakima WA Great Basin YAKIMA AIRPORT 
WA US 324 46.6 -120.5 

 24 

Data gaps existed in four cities: Detroit, Memphis, Seattle, and Birmingham. In this case, data 25 

was substituted using data from the closest weather station where that data existed during the 26 

missing years. Table S2 presents the dates where data was supplemented, as well as characteristics 27 

of the weather stations that were used to fill data gaps.  28 
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Table S2. Characteristics of weather stations used to substitute for missing data in select cities 29 

City 
Dates Missing 
(YYYY-MM-DD) 

Station name of 
data supplement 

Elevation 
(m) Latitude Longitude 

Detroit 
1954-01-01 to  
1959-12-31  

DETROIT CITY 
AIRPORT MI US 192.9 42.23333 -83.3333 

Memphis 
1995-09-01 to  
1999-04-04 

MUNFORD TN 
US 136.6 35.45 -89.8 

Seattle 
1954-01-01 to  
1965-01-01 

SEATTLE CITY 
OFFICE WA US 4 47.6 -122.33 

Birmingham 
1978-10-01 to  
1987-07-31 

BIRMINGHAM 
WSFO AL US 226.8 33.46 -86.83 

Birmingham 
2008-02-20 to  
2009-12-31 

WARRIOR AL 
US 158.5 33.79 -86.82 

 30 

S1.2. Climate model data collection  31 

This analysis uses hourly rainfall time series from RCMs from the North American Coordinated 32 

Regional Downscaling Experiment (NA-CORDEX) project (Mearns et al. 2017). For each city, we 33 

extracted the rainfall time series from the RCM grid cell whose centroid was closest to the location of the 34 

NOAA weather station in the city (coordinates are provided in Table S1). Best practices for impacts 35 

analyses usually recommend using the 9 or 25 grid cells surrounding each station. However, we chose to 36 

use a single grid cell because including values from adjacent grid cells increases uncertainty and makes it 37 

difficult to distinguish differences in uncertainty from the modeling assumptions that are the focus of the 38 

study. To determine how this choice would alter the future distribution, we analyzed the raw RCM data for 39 

the 25 grid cells surrounding each city in Table S1. The median daily intensity for each return period of the 40 

uncertainty range including each climate model and spatial resolution changes by +/- 10%. Figures S1(a) 41 

to S1(e) show these results for five selected cities, Albuquerque, Charlotte, El Paso, New York, and 42 

Pittsburgh. 43 
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 44 

Fig S1(a). Results for the daily return levels for the 25 grid cells surrounding Albuquerque. The change represents the 45 
difference between the historical (hist) and future (rcp85) values. The central grid cell is shown in a contrasting color. 46 

 47 

Fig S2(b). Results for the daily return levels for the 25 grid cells surrounding Charlotte. The change represents the 48 
difference between the historical (hist) and future (rcp85) values. The central grid cell is shown in a contrasting color. 49 
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 50 

Fig S3(c). Results for the daily return levels for the 25 grid cells surrounding El Paso. The change represents the difference 51 
between the historical (hist) and future (rcp85) values. The central grid cell is shown in a contrasting color. 52 

 53 

Fig S4(d). Results for the daily return levels for the 25 grid cells surrounding New York city. The change represents the 54 
difference between the historical (hist) and future (rcp85) values. The central grid cell is shown in a contrasting color. 55 
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 56 
Fig S5(e). Results for the daily return levels for the 25 grid cells surrounding Pittsburgh. The change represents the 57 
difference between the historical (hist) and future (rcp85) values. The central grid cell is shown in a contrasting color. 58 

 59 

 60 

S2. Detailed description of MOS techniques 61 

This analysis uses three MOS techniques to incorporate RCM simulations into the IDF curves. 62 

The first method, Kernel Density Distribution Mapping (KDDM) (McGinnis, Nychka, and Mearns 63 

