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According to the competitive exclusion principle, species with low competitive 

abilities should be excluded by more efficient competitors, and yet they generally 

remain as rare species. Here, we describe the positive and negative spatial 

association networks of 326 disparate assemblages, showing a general organization

pattern that simultaneously supports the primacy of competition and the 

persistence of rare species. Abundant species monopolize negative associations in 

about 90% of the assemblages. Contrarily, rare species are mostly involved in 

positive associations, forming small network modules. Simulations suggest that 

positive interactions among rare species and microhabitat preferences are the most

likely mechanisms underpinning this pattern and rare species persistence. The 
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consistent results across taxa and geography suggest a general explanation for the 

maintenance of biodiversity in competitive environments. 

Rare species, in terms of low abundance, are the main component of 

the diversity of ecological assemblages1. However, despite decades of

intense investigation, general mechanisms behind the persistence of 

these species remain unclear. In theory, the widely assumed effects 

of competition between pairs of species should preclude the 

persistence of weak competitors and the high diversity observed in 

natural assemblages2,3. Explanations for this diversity paradox include

the differential roles of niche partition, intraspecific competition, 

facilitation, indirect and neutral interactions4-9, among others. Yet, 

there is no consensus to explain rare species persistence across taxa 

and environmental conditions so far. 

The spatial arrangement of individuals plays a crucial role for 

unveiling the mechanisms underpinning species assembly and 

coexistence10-21. Because individuals within assemblages are not 

homogeneously distributed, their spatial organization may both 

reflect important assembly processes10,11 and induce species 

coexistence per se12. For example, the patchy distribution of a 

dominant species might prevent the monopolization of resources and 

allow the existence of its subordinate species12,13. Hence, considering 

spatial aspects of coexistence appears to be an important step in 

elucidating assembly mechanisms12. The spatial sorting of species can

be the outcome of divergent habitat preferences, dispersal abilities, 

and biotic interactions, although the role of interactions is thought to 
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prevail under rather homogeneous environmental conditions, and 

especially at very fine spatial scales11,14,15. The organization of species 

within assemblages can be translated into association networks of 

species that are spatially aggregated (positive networks) or 

segregated (negative networks). Association networks of disparate 

biological assemblages can provide valuable empirical evidence of 

the main forces driving the assembly of species16-20, helping to reveal 

general mechanisms underlying species coexistence. 

Here we describe a general pattern of positive and negative 

species associations that is consistent with the competitive exclusion 

paradigm but, at the same time, can explain the persistence of rare 

species in natural assemblages. We base our results on a dataset of 

326 assemblages that meet the following criteria: (i) each 

assemblage comprises taxa from only one trophic guild, thereby 

excluding the possibility that species associations result from direct 

predation or parasitism; (ii) each assemblage shows reduced spatial 

extent and low environmental heterogeneity, to increase the 

likelihood that species associations are mainly due to biotic 

interactions; (iii) the abundance of at least ten species is recorded in 

a minimum of ten samples, to improve statistical power (Appendix 

S1); (iv) the dataset represents a wide variety of biomes (e.g., tropical

forests, deserts, temperate steppes and polar climates), thus avoiding

biome-specific results; and (v) it encompasses a diversity of taxa 

(such as bryophytes, vascular plants, and insects among others), to 

ensure the generalization of our results across taxonomic and 
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functional groups. We generated positive and negative association 

networks for each assemblage by comparing the observed spatial 

association patterns among species to a null model21. Species pairs 

that significantly deviate from random expectations receive positive 

or negative links in their respective association networks (Fig. 1).

We first analysed whether the structure of positive and negative

association networks can reflect predictions from the competitive 

exclusion principle. Given that competition is heavily emphasized in 

the literature2, one would expect species to be more segregated than 

aggregated in natural systems. If so, negative networks should be 

more densely connected (i.e., more links per species) than their 

positive counterparts. In accordance, negative networks were 

significantly more connected than their positive pairs in a notable 

93.2% of all assemblages (t = 17.006, P < 0.001, Fig. 2a). Differences

in connectivity remained similar after accounting for differences in 

network size (t = -16.815, P < 0.001, for 78.8% of the assemblages) 

or when calculating differences in the average number of links (i.e. 

average species degree; t = -14.689, P < 0.001, for 69.0% of the 

assemblages). Furthermore, if abundance is considered to be an 

expression of the species’ competitive abilities22, the number of 

segregations should be monopolized by the most abundant species. 

Accordingly, results indicated a strong positive correlation between 

abundance and species degree in negative networks (mean 

Spearman’s ρ = 0.65, SD = 0.23), but a weak or even negative 

correlation in positive networks (mean ρ = 0.02, SD = 0.38), with 
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differences between networks being statistically significant (t= -

23.881, P < 0.001, Fig. 2b). Moreover, we found evidence showing 

that a particular species is more often involved in negative 

associations when it becomes abundant (Appendix S2). Both the 

greater density of links and the relationship between species degree 

and abundance in negative networks support current knowledge 

about the prevailing role of competitive interactions in sustaining the 

dominance of abundant species. 

Yet, if the competitive exclusion principle is supported across 

several assemblages, how can rare species persist? To search for 

potential mechanisms answering this question we looked at the role 

played by rare species in association networks. Curiously, we found 

that rare species are mostly involved in positive associations in 91.7%

of the assemblages studied, where positive networks showed a higher

incidence of less abundant species than their negative pairs (t= 

22.425, P < 0.001, Fig. 2c). Such spatial aggregations, however, do 

not occur among every rare species in the assemblage. In fact, we 

found that 91.1% of positive networks were more modular than their 

negative counterparts (t= 39.676, P<0.001, Fig. 2d). This result 

remained similar after accounting for network size and connectivity 

(t= 11.306, P<0.001, for 67.3% of assemblages, Methods). Moreover, 

while 60.7% of positive networks were significantly modular, only 

13.8% of negative ones showed this pattern (Methods). Taken 

together, these findings show that rare species tend to generate 

modular networks of positive spatial associations.
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The patterns of negative and positive associations networks 

remain largely invariant regardless of different probability thresholds 

to detect significant associations, the use of quantitative links and 

assumptions of disparate null models (Appendix S1). This robust and 

conspicuous spatial organization point tosuggest that the underlying 

mechanisms can also be responsible for the persistence of rare 

species. On the one hand, dissimilar habitat preferences between 

dominant species and groups of weak competitors14 may generate 

this pattern, enhancing also rare species persistence. Indeed, 

numerical simulations (Methods and Appendix S3) show that this 

possibility increased the probabilities of reproducing realized 

association network patterns, regardless of different interaction 

networks reflecting hypothesized assembly mechanisms (Fig. 3a and 

Appendix S3). This, however, mainly occurs when habitat preferences 

are strong, a situation that should arise under marked environmental 

gradients most likely far from the reality of the fine-scaled 

assemblages studied here (Methods and Table S1). Complementarily, 

positive interactions within groups of rare species may also contribute

and/or generate these modular positive networks. This may moreover

increase the persistence of weak competitors since, just as in harsh 

abiotic environments23, the biotic harshness produced by superior 

competitors could be counterbalanced by positive interactions among

rare species. Accordingly, simulations show that the inclusion of 

positive interactions within groups of weak competitors increases the 

chance of species persistence by 58.2% compared to assemblages 

7

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

13
14



ruled by competition alone (Appendix S3). Our simulations also reveal

that this hypothesis most likely reproduces the observed patterns in 

association networks compared to other stabilizing mechanisms such 

as neutral colonization-extinction dynamics9, intransitive 

competition24,25, differential density-dependent effects26,27 or 

facilitation by nurse species7 (Figs. 3b, S1 and S2; and Appendix S3). 

Interestingly, the combination of habitats and positive interactions 

yields the highest probability of reproducing the observed network 

patterns (Fig. 3a and Fig. S2). This further suggests that, even under 

strong differences in habitat preferences, stabilizing forces, such as 

facilitation or complementarity, would be necessary to enhance the 

coexistence of groups of rare species in reduced microhabitats15,17.  

Besides habitat selection, it seems that modular positive interactions 

among rare species can contribute to the pattern we found and the 

persistence of these species, which agrees with recent experimental 

evidence28. 

Overall, our results show that ecological assemblages are 

consistently organized in positive and negative association networks 

across the main biological groups (i.e., animals and plants) and 

geography (Fig. 4 and Table S2). This ubiquity sheds light on the long-

standing diversity paradox as the potential mechanisms leading to 

this organizational pattern can also enhance the persistence of rare 

species. Modular positive interactions among weak competitors 

emerged as a plausible mechanism even when assessed in 

conjunction with different microhabitat preferences. Questions remain
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about the relative contribution and feedbacks of these positive 

interactions and microhabitats. Nevertheless, the generality of the 

findings presented here bring us closer to understanding the 

assemblage of the vast biodiversity on Earth.

Materials and Methods

Data acquisition 

Assemblage data were collected from published studies in peer-reviewed journals 

and our own surveys (Appendix S4 and Table S1). Each assemblage consists of at least 

ten samples where the abundance of at least ten species of the same trophic guild was 

recorded. In order to minimize the effects of environmental heterogeneity and 

dispersion on spatial patterns, we only included datasets that showed (i) low 

environmental variability across samples (excluding surveys where any kind of 

environmental gradient was reported or no clear information about it was provided), (ii) 

a very reduced spatial extent (median = 0.1 ha; ranging from 0.01 to 25.6 ha), (iii) a 

very small grain size to increase the probability of physical and/or chemical contact 

among all species in the samples (median = 100 m2; ranging from 0.002 to 400 m2, 

respectively), and (iv) standardization among samples to avoid sampling biases (e.g. 

effects of area). Following these criteria, we gathered a total of 385 datasets distributed 

worldwide and representing a wide taxonomic spectrum, including bryophytes (n= 71), 

tracheophytes (n=279), anthozoans (n=7), and insects (n=28). Abundance was estimated

as the number of individuals per sample in most of the assemblages, but a small number

of assemblages included abundance data estimated as the percentage cover of the 

sampled surface (especially in bryophytes and plants). Since some null models only 

accept integer data (see below), we rounded percentages when necessary. Finally, we 

only used those assemblages where both positive and negative networks showed at least
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two links (n=326).

Generation of association networks 

For each assemblage, we calculated similarity in abundance distribution across 

samples for each species pair i and j using the Schoener’s index31,

S ( i , j )=1−∑
k=1

N

|pik−p jk|/2

where N  is the number of samples and pik is the proportion of the total abundance of 

species i present in sample k  (pik=x ik/∑
k=1

N

xik). We compared observed similarities to 999

null values obtained through randomization of species abundances using a fixed-fixed 

algorithm (i.e., row and column totals are kept constant). For each observed similarity 

value, two one-tailed p-values were calculated as the proportion of null values (plus the 

observation) that were higher than or equal to and lower than or equal to the observed 

value for positive and negative associations, respectively. We considered an aggregation

or segregation significant in those cases where associated p-values in any of the two 

tests were lower than or equal to 0.05. Alternative probability thresholds and null 

models provided quantitatively and qualitatively similar results (Appendix S1; Figs. S3 

and S4). Significantly aggregated and segregated species pairs were used to generate 

unweighted links in the positive and negative association networks of each assemblage, 

respectively. It is important to note that the frequency of spurious associations (i.e., 

Type I errors) may be thought to be relatively high in species rich assemblages due to 

multiple comparisons (but see ref32). However, species pairwise similarities were 

compared against null values generated using a fixed-fixed assemblage-wise null model 

(i.e., a strict null model making null hypotheses among comparisons to be different but 

intrinsically interdependent). This partially alleviates the detection of false positives 
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while preventing the use of powerful false discovery rate methods33.  Nevertheless, we 

used the same nominal error (i.e., α = 5%) to detect both positive and negative 

associations, making the rate of false discoveries equal in both types of networks, and 

allowing unbiased comparisons of their structures. Indeed, results remained largely 

constant when using different nominal errors (Appendix S1 and Fig. S3). 

Network structure comparison

To explore whether positive and negative association networks reflected 

competitive processes we compared their connectivity and their relationships between 

abundance (calculated as the sum of the abundances across samples) and species degree 

(i.e., species’ number of links) for each pair of network types. Connectivity is defined as

the number of realised links relative to the number of potential links. This measure of 

connectivity may be negatively correlated with network size. Hence, we also used 

residual connectivity obtained from the residuals of a linear regression between the 

number of observed and potential links, both log-transformed34. On the other hand, the 

relationship between abundance and species degree was assessed using the Spearman’s 

ρ correlation coefficient. Finally, to search for differences between network types we 

used a paired Student’s t-test, where the alternative hypothesis was that negative 

networks present higher means than their positive pairs.

To determine if rare species have a larger participation in positive association 

networks, we compared the average relative abundance, weighted by the number of 

links of each species in the network, between the species involved in positive and 

negative networks. We also explored if positive networks were more modular than their 

negative pairs calculating modularity with the index proposed by Newman35 (Q) along 

with the optimisation algorithm of Louvain35. The algorithm was run 100 times, and we 

11

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

21
22



selected the partition that showed the highest modularity value. Since modularity can be

related to network size and connectivity, we compared observed and null modularity 

values from random networks generated using a null model that maintains the number 

of links and nodes, as well as the degree sequence (implemented in the RandNetGen 

software37). Then, we computed relative modularity values as Qr=−2 (P−0.5 ), where P

represents the proportion of null cases showing modularity higher than or equal to the 

observation.  A paired Student’s t-test was used to explore the differences between 

network types in all cases.

Finally, we explored whether the probability of finding the above-explained 

differences of positive and negative networks was related to the number of samples per 

assemblage (as indicative of sampling effort), an approximation of null model degrees 

of freedom (Appendix S1), latitude, longitude, taxonomic group (i.e., animals or plants) 

and species richness. To do so, we firstly generated four binomial dependent variables, 

based on whether i) the negative networks of each assemblage were more densely 

connected than their positive pairs; ii) the negative networks present higher positive 

abundance-degree relationships; iii) the positive networks tend to be composed of less 

abundant species; and iv) the positive networks were more modular. Then, we fitted 

logistic models with a logit link function.

Numerical simulations

We ran simulations to explore whether different interaction matrices and/or habitat 

preferences can generate the patterns observed in association networks. We designed a 

simulation model composed of 20 samples and ten species, whose individuals were 

randomly distributed at the outset. Individuals reproduce, colonise a randomly chosen 

sample or die, with probabilities dependent on the density of individuals and the sample 
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carrying capacity (K = 100).  We subsequently incorporated the effects of both 

competition and positive interactions by modifying these probabilities depending on the 

species identities of co-occurring individuals (Appendix S3). That is, individuals of 

dominant species reduce the probability of reproduction and colonisation, while 

increasing mortality probability, of co-occurring individuals of subordinate species. 

Benefactor individuals have the opposite effects on beneficiary individuals’ 

probabilities (Fig. S5a and b). 

