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abstract: Amajor focus of ecology is to understand and predict eco-
system function across scales. Many ecosystem functions are measured
only at local scales, while their effects occur at a landscape level. Herewe
investigate how landscape-scale predictions of ecosystem function de-
pend on intraspecific competition, a fine-scale process, by manipulat-
ing intraspecific density of shredding macroinvertebrates and examin-
ing effects on leaf litter decomposition, a key function in freshwater
ecosystems. For two species, we found that per capita leaf processing
rates declined with increasing density following power functions with
negative exponents, likely due to interference competition. To demon-
strate consequences of this nonlinearity, we scaled up estimates of leaf
litter processing from shredder abundance surveys in 10 replicatedhead-
water streams. In accordance with Jensen’s inequality, applying density-
dependent consumption rates reduced estimates of catchment-scale leaf
consumption by an order of magnitude relative to density-independent
rates. Density-dependent consumption estimates aligned closely with
metabolic requirements in catchments with large—but not small—
shredder populations. Importantly, shredder abundance was not limited
by leaf litter availability, and catchment-level leaf litter supply was much
higher than estimated consumption. Thus leaf litter processing was not
limited by resource supply. Our work highlights the need for scaling up,
which accounts for intraspecific interactions.

Keywords: decomposition, Jensen’s inequality, leaf litter, macro-
invertebrates, scaling up, shredders.
Introduction

In an era of ongoing global change, a growing focus of
ecology is to understand what controls ecosystem function-
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ing and to predict future scenarios of ecosystem function
and services. Biodiversity is an important determinant of eco-
system functioning: the traits and dynamics of individuals
and species interact to determine the flow of energy and re-
sources through an ecosystem (Hines andGessner2012;Grace
et al. 2016; Moore and Olden 2017; O’Connor et al. 2017).
The number of species in a community is an important de-
terminant of its functioning, not just as a sum of these traits
and functions but also due to interactions between organisms,
which can be synergistic or antagonistic (Downing and Lei-
bold 2002; Carrara et al. 2015). Thus the relative abundance
of species is important because the presence of common or
dominant species, for example, can influence the relation-
ship between biodiversity and ecosystem function (Smith and
Knapp 2003; Dangles and Malmqvist 2004; Winfree et al.
2015). Relative abundance and community assembly are
increasingly being incorporated into biodiversity-ecosystem
function (BEF) frameworks (e.g., Bannar-Martin et al. 2018)
as well as being implicitly included in metrics such as even-
ness and functional diversity, which are sometimes associ-
ated with ecosystem function (Hillebrand et al. 2008).
The BEF framework has primarily focused on interspe-

cific interactions (but see Raffard et al. 2019). However,
intraspecific density-dependent interactions are also recog-
nized as important in almost all disciplines of ecology. For
example, they are a key requirement for the maintenance of
biodiversity, according to modern coexistence theory (Ches-
son 2000; Amarasekare 2003; McPeek 2012), and many
aspects of population dynamics are controlled by density
(Hassell et al. 1976; Brook and Bradshaw 2006). Yet intra-
specific competition and other density-dependent dynam-
ics rarely appear in BEF schemes partitioning the contri-
bution of different species in a community to ecosystem
function (however, see Parain et al. 2018). This is a surprising
gap because variation in intraspecific density is ubiquitous
in nature: there is considerable variation in species abun-
dances through space and time (Hanski 1990).
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Competition and Ecosystem Function 433
Thus, density-dependent control of ecosystem function
is not just potentially substantial in magnitude but could
be widespread. The consequences of this mechanism for
landscape-level ecosystem functioning remain unexplored,
particularly with regard to understanding the shape of a
density-ecosystem function (henceforth DEF). Nonlinear
relationships abound in nature and affect the accuracy of
scaling up (Harvey 2000), yet nonlinearities arising from in-
traspecific interactions are not currently taken into account.
Analogous to functional and temperature response curves,
nonlinear DEF relationships wouldmean that scaling up based
on knowledge of ecosystem function at one scale could greatly
over- or underpredict gross rates at a broader scale. This idea
is captured by Jensen’s inequality, which shows that for non-
linear functions, the mean value of the function across a set
of x values is not equivalent to the value of the function at
the mean of x (Jensen 1906), a property that has important
consequences for interpreting ecological data (Ruel and Ayres
1999;Martin and Huey 2008; Kingsolver 2009; Denny and
Benedetti-Cecchi 2012).
The DEF relationship may be most relevant in deter-