2015), is a form of non-parametric quantile mapping that bias-corrects and spatially adjusts the 64 

continuous RCM time-series to match observations. The bias-correction can be completed before 65 

or after the time series are aggregated to the desired duration. The second method, Parametric 66 

AMS Mapping (PAM), is similar to the Equidistance Quantile Matching Method technique in 67 

Solaiman and Simonovic (2011), and uses parametric quantile mapping to adjust the annual 68 

maximum series (AMS) of the RCMs. The gridded AMS are spatially adjusted by finding their 69 

equivalent return level within the inverse GEV CDF of the observed AMS.  The final method, the 70 

Change Factor (CF) method, is a “delta” type method that uses areal reduction factors to adjust the 71 
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observed rainfall depth up or down depending on the change between the historical and future 72 

climate model simulations, as seen in Cook et al. (2017) and Mailhot et al. (2007). Figure S2 73 

presents an overview of the sequence of steps required for each technique. Method (1a) and (1b) 74 

refer to the KDDM method used before and after aggregation, respectively.  Additional details 75 

about each technique are provided in the following subsections.  76 

 77 

Figure S2. Sequence of steps carried out in each of the IDF adjustment techniques used in this study. This process is repeated 78 
for each climate model and location. Red, dashed lines represent inputs or outputs at the grid scale, while solid lines 79 
represent inputs (black) or outputs (red) at the station scale. 80 

 81 

S2.1. Kernel Density Distribution Mapping  82 

S2.1.1.1. Detailed description 83 

The first method used for updating the IDF curves uses a type of non-parametric bias-84 

correction, called Kernel Density Distribution Mapping (KDDM) (McGinnis, Nychka, and Mearns 85 

 



10 
 

2015) to adjust the underlying time series from the climate model. KDDM defines a relationship 86 

between the observed rainfall time series and the gridded climate model time series for the 87 

historical time period (1954–2013). Using this relationship, the method bias-corrects the entire 88 

gridded climate model time series, including zero values, to the station scale by adjusting the model 89 

values so that their statistical distribution in the historical time period matches that of the 90 

observations. Once the time series is bias-corrected, we extract the AMS and obtain the return 91 

levels and confidence intervals for each duration, climate model, and city using the general 92 

techniques in Section S2.1. 93 

The method captures the relationship between the observed rainfall time series and the gridded 94 

climate model time series by fitting a transfer function between their empirical CDFs. First, it 95 

computes empirical PDFs using kernel density estimation, then calculates CDFs by integrating 96 

these PDFs using the trapezoid rule. The methods then maps equal points of probability from the 97 

CDFs against each other and fits the resultant mapping with a spline. The equation of this spline 98 

is the transfer function between the observed data and the historical climate model simulation 99 

output, which is then applied to the 150-year time series of the climate model simulations to obtain 100 

bias-corrected values at the station scale. 101 

The time series can be bias-corrected with KDDM before or after it is aggregated to the desired 102 

duration (e.g., 24-hour). The former, referred to as method (1a), bias-corrects the 1-hour time series 103 

and then aggregates using convolution after bias-correction. The latter, referred to as method (1b), 104 

aggregates using convolution and then bias-corrects the convolved time series. Although the 105 

convolved time series contains many values that are not independent of one another, this does not 106 

present a problem for the KDDM technique, because it makes no attempt to fit a parametric 107 
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distribution. As long as the two datasets have similar dependency structures, the method remains 108 

applicable.  109 

S2.1.1.2.  Comparison of KDDM before or after aggregation   110 

For IDF curves obtained at the underlying temporal resolution of the observations and 111 

climate model simulations (1 hour in this study), the KDDM technique is straightforward. It can 112 

be applied directly to the 1-hour time series from both the observations and the climate model 113 

simulations. We then extract the AMS from the bias-corrected time series and fit a GEV 114 

distribution to develop 1-hour duration IDF curves at the station scale. For IDF curves at durations 115 

greater than the underlying temporal resolution of the observations (i.e., greater than 1 hour), we 116 

tested two methods. The first method uses KDDM at the 1-hour time step and then aggregates the 117 

bias-corrected 1-hour time series to the desired duration using sliding maxima (van Montfort 118 