We further incorporated the effects of dissimilarities in habitat preferences by 

setting four habitats preferred by different groups of species (Fig. S5c). Specifically, the

probabilities of reproduction, survival (i.e., one minus the mortality probability) and 

colonisation in non-preferred habitats were multiplied by a habitat-tolerance coefficient,

β, ranging between 0 (null tolerance) and 1 (total tolerance; Appendix S3). Hence, when

β = 0, individuals are highly specialist and only allowed to reproduce, survive or 

colonize in preferred habitat, whereas β = 1 corresponds to a neutral habitat scenario.

We ran simulations following six hypotheses explaining species assembly and 

coexistence (Fig. 3 and Appendix S3). i) A neutral interaction model, where all species 

were ecologically equivalent9. ii) A hierarchical competition model with one strong 

competitor. iii) An intraspecific density-dependent model, where superior competitors 

suffer more from intraspecific competition5. iv) A model incorporating intransitive 

competition25, where the superior competitor is outcompeted by three species, which, in 

turn, outcompete all species except specific pairs (i.e., theoretically promoting the 

generation of empirical association patterns; see Appendix S3). v) A nurse model7 with 

four superior competitors, three of which facilitate different pairs of subordinate 

species. vi) A model reflecting positive interactions within three groups of three rare 

species.  Fourteen additional matrices with different settings to these six general models 
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were also explored (see Appendix S3; and Figs. S1 and S6).  

Simulations were run using a wide range of combinations (n=216) where 

demographic rates (i.e., reproduction, mortality and dispersal) had different relative 

importance (Appendix 3.4). In addition, we also used five values of the habitat-

tolerance parameter (β). For each interaction matrix and parameter combination, we ran 

25 replicates of 5,000 iterations each. We quantified the probability of simulated 

association networks showing empirical patterns (i.e., differences between positive and 

negative networks in connectivity, abundance-degree relationship, abundance and 

modularity), as well as the probability of persistence of all species (i.e., non-extinction), 

as the proportion of all our replicates showing these patterns. Finally, these probabilities

were averaged across the parameter space defined by demographic rates where the 

Competition model, under neutral habitat preferences, fulfilled expectations from the 

competitive exclusion principle (i.e., weak competitors went extinct; P (non-extinction) 

= 0; see Appendix S3 and Fig. S2). 

           

Acknowledgments. We are very grateful to Joaquín Hortal and Stefano Allesina for 

their critical comments on an early version of the manuscript. The simulations were 

performed on resources provided by the Swedish National Infrastructure for Computing 

(SNIC) at HPC2N.  J.C. is supported by the Carl Tryggers Foundation for Scientific 

Research (CTS 16:384). E.A. is supported by a postdoctoral grant founded by the 

Universidad Complutense de Madrid. C.J.M is supported by the Swiss National Science

Foundation (SNSF-31003A-144162). R.B.M. is supported by the Spanish Ministry of 

Science and Innovation Predoctoral Fellowship BES-2013-065753. M.S., J.A.B.C. and 

J.M.G acknowledge support from the University of Geneva. X.A. was supported by a 

Ramón y Cajal research contract by the Spanish Ministry of Economy and 

Competitiveness (RYC-2015-18448). M.R. is supported by the Swedish Research 

14

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364
365

366

367

368

369

370

371

372

373

374

375

27
28



Council grant 2016-00796. JAN was supported by a Colombian COLCIENCIAS PhD 

scholarship. F.A.M. is grateful to CAPES for a PhD scholarship (120147/2016-01). 

A.L., P.F. and J.M.G. were funded by AGORA Project (ref. CGL2016-77417-P; 

MINECO, Spain). C.M.M. was supported by an IdEx Bordeaux Postdoctoral 

Fellowship (VECLIMED project). A.H. was supported by the University of Alcalá Own

Research Programme’s 2018 Postdoctoral Grant and Basque Country Government 

funding support to FisioClimaCO2 (IT1022-16) research group. L.J. received 

productivity grants from of CNPq (process: 307597/2016-4).

 Author contributions. J.C. and J.M.G. conceived the ideas; J.C. and J.M.G. designed 

the analyses with contributions from E.A., A.E., C.J.M. and R.B.M.; J.C., E.A., R.B.M.,

M.S., C.A., X.A., N.G.M., J.A.N., F.A.M., I.D., A.L., J.A.B.C., C.M.M., P.F., A.H., 

L.P., L.J., A.C., and J.M.G. collected the data; J.C. analyzed the data with assistance 

from C.J.M., M.R. and M.N.; J.C., E.A. and J.M.G. lead the writing in close 

collaboration with A.E., C.J.M., R.B.M., M.S., C.A., and R.M.V.; all authors 

contributed to the development and writing of the paper.

Code availability. We will make all R scripts used in this study freely available

upon acceptance of the manuscript or if required by the referees during revision.

Data availability. We will make the dataset used in this study freely available

upon acceptance of the manuscript or if required by the referees during revision.

References

1. Gaston, K.J. Rarity. (Chapman & Hall, London, 1994).

2. Hardin, G. The competitive exclusion principle. Science 131, 

1292-1297(1960). 

3. Hutchinson, G. E. The paradox of the plankton. Am. Nat. 95, 137-

15

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

29
30



145 (1961).

4. Schoener, T. W. Resource partitioning in ecological communities. 

Science, 185, 27-39 (1974).

5. Yenni, G., Adler, P. B. & Ernest, S. M. Strong self‐limitation 

promotes the persistence of rare species. Ecology 93, 456-461 

(2012). 

6. Chesson, P. Mechanisms of maintenance of species 

diversity. Annu. Rev. Ecol. Evol. Syst. 31, 343-366 (2000).

7. Soliveres, S. et al. A missing link between facilitation and plant 

species coexistence: nurses benefit generally rare species more 

than common ones. J. Ecol. 103, 1183-1189 (2015).

8. Grilli, J. et al. Higher-order interactions stabilize dynamics in 

competitive network models. Nature 548, 210 (2017).

9. Hubbell, S. P. The unified neutral theory of biodiversity and 

biogeography, vol. 32 (Princeton University Press, 2001).

10. Durrett, R. & Levin, S. Spatial aspects of interspecific 

competition. Theor. Popul. Biol. 53, 30-43 (1998).

11. McIntire, E. J. & Fajardo, A. Beyond description: the active and 

effective way to infer processes from spatial patterns. Ecoloy 90, 

46-56 (2009).

12. Arnan, X., Gaucherel C. & Andersen A.N. Dominance and 

species co-occurrence in highly diverse ant communities: a test of

the interstitial hypothesis and discovery of a competition 

cascade. Oecologia 166, 783-794 (2011).

16

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

31
32



13. Atkinson, W. D. & Shorrocks, B. Competition on a divided and 

ephemeral resource: a simulation model. J. Anim. Ecol. 50, 461-

471 (1981).

14. Hart, S. P., Usinowicz, J. & Levine, J. M. The spatial scales of 

species coexistence. Nat. Ecol. Evol. 1, 1066 (2017).

15. Chacón‐Labella, J. et al. Evidence for a stochastic geometry of 

biodiversity: the effects of species abundance, richness and 

intraspecific clustering. J. Ecol. 105, 382-390 (2017).

16. Saiz, H. et al. Evidence of structural balance in spatial ecological

networks. Ecography 40, 733-741 (2017).

17. Freilich, M. A., Wieters, E., Broitman, B. R., Marquet, P. A. & 

Navarrete, S. A. Species co‐occurrence networks: can they reveal 

trophic and non‐trophic interactions in ecological communities?. 

Ecology 99, 690-699 (2018).

18. A. Faisal, et al. Inferring species interaction networks from 

species abundance data: A comparative evaluation of various 

statistical and machine learning methods. Ecol. Inform. 5, 451-

464 (2010).

19. Barberán, A., Bates, S. T., Casamayor, E. O. & Fierer, N. (2012). 

Using network analysis to explore co-occurrence patterns in soil 

microbial communities. The ISME journal 6, 343 (2012).

20. Borthagaray, A. I., Arim, M. & Marquet, P. A. Inferring species 

roles in metacommunity structure from species co-occurrence 

networks. Proc. R. Soc. Lond. B, 281, 20141425 (2014)

21. Ulrich, W. & Gotelli, N. J. Null model analysis of species 
17

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

33
34



associations using abundance data. Ecology 91, 3384-3397 

(2010).

22. Tilman, D. Resource competition between plankton algae: an 

experimental and theoretical approach. Ecology 58, 338-348 

(1977).

23. Callaway, R.M. et al. Positive interactions among alpine plants 

increase with stress. Nature 417, 844-848 (2002).

24. Allesina, S. & Levine, J. M. A competitive network theory of 

species diversity. Proc. Nat. Acad. Sci. 108, 5638-5642(2011).

25. Gallien, L. et al. The effects of intransitive competition on 

coexistence. Ecol.Lett. 20, 791-800 (2017).

26. Comita, L. S. et al. Asymmetric density dependence shapes 

species abundances in a tropical tree community. Science 329, 

330-332 (2010).

27. Cody, M. L. & Diamond, J. M. Ecology and evolution of 

communities. (Belknap Press, Cambridge, 1975). 

28. Bimler, M. D., Stouffer, D. B., Lai, H. R. & Mayfield, M. M. 

Accurate predictions of coexistence in natural systems require 

the inclusion of facilitative interactions and environmental 

dependency. J. Ecol. 106, 1839-1852 (2018).

29. Fruchterman, T. M. & Reingold, E. M. Graph drawing by force‐

directed placement. Softw. Pract. Exp. 21, 1129-1164 (1991).

30. Bailey, R. G. Explanatory supplement to ecoregions map of the 

continents. Environ. Conser. 16, 307-309, (1989).

31. Schoener, T. W. The Anolis lizards of Bimini: resource 
18

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

35
36



partitioning in a complex fauna. Ecology 49, 704-726 (1968).

32. Rothman, K. J. No adjustments are needed for multiple 

comparisons. Epidemiology 1, 43-46 (1990).

33. Benjamini, Y. & Yekutieli, D. The control of the false discovery 

rate in multiple testing under dependency. Ann. Stat. 29, 1165-

1188 (2001).

34. Araújo, W.S. et al. Contrasting Effects of Land Use Intensity and 

Exotic Host Plants on the Specialization of Interactions in Plant-

Herbivore Networks. PLoS ONE 10, e0115606 (2015).

35. Newman, M. E. Modularity and community structure in 

networks. Proc. Nat. Acad. Sci. U.S.A. 103, 8577-8582 (2006).

36. Blondel, V. D. et al. Fast unfolding of communities in large 

networks. J. Stat. Mech. Theory Exp. 2008, P10008 (2008).

37. Colomer-de-Simón, P., Serrano, M. A., Beiró, M. G., Alvarez-

Hamelin, J. I. & Boguná, M. Deciphering the global organization of 

clustering in real complex networks. Sci. Rep. 3, 2517 (2013).

19

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

37
38



Fig. 1. Approaching assembly mechanisms through the lens of

positive  and  negative  association  networks.  a,  Species

segregations and aggregations can inform on the main mechanisms

underlying  ecological  assemblages.  These  spatial  patterns  are

measured between species  pairs  using the similarity  in  the spatial

distribution of  their  individuals.  Observed similarities are compared

with those obtained by a null model to distinguish actual associations

from those generated by chance. Species pairs whose individuals are

more  aggregated  in  samples  than  expected  by  chance  receive  a

positive  link  in  association  networks  (blue  nodes).  Species  pairs

whose  individuals  are  more  segregated  than  randomly  expected

receive a negative link in association networks (red nodes). b, Positive

(blue)  and  negative  (red)  networks  of  a  tropical  rainforest  tree
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assemblage  (see  “Barra_Paraguacu”  in  Table  S1).  The  size  of  the

nodes is proportional to the species’ abundances at the assemblage

level. Networks were plotted using the Fruchterman-Reingold force-

directed layout algorithm29. 
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Fig. 2. The contrasting patterns of positive and negative

association  networks.  a,  The  higher  connectivity  of  negative

networks indicates that species segregation dominates over species

aggregation.  b, These  segregations  are  monopolized  mostly  by

dominant  species,  as  shown  by  the  strong  relationship  between

abundance and species degree (i.e., number of links of a species) in

negative networks.  c, In  contrast,  less abundant species are more

prone  to  generate  positive  associations,  although,  d,  these

associations  only  occur  among  specific  groups  of  rare  species,  as

indicated  by  the  higher  modularity  of  positive  networks.   Main

histograms show the differences in network features between pairs of

positive and negative networks. Insets show the raw values for both
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types of networks.
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Fig.  3.  Positive  interactions  among  weak  competitors

alone or together with habitat preferences reproduce realized

association  patterns.  a,  Dissimilarities  in  habitat  preferences

between dominants  and groups  of  rare  species  may  generate  the

empirical  patterns  of  association  networks,  regardless  of  different

assembly  mechanisms.  However,  this  only  occurs  when  habitat

specialization is  strong.  Moreover,  the combination of  habitats  and

positive interactions among weak competitors  (Positive rare) yields

the  highest  probabilities.  The  y-axis  represents  the  average

probabilities  of  finding  the  four  empirical  patterns,  and  the  x-axis
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depicts  a  gradient  of  habitat  specialisation  (see  Methods  and

Appendix S3). b, All theoretical models explaining species coexistence

increase the chance of species persistence (Non-extinction) relative to

simulated  assemblages  only  driven  by  hierarchical  competition.

However, positive interactions among groups of rare species is the

most likely  model  to generate simulated assemblages showing the

same association networks as empirical  assemblages (Connectivity,

Fig.  2a;  Abundance-degree,  Fig.  2b;  Abundance,  Fig.  2c;  and

Modularity,  Fig.  2d).   The  y-axis  represents  the  probability  of

simulated  association  networks  showing  empirical  differences

between  positive  and  negative  networks  across  different

combinations  of  reproduction,  mortality  and  dispersal  rates  where

interactions are expressed (see Methods and Appendix S3). Error bars

depict  confidence  intervals  at  α  =  0.05.  P:  positive  networks.  N:

negative networks.
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Fig.  4.  Organization  of  association  networks  remains

invariant across the globe and regardless of taxa.  Circles and

triangles  represent  plant  and  animal  assemblages,  respectively.

Green colour depicts assemblages where positive networks were both

composed of less abundant species and more modular than negative

counterparts,  whereas  red  colour  shows assemblages  where  these

patterns  were not  found.  Map colours  represent  the Earth  climatic

zones proposed by Bailey30.
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Appendix S1. Sensitivity analyses

S1.1. Sensitivity analysis to probability thresholding and weighted network analysis.

The establishment of positive and negative links in association networks relies on the 

comparison of observed similarities between pairs of species against those generated using a null

model. Here, spatial associations that depart from null expectations more than a given probability

threshold are classified as either positive or negative links.  We used a 0.05 probability threshold 

for both negative and positive links. Although this constitutes a commonly used nominal error, 

the question remains as to whether the observed patterns of negative and positive networks are 

robust to different thresholds. Additionally, during the probability thresholding we only used 

information on link presence-absence yet link weights may provide richer information. Here, we 

first tested whether the observed patterns in association networks are robust to different 

probability thresholds. Then, we also explored whether the structure of weighted association 

networks is similar to the one of non-weighted networks. 

