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ABSTRACT: Although the exposure assessment of wastewater-
derived micropollutants via chemical, bioanalytical, and modeling
methods in environmental compartments is becoming more
frequent, the whole-body burden (i.e., internal concentrations) in
nontarget organisms is rarely assessed. An understanding of the
internal concentration fluctuation is especially important when
exploring the mechanistic linkage between exposure and effects. In
this study, we coupled a simple river model with a first-order
toxicokinetic (TK) model to predict the concentrations of
wastewater-derived micropollutants in freshwater invertebrates
(Gammarus spp.). We applied Monte Carlo simulations and
conducted laboratory experiments to account for the uncertain
input data and the lack of uptake/depuration rate constants required
for the TK model. The internal concentrations in field gammarids
were predicted well, and the estimates varied only by a factor of 0.1−1.9. Fast equilibrium may also be assumed such that
bioconcentration factors (BCFs) are used together with the daily river dilution patterns to predict internal concentrations. While this
assumption is suitable for compounds observed in our experiment to reach the steady state within 48 h in gammarids, the model
overpredicted the concentrations of substances that reach this condition after longer periods. Nevertheless, this approach provides
conservative estimates and simplifies the coupling of models as BCFs are slightly more accessible than the rate constants. However, if
one is interested in a more detailed exposure information (e.g., peak concentration and the whole-body burden recovery after a spill),
then the nonsteady-state formulation should be employed.

1. INTRODUCTION

Wastewater-derived micropollutants are a diverse classification
of compounds that include pharmaceuticals, personal care
products, and plant protection products. They are present in
the environment at extremely low concentrations, are
ubiquitous in the aquatic environment, and can potentially
impact the development, behavior, and reproduction of aquatic
organisms.1−3 In recent years, the detection of wastewater-
derived micropollutants in surface waters has become a part of
chemical monitoring programmes as in the case of the
European Commission’s Watch List of substances that is
monitored in European Union (EU) surface waters (Decision
2015/495/EU4). However, the impact of their fluctuating
concentrations on exposed nontarget organisms is rarely
characterized.5 Evaluating the time course of a contaminant
within an organism in response to changing environmental
concentrations can be done via toxicokinetics (TK),6 a process
typically studied in the laboratory to determine bioaccumula-
tion.

There are well-established contaminant fate and transport
models that can be used to estimate the temporal and spatial
distribution of wastewater-derived micropollutants in surface
waters.7 However, TK models remain underused in exposure
science.8 They are often employed independently of fate and
transport models (and vice versa), making them difficult to
coherently link environmental exposure fluctuations with the
internal concentration dynamics in target organisms. When
these modeling techniques are combined, they become an
indispensable tool that not only elucidates both external and
internal factors that affect the distribution of chemicals within
an organism but potentially provides insight about the
mechanistic linkage between environmental exposure and
observed effects in the field.9
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Despite the advantages of incorporating such techniques,
only a few studies have organized the exposure pathway into a
systematic network of time-varying concentration profiles from
the contaminant source to nontarget organisms, especially in
invertebrates. Ashauer et al.10 successfully predicted the risk
associated with fluctuating environmental exposure to a single
pesticide (diazinon) in gammarids, but their study was
primarily supported by the extensive analytical measurements
on which the TK (and toxicodynamic) modeling was based. In
the field, data collection logistics are often a major challenge.
For example, the TK parameters for individual compounds are
often unavailable, and the time series of environmental
concentrations required for model validation is not only
analytically challenging but also costly to obtain.
In this study, we first developed strategies to overcome

several model input and validation data deficiencies when
applying a coupled river-TK model. We then demonstrated the
applicability of this modeling framework by simulating the
concentrations of 22 wastewater-derived micropollutants in
nine receiving environments. The results of the river model
were then employed as inputs to the TK model that predicts
the internal concentrations in field invertebrates (Gammarus
spp). We based our efforts on the work of Munz et al., who
assessed ∼400 wastewater-derived micropollutant upstream
and downstream of 24 wastewater treatment plants (WWTPs)
in Swiss midlands and then estimated the whole-body burden
of ∼60 substances in gammarids.11,12 Along with these
synthesized data, we applied Monte Carlo simulations within
the model to integrate the uncertainties in our input data.
Furthermore, we completed additional laboratory experiments
to supplement unavailable data related to TK rate constants.
The simulations were first completed in 2014−2015, compared
with the measured river and internal concentration data, and
finally extended for long-term predictions from 2015 to 2018.
We also compared the model outputs with the results of a
separate field sampling campaign conducted in May 2018. We
further hypothesized that model simplifications (steady-state)
may be employed for some wastewater-derived micropollutants
to reduce the inputs required for predictions. We then tested
these simplifications under various exposure scenarios (e.g.,
spills).