mining ecosystem functioning in cases where dominant
or highly abundant species contribute a large part of a spe-
cific ecosystem function. Widely known and large-effect-
size examples include salmon importing and exporting
nutrients to watersheds (Rüegg et al. 2011) and Daphnia
clearing lakes of phytoplankton, contributing to second-
ary production and controlling ecosystem metabolism
(Winder and Schindler 2004; Birtel and Matthews 2016).
In these cases, a large part of ecosystem function could be
predicted by understanding the dynamics of these key taxa,
without also considering the comparatively small contribu-
tions of rarer taxa. Furthermore, species richness is typically
lowerwhere a species is dominant both locally and regionally
(Hillebrand et al. 2008), meaning that even in local patches
where the dominant species is absent, theremay be few other
species to provide the same function. For example, in a
French stream network, the dominant shredding macro-
invertebrate declined in abundance with agricultural in-
tensity, but even where it was absent, there were no other
taxa that could replace its function in the decomposition
process (Piscart et al. 2009). Thus, spatial insurance effects
often associated with species turnover (Yachi and Loreau
1999; Loreau et al. 2003) were not present in a way that could
maintain this ecosystem function.
In fact, decomposition in freshwater ecosystems may

be an ideal setting to explore DEF relationships. Decom-
position regulates resource cycling and is particularly im-
portant in aquatic systems where terrestrial detritus can
make up a large portion of resource fluxes (Gounand et al.
2018). Furthermore, the characteristic spatial structure of
stream networks and the way in which aquatic organisms
are limited to dispersing through a stepping-stone arrange-
This content downloaded from 152.08
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ment of habitat patches can limit community assembly
(Drakou et al. 2009; Brown et al. 2011; Altermatt 2013;
Sarremejane et al. 2017; Little and Altermatt 2018a). Per-
haps partly as a result of this, communities of species con-
tributing to decomposition are characteristically less com-
plex in freshwater than terrestrial ecosystems (Hieber and
Gessner 2002), and as a result, density variation in those
few species could have a large impact (Jonsson andMalm-
qvist 2003; Klemmer et al. 2012). Decomposition (both in
aquatic and terrestrial systems) is less frequently consid-
ered in ecosystem function frameworks than is terrestrial
biomass production (Cardinale et al. 2011), which may
partly explain why DEF has received relatively little atten-
tion: for terrestrial producers, a high diversity of species
contributes to ecosystem function through time.
Here we investigate the relationship between intraspe-

cific density of two aquatic macroinvertebrate shredders and
their rate of leaf litter processing. To illustrate the potential
importance of a nonlinear DEF relationship, we then use these
DEF functions to scale up leaf litter processing estimates to
the catchment level. We do so across 10 independent head-
water stream networks, varying both in intraspecific density
of shredders and abundance of leaf litter. Previous scaling-
up approaches assumed density independence of leaf pro-
cessing rates and equal densities throughout a catchment
(e.g., Piscart et al. 2011). By contrast, we incorporate spa-
tial variance in shredder abundance and examine qualita-
tive differences in results from scaling-up scenarios with and
without this spatial variance, for two reasons. First, a pre-
vious meta-analysis of laboratory studies indicated density
dependence in per capita leaf consumption rates (Little and
Altermatt 2018c). Second, in this groupof shreddingmacro-
invertebrates, typically one species dominates locally, but the
dominant species varies in abundance over orders of mag-
nitudewithin a catchment (Welton 1979; Van den Brink et al.
1991; Altermatt et al. 2016; Little and Altermatt 2018a). This
creates an ideal scenario to test the concept of a DEF rela-
tionship whereby the abundance of these key taxa—rather
than species richness—could control decomposition and thus
would need to be considered in scaling-up predictions.
Methods