1990).  119 

The second method applies KDDM to the time series after aggregating the observations 120 

and climate model simulations to the desired duration through convolution. We aggregate both the 121 

observed and the climate model time series using the moving window approach: if the desired 122 

duration is 3 hours, the first timestep in the aggregated timeseries is the sum of the first three 1-123 

hour timesteps of the original data, the second aggregated timestep is the sum of the second, third, 124 

and fourth timesteps from the original time series, and so on.  125 

To determine whether one of these methods is preferable, we compare the AMS of the observed 126 

data (1950–2013) to the AMS of the bias-corrected time series for the same time period at a given 127 

duration using two metrics: (1) the mean absolute error (MAE) of 100 evenly spaced quantiles, 128 

and (2) a Kolmogorov–Smirnov (K-S) test of each AMS series. The former analyzes the difference 129 

in the empirical distributions, while the latter tests for equivalence in the PDFs.  130 
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We chose to use MAE instead of root mean squared error (RMSE) because the latter 131 

weights larger values more heavily, which can be misleading when analyzing non-Gaussian 132 

distributions such as annual maximum rainfall. Given the heavy-tailed distribution of rainfall, the 133 

MAE is more appropriate to test the model performance. MAE is calculated as follows:  134 

𝑀𝑀𝑀𝑀𝑀𝑀(𝑑𝑑) =  
∑ �𝑦𝑦𝑞𝑞−𝑥𝑥𝑞𝑞�𝑛𝑛
𝑞𝑞=1

𝑛𝑛
    [S1] 135 

where: MAE(d) is the mean absolute error of the empirical CDF for a given duration, d, 𝑦𝑦𝑞𝑞 is the 136 

value of annual maximum series for a quantile, q, of the historical climate model simulation, and 137 

𝑥𝑥𝑞𝑞 is the value of the AMS series for the same quantile in the observation series, and n is the 138 

number of quantiles.  139 

The Kolmogorov–Smirnov (K-S) test compares the probability distribution of one sample to 140 

another sample. If the null hypothesis is accepted (h0 = 0), then the two distributions are not from 141 

different distributions. Since the KDDM method used the observed time series for bias-correction, 142 

the MAE is expected to be approximately 0, and the K-S test null hypothesis should be accepted.  143 

Figure S3 reports results for the MAE and KS-test for methods (1a) and (1b) at the two climate 144 

model resolutions (25-km and 50-km) and various durations for 6 of the 34 cities. Durations are 145 

shown along the x-axis, and cities are shown in each subplot. The two methods are shown as 146 

different-colored error bars. The median, minimum, and maximum MAE of the climate model 147 

ensemble are shown as a square and the lower and upper bounds of the error bar, respectively. 148 

Filled squares represent the 25-km resolution climate model ensemble, while the open square 149 

represents the 50-km resolution. The number of stars at the top of the bar signifies the number of 150 

climate models where h0 = 1 (rejected) for the K-S test, meaning that the historical climate model 151 

AMS is not from the same continuous distribution as the observed AMS.  152 
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 153 