2. METHODOLOGY
2.1. Modeled Sites and General Modeling Strategy.

The sites modeled in this study have been included in prior
micropollutant exposure assessments upstream and down-
stream of representative WWTPs in Switzerland.11−14 Nine
sites were selected for this study on the basis of the availability
of both river and internal concentrations (sites 13, 15−19, 21−
23 [see Supporting Information-A]). Twenty-two wastewater-
derived micropollutants were modeled among the 57 priority
substances established in Munz et al.12 (Supporting
Information-B, Table S3). These compounds were observed
at consistently detectable in-stream concentrations during the
2014 sampling campaign, allowing for a direct comparison of
simulations.
The estimates of the river concentrations were first

simulated. The results were then fed into a TK model that
predicts the internal concentrations in gammarids. To test
model performance, the simulations were compared against
previous river and internal concentration measurements11,12

(Supporting Information-C). The water samples and gammar-
ids were from the same site (specific details found in Munz et

al.11). Additional water samples (via passive sampling as in
Moschet et al.15) and gammarids were collected at selected
field sites in May 2018 to support the predictions (Figure S1).
Sampling, sample preparation, chemical analysis, and data
evaluation methodologies for this campaign were based on
Munz et al.11 A brief description is also available in the
Supporting Information-D.

2.2. Simulation of River Concentrations. Complete
mixing conditions are typically observed in locations ∼70 to
∼170 m downstream of WWTP effluents.14 This short travel
distance limits the degree of mass transformation (e.g.,
photolysis, biodegradation) and other mass transfer mecha-
nisms (e.g., volatilization and sorption) that occur. Hence, the
following dilution model was deemed appropriate to represent
the system

=
+
+

C t
Q t C t Q t C t

Q t Q t
( )

( ) ( ) ( ) ( )

( ) ( )r
w w u u

w u (1)

where Cr, Cw, and Cu (ng/L) are the predicted river,
wastewater effluent, and upstream concentrations that change
with respect to time, t. Qw and Qu (m

3/s) are the effluent and
upstream river flows, respectively. The daily discharges at the
WWTPs and upstream sites were acquired from the
responsible Swiss cantonal authority (Figures S2/S3). For
sites 15−17 and 21−22, specific river flow gauges were not
located immediately downstream/upstream of the WWTPs
(up to ∼6 km). When no significant stream/groundwater
inputs were considered between the discharge stations and the
sites, the discharge data provided by these stations were
applied directly. For other sites (sites 15, 16, and 22),
additional stream inputs were observed between the sites and
their respective discharge stations. The area proportion
method, a commonly used approach to calculate discharge in
an ungauged catchment,16 was used to account for these
additional flow contributions (Table S2).
We first tested the applicability of the dilution model by

evaluating eq 1 with time t corresponding to the sampling date
in the 2014−2015 field campaign. A direct comparison of the
predicted and observed river concentrations using this model
(Supporting Information-E, Figure S4) suggests that this
conservative simulation is suitable for predicting the down-
stream concentrations in small streams (Spearman correlation
coefficients (s) ranged from 0.87 to 0.97). The positive results
also confirm that the area proportion method is appropriate for
estimating discharge at sites with no nearby flow gauges.
However, it is vital to have temporally resolved estimates of
concentrations (effluent and upstream) when predicting the
daily concentration fluctuations in the receiving environment.
There were only six data points for each input concentration
(Cw and Cu) from 2014 to 2015. The use of an average site-
specific Cu as an input was justified as the measured
concentration upstream did not fluctuate considerably (see
Munz et al.12). This was not the case for effluent
concentrations. Hence, we employed the MC simulation to
account for the lack of temporally varying Cw data. Assuming
that the six data points represent the daily fluctuations at the
WWTP effluent, their mean and standard deviation defined the
probability distribution function (PDF) from which the unique
values were randomly sampled (10,000 times daily). The shape
of the effluent concentration distribution (normal or
lognormal) was based on the pooled effluent concentrations
measured by a previous large-scale sampling campaign that also
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includes our modeled sites (Munz et al.12). The (log)
normality of these data sets was tested using the Shapiro−
Wilk test (α = 0.05) (Table S4).
The outputs of the river model are described as distributions

of daily river concentrations, which then become inputs to the
TK model. The performance of the river model was
determined by visually comparing the predictions with the
measured river data downstream of the WWTPs. Model
performance was also evaluated statistically using the Spear-
man correlation coefficient (s) and the coefficient of
determination (R2). All simulations and statistical evaluations
were performed in SageMath 8.1, a publicly available Python-
based mathematics software system (sample codes found in
Supporting InformationSI-F).
2.3. Simulation of Internal Concentrations in Gam-

marids. The concentrations of target substances in gammarids
were modeled using a single-compartment model (also in
SageMath, Supporting InformationSI-F) expressed as