Study Organisms

We experimentally assessed effects of intraspecific density
on leaf shredding rates by two freshwater amphipod (Crus-
tacea, Amphipoda) species: Gammarus fossarum (Koch), a
relatively small species native to Central Europe, and Dike-
rogammarus villosus (Sowinsky), a relatively large species
native to the Ponto-Caspian region that has recently invaded
many regions worldwide (Van den Brink et al. 1991; Gal-
lardo and Aldridge 2015; Šidagytė et al. 2017). As a guild,
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amphipods are the dominant invertebrates in the shred-
ding functional group in many central European streams
(e.g., Piscart et al. 2009; Nery and Schmera 2015). Collec-
tion andmaintenance of study organisms are described in
appendix A (apps. A, B are available online).
Mesocosm Experiments

Mesocosms were built from 2-L plastic containers with
0.4 m2 of bottom surface area placed in a flowing-water
rack system with a mixture of stream and tap water. Con-
ditioned senescent alder leaves totalling 1.5 g (dry weight)
were placed in each mesocosm. Alder is commonly found
in benthic leaf litter samples in headwater streams in this
area (Little and Altermatt 2018b) and is a preferred food
source for these species (Little and Altermatt 2018c). For
each species, mesocosms were set up with fixed densities
of the target amphipod species: 50 replicates with one indi-
vidual, 20 replicates with two individuals, 10 with five in-
dividuals, 10 with 10 individuals, six with 20 individuals,
and six with 30 individuals per mesocosm. This 30-fold
density range is smaller than the 1100-fold density range
commonly observed in stream reaches (Little and Alter-
matt 2018a). The unbalanced number of replicates for each
density was chosen because per-mesocosm leaf consump-
tion was expected to be more variable in replicates with
fewer amphipods.
The leaf consumption experiments were run for 19

(G. fossarum) and 12 (D. villosus) days, respectively, at which
point leaves from the mesocosms were collected and dried
for 48 h at 607C and then weighed to calculate mass loss
from the beginning of the experiment. At least 0.65 and
0.55 g of leaf litter remained at the end of the experiment for
G. fossarum and D. villosus, respectively (representing ≥43%
and ≥36% of the resources initially available). Amphipods
were counted every 2–3 days throughout the experiments to
track mortality; overall, survival was 89.3% for G. fossarum
and 95.1% for D. villosus. These mortality estimates were
used to calculate an average amphipod density (individuals
per square meter) that the mesocosm experienced over the
length of the experiment. At the end of the experiment, am-
phipodswere sacrificed, dried for 48 h at 607C, andweighed.
Individuals that died during the course of the experiment
were assigned the global average weight of all amphipods
across the experiment. The average daily biomass in a meso-
cosm (mg m–2) was then calculated as the average density
multiplied by the average weight of all individuals in the
mesocosm. Twooutliers were removed from theG. fossarum
data set and three from the D. villosus data set, because their
consumption rate estimates were more than 3 SD from the
mean and substantially higher than any we had measured
in previous experiments (Little and Altermatt 2018c).
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DEF Models

For both amphipod species, we tested for the effects of den-
sity on leaf consumption using nonlinear models in R, ver-
sion 3.5.0 (R Core Team 2018). Initial data exploration and
linear models using transformed and nontransformed data
showed that these relationships were linear in log-log space
(for details, see app. A; figs. A1–A3; figs. A1–A4, B1, S1–S9
are available online). Therefore, we created negative power
functionmodels using the gNLS function in the nlme pack-
age, version 3.1-137 (Pinheiro et al. 2013) and weighted
data points by the variance in the response variable, since
there was higher variance around high estimates of leaf lit-
ter consumption across the experiment. For each species,
we created separate models of the relationships between
amphipod density and per-amphipod daily leaf consump-
tion and between amphipod biomass daily leaf consump-
tion per milligram of amphipod biomass.
Field Surveys and Scaling Up of Shredder Abundance