To explore the robustness of association network patterns to different probability thresholds,

we established positive or negative links based on 20 different nominal errors ranging from 

0.010 to 0.499. Notice that we used a 0.499 probability, instead of 0.500, since positive and 

negative links were established based on the same null distribution and an association with a 

0.500 probability could show the same probability of being negative or positive. Then, for each 

assemblage and network type, we computed connectivity, abundance-degree relationship, mean 

species abundance weighted by the number of links of the species in each network, and 

modularity as described in Methods. Finally, for each probability threshold we calculated the 

proportions of assemblages where: i) negative networks were more densely connected than 
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positive ones; ii) negative networks showed a stronger degree-abundance relationship than 

positive pairs; iii) negative networks showed higher mean abundance, weighted by the number of

links, than positive counterparts; and iv) positive networks were more modular than negative 

ones. 

The generation and analysis of quantitative association networks entail some 

methodological challenges. Regarding link weights, it may be possible to assign weights based 

on a standard effect sizes, SESij=(xobs−xnull)/sd ( xnull), where xobs represents the observed 

pairwise similarity and xnull the null similarity values. This approach classifies positive and 

negative links while conferring a weight, but it has some important drawbacks, being among the 

most important the assumption that the null values follow a normal distribution, and the 

dependence of this measure on the number of null model realisations (see, for instance ref1). To 

avoid this issue, we calculated a non-standard effect size as, ESij=−2(P ij−0.5), where Pij 

represents the probability for the association between species i and j of being higher than and 

equal to, Pij ( xobs ≥ xnull ), or lower than and equal to null model expectations, Pij ( xobs ≤ xnull ), 

respectively for positive and negative links. This is a non-parametric measure of magnitude 

ranging between -1 and 1. However, its estimation has a known limitation since the probability 

used for detecting positive associations is not complementary to the probability used for 

detecting negative ones (i.e. Pij ( xobs≥ xnull ) ≠ 1−Pij ( xobs ≤ xnull )). This implies that for each pair of 

species we have two non-complementary probabilities that in an extreme case can be equal (i.e. 

if all null values are equal to the observation, both positive and negative acceptance probabilities 

are equal to 1). We overcame this limitation by computing the ES only for those associations 

(either positive or negative) showing probabilities of acceptance lower than 0.5 and assigning a 

zero otherwise,
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ESij={−2 ( Pij−0.5 ) , if Pij<0.5
0 , otherwise

This measure ranges between 0 and ≈1, and was calculated independently for positive and 

negative links. We used the 0.5 threshold since it ensures that each species pair has a maximum 

of one ES value higher than zero (i.e. if Pij ( xobs ≥ xnull )<0.5 , then Pij ( xobs ≤ xnull )>0.5 always, and 

vice versa). The corrected ES provides two important pieces of information since it provides an 

estimate of the effect size and the sign of the spatial aggregation, either positive (if ESpositive>0 

and ESnegative=0) or negative (if ESpositive=0 and ESnegative>0). Notice also that it should be 

possible that an association cannot be classified either as positive or negative (when ESpositive=0 

and ESnegative=0). This, however, would only occur when a reduced null model space results in 

more than half of the null values being equal to the observation, which, as shown below (see 

Appendix S1.3), is very unlikely in our dataset. 

We measured different properties of weighted positive and negative association networks 

using analogous indices to non-weighted networks. To explore whether negative associations 

were more prevalent than positive ones, we first developed a quantitative measure of 

connectivity for our particular networks. Non-weighted network link density (or connectivity) is 

measured as the number of observed links divided by the number of potential ones,

C= N
0.5× n× (n−1 ) , where N  denotes the number of observed links and n the number of nodes. 

Analogously, weighted network density (herein, weighted connectivity) can be calculated as the 

sum of link weights relative to the maximum expected. In our case, the maximum weight 

expected for a single link is equal to 0.998. Here notice that probabilities are calculated as the 

proportion of 999 null values plus the observed value (n=1000) being equal or different to the 
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observed value. Thus, when all null values are different from the observed one we have,

Pij=1/1000and then, ESij=−2( 1
1000

−0.5)=0.998. The potential maximum weighted 

connectivity can be therefore measured as 0.998 times the number of potential links,

Cwmax
=0.998 ×0.5× n× (n−1 ); where n represents the number of nodes. Accordingly, we 

measured weighted connectivity as,

Cw=
∑
i=1

L

li

0.998 ×0.5 ×n× (n−1 )

where L represents the total number of links and li the weight of link i. This index ranges from 0 

(when there is no links) to 1 (for a fully connected graph with all links weights equal to 0.998). 

We also studied the role of dominant and rare species in generating positive or negative 

associations. To do so, we explored the relationship between species abundance and the average 

weight of positive and negative links jointly. That is, we first multiplied negative links by -1, and

then calculated the average link weight for each species, including both positive and negative 

links. When a given species has more and/or stronger negative links this index is negative, and 

vice versa. Then, we used the Spearman’s rank correlation coefficient to measure the relationship

between abundance and this index. Negative relationships between this mean link weight and 

species abundance indicate that abundant species have more and/or stronger negative links, 

whereas rare species have more and/or stronger positive links. Finally, to explore whether 

positive weighted networks were more modular than negative pairs, we used the Louvain 

algorithm2 to optimize the quantitative version of the modularity index proposed by Newman3. 
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Results from the sensibility analysis revealed that the configuration of positive and negative 

association networks was, in general, highly robust to the probability threshold used for defining 

significant associations (Fig. S3). The only exception was for the differences in connectivity 

between positive and negative networks. For this property, we found a decrease in the proportion

of assemblages where negative networks were more connected than positive pairs as the 

probability threshold increases (Fig. S3). In any case, the main result holds even with less robust 

thresholds since the proportion of assemblages where negative networks were more densely 

connected was always higher than 0.60. 

 The above results also agree with the analysis of weighted association networks. That is, 

negative networks were more densely connected that positive pairs in 0.61 of the assemblages (t 

= -14.244, P < 0.001), and the mean link weight was negatively correlated with abundance in 

0.95 of assemblages (average Spearman’s ρ = -0.528, sd = 0.285). Similarly, 0.92 assemblages 

showed positive networks being more modular than negative pairs (t = 31.169, P < 0.001). 

Overall, these results showed that our findings are robust to different probability thresholds and 

the use of quantitative information. 

S1.2. Sensitivity analysis to null model performance

Association networks inference relies on the accurate detection of significant spatial 

association patterns among species pairs (see Methods). The significance of pairwise 

associations was assessed by using a fixed-fixed null model (hereafter, null model I), which 

randomizes species abundances while keeps constant the marginal totals of rows and columns 

(see “r2dtable” algorithm in ref4). Thus, this model assumes that: (i) species populations and 
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carry capacities of samples are constant, and (ii) species can occur across all samples. This null 

model has been recommended due to its low type I and II error rates5. Moreover, its assumptions 

fit rather well with the reduced spatial scale and the putatively homogeneous conditions of the 

studied assemblages. Nevertheless, we explored whether alternative null models might yield 

different results. To do so, we used two other alternative null models (hereafter, null models II 

and III) to generate the association networks. The null model II is similar to null model I, but it 

also maintains all zero entries in the species per sample matrix (see “quasiswap count” algorithm

in ref4). Thus, the null model II includes the assumption of the existence of forbidden 

occurrences, more typical of systems showing some degree of environmental heterogeneity. This

further assumption should reduce the number of significant positive and negative associations. 

On the other hand, the null model III maintains the frequency of occurrence and abundance of 

species, as well as the species richness of samples (see “independent swap” in ref5). This null 

model assumes that species are divided in subpopulations distributed across samples and that 

each subpopulation has specific growth restrictions. Additionally, by constraining species 

frequency of occurrence and sample richness this null model assumes restrictions in species 

ranges more typical from systems with marked dispersal or environmental barriers. Although 

these assumptions are rather far from the reality of our assemblages (since we only used 

assemblages where samples were close enough to allow dispersion among them and with 

apparently low environmental variability, see Methods), we used this null model to show that our

results are robust to assumptions associated with disparate null models. In all cases we used 999 

null replicates and calculated significance as explained in Methods. 

Once association networks were generated based on each null model approach, we assessed 

differences in structure between positive and negative networks. In particular, we studied 
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differences in: (i) connectivity, (ii) the relationship between abundance and species degree, (iii) 

species abundances, and (iv) modularity (see Methods). Overall, our results remained 

qualitatively and quantitatively similar irrespective of the null model approach, thus 

corroborating the robustness of the patterns observed in association networks (Table S3 and Fig. 

S4). 

S1.3. Effects of null model space 

The null model space —or “degrees of freedom”— defines the degree of differences among

null model realizations. This critically determines the capacity to detect significant associations 

and, in turn, the association network patterns. For instance, if the null model space is small 

enough, observed and null values can be equal, precluding the detection of significant positive or

negative associations. The null model space is only controlled by the constraints assumed and the

related matrix characteristics. However, determining a large enough null model space a priori is 

a complicated task, even more when considering the different constraints of the null models we 

used. In an attempt to handle this, we selected assemblage surveys with at least ten species and 

ten sites, which constitute a proxy to ensure a large enough null model space in general. 

However, given the particular constraints of each null model, using matrix dimension as a proxy 

may not work in all situations. For instance, null models II and III keep non-zero elements (i.e. 

matrix fill), and this should then also contribute to the space of these null models. We, therefore, 

explored whether our results are affected by the null model space.

We estimated the null model space for each assemblage and null model as the average (and 

minimum) dissimilarity among null model realizations. To do so, we firstly calculated the 

proportion of non-overlapping individuals between each pair of realizations (e.g. realizations A 

and B) as, 
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Ov=
∑

i= j=1

N

¿r ij
A−r ij

B∨¿

2T
¿

where rij
A represents the abundance of species i in site j of the realization A; N  the number 

of entries in the matrix of species per sites and, T  the total number of individuals. This 

dissimilarity measure is the matrix level equivalent of 1 minus the Schoener’s index previously 

used and ranges between 0 (when both realizations are identical) and 1 (when there is no overlap 

between realizations). We computed this index for each pair of the 999 realizations of each null 

model and assemblage. Then, we measure the extent of the null model space using both the mean

and minimum dissimilarity among all possible pairs. When the null model space is large we 

should find a large proportion of non-overlapping individuals between realizations. Finally, we 

explored the relationship between null model space and matrix dimension, as well as its effects 

on the probability of obtaining the patterns of positive and negative association networks. 

On average across all assemblages the mean proportion of non-overlapping individuals was 

0.34 ± 0.02; 0.58 ± 0.01; and 0.58 ± 0.01; respectively for null models I, II and III (mean and 

confidence interval at α = 0.05). Hence, even in the cases of the null model producing fewer 

individual switches, 34% of individuals were switched on average across different null model 

realisations. Similarly, the minimum proportion of non-overlapping individuals was 0.27 ± 0.02; 

0.42 ± 0.01; and 0.38 ± 0.02; respectively for each null model. Hence, on average, at least 27% 

of individuals were switched. Moreover, we found that no null model realizations were equal, 

regardless of assemblage or null model (i.e. the minimum dissimilarity was always higher than 

zero). These results show that in all cases the null model space was large enough as to not 

generate two identical null matrices after 999 realizations, which strongly suggests that our 
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results are not affected by restrictions in the degrees of freedom of the null models. Indeed, we 

found non-significant effects of the minimum dissimilarity in the regression models explaining 

the probabilities of finding positive and negative network differences (P > 0.01 in all cases, see 

Table S2). Notice that we used the minimum dissimilarity in these models, instead of the mean 

dissimilarity, since it represents the most restrictive measure of null model space and it was 

highly correlated with the mean dissimilarity (r = 0.99). Finally, we found a strong correlation 

between the minimum dissimilarity and matrix size (r = 0.75, 0.76 and 0.77; respectively for null

models I, II and III), which validates the use of matrix size as a proxy for null model space size. 

Appendix S2. Association patterns across assemblages

Whether a particular species is more often involved in negative associations when common 

or vice versa is an interesting question. 

We explored this idea using those species that were present in at least 5 assemblages (n=384). 

We first standardised the abundance of species i in each assemblage as follows:

Std . Ai=
log  ( A¿¿ ¡)−µlog  (A )

σ log  (A )

,¿

where µlog  ( A) is the mean log-transformed abundance of the species in a given assemblage and

σ log  (A ) the standard deviation. Then, we calculated the balance of positive, N i
pos , and negative 

associations, N i
¬¿ ¿, normalized by the number of species in the assemblage, N , also for species i 

in a given assemblage, 

Bi=
N i

¬¿−N i
pos

N
.¿
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This balance is negative if a given species has more positive than negative associations. Finally, 

we used the Spearman’s correlation coefficient to explore the relationship between both 

variables. For most species (64.1 %) we obtained a positive relationship between both variables 

(mean Spearman’s ρ = 0.162 ± 0.041 at α = 0.05), indicating that, in general, species tend to be 

involved in more negative associations when common. Generalisations of this result should be 

taken with caution since the species occurring in five or more assemblages only represent less 

than 5% of the total number of species used in this study and were exclusively plants. 

Appendix S3. Extended numerical simulations 
S3.1 Model 

We ran simulations accounting for biotic and habitat factors to explore whether proposed 

mechanisms enhancing rare species persistence do indeed promote species coexistence while 

leading to the observed structural patterns of positive and negative association networks. Here, 

we explain the general features of the model and the following sections contain the biotic 

scenarios (S2.2), the habitat ones (S2.3), the simulation settings (S2.4), the analytical protocol 

(S2.5) and results and discussion (S2.6). 

We designed a simulation model composed of 20 samples and ten different species – similar

to the mean sampling size of the empirical assemblages, whose individuals were randomly 

distributed at the outset. Individuals reproduce, release propagules to colonize a randomly chosen

sample (i.e. dispersion), or die7. These processes occur with given probabilities, affecting 

reproduction (α R), mortality (α M) and dispersal rates (α D). Each sampling site had a constant 

carrying capacity, which reflects the amount of resources available at the sample, and resources 

proportionally decrease as the number of individuals increases. As resource decreases in the 
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sample the probability of reproduction (PR) and successful colonization (Pc) decrease, whereas 

the probability of mortality (Pd) increases. Hence, in a neutral scenario –where individuals of all 

species are ecologically equivalent8, the probabilities of reproduction, PR, and mortality, PD, of 

an individual i in a given sample will be determined by both, intrinsic factors and resource 

availability in the sample, such that 

PR ( i )=α R(1−
∑
j=1

N j

K ) (Eq. 1),

PD (i )=αM

∑
j=1

N j

K

(Eq. 2),

where N j is the number of individuals of species j and K  represents the carrying capacity. 