 154 
  155 

Figure S3. Mean absolute error (MAE) of the AMS from the bias-corrected CORDEX ensemble compared to observed 
AMS for the historical time period (1950–2013) in 6 cities. The different colors represent the different bias correction 
methods: method (1a), KDDM then aggregation (light blue), and method (1b), aggregation then KDDM (dark blue). The 
median MAE from the 25-km climate model ensemble is represented by a solid, square marker, while the median of the 
50-km ensemble is an open square. The maximum of the MAEs from the climate model ensemble is the upper bound of the 
error bar and the minimum of the MAEs is the lower bound of the error bar. The number of stars above the error bar 
shows the number of climate models that are not from the same continuous distribution as the observed AMS (h0=1 from 
K-S test). The horizontal, dashed line represents a MAE of 10%. 
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This comparison shows that method (1a), bias-correcting then aggregating, has a considerably 156 

larger error than method (1b), aggregating then bias-correcting, for both climate model resolutions 157 

in all cities. The error using this method (1a) tends to increase as the duration (interval of 158 

aggregation) increases. The reason that the error grows as the duration increases could be an 159 

artifact of the large grid cell of the climate model. For example, as a large storm moves across the 160 

grid cell in the model, several instances of heavy rainfall could be recorded in consecutive time 161 

steps while the storm remains in the grid. However, at the station scale, only one instance of heavy 162 

rainfall would be recorded, since the storm would pass over the station quickly. When the model 163 

values are bias-corrected to the station scale at the 1-hour duration, these wet time steps remain in 164 

the bias-corrected time series. If the 1-hour duration maximum rainfall is extracted, it will be 165 

similar to the observations, since only one maximum value is extracted. However, if the values are 166 

aggregated and then the maximum is extracted, the consecutive time steps with large values of 167 

rainfall from the climate model will aggregate to a higher value than would be the case in the 168 

observations. Although the evidence here supports this hypothesis, further research is still needed 169 

to validate it.  170 

For method (1a), the K-S test rejects the null hypothesis for nearly all climate models and 171 

cities. For the 50-km resolution (open square), when the time series is bias-corrected and then 172 

aggregated to higher durations (3 – 24 hours), nearly all of the resulting AMS from climate models 173 

end up not being from the same continuous distribution as the historical AMS. A larger number of 174 

bias-corrected models are from the same continuous distribution as the historical AMS for the 25-175 

km resolution model ensemble. This is the case for the 3-hour duration in Phoenix, Pittsburgh, and 176 

Boulder, and the 12 and 24 hour durations in Boston and Seattle. The results for the 25-km 177 

ensemble for method (1a) in Boston are closer to results for method (1b) than any other city.  178 
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These results show that method (1b), aggregation before bias-correction, outperforms method 179 

(1a), bias-correction before aggregation for all durations. Method (1a) considerably overestimates 180 

the AMS compared to method (1b), and has a larger number of bias-corrected AMS that are not 181 

from the same continuous distribution as the observed AMS. Therefore, we only use method (1b), 182 

aggregation then bias-correction, for comparison to other techniques.  183 

 184 
S2.2. Parametric AMS Mapping  185 

S2.2.1. Detailed description of technique 186 

Parametric AMS Mapping, method (2), is also a bias-correction method like the KDDM 187 

method. However, instead of bias-correcting the entire time series, PAM adjusts the annual 188 

maximum series of the climate model by estimating the GEV distributions of the climate model 189 

and observed AMS, and then mapping between them. This method is similar to the Equidistance 190 

Quantile Matching Method developed by Solaiman and Simonovic (2011) as part of an effort to 191 

update Canadian IDF curves to reflect future extremes (Solaiman and Simonovic 2011; Simonovic 192 

et al. 2016). That method, which makes use of daily output from GCMs, spatially downscales from 193 

the grid scale to the station scale, and then temporally downscales from the daily GCM to the sub-194 

daily level. For the present work, the temporal downscaling step is unnecessary, because RCM 195 

output from NA-CORDEX is available at the sub-daily level. Instead we apply separate mapping 196 

functions for each duration.  197 

The steps for developing the adjusted AMS using PAM are as follows:  198 

1. Extract AMS from the observed data (Xd) and the climate model output (Yd) using sliding 199 

maxima.  200 

2. Fit a GEV distribution, GEVXd, to the observed AMS, Xd.  201 
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3. Fit a GEV distribution, GEVYhd, to the AMS of the climate model, Yd, for the historical 202 