We scaled up estimates of leaf litter processing to the catch-
ment level by pairing the derived DEF equations with spa-
tially resolved population density data from field surveys.
We had previously assessed amphipod abundance in 10 head-
water stream catchments in eastern Switzerland predomi-
nantly inhabited by G. fossarum, where D. villosus was pres-
ent only rarely at the outlets (Altermatt et al. 2016; Little
and Altermatt 2018a); the latter species is more common
in rivers (Van den Brink et al. 1991). The goal of scaling up
was to demonstrate the consequences of nonlinear DEF rela-
tionships in natural ecosystems, so we focused on scaling
up G. fossarum, which is common in these catchments (but
see table S3 for scaling up with D. villosus; tables S1–S3,
A1 are available online). The full details of the field sur-
veys are described in Little and Altermatt (2018a), but briefly,
sampling points were established in April 2015 in every
∼250-m section of each stream. Amphipods were collected
using a kick net, and their density was estimated on a loga-
rithmic scale (0, 1–10, 11–100, 101–1,000, or 11,000 indi-
viduals/meter-long stream segment; segments had a me-
dian andmodal width of 1m,mean p 1:1550:55 m2 SD).
Below, we refer to these abundance estimates as bins.
For scaling up, we longitudinally divided each stream’s

mapped watercourse (swisstopo 2007) into 1-m segments and
used two different methods to estimate the total abundance
of amphipods in the catchment: inverse distance weighted
interpolation and proportional estimation. We simulated
spatial abundances of amphipods 1,000 times per catchment
using each method and averaged over the simulations to
extract catchment-wide predictions of abundance and pro-
cessing (see below).
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Inverse distance weighting (IDW) produces interpo-
lated data that varies smoothly in space as a function of
distance from measured sampling points, based on the
assumption that points close to one another are more sim-
ilar. Each IDW simulation began by assigning the catch-
ment’s sampling points (n p 9–15, depending on the
catchment) to a random abundance value within their ob-
served abundance bin (e.g., a random number between 11
and 100 for a bin with 11–100 individuals). Then using
thepackagegstat, version1.1-6 (Pebesma2004), each1-mseg-
ment was assigned an abundance based on its distance from
these 9–15 assigned points.
With the proportional estimation method, we removed

the assumption that nearby reaches are more similar to
one another and instead focused only on capturing the
observed variation in surveyed abundances. With this
method, we recorded the proportion of a catchment’s
sampling points that belonged to each abundance bin
(i.e., proportion of sampling points with zero amphipods,
proportion with 1–10 amphipods, etc.) and created a prob-
ability distribution of abundance bin assignment for the
catchment. For a simulation, every 1-m stream segment
was randomly assigned to an abundance bin based on this
probability function, and then the segments were assigned
randomabundances fromwithin the range of their assigned
bins (e.g., assigned to the 1–10 amphipod bin and then
assigned a random number between 1 and 10).
For each simulation, the 1-m segments were summed

to produce a catchment-level abundance estimate. The
1,000 simulations per catchment (per method) were sum-
marized with means and 95% confidence intervals (CIs).
Scaling Up Processing Rates to Real Catchments

We estimated whole catchments’ total leaf litter processing
rates per day based on these abundance estimates, under
two scenarios. In scenario 1, we multiplied the global aver-
age per capita processing rate from the G. fossarum density
experiment (i.e., average across all densities) by the total
population size of the catchment, a common way to scale
up consumption estimates (e.g., Piscart et al. 2011). In sce-
nario 2, we used the spatially varying amphipod densities
derived from the two estimation methods and applied the
experimentally derived G. fossarum DEF function to each
1-m stream segment before summing to the catchment level.
To compare these estimates to another frame of refer-