Similarly, the probability of an individual i to colonise a given sample will be

PC ( i )=
α D

N s
(1−∑

j=1
N j

K )
(Eq. 3),

where N s represents the number of samples. Note that when the number of individuals reaches 

the carrying capacity (∑j=1
N j=K ) the probabilities of reproduction and colonization are equal to 

0, while the probability of mortality is equal to the intrinsic mortality (PD=α M). 

To incorporate the effects of different competitive abilities we assumed that, when co-

occurring, individuals of dominant species acquire resources more efficiently than individuals of 
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less competitive species, decreasing their probabilities of reproduction and colonization and 

increasing the probability of mortality. Analogously, the effect of positive interactions can be 

incorporated assuming that benefactor individuals will increase the resource uptake efficiency of 

beneficiary ones. This, however, seems rather difficult to occur within assemblages of species 

belonging to the same trophic level, since some degree of resource interference can be always 

expected. We therefore took a conservative step and simulated complementarity based positive 

interactions9. That is, rather than simulating increases in resources uptake, we consider a positive

interaction by setting the negative impact of competition under the expectations of a neutral 

interaction. By doing so “beneficiary” individuals will have increased probabilities of 

reproduction and colonization while reduced probability of mortality as compared to a neutral 

interaction (Fig. S5a). We modify equations 1, 2 and 3 to include the strength of competition and

complementarity as follows, 

PR (i )=α R(1−
∑
j=1

N jθ i
j

K ) (Eq. 4),

PD (i )=α M

∑
j=1

N jθ i
j

K

(Eq. 5),

PC ( i )=
αD

N s
(1−∑

j=1
N j θi

j

K )
(Eq. 6),
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where θi
j represents the effects of species j on species i. Notice that θi

j>1 comparatively reduce

PR and PC while increasing PD, representing dominance of species jon species i. On the other 

hand, θi
j<1 produce the opposite effect (i.e., a relative increase in PR and PC while decreasing PD

), meaning that species j complements species i. These equations also accommodate intraspecific

interaction effects (i.e., when i= j), which allow us to explore intraspecific density-dependent 

processes (see below). 

At the assemblage level, the interaction effects can be described by the competition-

complementarity assemblage matrix, where the columns represent the effects of other species to 

a given species, the rows depict the effects of a given species to other species and the diagonal 

represent the intraspecific effects (Fig. S5b). Hence, the column marginal totals represent the 

total effect of all species to a given species. Large differences in these values between species 

would induce system-wide extinctions of weaker competitors. On the other hand, marginal total 

of rows represents the total effect exerted by a given species to the others, which will be related 

to system-wide species abundances at steady state (Fig. S5b). This simulation scheme allows 

exploring the patterns of spatial association networks generated by interaction matrices reflecting

different assembly mechanisms. Notice, nevertheless, that the inference of the interaction effects 

in the competition-complementarity assemblage matrix (i.e. θi
j values) is challenging because the

large number of parameters and the lack of empirical knowledge. To overcome this issue, we 

established constraints to the row and column marginal totals. Arbitrary θi
j values will not 

produce aberrant results as long as marginal totals fulfil these conditions. Specifically, the 

system-wide persistence of all species should rely on very similar column marginal totals 

between species, regardless of specific θi
j values. In the same way, row marginal totals can be 
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constrained to guarantee the generation of species abundance distributions like empirical ones 

(i.e. few abundant and many rare species).

S3.2 Biotic interactions scenarios

We studied 20 interaction matrices summarizing the proposed mechanisms on species 

assemblages and rare species persistence. Six of them are presented in the main text and here are 

identified by an asterisk. A neutral interaction matrix (Neutrality matrix*) was generated 

considering that all individuals were ecologically equivalent8 with all competition-

complementarity coefficients equal to 1 (Fig. S6). To strictly test that the empirical patterns of 

association networks cannot be generated by only negative interactions we generated 13 

interaction matrices with only negative interactions but reflecting different stabilizing 

hypotheses. We first generated three matrices assuming hierarchical (or transitive) competition 

with one superior competitor (Competition 1 matrix*); three superior competitors (Competition 

2 matrix) and four superior competitors (Competition 3 matrix). Intransitive competition has 

been proposed as the underlying mechanism explaining species coexistence10,11,12. This 

hypothesis assumes that intransitive competition networks stabilize species abundances. Because

of intransitive competition can take any form9, we studied seven different interaction matrices. 

The first two ones represent a case where competitive effects were reciprocal between superior 

competitors and there were two superior competitors (Intransitive 1 matrix, see Fig. S6); and 

three superior competitors (Intransitive 2 matrix). In both cases, superior competitors 

outcompeted different species in the community theoretically enhancing the achievement of 

associations among rare species due to the same responses to dominant ones. The next two 

matrices had the same structure than the former ones, but in this case weak competitors also 
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exerted a negative effect on stronger ones (Intransitive 3 and 4 matrices, see Fig. S6). Finally, 

we generated three intransitive matrices with perfect intransitive competition12. In the first one, 

we assumed that a single superior competitor dominates over all the other species but one, which

in turn, dominates over the (former) superior competitor (Pure intransitive 1 matrix, see Fig. 

S6). In the second intransitive matrix, we assumed the longest intransitive loop possible, where 

all species outcompete one species but are outcompeted by another one (Pure intransitive 2 

matrix, see Fig. S6). In the last intransitive matrix explored, we strictly test if intransitive 

competition is not enough to generate the association network patterns we found in this study. 

For this, we generated an interaction matrix forcing the appearance of these patterns. This matrix

was characterized by one superior competitor outcompeting the rest of the species but three 

species, which, in turn, outcompete all other species but different pairs of weak competitors 

(Pure intransitive 3 matrix*, see Fig. S6). This should result in the appearance of a dominant 

species with a larger number of negative associations while positive association networks should 

tend to be modular. The final three matrices with only negative interactions reflect a stabilizing 

hypothesis based on asymmetrical density dependent effects13,14. This hypothesis assumes that 

rare species are not poor competitors, but they experience a high negative impact of intraspecific 

competition14. The interaction matrices for this hypothesis assumed the existence of a larger 

number of superior competitors that also show high negative effect exerted by conspecifics (see 

Fig. S6, Density dependence 1*, 2 and 3 matrices). Notice that we used a large number of 

superior competitors since these species represent rare species and the number of rare species is, 

in general, large in empirical assemblages. Moreover, this scenario should produce virtually 

same results than assuming that other species in the community were interfering in resources-

based interactions (e.g. when strong competitor suffer a higher predation pressure).
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Facilitation from nurse species has also been hypothesized as a mechanism enhancing rare 

species persistence15. As in the case of intransitive competition, the interaction matrix 

representing this mechanism can take many forms. Thus, to test if facilitation from nurse species 

is not enough to generate the observed association patterns, we set three interaction matrices 

forcing the appearance of them. In the first one, we assumed that there are three superior 

competitors negatively affecting all species but two different species that are positively affected 

(Nurse 1 matrix, see Fig. S6). These three species can therefore be considered as nurse species 

facilitating different pairs of species. The second scenario was similar but also including a 

superior competitor that negatively affects the rest of the species (Nurse 2 matrix*). In the last 

one, we assumed there are two superior competitors facilitating different sets of the community 

(Nurse 3 matrix). Perhaps one of the most parsimonious hypotheses explaining species 

coexistence would assume that competitive exclusion does not exist. Hence, we constructed an 

interaction matrix where this is the case (i.e., the positive matrix with all θi
jvalues lower < 1, Fig. 

S6). Modular positive interactions were assumed to explore if this mechanism would be enough 

to generate the observed empirical patterns (Positive matrix). Generalized complementarity 

among rare species may also stabilize assemblages. Although this hypothesis should be not very 

plausible in real assemblages, we also generate an interaction matrix reflecting this possibility to 

explore if it can generate observed patterns in association networks (Positive negative matrix). 

Finally, we generated a matrix reflecting modular positive interactions among poor competitors. 

This matrix was characterized by the presence of a dominant species and three groups of weak 

competitors interacting positively between them (Positive rare*, see Fig. S6). 
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S3.3 Habitat preference scenarios

Besides biotic interactions, differences in microhabitat preferences may also lead to spatial 

aggregations and segregations16 and, in turn, to the observed patterns of association networks. 

Indeed, if groups of rare species would persist in diverse microhabitats where dominant species 

performed worse, we could also expect negative networks to be centralized around dominant 

species and modular positive networks composed of rare species. To account for this, we strictly 

selected assemblages at fine scale and with apparently reduce environmental heterogeneity 

(Appendix S3) – where biotic interactions should prevail, partially solving this issue. However, 

unappreciated heterogeneity might exist in some assemblages, generating microhabitat 

conditions and reducing the role of biotic interactions. Moreover, even in the absence of abiotic 

heterogeneity, some microhabitats can be generated by the presence and interactions with other 

species in the community (e.g. soil bacteria for plants or predators for insects). These biotic 

habitats are more difficult to control for and might have similar effects as abiotic ones on the 

distribution of species’ abundances. 

The existence of microhabitats might question the link between spatial association patterns 

and biotic interactions within species of the same trophic guild. However, this would only apply 

when considering the theoretical extremes of a gradient between the effects of habitat specificity 

and competition/facilitation alike interactions. In real world, both processes more likely interact 

to determine the coexistence of species and the spatial distribution of their individuals, with their 

relative importance depending on the intensity of both the habitat specificity and 

competitive/facilitative interactions. This interaction between biotic and habitat factors hampers 

the feasibility of a priori predictions on the consequences of microhabitats on the structure of 

association networks, especially when occurring in concert with different competition/facilitation
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interaction matrices. For instance, assuming a perfect hierarchical competition matrix, the 

existence of different microhabitats only preferred by groups of weak competitors should not be 

enough to produce the patterns observed in association networks. Indeed, within each 

microhabitat a weak competitor would turn into the strongest one, excluding remaining species 

that also prefer this microhabitat and preventing the existence of modular positive association 

networks. Here we have thus conducted numerical simulations to explore whether, and in 

combination with which interaction matrix, the existence of microhabitats and different habitat 

preferences can generate the observed association network patterns.

We distributed a number of habitats within the simulated assemblages and determined 

preferred and non-preferred habitat for each of the species. Following the rationale of the general

model in section S2.1, we assumed that the probabilities of reproduction, mortality and 

successful colonization in preferred habitats is only determined by species interactions according

to equations 4, 5 and 6; respectively. To simulate habitat specificity, we first assumed that the 

probabilities of reproduction and colonization decrease in non-preferred habitat according to a 

parameter (β) representing the habitat tolerance. To incorporate the effects of habitat specificity 

and biotic interactions on the probabilities of reproduction and colonization we modified 

equations 4 and 6 as follows,

PRNP
(i )=β PR (i )=βαR(1−

∑
j=1

N j θi
j

K ) (Eq. 7),

PCNP
(i )=βPC ( i )=

βα D

N s
(1−∑

j=1
N jθ i

j

K )
(Eq. 8).
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The tolerance parameter (β) ranged between 0 (i.e., when individuals are completely excluded in 

non-preferred habitat), and 1 (i.e., when habitat specificity does not exist and individuals’ 

performance will be only driven by interactions). Thus, when β=1, PRNP and PCNP are equal to PR 

and Pc, respectively. 

We assumed that habitat specificity influences the survival probability PS NP according to the 

β parameter, thus modifying equation 5 as follows,

PS NP
(i )=β ( 1−PD(i))=β (1−α M

∑
j=1

N jθi
j

K )
(Eq. 9).

By doing so when β=1 (i.e. there is no habitat specificity), the probability of survival will have 

equal consequences to the probability of mortality in preferred habitats.

There exists a plethora of combinations to distribute habitats and species preference for 

them. Moreover, the scenarios grow exponentially when trying to combine habitat specificity and

interaction matrices. In an attempt to reduce this wide space of combinations while strictly 

testing our hypothesis, we distributed habitat and habitat preferences in a way that theoretically 

should generate the association network patterns of surveyed assemblages. That is, assuming 

neutral interactions, the a priori most likely habitat preference scenario leading to the observed 

patterns would be characterized by a large habitat preferred by few dominant species and many 

microhabitats preferred by different groups of rare species. We therefore set four habitats (Fig. 

S5c) across the 20 samples: one occupying 11 samples and only preferred by a single dominant 

species; and the remaining three habitats distributed in three samples each and preferred by three 

weak competitors each. We chose this configuration since it is directly comparable and 

compatible to the interaction matrices presented in the main text (i.e. producing one abundant 
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species and three groups of three rare species, see Fig. S6). In that way and for instance, when 

combining the Competition 1 matrix, we set the single dominant species to be alone in its 

preferred and largest habitat, so that it cannot exclude weak competitors. In other words, 

combining this habitat scenario and these interaction matrices allow us to place the single 

superior competitor in the largest habitat and the remaining groups of weak competitors in their 

corresponding small habitats.

S3.4 Simulation settings

We first studied the patterns generated by the 20 interaction matrices when there is no 

habitat specificity. Similarly to the interaction effects, the parametrization of the intrinsic factors 

controlling reproduction (α R), mortality (α M) and dispersion (α D) based on empirical values is 

challenging17 and even more when considering the wide taxonomic spectrum covered in this 

study. To circumvent this fact, we explored a wide parameter space by using all possible 

combinations for these parameters based on six different values ranging from 0 to 1 (i.e. 0; 0.2; 

0.4; 0.6; 0.8 and 1). Thus, for each interaction matrix we generated 216 (6α R x 6α M  x 6α D) 

possible combinations. In addition, to account for the intrinsic stochasticity of these models we 

ran 25 replicates for each parameter combination and interaction matrix, making a total of 108k 

simulations (25 replicates x 216 parameter combinations x 20 interaction matrices). 

We then explored the effects of combing habitat preferences and biotic interactions. We set 

a gradient of habitat specificity using five values for the β parameter evenly distributed between 

0 and 1. Hence, habitat specificity ranges from complete exclusion in non-preferred habitats (β = 

0, i.e. the probabilities of reproduction, colonization and survival are equal to zero) to not exits (β

= 1; i.e. these probabilities are equal in preferred and non-preferred habitats). For the sake of 
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simplicity and interpretability (see above) we only combined the habitat scenario with the six 

interaction matrices presented in the main text (i.e. the Neutrality, Competition 1, Pure 

intransitive 1, Density dependence 1, Nurse 2 and Positive rare matrices, according to Fig. S6). 

For each interaction matrix and β value we replicated the simulations explained above, making a 

total of approx. 160K simulations (25 replicates x 216 parameter combinations x 6 interaction 

matrices x 5 habitat specificity values).

Each simulation was run during 5000 iterations since comparisons with 1000 and 3000 

iterations showed that, on average, a steady state was reached (see Fig. S1). Initial conditions in 

all cases consisted in a carrying capacity of 100 individuals per sample. Only twenty individuals 

were allowed to disperse in each run. Species abundances were equal for all species and were set 

so that the sum of all individuals was equal to 5% of the system-wide carrying capacity (i.e. 10 

individuals per species). Then, individuals were randomly placed among samples. 