period, Yhd. The number of years does not have to equal the number of years in the 203 

observed time period, but they should cover similar time periods. 204 

4. Calculate FGEV,Yhd(Yd), the CDF of GEVYhd at the values of Yhd, in order to get the 205 

probability for each value of Yhd.  206 

5. Evaluate F-1
GEV,Xd[FGEV,Yhd(Yd)], the inverse CDF of GEVXd at FGEV,Yhd(Yd). The result is 207 

the spatially adjusted AMS, Xfd. 208 

6. Repeat step 1 for each duration and city, and steps 2–4 for each climate model, duration, 209 

and city. 210 

 211 

S2.2.2. Comparison of PAM and KDDM techniques 212 

We evaluated the performance of PAM and KDDM by comparing the AMS of the historical 213 

climate simulation to the observed AMS time series for all aggregated durations (3, 6, 12, 24, and 214 

48 hours) using the mean absolute error (MAE) and the K-S test. Figure S4 presents these results 215 

for each climate model resolution (25-km and 50-km), duration, and 6 of 34 cities. Durations are 216 

shown along the x-axis, and cities are shown in each subplot. The two methods are shown as 217 

different colored error bars. The median, minimum, and maximum MAE of the climate model 218 

ensemble are is shown as a square and the lower and upper bounds of the error bar, respectively. 219 

Filled squares represent the 25-km resolution climate model ensemble, while the open square 220 

represents the 50-km resolution. The number of stars at the top of the bar signifies the number of 221 

climate models where h0 = 1 (rejected) for the K-S test, meaning that the historical climate model 222 

AMS is not from the same continuous distribution as the observed AMS.  223 

 224 
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 225 
  226 

Figure S4. Mean absolute error (MAE) of the AMS from the bias-corrected NA-CORDEX ensemble compared to 
observed AMS for the historical time period (1950–2013) in 6 cities. The different colored error bars represent the 
different bias correction methods: method (1b), aggregation then KDDM (dark blue), and method (2), parametric AMS 
mapping. The median MAE from the 25-km climate model ensemble is represented by a solid, square marker, while the 
median of the 50-km ensemble is an open square. The maximum of the MAEs from the climate model ensemble is the 
upper bound of the error bar and the minimum of the MAEs is the lower bound of the error bar. The number of stars 
above the error bar shows the number of climate models that are not from the same continuous distribution as the 
observed AMS (h0=1 from K-S test). The horizontal, dashed line represents a MAE of 10%. 

Parametric AMS Mapping 
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Overall, PAM exhibits better performance than KDDM because it has a smaller MAE and 227 

never results in a rejection of the K-S test. Despite the better performance of PAM, we still use 228 

KDDM in our analyses in order to understand how these differences in performance affect the 229 

resulting IDF curves. Conceptually, the two methods are entirely analogous: in both cases, model 230 

values are transformed into probabilities according to CDF of the model data, then transformed 231 

back into values using the CDF of the observations. The difference is in where in the workflow 232 

(Figure S2) that transformation is applied.  Since the distribution of block maxima such as the 233 

AMS is known to converge to the GEV distribution, it is not surprising that applying the 234 

transformation to the extreme values directly using the correct parametric distribution exhibits 235 

better performance than applying it implicitly using a non-parametric estimate.   236 

 237 
S2.3. Change Factor 238 

Method 3, the Change Factor technique, adjusts the observed depth of rain based on the ratio 239 

of change between the historical and future climate model simulations. This method is also referred 240 

to as the areal reduction factor method (Allen and DeGaetano 2005; Zhu, Stone, and Forsee 2012; 241 

Cook, Anderson, and Samaras 2017). Future depths at the station scale are obtained with the 242 

following equation:   243 

                               𝐷𝐷𝐹𝐹
(𝑠𝑠)(𝑝𝑝, 𝑑𝑑) =  𝐷𝐷𝐻𝐻

(𝑠𝑠)(𝑝𝑝,𝑑𝑑) 𝐷𝐷𝐹𝐹
(𝑔𝑔)(𝑝𝑝,𝑑𝑑)