= −
C

t
k C t k C t

d

d
( ) ( )

org
u r d org (2a)

where ku (L/kgwet weight (ww)·d) and kd (1/d) are the uptake and
depuration rate constants, respectively, Cr (ng/L) is the river
concentration (represented as a distribution of concentrations
from eq 1), and Corg is the internal concentration in gammarids
(ng/gww, a multiplication factor 10−3 was applied for unit
conversion). Note that only aqueous uptake (via respiration)
and a lump depuration process are considered (i.e., dietary
uptake and biotransformation were not included). Pre-
exposure to our target compounds was assumed so the
concentration at the beginning of the simulation (C[t = 0])
was set to the median concentrations reported in Munz et al.11

Only 4 of the 22 target substances have reported TK rate
constants for gammarids, with values varying by up to an order
of magnitude (Table S12). We therefore completed additional
TK experiments to determine the uptake and depuration rate

Figure 1. (a) Simulations of amisulpride river concentrations downstream of WWTPs at sites 13 and 23 (2014−2018). See Figures S5/S6 for other
sites and compounds. There was no replication in the 2014−2015 measured data (red circles, ●), but we imposed a ±20% error as the
measurement uncertainty; red squares (■) are time-weighted average concentrations from passive samplers deployed in May 2018. Shaded regions
represent 5th and 95th percentiles in the MC simulations. (b) Comparison between predicted and measured river concentrations (log−log scale, n
= 54, 9 sites). Refer to Figure S5j for 16 other compounds.
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constants that were most suitable for our field gammarids (see
below).
We also observed in this TK experiment that 55% of the

substances reached 95% of the steady-state concentration
within the 48 h-exposure period, with some reaching this
condition in <24 h (e.g., benzotriazole, climbazole, and
fenofibrate) (Supporting InformationSI-G, Table S13).
Hence, eq 2a can also be represented in steady-state
formulation for some compounds

=C t
k
k

C t( ) ( )org
u

d
r

(2b)

This simplification only applies when uptake and depuration
follow first-order kinetics. Under this assumption, the ratio of
ku to kd is mathematically equivalent to the bioconcentration
factor (BCF [L/kg]), a parameter that is more available for
gammarids than the TK rate constants. For eqs 2a and 2b,
Monte Carlo sampling of parameter values was also
implemented. Specifically, ku, kd, and BCF were represented
as a normal distribution, and the response of the model to the
parameters of the MC method was also explored (Supporting
InformationSI-K).
2.3.1. TK Experiments. 2.3.1.1. Collection of Gammarids.

Field gammarids (∼500 organisms) were collected via kick-net
sampling on March 11, 2019, at a site where aquatic pollution
was considered minimal (Grüningen, Switzerland 47°16′29.2″
N, 8°47′21.3″ E). Only adults were collected (∼4−6 mm);
those with visible parasites and females carrying visible eggs
were excluded. Leaves were also collected in situ to serve as the
primary food source during the TK experiments. The animals
were transported to a laboratory that was maintained at 11± 2
°C and a 12 h/12 h light/dark cycle (Eawag, Dübendorf,
Switzerland). Before any experiment, the animals were
acclimatized for at least 7 days in an aquarium containing
artificial pond water (APW17) and were fed with leaves
collected from the field site (pre-rinsed with nanopure water).
2.3.1.2. Uptake and Depuration Experiments. For the

uptake experiment (48 h), the animals were randomly selected
and placed in 600 mL transparent glass beakers (4 animals/
beaker) filled with 500 mL APW containing 50 μg/L of 61
substances in mixture (Table S13). One leaf was added to each
beaker as the food source. The depuration experiment was
conducted by pre-exposing the animals to the test chemical
mixture for 48 h, quickly rinsing them with nanopure water,
and exposing them to 500 mL unspiked APW for 120 h. The
animals were sampled at seven time points during the uptake
phase and 12 time points during the depuration phase, quickly
rinsed with nanopure water, blotted dry with tissue, transferred
into a 2 mL FastPrep vial which was then added with 500 μL
of pure methanol, and spiked with 100 μL of 1000 μg/L
internal standards (ISTD) in methanol. The vials were stored
at −20 °C until sample preparation and analysis. The exposure
medium (0.5 mL) was also sampled at t = 0, 17.5, and 48 h to
track any changes in nominal concentration (also spiked with
100 μL of ISTD and topped with 400 μL of methanol). The
following experimental controls were also included: (1)
gammarids and food source positive (i.e., no chemicals); (2)
food source and chemical positive (i.e., no gammarids); and
(3) chemical positive (i.e., no gammarids and food source).
Sample preparation and analysis were similar to Fu et al.18 and
are detailed in the Supporting InformationSI-G.

3. RESULTS AND DISCUSSION

River and gammarid concentrations were predicted while
incorporating approaches that integrated (and reduced) the
uncertainties associated with the input data requirements (e.g.,
MC sampling and laboratory experiments). Because our TK
experiments revealed that some of the substances reached the
steady state quickly in gammarids (within 48 h), we further
represented the TK model in steady-state. We discuss the
general limitations of this approach below.