S3.5 Analytical Protocol

We explored the structure of the positive and negative association networks resulting from 

the scenarios following the same protocol as for the surveyed assemblages. That is, at the end of 

each simulation we measured species pairwise associations using the Schoener’s index18. Then, 

we explored which pairs of species significantly deviated from a fixed-fixed null model (at α = 

0.05; see Methods). By doing so, we detected significant positive and negative species 

associations and derived the corresponding association networks. Once the association networks 

were generated, we explored i) whether negative networks were more densely connected than 

their positive pairs; ii) whether there was a stronger positive relationship between species degree 

and abundance in negative networks than positive ones; iii) whether positive networks were 
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composed of less abundant species and iv) if positive networks were more modular than positive 

ones. Moreover, to evaluate which interaction matrices promoted species coexistence, v) we also 

examined if all species survived in the system at the end of each simulation. We used the 

Louvain algorithm2 to optimize the modularity index proposed by Newman3 and selected the 

partition with the highest modularity value across 100 runs. 

Finally, we identified which of the simulated interaction matrices alone or in conjunction 

with habitat preference more likely reproduce the observed differences in positive and negative 

association networks found on the surveyed assemblages. To do so, we firstly calculated the 

proportion of simulated assemblages, with the same interaction matrix and α R, α M , α D and β 

values (n=25), showing the four above mentioned patterns (i.e. the proportion where: (i) negative

networks were more densely connected, (ii) the abundance-degree relationship was stronger and 

positive in negative networks, (iii) positive networks tend to be composed of less abundant 

species and (iv) positive networks were more modular). Additionally, we also calculated the 

proportion of assemblages where all species survived at the end of the simulations. These 

proportions indicated the probability of finding empirical differences between positive and 

negative networks, as well as the probability of non-extinctions in the system. We, then, 

computed the average of these probabilities for each interaction matrix and investigated whether 

these proportions varied across the parameter space defined by α R, α M , α D and β for each 

interaction matrix. Here notice that in the main text we present average probabilities over a 

parameter space where demographic rates (α R, α M , α D) allows the expression of interactions. 

This space was defined using the Competition 1 model under neutral habitat preferences (β =1) 

as baseline and selecting those combinations of rates where species went extinct (i.e. P Competition 1 

(non-extinction) = 0). By doing so, we focus on results of different demographic rates that fulfil 
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theoretical and empirical expectations when only hierarchical competition is operating (i.e. weak 

competitors go extinct). Results obtained using all possible combinations of rates were similar 

and are discussed below (Appendix S2.6.1, see also Fig. S2). 

We conducted all analyses in the R software19, using different functions of the “igraph”20 

and “vegan”2 packages. R scripts for the simulation protocol are available upon request. 

S3.6 Results

We found qualitatively and quantitatively similar results using different numbers of 

iterations (n= 1000, 3000, and 5000; Fig. S1). Therefore, we will only refer to the results derived

from simulations using 5000 iterations. Regarding the simulations where habitat preferences 

were neutral, the interaction matrix including a superior competitor and modular positive 

interactions among weak competitor species (Positive rare matrix) showed the highest averaged 

probabilities of finding the four empirical patterns (Fig. 3b and Fig. S1). Thus, in the absence of 

different habitat preferences, positive interactions among weak competitors are more likely to 

yield similar positive and negative association networks to those found in the empirical 

assemblages. Notice that the matrices only including modular positive interactions (Positive 

matrix) also produced to some extent high probabilities of finding the empirical networks 

patterns, especially for the differences in connectivity and modularity between negative and 

positive association networks. While obtaining modular positive networks agrees with a priori 

expectations for this matrix, higher connectivity in negative ones might be counterintuitive. This 

can, nonetheless, be explained attending to the indirect effects produced by the modular structure

of complementarity based positive interactions. That is, in our simulations two co-occurring 

individuals complementing each other will obtain available resources faster, thus reducing the 

24



performance of other “non-complemented” individuals and generating an indirect negative 

interaction. Given the number of species within each module, the number of these indirect 

negative interactions is larger than the number of direct positives ones, leading, therefore, to a 

higher connectivity in negative association networks. 

 Regarding species persistence, the simulations conducted with the Positive rare interaction 

matrix resulted in higher probabilities of survival of all species in the system, compared to the 

competition matrices (Fig. 3b; Fig. S1 and S2a). This supports the idea that the persistence of 

rare species can rely on the establishment of positive interactions among them, which would 

mitigate the negative impact of superior competitors. Survival probabilities were, nonetheless, 

also high for the rest of interaction matrices (Fig. 3b; Fig. S1 and S2a), which shows that these 

hypotheses might theoretically enhance species coexistence. However, the network structures 

obtained following these hypotheses were far from those empirically observed. Therefore, 

although neutrality, intraspecific density-dependent processes, intransitive competition and 

facilitation from nurse species might allow rare species persistence, our results suggest that these

mechanisms are unlike to drive the empirical patterns of species assemblages.

It is worth mentioning that the averaged probabilities of finding the structural pattern 

observed on surveyed association network were lower when all possible combinations of 

demographic parameters were used (i.e. reproduction, mortality and dispersal rates; compare Fig.

3b with Fig. S2a). In fact, these values were never higher than 0.5. On the contrary, survival 

probabilities were considerably higher, even in the case of the competition matrices. These 

results show that different combinations of the demographic parameters can mask the effects of 

biotic interactions. The interplay between these factors has been previously proposed as a 

mechanism allowing species coexistence by buffering the negative effects of competition21,22. For
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instance, low reproduction rates (α R ≅ 0) will lead to under-saturated samples with increased 

resource availability and hence allowing species coexistence. On the other hand, relatively high 

dispersal abilities will allow weak competitors to more easily escape from samples dominated by

strong competitors. Our results confirm that this interplay can certainly promote species 

coexistence in the absence of other mechanisms. Yet, they also show that differences in these 

demographic factors are not enough to generate the observed features of association networks 

(i.e. despite the Competition 1 model yield a considerably high probability of non-extinction, the 

empirical patterns are not likely reproduced, Fig. S2a). Interestingly, the increment in non-

extinction probabilities resulting from the Positive rare matrix when compared to the 

Competition 1 matrix, was highly related to the average probability of finding the network 

features across the parameter space (R=0.77, P < 0.001). In other words, for those combinations 

of demographic parameters (α R,α R, and α E) where the Positive rare matrix showed higher 

species survival probabilities than the Competition 1 matrix, we also found a high probability of 

obtaining the observed structural patterns of surveyed association networks. Thus, when 

interactions become important (e.g. when non-extinction probability equals zero in the 

Competition 1 matrix), positive interactions among weak competitors yields simulated 

association networks similar to empirical ones with higher probability (compare Fig. 3b with Fig.

S2a). 

Taken together, these results confirm that the structure of empirical association networks 

can reflect mechanisms allowing rare species persistence and that these mechanisms are most 

likely based on positive interactions among weak competitors, at least in the absence of habitat 

heterogeneity.
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Habitat preference simulations revealed an increase in the probabilities of finding empirical 

association networks patterns for all interaction matrices. As expected, these probabilities 

increased as habitat specificity become more intense (Fig. 3b). These results suggest that the 

existence of diverse microhabitats may act as “refugia” for rare species, allowing their 

persistence and producing the empirical patterns, independently of interaction matrices. Yet, this 

uniquely occurs when habitat specificity is notably marked (β < 0.5; meaning that reproduction, 

survival and colonization is reduced at least to the half in non-preferred habitat), a situation that 

should only occur when microhabitat heterogeneity is very sharp and patent, which most surely 

is not case in our assemblages. Moreover, the combination of habitat preferences and the positive

interaction among rare species yield the highest probabilities to find empirical patterns of 

association networks, regardless of habitat specificity levels (Fig. 3a and Fig. S2b). This shows 

that the effects of habitat preferences are enhanced by positive association among rare species (or

vice versa). Hence, our results suggest that, even when habitat preferences are acting, modular 

positive interactions among rare species would still more likely promote the empirical patterns of

association networks. Explanations for this are based on the stabilizing effects of 

complementarity or facilitation among rare species in preferred microhabitats. That is, in our 

simulations the persistence of different rare species into small microhabitats rely on large enough

and evenly distributed (sub)populations that are able to buffer the effects of ecological drift23. In 

other words, even assuming that rare species interact neutrally, the reduced dimension of 

microhabitats would promote the “fixation” of one species per microhabitat due to stochastic 

processes in small population sizes23. 

Interestingly, the Nurse and the Density dependence matrices also produced empirical 

patterns at high probability, especially when habitat specificity was intense (Fig. 3a and Fig. 
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S2b). This can be explained by the interactions that are expressed in each microhabitat. That is, 

in the case of the Nurse matrix there are two positive and one neutral interactions between the 

species preferring same small habitats. In the case of the Density dependent matrix there were 

three species suffering more from intraspecific competition in each small habitat, which 

according to our model framework represents a kind of complementarity (i.e. an individual will 

perform better when co-occurring with an individual from other species than with an individual 

of its own species). Hence, in both cases some stabilizing forces are acting to enhance rare 

species coexistence in microhabitats. This further support the idea that, even when habitat 

specificity is intense, cooperation among rare species would more likely generate the empirical 

patterns of association networks while promoting the persistence of rare species. 

Appendix S3. Abundance surveys and data preparation

We compared the structure of negative and positive association networks using a 

comprehensive databased of 427 assemblages worldwide distributed and representing a wide 

array of taxa including bryophytes, tracheophytes, vertebrates and arthropods. More information 

about these assemblages, including geographic coordinates, extent and gain, and the reference of 

the primary study in which they were included can be found in Table S1. We established a 

criterion of minimum number of samples and species on the assemblage datasets to be included 

in the study. Thus, all assemblage datasets consist in at least ten species of the same guild and a 

minimum of ten samples where the abundance of each species was recorded. The raw data used 

in this study is provided upon request. 

28



S4.1 Abundance surveys in single trophic level assemblages

In this section, we provide information on sampling methodology for those assemblage 

datasets (n=87) that have not been extracted from published studies.

Tree species were sampled in two montane temperate mixed forests of Switzerland, Central 

Europe (see “alps_tree” and “jura_tree” in Table S1 for geographic coordinates). In each site, all 

the tree individuals (saplings included) were identified and quantified in ten non-overlapping 

plots of 100 m2 with similar ecological conditions (i.e. assemblage samples). Each plot was at 

least 10 m apart from the closest one.

Abundance (i.e. number of aboveground individuals) of herbaceous plant species was 

sampled in squared sampling plots of 50 cm x 50 cm within a 30 m x 20 m stand located in sand 

dunes in central Iberian Peninsula (Cuéllar, Spain; see “erodium” in Table S1). The stand was 

selected in an open area without influence of trees or taller shrubs species. A total of 75 sampling

plots were randomly distributed maintaining a minimum distance of 1 m between adjacent plots. 

Sampling was conducted during the period of maximum productivity in June 2016.

Angiosperm trees in Brazil were sampled in five different geographic locations in the state 

of Bahia (“Barra_Paraguacu”, ”Bonito_Bahia”, ”Itubera_Bahia”, ”Maracas_Bahia”, 

”Semidecidous_Bahia” in Table S1). In each locality, several plots (ranging from 13 to 49) were 

established representing at least 10% of each forest area (i.e. assemblage samples). Due to 

differences in tree density between the different forest types, sampling plots had different sizes 

(100 m2 for tropical rainforest and 400 m2 for Brazilian savanna). Plots were at least 50 m apart 

from the closest one. Species abundance data included all the trees with at least 15 cm of 

perimeter at breast height in tropical rainforest sites and 10 cm in Brazilian savanna. 
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Herbaceous species in central and southern Spain were sampled in 71 sites on soils derived 

from gypsum outcrops on south-oriented gentle slopes. At each site, a 30 x 30 m square plot was 

established within homogeneous vegetated areas. The composition and structure of perennial 

vascular plants was assessed using four 30 m long linear transects parallel to the slope and 8 m 

apart in each plot. Species-specific cover was estimated visually in 12 quadrats (1.5 m x 1.5 m) 

placed in each plot (i.e. assemblage samples), with three quadrats per transect line (see 

“herbs_ym” from 1 to 36 and “herbs_yal” from 1 to 35 in Table S1).

Dung beetles in central Spain were sampled in a grassland located in Guadarrama 

Mountains at an altitude of 1500 m a.s.l. during three consecutive days (from April 28th to 30th in 

2015, see “guada_dung_d_1”, “guada_dung_d_2”, “guada_dung_d_3” in Table S1). Each day, 

10 traps baited with cattle dung were distributed around a circumference of approximately 50 m 

of radius in each plot (with traps being at least 30 m apart from each other). Baits were 

introduced into a piece of nylon stocking to avoid the stagnancy of beetles along different 

sampling events. All traps were checked every 30 min from dawn to dusk (approx. from 7:00 am

to 8:00 pm), and all individuals we collected and subsequently identified in the laboratory. The 

individuals from the 10 traps were pooled together obtaining an estimation of the species 

abundances each 30 min. For this dataset we explored temporary patterns of species pairwise 

aggregation and segregation. 

Dung beetles were also sampled in mountain forests in the north-western slope of Sierra 

Nevada de Santa Marta, Colombia (see “colom_dung_480”, “colom_dung_875”, 

“colom_dung_1280” in Table S1). Sampling was conducted in three different locations between 

December 1998 and January 1999. At each location, three altitudes at intervals of 400 m were 

selected (i.e. 480, 875 and 1280 m). Dung beetles were trapped using a linear transect of 10 
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pitfall traps without any preservative solution and with aerial bait. Traps were separated at least 

by 30 m, baited with 25 ml of fresh human dung and collected each hour during a period of 24 

hours. The individuals from the 10 traps of each plot were pooled together obtaining an 

estimation of the species abundances each hour. For this dataset we also explored temporary 

patterns of species pairwise aggregation and segregation. 

Abundance of ephemeral plant species was estimated in two localities in the semiarid 

ecosystem of the Fray Jorge National Park (Coquimbo Region, Chile; see “anuals_fray_1” and 

“anuals_fray_2” in Table S1). In each locality, 10 sampling quadrats were randomly distributed 

in a 50 m x 50 m area where species abundance was estimated as relative cover. Sampling was 

conducted during the period of maximum productivity in July 2010. These data are part of a 

more extensive experiment including artificial shading treatments and shrub influence. The 

sampling plots included in this study were all distributed in open habitats outside the influence of

taller shrubs of trees.

S4.2 Data preparation

In this section, we provide information about data preparation for those assemblage datasets

where it was necessary to fulfil the criteria on reduce spatial extent and low environmental 

heterogeneity. 