𝐷𝐷𝐻𝐻
(𝑔𝑔)(𝑝𝑝,𝑑𝑑)

    [2] 244 

 where D denotes the depth of rainfall, or return level, for a given probability of occurrence 245 

(p), duration (d), and CI. This depth is either at the station scale (s) or grid scale (g), for future (F) 246 

or historical (H) time periods. Historical depths at the station scale refer to depths obtained using 247 

historical observations obtained using the general techniques in Section S2.1. Depth is converted 248 

to intensity by dividing by the duration (in hours).  249 



19 
 

Depths at the grid scale for the historical or future period refer to return level depths obtained 250 

directly from the gridded regional climate model simulations. These depths are obtained by 251 

following the steps in Section S2.1 for each of the six climate model simulations for historical and 252 

future periods. For this analysis, we apply the change factor to observations of the time period 253 

1954–2013. The historical climate model baseline is also from 1954–2013, and selection of the 254 

future period is discussed in the following section (Section 2.3.4).  255 

The CF method estimates the median future depth using the median observed return level, the 256 

median historical climate return level, and the median future return level. Confidence intervals for 257 

the future depth are obtained in the same manner, i.e., the 90% CI uses the 90% CI from the 258 

observed data, historical climate model, and future climate model.  259 

 260 

S3. Comparison of MOS techniques for multiple durations and return periods 261 

Figure S5 presents the results in 6 cities of the future 50-year rainfall depth estimated using 262 

the KDDM, PAM, and CF techniques for the 1-hour (left) and 24-hour (right) durations. The 263 

observed period is shown as a black dashed line and the future period is shown as different 264 

colored lines for each technique. The sloped line passes through the median of the climate model 265 

ensemble (all resolutions) and the range shows the upper and lower bounds defined in Section 266 

2.2.4. The observed range shows the 10% and 90% CI for the observed period. The upper bound 267 

on the y-axis (highlighted in red) varies in each subplot. 268 

For the smaller return periods, the mean of the ensemble for each method is relatively 269 

consistent for most cities; however, as the return period increases, the differences in each method 270 

are larger. This is consistent with results from Sarr et al. 2015, who found that the choice of 271 

downscaling technique matters more for return periods of 10 years or longer. In this analysis, the 272 
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mean and bounds of the three methods can vary by several orders of magnitude for the larger return 273 

periods. We find that the PAM and KDDM methods can generate problematically large values 274 

(see Figure S6). For instance, in Birmingham, the PAM method predicts the mean ensemble value 275 

for the 24-hour 100-year storm to be about 50 inches (120 cm) of rain. The historical value is 276 

around 11 inches (30 cm) —a value that is five times lower than the future prediction. This 277 

unrealistic future value is the result of several consecutive large rainstorms in the 25-km WRF-278 

GFDL model run. After PAM is applied to the model to bias-correct to the station scale, these 279 

large rainstorms are exaggerated, and the adjusted future rainfall comes out to be unrealistically 280 

large, which distorts the entire subsequent chain of analysis. It is beyond the scope of this paper to 281 

evaluate the nature of this event and whether it is realistic, but the PAM and KDDM methods have 282 

problems when there is a significant mismatch in the presence of the very largest rare events (e.g., 283 

hurricanes, atmospheric rivers, etc.) in the input datasets.  To guard against this problem, we 284 

remove events from the model datasets that are more than five times larger than the next largest 285 

event.  286 
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 287 

Figure S5. Effect of different correction methods on future rainfall depth for 6 cities and two durations:1-hour (left) and 288 
24-hour (right). Observed depth is in black; CF method in yellow (square markers); KDDM method in purple (circle 289 
markers); and PAM method in green (triangle markers). The sloped line passes through the average of the climate model 290 
ensemble (all resolutions); error bars represent the upper and lower bounds of this ensemble.  291 