3.1. Simulation of River Concentrations. Satisfactory
simulations were observed for all the 22 target compounds,
suggesting that the Cr estimates adequately captured the river
concentration (Figure 1a, Supporting InformationSI-H for all
other sites), and that the MC sampling of Cw from an assumed
statistical distribution is acceptable, along with the parameters
used to describe its distribution (derived from the 6 observed
data sets per site). Although we considered the model to
produce useful river concentrations, the observed data only
included “low” measurements. It would be ideal to compare
the results during the periods when higher concentrations were
predicted (July−December 2015, Figure 1a). However, this
period corresponded to exceedingly low flow conditions, with
some parts of Switzerland having experienced a record-low
monthly averages19 (Figure S3). As what have been predicted
here, poor dilution of wastewater effluents was likely, and
higher concentrations were to be expected.
Most river concentrations fell within the boundaries of the

model uncertainty (Figure S5), but there were occasions when
model performance was relatively poor. For example, the
model consistently underpredicted the high concentrations
during the November 2015 sampling event at site 18 for most
of the compounds (Figure S5e). These observations indicate
that the six data points from which the PDFs were obtained
did not necessarily reflect the daily fluctuations in effluent
concentrations.
At present, there are no strict measures to evaluate the

performance of models that predict trace organic concen-
trations in rivers, although Moriasi et al.20 suggested that in
addition to a visual assessment, a coefficient of determination
(R2, linear regression), that is, >0.30, is acceptable for field-
scale models that simulate water quality conditions (e.g.,
nitrogen or phosphorus). For our simulations, R2 > 0.30 was
mostly observed (Figures 1b, S5j for all compounds).
Statistically significant correlation coefficients between meas-
ured and simulated values were also observed (s ranged from
0.41 to 0.90), further suggesting that the model was applicable
even though it had a few limitations (Figure 1b). It is not
feasible for us to identify the specific reasons for some poor
predictions, but we cannot rule out the following possibilities:
(1) changes in consumption patterns that were unaccounted
for in the model; (2) WWTP treatment fluctuations (e.g.,
treatment upsets, combined sewer overflows); or (3) analytical
measurement variability (e.g., changes in limits of quantifica-
tion (LOQs). It is clear, however, that the model works well
for most compounds that are not highly affected by the
variability resulting from these factors (e.g., benzotriazole and
carbamazepine).
We further recognize that the model can be refined. For

instance, instead of predicting the loadings of wastewater-
derived micropollutants into the aquatic environment, we
could use consumption-based models wherein we would first
determine the chemical usage of the population served by the
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WWTP and then estimate effluent concentrations using the
compound-specific removals through the plant. Although this
approach has been employed in several exposure assessment
studies,21,22 the required input parameters are not only difficult
to obtain (e.g., reports on usage per capita) but also highly
variable. For example, reported WWTP removals can range
from 0 to 81% and from 4 to 89% for diclofenac and
sulfamethoxazole, respectively,23 and can be variable even
within WWTPs that have similar treatment configurations.24

Hence, employing a consumption-based model for estimating
effluent concentrations would likely add more uncertainties to
our predictions. We have more confidence in the analytical
measurements than in alternatives that employ highly
uncertain input data.
To further test the applicability of the river model, we

compared our predictions with an additional field sampling
data point collected in May 2018 at six sites (Figures 1a; S6).
Good agreement between simulated and measured stream
concentrations (via passive sampling) was observed (Figure S7,
s = 0.71). Sulfamethoxazole and hydrochlorothiazide were
mostly underpredicted, but this discrepancy may be because of
the passive sampling rates (Table S10) employed to calculate
the time-weighted average (TWA) concentrations. Although
we used the sampling rates from a similar sampler and
deployed them at acceptable flow velocities,15 these values may
not necessarily apply to our sites.
Despite these results, the model can still provide insight into

the aquatic exposure to wastewater-derived micropollutants at
our sites, especially during periods when measured data were
not available. For instance, the probability that the downstream
sites exceeded the EU proposed annual average environmental
quality standard (AA-EQS [freshwater] = 100 ng/L25) for
diclofenac is >80% for most sites but >95% for all sites, if the
proposed Swiss chronic quality standard is used (50 ng/L26)
(Figure S8). This suggests that the high exceedance is not
strictly observed during a hypothetical worst-case scenario (i.e.,
low-flow conditions) as predicted by Ort et al.27 for Swiss river
networks. Instead, there may also be a high risk of wastewater-
derived micropollutant exposure both during normal flow
conditions as illustrated by our model predictions. In some
cases, the exceedances could last ∼10 months as in site 13 or
∼2 years, if the Swiss chronic water quality standard was
considered (Figure S6a). Whether these exceedances neces-
sitate further management action requires additional inves-
tigation, especially on the long-term ecotoxicological effects of
this substance. However, many WWTPs in Switzerland are
implementing (or have implemented) advanced treatment
upgrades such as ozonation and/or activated carbon, and
diclofenac is eliminated well by both technologies.28,29 It may
be useful to revisit this model to assess the improvements.
Nevertheless, we have produced river concentration simu-
lations that are considered to be sufficient input values for the
internal concentration simulations.
3.2. Modeling the Internal Concentrations in Gam-