Some ant assemblage datasets were obtained from Arnan & Blüthgen24. This dataset 

consisted in a total of 24 plot surveys (distributed in three different habitat types within four 

locations and during two seasons) in Barcelona, north-east Spain. Each plot contained 60 bait 

stations separated each other at least 5 m, where the identity and abundance of each species was 

recorded (see ref24 for details). We considered each plot survey as an independent assemblage 
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and selected only ten of them following our criteria of at least ten different species at each 

assemblage (see “PHFIG_Spring”, “PHGRF_Spring”, “PHGRF_Summer”, “PHVAC_Spring”, 

“PHVAC_Summer”, “SHRFIG_Spring”, “SHRFIG_Summer”, “SHRGRF_Spring”, 

“SHRVAC_Spring” and “SHRVAC_Summer” in Table S1). 
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Figures 
Fig. S1.

Fig.  S1.  Positive  interactions  among weak competitors  yields  the

highest probability of reproducing empirical network patterns over

20  different  models.  Mean  probability  (y-axis)  of  finding  simulated

assemblages that show empirical network patterns under neutral habitats for

each interaction matrix (x-axis) and for simulations with (a) 1000, (b) 3000

and (c) 5000 iterations  (see also Fig. S6 and Appendix S2.6 for a detailed

explanation of these results).
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Fig. S2.

 

Fig. S2. Positive interactions among rare species is the model that

best  reproduces  the  empirical  patterns  for  a  broad  range  of

demographic parameters. The effects of interactions are masked at some

combinations of demographic parameters (i.e., reproduction, mortality and

colonization) in simulated assemblages.  a, This produces, for instance, that

the  Competition model  do  not  always  end  up  with  the  single  dominant

species (i.e., the non-extinction probability in this matrix is not always equal
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to  zero,  as  it  would  be  expected  based  on  the  competitive  exclusion

principle; see also Appendix S2.6.1). Still, even when using all the possible

combinations of demographic rates, positive interaction among rare species

is the best model for reproducing the empirical patterns.  b, This also holds

for  different  levels  of  habitat  specialization.  a,  The  y-axis  represents  the

probability of simulated association networks showing empirical differences

between positive and negative networks across the entire parameter space

defined by reproduction, mortality and dispersal rates (Appendix S2). b, The

y-axis  represents  the  average  probabilities  of  finding  the  four  empirical

patterns across the completed parameter space, whereas the x-axis depicts

a  gradient  of  habitat  specialization  (Appendix  S2).  Error  bars  depict

confidence intervals at α = 0.05. P: positive networks. N: negative networks.

See also Fig. 3.
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Fig. S3.

Fig.  S3.  The  proportion  of  assemblages  showing  differences

between  positive  and  negative  networks  is  insensitive  to  the

probability threshold used to detected significant associations. The

dotted line depicts the probability threshold used in the main text (P = 0.05,

see Appendix S1.1).
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Fig. S4.

Fig.  S4.  Network  patterns  remain  largely  invariant  when  using

different null models to detect significant associations. Results of (a)

a  fixed-fixed null  model;  (b)  a  fixed-fixed null  model  that  also  maintains

matrix fill and; (c) a null model that keeps constant the species abundance

and  frequency  of  occurrence,  as  well  as,  sample  species  richness  (null

models I, II and III respectively in Appendix S1.2).
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Fig. S5.

Fig. S5.  a,  Reproduction,  mortality and colonization probabilities from an

individual of species i vary according to the interaction effects exerted by an

individual  of  species  j  (θi
j).  Interaction  coefficients  lower than 1 lead to a

decrease  of  mortality  probabilities  while  reproduction  and  colonisation

increase compared to a neutral interaction (where  θi
j=θi

i). On the contrary,

when  interaction  coefficients  are  higher  than  1  (θi
j>1),  the  probability  of

mortality increases,  and the probabilities of  reproduction and colonisation

are  lower  than  in  a  neutral  scenario.  In  the  x-right  extreme,  when  the
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interaction  coefficient  is  equal  to  the  carrying  capacity  (θi
j=K),  the

probabilities  of  reproduction  and colonization  are equal  to zero  while  the

probability  of  mortality  is  equal  to  1.   b,  An  example  of  the  interaction

matrices used in the simulations. Values in column j represent the effects of

other species on the focal species. Values in row  i represent the effects of

the focal species on the other species. The marginal total of column j(∑
i

x ij)

depicts the combined effects of all species on the focal species, whereas the

marginal total of row i (∑
j

x ij) represents the overall competitive ability of the

focal species. c, Matrix representation of the habitat preferences. Each color

presents one habitat and the species that prefer it. 
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Fig. S6.

Fig. S6.  Interaction matrices reflecting different hypotheses about

species coexistence and rare species survival. Cell numbers represent
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the interaction effects (θ). Red colour indicates competitive interactions (i.e.,

θ>1),  and  green  colour  depicts  positive  ones  (i.e.,  θ<1).  *  denotes  the

matrices that were presented in the main text and combined with the habitat

preference scenario (see Appendix S2.2).
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Tables
Table S1.

ID Latitud
e

Longitu
de

Taxon
or 

T. level

Nº
sampl

es

Nº
speci

es

Grain
(m2)

Extent
(ha)

Referenc
e

allacher 48.70 11.50 Trees 10 21 100.00
0

0.100 25

allpahua -3.95 -73.42 Trees 10 276 100.00
0

0.100 25

alps_tree 46.33 6.87 Trees 10 17 100.00
0

2.000 Appendix
S3

alterdoc -2.50 -54.97 Trees 10 34 100.00
0

0.100 25

altodemi 10.92 -73.83 Trees 10 87 100.00
0

0.100 25

altosapa 7.17 -75.90 Trees 10 64 100.00
0

0.100 25

amotape -4.15 -80.62 Trees 10 54 100.00
0

0.100 25

anchicay 3.75 -76.83 Trees 10 143 100.00
0

0.100 25

ankarif -16.32 46.82 Trees 10 96 100.00
0

0.100 25

antado 7.25 -75.92 Trees 10 162 100.00
0

0.100 25

ants_Darwin_A -12.70 130.98 Ants 100 46 0.002 0.032 26
ants_Darwin_B -12.70 130.98 Ants 100 38 0.002 0.032 26
ants_Darwin_C -12.70 130.98 Ants 100 40 0.002 0.032 26
ants_Darwin_D -12.70 130.98 Ants 100 37 0.002 0.032 26
anuals_fray_1 -30.63 -71.67 Herbs 10 18 0.090 0.250 Appendix

S3
anuals_fray_2 -30.63 -71.67 Herbs 10 16 0.090 0.250 Appendix

S3
araracua -0.42 -72.33 Trees 11 265 100.00

0
0.100 25

avalanch 11.30 76.58 Trees 10 69 100.00
0

0.100 25

bablersp 38.53 -90.67 Trees 10 23 100.00
0

0.100 25

baitete -5.17 145.80 Trees 10 147 100.00
0

0.100 25

bakosar 1.75 110.42 Trees 10 137 100.00
0

0.100 25

bankamp 40.50 -81.30 Trees 10 23 100.00
0

0.100 25

banyong 5.00 9.17 Trees 10 197 100.00
0

0.100 25

base_encina_a 31.06 -8.73 Bryophyt
es

14 11 0.040 0.023 27

base_encina_b 32.55 -4.92 Bryophyt 18 11 0.040 0.020 27
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ID Latitud
e

Longitu
de

Taxon
or 

T. level

Nº
sampl

es

Nº
speci

es

Grain
(m2)

Extent
(ha)

Referenc
e

es
belem -1.50 -47.98 Trees 10 129 100.00

0
0.100 25

benito 15.33 -92.25 Trees 10 30 100.00
0

0.100 25

berbicer 5.50 -58.80 Trees 10 101 100.00
0

0.100 25

beza1 -23.63 44.57 Trees 10 31 100.00
0

0.100 25

beza2 -23.63 44.57 Trees 10 40 100.00
0

0.100 25

bilsa 0.62 -79.85 Trees 10 121 100.00
0

0.100 25

blohmr 8.57 -67.58 Trees 10 65 100.00
0

0.100 25

boraceia -23.38 -46.00 Trees 10 124 100.00
0

0.100 25

bosquede 19.50 -96.95 Trees 10 42 100.00
0

0.100 25

brio_fo_100 42.94 -6.51 Bryophyt
es

20 24 0.040 8.019 28

brio_fo_102 42.04 -3.61 Bryophyt
es

19 21 0.040 6.024 28

brio_fo_103 42.58 -3.95 Bryophyt
es

19 13 0.040 6.776 28

brio_fo_105 40.95 -4.38 Bryophyt
es

16 10 0.040 19.878 28

brio_fo_106 40.27 -2.83 Bryophyt
es

20 20 0.040 3.786 28

brio_fo_109 41.00 -2.71 Bryophyt
es

20 23 0.040 8.258 28

brio_fo_112 40.82 -3.35 Bryophyt
es

20 12 0.040 3.982 28

brio_fo_113 41.88 -4.10 Bryophyt
es

20 14 0.040 2.859 28

brio_fo_114 41.74 -2.63 Bryophyt
es

19 15 0.040 11.933 28

brio_fo_115 40.34 -4.15 Bryophyt
es

20 20 0.040 11.933 28

brio_fo_116 41.74 -5.12 Bryophyt
es

14 13 0.040 11.143 28

brio_fo_118 39.96 -6.66 Bryophyt
es

19 11 0.040 10.030 28

brio_fo_12 42.27 -6.07 Bryophyt
es

20 16 0.040 22.490 28

brio_fo_14 42.87 -5.63 Bryophyt
es

19 17 0.040 13.409 28

brio_fo_18 42.77 -4.13 Bryophyt
es

20 11 0.040 6.519 28

brio_fo_2 42.51 -5.32 Bryophyt
es

13 12 0.040 18.831 28
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ID Latitud
e

Longitu
de

Taxon
or 

T. level

Nº
sampl

es

Nº
speci

es

Grain
(m2)

Extent
(ha)

Referenc
e

brio_fo_20 39.87 -5.31 Bryophyt
es

19 16 0.040 9.750 28

brio_fo_22 40.30 -3.37 Bryophyt
es

20 14 0.040 2.147 28

brio_fo_24 40.38 -3.44 Bryophyt
es

20 17 0.040 7.489 28

brio_fo_26 39.36 -5.71 Bryophyt
es

17 12 0.040 9.171 28

brio_fo_28 39.39 -6.43 Bryophyt
es

20 14 0.040 6.477 28

brio_fo_29 39.57 -7.00 Bryophyt
es

20 20 0.040 7.649 28

brio_fo_3 41.45 -5.81 Bryophyt
es

20 11 0.040 6.392 28

brio_fo_31 40.42 -3.87 Bryophyt
es

19 23 0.040 7.624 28

brio_fo_32 40.24 -3.92 Bryophyt
es

20 18 0.040 9.980 28

brio_fo_33 40.29 -3.25 Bryophyt
es

20 22 0.040 8.043 28

brio_fo_34 40.34 -4.26 Bryophyt
es

20 16 0.040 2.443 28

brio_fo_36 40.74 -3.85 Bryophyt
es

20 25 0.040 8.285 28

brio_fo_38 39.78 -4.55 Bryophyt
es

20 21 0.040 3.677 28

brio_fo_4 41.14 -6.73 Bryophyt
es

20 25 0.040 22.673 28

brio_fo_41 39.68 -4.63 Bryophyt
es

20 21 0.040 4.760 28

brio_fo_42 39.68 -4.91 Bryophyt
es

19 25 0.040 9.084 28

brio_fo_43 40.05 -5.13 Bryophyt
es

20 17 0.040 6.280 28

brio_fo_44 40.12 -4.64 Bryophyt
es

20 15 0.040 5.628 28

brio_fo_45 40.52 -5.72 Bryophyt
es

20 20 0.040 9.216 28

brio_fo_46 40.75 -5.53 Bryophyt
es

18 14 0.040 3.501 28

brio_fo_47 40.62 -6.60 Bryophyt
es

20 16 0.040 22.646 28

brio_fo_48 41.26 -6.21 Bryophyt
es

20 11 0.040 4.331 28

brio_fo_49 40.95 -5.98 Bryophyt
es

20 12 0.040 6.988 28

brio_fo_51 40.74 -4.55 Bryophyt
es

20 19 0.040 5.306 28

brio_fo_52 41.41 -3.21 Bryophyt
es

19 14 0.040 4.954 28

brio_fo_54 41.59 -6.17 Bryophyt 18 22 0.040 10.807 28
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ID Latitud
e

Longitu
de

Taxon
or 

T. level

Nº
sampl

es

Nº
speci

es

Grain
(m2)

Extent
(ha)

Referenc
e

es
brio_fo_55 41.80 -6.21 Bryophyt

es
19 15 0.040 9.765 28

brio_fo_56 42.04 -6.10 Bryophyt
es

19 11 0.040 15.029 28

brio_fo_59 41.84 -4.82 Bryophyt
es

18 12 0.040 24.079 28

brio_fo_61 40.30 -2.25 Bryophyt
es

20 13 0.040 7.630 28

brio_fo_62 40.57 -4.15 Bryophyt
es

20 18 0.040 2.282 28

brio_fo_63 40.95 -3.76 Bryophyt
es

20 15 0.040 5.273 28

brio_fo_64 40.97 -3.80 Bryophyt
es

20 10 0.040 6.097 28

brio_fo_65 40.94 -3.77 Bryophyt
es

20 10 0.040 12.718 28

brio_fo_66 41.03 -3.94 Bryophyt
es

20 15 0.040 4.783 28

brio_fo_67 40.91 -3.99 Bryophyt
es

20 11 0.040 5.877 28

brio_fo_68 40.81 -3.78 Bryophyt
es

19 13 0.040 11.717 28

brio_fo_69 40.81 -3.61 Bryophyt
es

18 12 0.040 7.089 28

brio_fo_7 41.13 -5.47 Bryophyt
es

20 19 0.040 2.168 28

brio_fo_70 41.17 -3.88 Bryophyt
es

20 18 0.040 3.960 28

brio_fo_72 40.42 -3.25 Bryophyt
es

20 12 0.040 7.378 28

brio_fo_75 40.70 -2.41 Bryophyt
es

18 12 0.040 5.524 28

brio_fo_80 40.34 -5.18 Bryophyt
es

20 14 0.040 13.068 28

brio_fo_86 42.97 -4.90 Bryophyt
es

20 11 0.040 7.116 28

brio_fo_87 42.79 -4.71 Bryophyt
es

20 10 0.040 1.038 28

brio_fo_93 40.28 -5.84 Bryophyt
es

20 14 0.040 4.958 28

brio_fo_94 42.16 -7.60 Bryophyt
es

18 25 0.040 2.035 28

brio_fo_96 42.64 -7.14 Bryophyt
es

20 26 0.040 0.951 28

brisefer -20.38 57.43 Trees 10 76 100.00
0

0.100 25

burling 38.95 -77.17 Trees 10 23 100.00
0

0.100 25

cabezade -10.33 -75.30 Trees 10 153 100.00
0

0.100 25
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ID Latitud
e

Longitu
de

Taxon
or 

T. level

Nº
sampl

es

Nº
speci

es

Grain
(m2)

Extent
(ha)