Parametric AMS Mapping 
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S4. Additional methods 292 

S4.1. Selection of length of future time period 293 

To evaluate the length of the future time period in the analysis, we represent uncertainty as the 294 

distance between the 10% CI and 90% CI of the GEV fit and normalize the results for all durations, 295 

return periods, climate models, and cities by taking the percent difference between this range as 296 

(90%CI -10%CI)/10%CI. Figure S6 presents the range of these values as a box plot. The red line 297 

in the box represents the median of these values, the top and bottom of the box plot represent the 298 

25th and 75th quantiles, and the whiskers extend to the 90th quantile. Red plus signs represent 299 

outliers above the 90th quantile. The x-axis shows the length of the time period in the future for 300 

the end of the 21st century. For instance, the 30-year length refers to the period 2070–2099, the 40-301 

year refers to 2060–2099, etc.  302 

 303 
Figure S6. Percent difference between the 10% and 90% confidence interval of the GEV distribution. The range of values 304 
for all durations, return periods, climate models, and cities is represented as a box plot. The red line in the box represents 305 
the median of these values, the top and bottom of the box plot represent the 25th and 75th quantiles, and the whiskers extend 306 
to the 90th quantile. Red plus signs represent outliers above the 90th quantile. 307 
 308 

Results show that the range between the 10% and 90% CI of the GEV fit decreases as the 309 

number of years in the sample increases. This is expected, as it is well-known that uncertainty 310 

decreases with a larger sample size. We selected the longest, 80-year period for use because the 311 
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uncertainty range is the smallest, and the additional years only marginally change the median value 312 

(red line).  313 

S4.2. Illustrative stormwater infrastructure design example 314 

We calculate peak discharge for the design example using the rational method: 𝑄𝑄𝑝𝑝 = 𝑐𝑐𝑐𝑐𝑀𝑀, 315 

where Qp is the peak flow for the watershed, c is the runoff coefficient, i is the rainfall intensity, 316 

and A is the watershed area. A runoff coefficient of 0.65 is assumed for a moderately urbanized 317 

neighborhood (McCuen 2005). 318 

The rational method assumes that the duration of storm to select from the IDF curve is equal to the 319 

time of concentration of the watershed, or the time it takes to travel from the most distant part of 320 

the watershed to the outlet point (McCuen 2005). This analysis uses a small 4-hectare (10-acre) 321 

watershed with an assumed time of concentration of 1 hour, and thus uses the 1-hour design storm.  322 

Using the peak discharge, the pipe diameter is calculated with Manning’s equation:  323 

𝐷𝐷𝐷𝐷 = � 𝑛𝑛𝑄𝑄𝑝𝑝
0.31𝑘𝑘𝑛𝑛�𝑆𝑆0

�
3
8
                             [3] 324 

where Dr is the pipe diameter, n is the roughness coefficient, S0 is the channel slope, and kn is a 325 

coefficient of the velocity versus slope relationship. The roughness coefficient is assumed to be 326 

0.013 for ordinary concrete lining, kn equal to 1, and S0 equal to 0.005 (or 0.5%). 327 

We rounded the resulting diameters from Manning's equation up to the nearest standard U.S. 328 

pipe size to determine the diameter of the pipe that would be installed. The minimum storm sewer 329 

diameter recommended by the Pennsylvania Department of Transportation is 450 mm (18 inches). 330 

Pipes are available in 75 mm (3 inch) increments until the 750 mm (30 inch) diameter, after which 331 

they are available in 150 mm (6 inch) increments (PennDOT 2015). The pipe sizes used in this 332 
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analysis are: 18, 21, 24, 27, 30, 36, and 42 inches (equivalent to 450, 525, 600, 675, 750, 900, and 333 

1050 mm).  334 

  335 
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