marids. 3.2.1. Lab Determination of Uptake and Depu-
ration Rate Constants. We completed an additional lab
experiment to address the lack of data on rate constants
required for the TK model. We could calculate the
experimental values for 42 substances of the 61 chemicals in
the mixture (Figure 2a). Of the 19 compounds with
indeterminable rate constants, we observed 14 compounds
that showed poor analytical method performance (e.g., high
background noise, poor calibration curve, and methylation in

standard), and five were not detected in gammarids above the
LOQ (Table S13).
Evaluating the exact mechanism of uptake and depuration of

these chemicals in gammarids was not the goal of this study,
but useful patterns of uptake and depuration rate constants can
be determined from the experiments. For instance, when we
evaluated the BCFs (Table S13), we found them to be
substantially lower than the REACH criterion for bioaccumu-
lation (2000 L/kg), suggesting that these substances are not
highly bioaccumulative in gammarids. Although there are other
properties that influence the chemical uptake (e.g., organism
weight, ventilation rate),30,31 bioaccumulation is highly linked
to hydrophobicity.32 The lab-derived rate constants reflect this
relationship as these compounds with relatively high uptake
rate constants (>10 L/kg·d) tend to have higher log Dow
values (log Dow is the pH-corrected octanol−water partition-
ing coefficient) (Figure 2b, Table S13). We further found that
the 55% of the compounds reached 95% of the steady-state
concentration (t0.95Css) in <24−48 h (Figure 2c, Table S13),
suggesting that most of the compounds in gammarids
equilibrate relatively quickly with the external concentration.
Our ability to compare these results with literature values

was limited because only a few studies on TK experiments
specific to gammarids exist (Table S12). The TK rate
constants we obtained for carbamazepine (6.1 L/kg-d, 1.7 1/
d) were similar to those of Meredith-Williams et al.33 (5.2 L/
kg·d & 0.7 1/d) but an order of magnitude higher than those
reported by Miller et al.34 (0.53 L/kg·d & 0.02 1/d). To
integrate the uncertainties associated with the rate constants,

Figure 2. (a) Uptake (ku) and depuration (kd) rate constants of 41
wastewater-derived micropollutants obtained from the laboratory
experiment shown with increasing ku; (b) their corresponding log
Dow (adjusted to pH 7.9); and (c) their TK characteristics in
gammarids described by the time for the internal concentration to
reach 95% of the steady-state concentration (t0.95Css). Most of the
compounds have t0.95Css <24-48 h (55%). See Table S13 for the
numerical values.
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we incorporated another MC sampling of ku and kd within the
model (eq 2a), assuming that these parameters are normally
distributed (Supporting InformationSI-K).
3.3. Internal Concentration Simulation. Of the 22

compounds simulated using the river dilution model,
carbamazepine, citalopram, benzotriazole, diclofenac, and
hydrochlorothiazide were selected for internal concentration
simulation because of their high frequency of detection in field
gammarids at our study sites (which also supports better
model comparison). Overall, good agreement between the
measured and simulated data was observed (Figure 3), with
the predictions only differing by a factor of 0.1−1.9 (Table
S15). Although some discrepancies existed between the
measured and observed data, they primarily occurred when
the concentrations were close to the LOQs (Tables S5/S6) or
simply not detected (e.g., hydrochlorothiazide in Figure 3).
This observation reinforces the usefulness of models when
chemical measurements are limited to issues related to
detection limits. To further test the model and the assumptions
within our framework, additional measured values at various
time points during the 5 year simulation would have been
valuable (only 3 observations were available per site).
However, satisfactory predictions of internal concentrations

were observed when the same assumptions were subsequently
applied to all other sites (Figure S9).
Assuming that the whole-body concentrations in gammarids

are mostly attributed to aqueous-phase exposure (i.e., minimal
dietary and/or sediment exposures), the simulations suggest
that the internal concentrations quickly respond to the stream
concentration fluctuations. This observation is particularly
reflected by the similarities between the river dilution and
internal concentration patterns at each site (Figures S6 and
S9), indicating that whenever peak concentrations are detected
in the stream, peaks in internal concentrations are probably
going to be experienced as well. As expected, low-flow
conditions were associated with high internal concentrations
in gammarids and these patterns were not only observed
during the summer months (June−August). It may be of
interest to examine the changes in organism responses relative
to the exposures, especially when the peak internal
concentrations coincide with the critical period in gammarid
development (e.g., growth and reproduction). Because most
wastewater-derived micropollutant inputs into the receiving
environments are fairly consistent relative to pesticide pulses
during storm events, the daily river dilution patterns can be
employed as a preliminary estimate of peak exposures.