Referenc
e

calima 3.92 -77.00 Trees 10 263 100.00
0

0.100 25

camorin -22.93 -43.37 Trees 10 157 100.00
0

0.100 25

campano 11.13 -74.20 Trees 10 106 100.00
0

0.100 25

candamo -13.50 -69.83 Trees 10 236 100.00
0

0.100 25

capeira -2.00 -79.97 Trees 10 60 100.00
0

0.100 25

carajas -5.50 -51.00 Trees 10 175 100.00
0

0.100 25

carara 9.77 -84.53 Trees 10 153 100.00
0

0.100 25

carlosbo -24.25 -46.93 Trees 10 149 100.00
0

0.100 25

carpanta 4.58 -73.67 Trees 10 47 100.00
0

0.100 25

cary 46.83 -73.75 Trees 10 20 100.00
0

0.100 25

cedarblu 39.77 -86.15 Trees 10 25 100.00
0

0.100 25

cedral 4.75 -75.55 Trees 10 141 100.00
0

0.100 25

cega_climb 41.36 -4.26 Trees 40 33 50.000 2.000 29
centinel -0.58 -79.33 Trees 10 140 100.00

0
0.100 25

ceroneb1 0.83 -66.18 Trees 10 95 100.00
0

0.100 25

ceroneb2 0.83 -66.18 Trees 10 81 100.00
0

0.100 25

cerroayp -4.58 -79.53 Trees 10 56 100.00
0

0.100 25

cerroelp 13.00 -85.92 Trees 10 68 100.00
0

0.100 25

cerroesp 10.47 -72.83 Trees 10 77 100.00
0

0.100 25

cerroolu 12.30 -85.40 Trees 10 96 100.00
0

0.100 25

chamela1 19.50 -105.50 Trees 10 89 100.00
0

0.100 25

chamela2 19.50 -105.50 Trees 10 87 100.00
0

0.100 25

chamela3 19.50 -105.50 Trees 10 102 100.00
0

0.100 25

chaquima -14.57 -68.47 Trees 10 81 100.00
0

0.100 25

chiba 35.15 140.15 Trees 10 47 100.00
0

0.100 25

chirinos -5.42 -78.88 Trees 10 101 100.00
0

0.100 25
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ID Latitud
e

Longitu
de

Taxon
or 

T. level

Nº
sampl

es

Nº
speci

es

Grain
(m2)

Extent
(ha)

Referenc
e

choros_op -29.26 -71.41 Herbs 50 14 2.250 0.450 30
choros_un -29.26 -71.41 Herbs 50 15 2.250 0.450 30
cochacas -11.85 -71.32 Trees 10 169 100.00

0
0.100 25

colom_dung_12
80

10.87 -73.72 Beetles 18 13 1 hour 24 hours Appendix
S3

colom_dung_48
0

10.87 -73.72 Beetles 19 24 1 hour 24 hours Appendix
S3

colom_dung_87
5

10.87 -73.72 Beetles 16 12 1 hour 24 hours Appendix
S3

colorado 9.97 -75.17 Trees 10 121 100.00
0

0.100 25

colosoi 9.50 -75.80 Trees 10 111 100.00
0

0.100 25

constanc -4.25 -72.75 Trees 10 233 100.00
0

0.100 25

cuangos -3.48 -78.23 Trees 10 170 100.00
0

0.100 25

cueva 11.80 -73.47 Trees 11 92 100.00
0

0.100 25

cuevas 6.67 -76.50 Trees 10 126 100.00
0

0.100 25

cuivre 39.20 -91.00 Trees 10 29 100.00
0

0.100 25

curundu 8.98 -79.55 Trees 10 85 100.00
0

0.100 25

curuyuqr -18.75 -62.30 Trees 10 51 100.00
0

0.100 25

cutervo -6.17 -78.67 Trees 10 120 100.00
0

0.100 25

cuyas -4.53 -79.73 Trees 10 54 100.00
0

0.100 25

cuzcoama -12.58 -69.15 Trees 10 168 100.00
0

0.100 25

davies -17.80 145.57 Trees 10 116 100.00
0

0.100 25

ducke -3.00 -59.97 Trees 10 238 100.00
0

0.100 25

encanto -14.63 -60.70 Trees 10 111 100.00
0

0.100 25

erodium 41.37 -4.25 Herbs 73 19 0.250 0.060 Appendix
S3

esmerald 0.90 -79.62 Trees 10 101 100.00
0

0.100 25

farall 3.50 -76.58 Trees 10 133 100.00
0

0.100 25

fincam 2.27 -76.20 Trees 10 108 100.00
0

0.100 25

galeraz 10.80 -75.25 Trees 10 52 100.00
0

0.100 25
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ID Latitud
e

Longitu
de

Taxon
or 

T. level

Nº
sampl

es

Nº
speci

es

Grain
(m2)

Extent
(ha)

Referenc
e

genting 3.97 101.63 Trees 10 194 100.00
0

0.100 25

guada_dung_d_1 40.75 -4.02 Beetles 16 16 0.5
hours

8 hours Appendix
S3

guada_dung_d_2 40.75 -4.02 Beetles 21 18 0.5
hours

11 hours Appendix
S3

guada_dung_d_3 40.75 -4.02 Beetles 19 18 0.5
hours

10 hours Appendix
S3

herbs_yal_1 38.48 -0.85 Shrubs 12 18 2.250 0.090 Appendix
S3

herbs_yal_10 38.48 -0.85 Shrubs 12 24 2.250 0.090 Appendix
S3

herbs_yal_11 38.18 -1.24 Shrubs 12 12 2.250 0.090 Appendix
S3

herbs_yal_12 38.18 -1.24 Shrubs 12 10 2.250 0.090 Appendix
S3

herbs_yal_13 38.18 -1.24 Shrubs 12 13 2.250 0.090 Appendix
S3

herbs_yal_14 38.18 -1.24 Shrubs 12 11 2.250 0.090 Appendix
S3

herbs_yal_15 38.18 -1.25 Shrubs 12 12 2.250 0.090 Appendix
S3

herbs_yal_16 38.48 -0.84 Shrubs 12 24 2.250 0.090 Appendix
S3

herbs_yal_17 37.86 -1.87 Shrubs 12 10 2.250 0.090 Appendix
S3

herbs_yal_18 37.86 -1.87 Shrubs 12 10 2.250 0.090 Appendix
S3

herbs_yal_19 37.86 -1.87 Shrubs 12 12 2.250 0.090 Appendix
S3

herbs_yal_2 38.49 -1.62 Shrubs 12 15 2.250 0.090 Appendix
S3

herbs_yal_20 38.47 -0.83 Shrubs 12 14 2.250 0.090 Appendix
S3

herbs_yal_21 37.86 -1.87 Shrubs 12 10 2.250 0.090 Appendix
S3

herbs_yal_22 37.13 -2.05 Shrubs 12 17 2.250 0.090 Appendix
S3

herbs_yal_23 37.13 -2.05 Shrubs 12 15 2.250 0.090 Appendix
S3

herbs_yal_24 37.13 -2.06 Shrubs 12 16 2.250 0.090 Appendix
S3

herbs_yal_25 37.13 -2.06 Shrubs 12 11 2.250 0.090 Appendix
S3

herbs_yal_26 37.13 -2.06 Shrubs 12 13 2.250 0.090 Appendix
S3

herbs_yal_27 37.09 -2.09 Shrubs 12 17 2.250 0.090 Appendix
S3

herbs_yal_28 37.09 -2.09 Shrubs 12 17 2.250 0.090 Appendix
S3

herbs_yal_29 37.09 -2.09 Shrubs 12 17 2.250 0.090 Appendix
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S3
herbs_yal_3 38.49 -1.62 Shrubs 12 13 2.250 0.090 Appendix

S3
herbs_yal_30 38.47 -0.83 Shrubs 12 12 2.250 0.090 Appendix

S3
herbs_yal_31 37.09 -2.09 Shrubs 12 14 2.250 0.090 Appendix

S3
herbs_yal_32 38.47 -0.83 Shrubs 12 13 2.250 0.090 Appendix

S3
herbs_yal_33 38.47 -0.83 Shrubs 12 11 2.250 0.090 Appendix

S3
herbs_yal_34 38.45 -0.78 Shrubs 12 18 2.250 0.090 Appendix

S3
herbs_yal_35 38.49 -1.62 Shrubs 12 15 2.250 0.090 Appendix

S3
herbs_yal_4 38.49 -1.62 Shrubs 12 14 2.250 0.090 Appendix

S3
herbs_yal_5 38.44 -0.78 Shrubs 12 22 2.250 0.090 Appendix

S3
herbs_yal_6 38.44 -0.78 Shrubs 12 17 2.250 0.090 Appendix

S3
herbs_yal_7 38.25 -0.91 Shrubs 12 21 2.250 0.090 Appendix

S3
herbs_yal_8 38.26 -0.91 Shrubs 12 16 2.250 0.090 Appendix

S3
herbs_yal_9 38.18 -1.24 Shrubs 12 11 2.250 0.090 Appendix

S3
herbs_ym_1 40.14 -3.62 Shrubs 12 12 2.250 0.090 Appendix

S3
herbs_ym_10 40.22 -3.58 Shrubs 12 12 2.250 0.090 Appendix

S3
herbs_ym_11 40.19 -3.59 Shrubs 12 12 2.250 0.090 Appendix

S3
herbs_ym_12 40.21 -3.59 Shrubs 12 15 2.250 0.090 Appendix

S3
herbs_ym_13 40.21 -3.59 Shrubs 12 13 2.250 0.090 Appendix

S3
herbs_ym_14 39.82 -3.43 Shrubs 12 16 2.250 0.090 Appendix

S3
herbs_ym_15 39.80 -3.43 Shrubs 12 10 2.250 0.090 Appendix

S3
herbs_ym_16 39.85 -3.33 Shrubs 12 12 2.250 0.090 Appendix

S3
herbs_ym_17 40.05 -3.05 Shrubs 12 14 2.250 0.090 Appendix

S3
herbs_ym_18 40.06 -3.05 Shrubs 12 17 2.250 0.090 Appendix

S3
herbs_ym_19 40.06 -3.06 Shrubs 12 18 2.250 0.090 Appendix

S3
herbs_ym_2 40.15 -3.43 Shrubs 12 13 2.250 0.090 Appendix

S3
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e

herbs_ym_20 40.07 -3.07 Shrubs 12 13 2.250 0.090 Appendix
S3

herbs_ym_21 40.08 -3.07 Shrubs 12 12 2.250 0.090 Appendix
S3

herbs_ym_22 40.08 -3.05 Shrubs 12 10 2.250 0.090 Appendix
S3

herbs_ym_23 40.09 -3.02 Shrubs 12 13 2.250 0.090 Appendix
S3

herbs_ym_24 40.13 -2.99 Shrubs 12 12 2.250 0.090 Appendix
S3

herbs_ym_25 40.13 -2.99 Shrubs 12 10 2.250 0.090 Appendix
S3

herbs_ym_26 40.02 -3.13 Shrubs 12 10 2.250 0.090 Appendix
S3

herbs_ym_27 40.01 -3.38 Shrubs 12 15 2.250 0.090 Appendix
S3

herbs_ym_28 39.85 -3.63 Shrubs 12 11 2.250 0.090 Appendix
S3

herbs_ym_29 39.87 -3.63 Shrubs 12 13 2.250 0.090 Appendix
S3

herbs_ym_3 40.14 -3.62 Shrubs 12 15 2.250 0.090 Appendix
S3

herbs_ym_30 40.24 -3.08 Shrubs 12 12 2.250 0.090 Appendix
S3

herbs_ym_31 40.25 -3.05 Shrubs 12 16 2.250 0.090 Appendix
S3

herbs_ym_32 40.20 -3.14 Shrubs 12 14 2.250 0.090 Appendix
S3

herbs_ym_33 40.02 -3.11 Shrubs 12 14 2.250 0.090 Appendix
S3

herbs_ym_34 40.17 -3.08 Shrubs 12 14 2.250 0.090 Appendix
S3

herbs_ym_35 40.33 -2.93 Shrubs 12 15 2.250 0.090 Appendix
S3

herbs_ym_36 40.37 -2.98 Shrubs 12 14 2.250 0.090 Appendix
S3

herbs_ym_4 40.13 -3.62 Shrubs 12 15 2.250 0.090 Appendix
S3

herbs_ym_5 40.12 -3.62 Shrubs 12 12 2.250 0.090 Appendix
S3

herbs_ym_6 40.15 -3.43 Shrubs 12 15 2.250 0.090 Appendix
S3

herbs_ym_7 40.18 -3.42 Shrubs 12 20 2.250 0.090 Appendix
S3

herbs_ym_8 40.27 -3.14 Shrubs 12 15 2.250 0.090 Appendix
S3

herbs_ym_9 40.24 -3.06 Shrubs 12 15 2.250 0.090 Appendix
S3

heustobm 39.55 -84.72 Trees 10 20 100.00
0

0.100 25

heustomf 39.55 -84.72 Trees 10 24 100.00 0.100 25
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0
huamani -0.67 -77.67 Trees 10 162 100.00

0
0.100 25

humboldt -8.83 -75.00 Trees 10 158 100.00
0

0.100 25

incahuar -15.92 -67.58 Trees 10 160 100.00
0

0.100 25

indiana -3.52 -73.70 Trees 10 223 100.00
0

0.100 25

indianca 40.50 -95.72 Trees 10 25 100.00
0

0.100 25

jatunsac -1.70 -77.60 Trees 10 244 100.00
0

0.100 25

jauneche -1.10 -79.63 Trees 10 96 100.00
0

0.100 25

jejuimi -24.13 -55.53 Trees 10 87 100.00
0

0.100 25

jenarohe -4.92 -73.75 Trees 10 245 100.00
0

0.100 25

jonesmil 40.80 -79.35 Trees 10 15 100.00
0

0.100 25

jura_tree 47.48 7.77 Trees 10 17 100.00
0

8.000 Appendix
S3

kanealle 41.67 -78.80 Trees 10 13 100.00
0

0.100 25

kennedy 11.80 -74.20 Trees 10 67 100.00
0

0.100 25

kenting 21.92 120.83 Trees 10 69 100.00
0

0.100 25

khaoyai 14.33 101.83 Trees 10 145 100.00
0

0.100 25

kitlope1 53.70 -127.83 Trees 10 10 100.00
0

0.100 25

korup 5.73 8.70 Trees 10 133 100.00
0

0.100 25

lagenoa -11.80 -75.42 Trees 10 112 100.00
0

0.100 25

laplanad 1.13 -77.97 Trees 10 130 100.00
0

0.100 25

laraya 8.33 -74.92 Trees 10 160 100.00
0

0.100 25

laselva 10.43 -84.20 Trees 10 136 100.00
0

0.100 25

lasjoyas 19.58 -104.13 Trees 10 39 100.00
0

0.100 25

laurelri 39.95 -79.37 Trees 10 14 100.00
0

0.100 25

linhares -19.30 -40.70 Trees 10 220 100.00
0

0.100 25

luquillo 18.18 -65.83 Trees 10 42 100.00
0

0.100 25

51



ID Latitud
e

Longitu
de

Taxon
or 

T. level

Nº
sampl

es

Nº
speci

es

Grain
(m2)

Extent
(ha)

Referenc
e

madden 9.10 -79.60 Trees 10 131 100.00
0

0.100 25

madidi -13.58 -68.77 Trees 10 198 100.00
0

0.100 25

madidiri -13.58 -68.77 Trees 10 176 100.00
0

0.100 25

magsasay 10.40 -84.50 Trees 10 148 100.00
0

0.100 25

makokou1 0.57 12.87 Trees 10 138 100.00
0

0.100 25

makokou2 0.57 12.87 Trees 10 118 100.00
0

0.100 25

manaus -3.13 -60.20 Trees 10 102 100.00
0

0.100 25

maquipuc 0.12 -78.62 Trees 10 137 100.00
0

0.100 25

mariquit 5.25 -74.83 Trees 10 94 100.00
0

0.100 25

martin -39.50 -73.17 Trees 10 19 100.00
0

0.100 25

miazi -4.30 -78.67 Trees 10 186 100.00
0

0.100 25

mirador -40.23 -73.30 Trees 10 16 100.00
0

0.100 25

mishnfl -3.78 -73.50 Trees 10 266 100.00
0

0.100 25

mishws -3.78 -73.50 Trees 10 195 100.00
0

0.100 25

mogote 18.42 -66.25 Trees 10 47 100.00
0

0.100 25

montgome 43.17 -77.62 Trees 10 18 100.00
0

0.100 25

motozint 15.33 -92.20 Trees 10 16 100.00
0

0.100 25

mtcam 4.80 9.00 Trees 10 124 100.00
0

0.100 25

mtsthila 45.62 -73.58 Trees 10 12 100.00
0

0.100 25

mudumal1 11.60 76.53 Trees 10 15 100.00
0

0.100 25

mudumal2 11.60 76.53 Trees 10 19 100.00
0

0.100 25

murri 6.58 -76.83 Trees 10 179 100.00
0

0.100 25

nadugani 11.45 76.38 Trees 10 106 100.00
0

0.100 25

nanjensh 22.00 120.83 Trees 10 85 100.00
0

0.100 25

ndakani 2.37 16.15 Trees 10 96 100.00
0

0.100 25

ndakanni 2.37 16.32 Trees 10 122 100.00 0.100 25
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0
newcaldo -22.17 166.83 Trees 11 172 100.00

0
0.100 25

nosymang -15.50 49.77 Trees 10 210 100.00
0

0.100 25

nuevomun -10.65 -66.77 Trees 10 149 100.00
0

0.100 25

nwbranch 39.30 -77.30 Trees 10 20 100.00
0

0.100 25

omofor 7.00 5.00 Trees 10 72 100.00
0

0.100 25

osasiren 8.50 -83.92 Trees 10 144 100.00
0

0.100 25

palanan 17.13 122.52 Trees 10 144 100.00
0

0.100 25

parqueer -24.58 -64.70 Trees 10 41 100.00
0

0.100 25

pasoh30 3.00 102.33 Trees 10 210 100.00
0

0.100 25

pasoh40 3.00 102.33 Trees 10 221 100.00
0

0.100 25

perinet -18.92 48.42 Trees 10 214 100.00
0

0.100 25

perromue -1.60 -80.70 Trees 10 69 100.00
0

0.100 25

persever -14.63 -62.62 Trees 10 116 100.00
0

0.100 25

PHFIG_Spring 41.70 2.27 Ants 60 10 0.003 0.113 24
PHGRF_Spring 41.27 1.92 Ants 53 14 0.003 0.113 24

PHGRF_Summer 41.27 1.92 Ants 56 15 0.003 0.113 24
PHVAC_Spring 41.58 1.93 Ants 57 10 0.003 0.113 24

PHVAC_Summer 41.58 1.93 Ants 58 11 0.003 0.113 24
pipeline 9.17 -79.75 Trees 10 161 100.00

0
0.100 25

Barra_Paraguac
u

-12.63 -38.80 Trees 49 60 100.00
0

0.490 Appendix
S3

Bonito_Bahia -11.99 -41.10 Trees 13 28 400.00
0

0.520 Appendix
S3

Itubera_Bahia -13.72 -39.20 Trees 29 155 100.00
0

0.290 Appendix
S3

Maracas_Bahia -13.47 -40.44 Trees 42 35 400.00
0

1.680 Appendix
S3

Semidecidous_B
ahia

-11.91 -41.25 Trees 31 64 100.00
0

0.310 Appendix
S3

potomac 38.80 -76.57 Trees 11 25 100.00
0

0.100 25

providen 13.35 -81.37 Trees 10 65 100.00
0

0.100 25

pugu -6.83 39.80 Trees 10 88 100.00
0

0.100 25
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puyehue -40.72 -72.30 Trees 10 16 100.00
0

0.100 25

quiapaca -18.33 -59.50 Trees 10 83 100.00
0

0.100 25

quinceoc 19.73 -104.25 Trees 10 47 100.00
0

0.100 25

ranchoqu 8.70 -83.55 Trees 10 124 100.00
0

0.100 25

riachuel -27.00 -58.00 Trees 10 47 100.00
0

0.100 25

rioheath -12.83 -68.83 Trees 10 135 100.00
0

0.100 25

riomanso 7.50 -76.80 Trees 11 220 100.00
0

0.100 25

rionegro -9.83 -65.67 Trees 10 169 100.00
0

0.100 25

riopal1 -0.57 -79.33 Trees 10 119 100.00
0

0.100 25

riopal2 -0.57 -79.33 Trees 10 122 100.00
0

0.100 25

riotavar -13.35 -69.67 Trees 10 200 100.00
0

0.100 25

roundslo 17.33 -77.42 Trees 10 45 100.00
0

0.100 25

roundtop 17.33 -77.42 Trees 10 57 100.00
0

0.100 25

ruissalo 60.53 22.47 Trees 10 10 100.00
0

0.100 25

sabanaru 10.50 -72.92 Trees 10 52 100.00
0

0.100 25

sacram -16.30 -67.80 Trees 10 100 100.00
0

0.100 25

sakaera2 14.50 102.00 Trees 10 37 100.00
0

0.100 25

sakaerat 14.50 102.00 Trees 10 81 100.00
0

0.100 25

salta -24.67 -64.50 Trees 10 25 100.00
0

0.100 25

sanfelas 29.68 -82.43 Trees 10 19 100.00
0

0.100 25

sansebas -1.60 -80.70 Trees 10 96 100.00
0

0.100 25

santacru -17.77 -63.70 Trees 10 63 100.00
0

0.100 25

santotom 4.92 -74.83 Trees 10 76 100.00
0

0.100 25

saul 3.63 -53.20 Trees 10 149 100.00
0

0.100 25

semengoh 1.83 110.80 Trees 10 224 100.00
0

0.100 25

shiringa -10.33 -75.17 Trees 10 191 100.00 0.100 25
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0
SHRFIG_Spring 41.70 2.27 Ants 58 16 0.003 0.113 24

SHRFIG_Summe
r

41.70 2.27 Ants 56 13 0.003 0.113 24

SHRGRF_Spring 41.27 1.92 Ants 51 11 0.003 0.113 24
SHRVAC_Spring 41.58 1.93 Ants 54 11 0.003 0.113 24
SHRVAC_Summ

er
41.58 1.93 Ants 53 10 0.003 0.113 24

Siemianice1 54.50 17.05 Beetles 52 27 300
cm3

1.000 5

Siemianice2 54.50 17.05 Beetles 49 26 300
cm3

1.000 5

Siemianice3 54.50 17.05 Beetles 27 26 300
cm3

1.000 5

Siemianice4 54.50 17.05 Beetles 27 26 300
cm3

1.000 5

Siemianice5 54.50 17.05 Beetles 63 27 300
cm3

1.000 5

Siemianice6 54.50 17.05 Beetles 55 26 300
cm3

1.000 5

Siemianice7 54.50 17.05 Beetles 33 27 300
cm3

1.000 5

Siemianice8 54.50 17.05 Beetles 47 26 300
cm3

1.000 5

sierraro 22.83 -83.00 Trees 11 47 100.00
0

0.100 25

sietecue 4.58 -73.67 Trees 10 77 100.00
0

0.100 25

suderhac 54.60 9.28 Trees 10 15 100.00
0

0.100 25

tahuampa -3.78 -73.50 Trees 10 169 100.00
0

0.100 25

tamblat2 -12.78 -69.28 Trees 10 158 100.00
0

0.100 25

tambo -12.78 -69.28 Trees 10 156 100.00
0

0.100 25

tamboall -12.83 -69.28 Trees 10 187 100.00
0

0.100 25

tambupl -12.82 -69.72 Trees 10 131 100.00
0

0.100 25

tarapoto -6.58 -76.42 Trees 10 102 100.00
0

0.100 25

tayrona 11.33 -74.30 Trees 10 68 100.00
0

0.100 25

tidroute 41.70 -79.40 Trees 10 20 100.00
0

0.100 25

tikus_1 -5.86 106.58 Corals 10 54 30.000 0.040 31
tikus_2 -5.86 106.58 Corals 10 30 30.000 0.040 31
tikus_3 -5.86 106.58 Corals 10 29 30.000 0.040 31
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tikus_4 -5.86 106.58 Corals 10 35 30.000 0.040 31
tikus_5 -5.86 106.58 Corals 10 26 30.000 0.040 31
tikus_6 -5.86 106.58 Corals 10 23 30.000 0.040 31
tikus_7 -5.86 106.58 Corals 10 25 30.000 0.040 31

trunk_alcornoqu
e

35.27 -6.07 Bryophyt
es

13 14 0.040 0.013 32

trunk_encina_a 32.51 -6.03 Bryophyt
es

12 11 0.040 0.031 27

trunk_encina_b 33.74 -4.29 Bryophyt
es

12 11 0.040 0.031 27

trunk_loro 34.96 -4.67 Bryophyt
es

15 17 0.040 0.013 32

tutunend 5.77 -76.58 Trees 10 274 100.00
0

0.100 25

tuxtlas 18.58 -95.13 Trees 10 102 100.00
0

0.100 25

tysongla 38.50 -90.52 Trees 10 26 100.00
0

0.100 25

tysonwoo 38.50 -90.52 Trees 10 23 100.00
0

0.100 25

uchire 10.15 -65.43 Trees 10 67 100.00
0

0.100 25

ucumari 4.00 -75.50 Trees 10 110 100.00
0

0.100 25

ufhortic 29.67 -82.33 Trees 10 32 100.00
0

0.100 25

uppsala 59.85 17.63 Trees 10 13 100.00
0

0.100 25

valleyvi 38.25 -90.62 Trees 10 23 100.00
0

0.100 25

varirata -9.50 147.50 Trees 10 210 100.00
0

0.100 25

vencer -5.75 -77.67 Trees 10 164 100.00
0

0.100 25

yanaigua -19.70 -62.10 Trees 10 32 100.00
0

0.100 25

yanam1 -3.43 -72.85 Trees 10 216 100.00
0

0.100 25

yanam2 -3.43 -72.85 Trees 10 228 100.00
0

0.100 25

yanamtah -3.47 -72.83 Trees 10 164 100.00
0

0.100 25

Table S1. Geographic coordinates (Latitude and Longitude), taxon or trophic

level, number of samples, number of species and grain (m2) and extent (ha)
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for the assemblage datasets (ID) analyzed in the study. Notice that some

coordinates were approximated from locations described in original sources.
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Table S2.

Dependent Explanatory Coeffs. z-value p-value Dev. expl.
Connectivity (P<N) 0.06

Plant vs Animal -0.773 -0.599 0.549
Latitude -0.749 -1.581 0.114
Longitude 0.365 0.918 0.359
Species richness 0.328 0.5 0.617
Sampling effort 0.029 0.083 0.934
Null model d.f. -0.646 -0.922 0.357

Abundance-degree (P<N) 0.24
Plant vs Animal -19.518 -0.001 0.999
Latitude -0.681 -1.105 0.269
Longitude -0.491 -0.715 0.475
Species richness 2.448 1.893 0.058
Sampling effort 183.519 0.01 0.992
Null model d.f. -2.541 -1.544 0.123

Abundance (P<N) 0.36
Plant vs Animal -14.376 -0.009 0.993
Latitude -0.063 -0.062 0.95
Longitude -0.391 -0.413 0.679
Species richness 10.984 1.404 0.16
Sampling effort 6.581 1.168 0.243
Null model d.f. 1.902 1.083 0.279

Modularity (P>N) 0.37
Plant vs Animal 1.659 1.579 0.114
Latitude 0.324 0.429 0.668
Longitude 0.541 0.827 0.408
Species richness 15.408 3.175 0.015
Sampling effort 0.195 0.481 0.631
Null model d.f. 0.755 0.684 0.494

Table S2.  The differences between positive and negative network

properties were in general unaffected by sampling effort (estimated

as the  number  of  samples),  null  model  degrees  of  freedom (see

Appendix  S1.3),  species  richness,  latitude,  longitude  or  taxa.

Generalized linear model summary statistics  including explained deviance

(Dev.  expl.)  for  each  model.  Connectivity  (P<N):  Probability  of  negative

networks  to  be  more  densely  connected  than  their  positive  pairs.

Abundance-degree (P<N): Probability of dominant species to monopolizing

negative  links  but  not  positive  ones  (i.e.,  a  stronger  positive  abundance-

degree relationship in negative networks). Abundance (P<N): probability of

positive  networks  tending  to  be  composed  of  less  abundant  species.
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Modularity (P>N): probability of positive networks being more modular than

their negative pairs.
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Table S3.

 Feature H1 Null model I (n=326) Null model II (n=305) Null model III (n=252)

t-value

p-

value Prop. cases t-value

p-

value Prop. cases t-value

p-

value Prop. cases

Connectivity P < N 17.006 <0.001 0.932 18.686 <0.001 0.905 11.155

<0.00

1 0.865

Degree vs 

abundance P < N 23.881 <0.001 0.859 10.938 <0.001 0.702 7.479

<0.00

1 0.512

Abundance P < N 22.425 <0.001 0.971 16.538 <0.001 0.869 10.306

<0.00

1 0.778

Modularity P > N 39.676 <0.001 0.911 32.343 <0.001 0.951 14.272

<0.00

1 0.849

Table S3. Summary of results from different null model approaches.

Results  are  based  on  the  comparison  of  (i)  connectivity,  (ii)  abundance-

degree relationship, (iii) species abundance distribution and (iv) modularity

between positive association networks (P) and their negative pairs (N). H1:

Alternative hypothesis in paired Student’s tests. Prop. Cases: the proportion

of assemblages where the alternative hypothesis was observed. The number

of assemblages analysed (i.e. those showing at least two links in both types

of  networks)  is  also  provided  for  each null  model.  P:  Positive  association

networks. N: Negative association networks.
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