Figure 3. (a) Simulated internal concentrations in gammarids (2014−2018) compared with the measured data (±40% error) (Figure S9 for other
sites). The input river concentrations were derived from the dilution model. N.D. = not detected. LOQ = limit of quantification. (b) Citalopram
concentrations were mostly underpredicted. Each measured data required an average ∼30−50 gammarids to achieve a sample of ∼500 mg required
for chemical analysis.
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Overall, the coupled river-TK model adequately predicted
the whole-body burden of selected wastewater-derived micro-
pollutants in gammarids, and the temporally varying internal
concentrations predicted by the coupled model can be used in
the future to formulate hypotheses on the likelihood and
degree of toxicological effects associated with exposure.
3.3.1. Poor TK Model Predictionsthe Case of Citalo-

pram. The internal concentrations were found to be predicted
well for carbamazepine, benzotriazole, diclofenac, and hydro-
chlorothiazide but not for citalopram (Figure 3b). The model
underestimated the citalopram concentrations in gammarids by
up to 4−5 times. To eliminate the possibility that the poor
prediction may have been because of our model assumptions,
we tested the response of the model by conducting a sensitivity
analysis on the parameters of the MC method (Supporting
InformationSI-K). It was observed that increasing the standard
deviation of the assumed normal distribution increased the
uncertainty region, but the predictions still remained outside of
this region (Supporting InformationSI-K).
Because citalopram is one of the compounds that did not

reach the steady state fast enough (>21 days based on our TK
experiments), we cannot rule out the uptake of citalopram via
other pathways that were not considered in the model and in
the laboratory exposure study. In many streams, biofilms
colonize the leaf surfaces rapidly and enhances the palatability
of the leaves to detritus feeders such as gammarids.35 There are
evidences suggesting that micropollutants can sorb onto
biofilms,36,37 potentially adding another uptake route when
consumed by gammarids. Furthermore, gammarids are found
in benthic habitats characterized by a high degree of contact
with the sediments, a layer that provides a “sink” for organic
compounds especially when they are moderately to highly
sorptive. Citalopram has been reported in surface sediments
and biofilms in effluent-receiving environments world-

wide.38−40 Unfortunately, we do not have any data at our
sites to address these possibilities, but field investigation is
underway to determine if such a pattern occurs.

3.3.2. Steady-State Simulation of Internal Concentration.
We further hypothesized that fast equilibrium between water
and internal concentrations may be assumed for most
compounds (eq 2b). This assumption is supported by our
laboratory study that suggests the relatively fast uptake and
depuration of most wastewater-derived micropollutants in
gammarids (recall that 55% of the compounds in our
experiment reached 95% of the steady-state concentration
[t0.95Css] in <48 h, Figure 2). Under this simulation, the internal
concentrations can be simply estimated by a scaling factor that
relates the temporally varying river concentration to the
internal concentrations. This scaling factor is exactly
represented by the BCF as described in the steady-state
version of the TK model (eq 2b).
We tested this hypothesis for carbamazepine that was

observed to reach 95% of the steady-state concentration after
1.8 d (Table S13). Similar to ku and kd, we represented the
BCFs as normally distributed and then sampled this parameter
using MC. We found no substantial difference between steady-
state and nonsteady-state simulations (Figure 4a). Hence, the
proposed simplification is acceptable for this compound and
quite possibly for those that have reached the steady state in
<48 h. The same hypothesis was applied to compounds that
took longer to reach the steady state as they have slower
uptake and depuration rate constants (Figure 4a). Clarithro-
mycin and metoprolol, in particular, reach 95% of steady-state
concentration after 50 days and 27 days, respectively (Table
S13). Here, both simulations followed the same concentration
patterns, although the steady-state predictions showed rapid
changes in concentrations compared to a “smoother”
concentration curve by nonsteady-state simulations.

Figure 4. (a) Steady-state vs nonsteady-state internal concentration simulations for compounds with different TK characteristics in gammarids.
Steady-state simulations may be assumed for compounds with fast uptake/depuration such as carbamazepine (t0.95Css of <48 h). This simulation
may also be used for compounds with t0.95Css > 48 h (hydrochlorothiazide, metoprolol, and clarithromycin), but the predictions will be
overestimated during peak exposure (hence, provide conservative estimates). (b) Additional exposure scenarios and different TK rate constant
combinations were tested under a hypothetical nonsteady-state simulation. The blue region describes the response to a continuous input
concentration (100 ng/L), which asymptotically converges at the steady state (2 ng/g). The time to reach the steady state changes depending on
the magnitude of rate constants. The red region illustrates the responses to spills (at 1000 ng/L) occurring at different durations (at t = 300 d for
0.5 d and t = 365 d for 5 d). The response to pulse inputs varies depending on the spill duration, and finally, the peak exposure and recovery period
after the spill are driven by the magnitude of rate constants.
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Although the steady-state simulation tended to overestimate
the concentrations during peak exposures, it could be
employed to derive conservative estimates of internal
concentrations. For instance, when the upstream contaminant
contribution is minimal, a simpler coupled river-TK model that
only requires the effluent concentration (Cw(t)), dilution factor
(DF), and BCFs may be employed (eq 3)

= ×C t C t( ) BCF
1

DF
( )org w (3)

where DF is the ratio between the total river discharge and
WWTP effluent discharge. This approach can prove beneficial,
especially when a rapid estimate of internal concentrations of
wastewater-derived chemicals in exposed aquatic organisms is
desired.
Note that steady-state assumptions do not take the

magnitudes of rate constants into account, and there will be
situations when nonsteady-state simulations are more appro-
priate (hence the absolute values of rate constants matter).
Supposed we test the response of gammarids at different
exposure conditions for a compound with a BCF of 20 L/kg.
This is a fair assumption, considering that the micropollutants
we examined in our experiments have BCFs ranging from 0.2
to 200 L/kg (Table S13). From here, we assumed a baseline ku
of 2 L/kg·d and kd of 0.1 1/d. Then, we varied the magnitude
of these rate constants by five times higher or lower but their
ratios are mathematically the same for all scenarios. We further
assumed that the gammarids have an initial internal
concentration of 0.2 ng/g, which is in the range of the median
values of internal concentrations reported by Munz et al.11

We then examined the individual responses in internal
concentrations at different contaminant input conditions
(Figure 4b, lower graph). First, we introduced a constant
and continuous river concentration of 100 ng/L as exposure
for gammarids. Here, the system converges to the steady state
(2 ng/g), but the time to reach this condition was achieved at
different periods, depending on the rate constant combinations
employed (Figure 4b, blue-shaded region). Then, we tested
the hypothetical response of gammarids during spills occurring
for 0.5 and 5 d in addition to the continuous input
concentrations they experience (spill has a magnitude of
1000 ng/L). If one assumes a relatively fast equilibrium, the
internal concentration is equivalent to the exposure concen-
tration multiplied by the BCF (BCF is simply ku/kd assuming
first-order). Hence, if the gammarids equilibrate quickly with
the river concentration, then the internal concentration will be
22 ng/g for the entire spill duration (Cexp = 1100 ng/L, BCF =
20 L/kg). However, this exercise shows that if the duration of
the spill is short (<0.5 d), the gammarids will never reach this
concentration (Figure 4b, red region). Therefore, the peak
internal concentration will be highly overestimated if a fast
equilibrium at short-duration spills is assumed. For longer
duration spills, where the gammarids are given enough time to
respond to a perturbation, the peak concentrations are higher
and approach the equilibrium concentration, especially when
larger rate constants are employed.
Regardless of the scenarios, the fast equilibrium assumption

always produces conservative estimates of peak concentration.
However, if one wants to determine a more precise exposure
scenario where the exact magnitude of peak exposures and the
recovery periods are of interest, then a nonsteady-state
formulation should be employed. This representation must
also be supported by compound-specific uptake and

depuration rate constants either via laboratory experiments
or from reliable sources, as the magnitude of rate constants can
clearly have an impact on the predictions during the
nonsteady-state period.

4. ENVIRONMENTAL IMPLICATIONS AND STUDY
LIMITATIONS

Our coupled river-TK model is a simple approach that
provided an informed estimate of the environmental
concentrations of select wastewater-derived micropollutants
in the receiving environment and whole-body burden in a
nontarget organism. We further addressed the uncertain and
insufficient input data using statistical (MC sampling) and
experimental (TK rate constants) methods. However, we
recognize that the measured data in the model validation stage
may not be sufficient to permit the application of this model to
a full spectrum of environmental conditions. It is in our
intention to employ this model as a supplement to existing
field measurements (not as a substitute), especially in data-
poor areas. On the account that this modeling work was a
preliminary attempt to coherently describe micropollutant
exposure from the source (WWTP) to nontarget organisms,
we have obtained satisfactory results that demonstrate the
utility of coupled river-TK model to assess exposure better.
A key and practical finding here is the assumption of fast

equilibrium when predicting the temporal dynamics such that
scaling factors (daily DFs and BCFs) can be employed to
estimate the river and internal concentrations in gammarids,
provided that the concentrations at the source are specified,
and the compounds quickly equilibrate in gammarids (i.e.,
t0.95Css < 48 h). This approach decreased the amount of
required input data, which are often unavailable or difficult to
obtain. Obviously, there are limitations as to when the steady
state can be employed (e.g., highly overestimates peak
concentrations in short-duration spills), but the proposed
simplification (eq 3) can provide a “rule-of-thumb” approach
that may be useful in practical applications especially during
the initial stages of exposure assessments.
Our current regulatory paradigm employs environmental

concentrations as surrogate indicators of risk. However,
environmental concentrations do not include the bioavailable
fractions, multiple routes of contaminant uptake in organisms,
and the impact of toxicant biotransformation. Hence, solely
examining the external concentrations (i.e., river concen-
trations) allows a limited view of the true risk. This is exactly
illustrated by the recent finding of Shahid et al.41 who
suggested that the overall exposure to pesticides is explained
better when employing internal concentrations instead of river
concentrations. Furthermore, this work fully supports the
recommendations of many studies5,42 that reiterate the
integration of internal concentration patterns as a critical first
step in linking exposure to effects.
The simulated internal concentrations may be coupled

further with effects modeling to provide insight into the
impacts of wastewater-derived micropollutants at different
levels of biological organization. For instance, it would be of
interest to incorporate other life-cycle processes (migration,
life span, clutch size, and postreproductive survival) to assess
the impact of micropollutant exposure in field gammarid
population. In the future, it is also important to consider the
applicability of this modeling framework to pesticides because
these compounds have been previously found to contribute
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substantially to the overall risk of micropollutant exposure in
streams.11
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Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.est.9b05736

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This study received funding from the ETH-Zurich Postdoc-
toral Fellowships (0-20400-17, co-funded by the European
Union’s Seventh Framework Programme for Research and
Technological Development under grant agreement 608881,
2015-2019). We acknowledge financial support of the Natural
Sciences and Engineering Research Council of Canada (PDF-
517151-2018) and the Swiss National Science Foundation
(200020_184878). We thank Marta Reyes, Christelle
Oltramare, Nicolas Creusot, Birgit Beck from Eawag, and
Mark Servos from the University of Waterloo for their help
with the field sampling. Finally, we acknowledge the assistance
of Julita Stadnicka and Andreas Scheidegger (Eawag) with our
modeling strategy.

■ REFERENCES
(1) Corcoran, J.; Winter, M. J.; Tyler, C. R. Pharmaceuticals in the
aquatic environment: a critical review of the evidence for health
effects in fish. Crit. Rev. Toxicol. 2010, 40, 287−304.
(2) Arnold, K. E.; Brown, A. R.; Ankley, G. T.; Sumpter, J. P.
Medicating the environment: assessing risks of pharmaceuticals to
wildlife and ecosystems. Philos. Trans. R. Soc., B 2014, 369, 20130569.
(3) Schwarzenbach, R. P.; Escher, B. I.; Fenner, K.; Hofstetter, T. B.;
Johnson, C. A.; Von Gunten, U.; Wehrli, B. The challenge of
micropollutants in aquatic systems. Science 2006, 313, 1072−1077.
(4) EUDecision. Commission Implementing Decision (EU) 2018/
840 of 5 March 2018 establishing a watch list of substances for Union-
wide monitoring in the field of water policy pursuant to Directive
2008/105/EC of the European Parliament and of the Council. Off. J.
Eur. Union L 2018, 141, 9−11.
(5) Teeguarden, J. G.; Tan, Y.-M.; Edwards, S. W.; Leonard, J. A.;
Anderson, K. A.; Corley, R. A.; Kile, M. L.; Simonich, S. M.; Stone,
D.; Tanguay, R. L.; Waters, K. M.; Harper, S. L.; Williams, D. E.
Completing the link between exposure science and toxicology for
improved environmental health decision making: The aggregate
exposure pathway framework. Environ. Sci. Technol. 2016, 50, 4579−
4586.
(6) Landrum, P. F.; Lydy, M. J.; Lee, H., II. Toxicokinetics in aquatic
systems: Model comparisons and use in hazard assessment. Environ.
Toxicol. Chem. 1992, 11, 1709−1725.
(7) Roig, B.; D’Aco, V. Distribution of Pharmaceutical Residues in the
Environment; The Royal Society of Chemistry, 2016; pp 34−69.
(8) Jager, T. Predicting environmental risk: A road map for the
future. J. Toxicol. Environ. Health, Part A 2016, 79, 572−584.
(9) Ashauer, R.; Escher, B. I. Advantages of toxicokinetic and
toxicodynamic modelling in aquatic ecotoxicology and risk assess-
ment. J. Environ. Monit. 2010, 12, 2056−2061.
(10) Ashauer, R.; Wittmer, I.; Stamm, C.; Escher, B. I. Environ-
mental risk assessment of fluctuating diazinon concentrations in an
urban and agricultural catchment using toxicokinetic−toxicodynamic
modeling. Environ. Sci. Technol. 2011, 45, 9783−9792.
(11) Munz, N. A.; Fu, Q.; Stamm, C.; Hollender, J. Internal
Concentrations in Gammarids Reveal Increased Risk of Organic
Micropollutants in Wastewater-Impacted Streams. Environ. Sci.
Technol. 2018, 52, 10347−10358.
(12) Munz, N. A.; Burdon, F. J.; De Zwart, D.; Junghans, M.; Melo,
L.; Reyes, M.; Schönenberger, U.; Singer, H. P.; Spycher, B.;
Hollender, J.; Stamm, C. Pesticides drive risk of micropollutants in
wastewater-impacted streams during low flow conditions. Water Res.
2017, 110, 366−377.
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