ence for understanding organisms’ food consumption rates,
we also estimated catchment-level leaf litter consumption
rates based on metabolic requirements. We converted the
total estimated abundance of G. fossarum in each catch-
ment to biomass by multiplying their number by the aver-
age dry mass of G. fossarum used in the mesocosm experi-
ments, 2.85mg.We then estimated the amount of leaf litter
This content downloaded from 152.08
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consumption required by this biomass of amphipods on an
annual scale, using three steps: (1) The production⁝biomass
ratio (P/B) represents the ratio of the new biomass P that
a population of current biomass B is expected to add annu-
ally. We set P/B at 3.5, as in prior woodland stream macro-
invertebrate work (Petersen et al. 1989); this is intermediate
between P/B estimates of congeneric taxa, including 4.29
for lake amphipods (Zhang et al. 2016), 4.65 for Gammarus
pseudolimnaeus in a river (Marchant andHynes 1981), and 2.6
for Gammarus pulex in a stream (Mortensen 1982). (2) Re-
sources are required both for production and basic meta-
bolicmaintenance; as such, theratioof respiration ⁝production
for macroinvertebrates has been estimated at 70 ⁝30 (Cum-
mins 1975), such that 0.3 is the production ⁝assimilation ra-
tio (P/A). (3) Finally, European freshwater amphipods have
a 0.4 assimilation ⁝consumption ratio (A/C) of conditioned
leaves (Gergs and Rothhaupt 2008). Thus, per milligram of
amphipod biomass, we inverted the P/A and A/C ratios and
calculated

consumption p biomass#3:5
P
B
#3:33

A
P
#2:5

C
A
:

For additional details on the metabolic requirement estima-
tion, see appendix B.
Leaf Litter Availability in Real Catchments

In parallel to assessing amphipod densities for scaling up
processing rates, we also assessed the availability (abun-
dance) of leaf litter in the stream catchments at the same
spatiotemporal resolution (Little and Altermatt 2018b).
This allowed us to put the processing rates into context
and could be used to determine whether processing of
leaves was donor limited (i.e., whether leaf litter was consis-
tently available as a food resource). We used two methods
to assess leaf litter supply and compare it to the estimated
demands from the scaling-up estimates. First, at the same
sampling points in the 10 catchments where we surveyed
amphipod abundance, we concurrently measured benthic
leaf litter standing stock four times over the course of a year
(Little andAltermatt 2018b). Briefly, at each sampling point
and at each sampling visit, the substrate of the 1-m-long
stream segment was classified into substrate types and veg-
etation and benthic leaf litter cover using a 1#1-m sam-
pling frame with 0:2#0:2-m grid lines (for details, see Lit-
tle and Altermatt 2018a, 2018c). Then all benthic leaf litter
was collected from a known subsample of area (mean area
collected p 0:03250:012 m2 SD), and the substrate area
of the subsample as a proportion of the total amount of
streambed covered in leaf litter in that stream segment
was used to calculate the standing stock of leaf litter (in g
dry weight m–2) at that sampling point.We a priori hypoth-
esized that amphipod distributions would be correlated
8.031.155 on March 17, 2020 05:43:24 AM
and Conditions (http://www.journals.uchicago.edu/t-and-c).



436 The American Naturalist
with leaf litter availability; however, this was onlyminimally
borne out in a joint species distributionmodel based on am-
phipod presence/absence (Little and Altermatt 2018a). To
assess whether amphipod abundance was correlated with
leaf litter availability, here we summarized the distribution
of benthic leaf litter standing stock measurements for each
abundance class of amphipods. We made a linear mixed-
effect model using the lme4 package, version 1.1-18-1 (Bates
et al. 2015), with benthic leaf litter as a fixed factor, sam-
pling point and season as random factors to account for re-
peated sampling visits, and the square-root transformed
minimum of the abundance class as the response variable.
The significance of the fixed factor was assessed using a
type III analysis of variancewith Satterthwaite’smethod using
the lmerTest package, version 3.0-1 (Kuznetsova et al. 2015).
Second, we estimated annual leaf litter input to each of

the 10 catchments by combining field sampling with land
cover data. We deployed leaf litter traps (n p 8 per site,
collecting an area of 800 cm2 each) at six different sites
(three deciduous forest, one mixed forest, two agricul-
tural) during the fall leaf drop (September 8–December 1,
2015). We then paired this with data on land cover within
a 1-m buffer zone on either side of each stream (for de-
tailed methods, see app. B). This represents a conservative
estimate of leaf litter input because we did not measure
lateral blow-in, which occurs throughout the year and can
represent an additional ∼20%–50% of total leaf litter in-
puts to forested headwater streams (Fisher and Likens 1973;
Conners and Naiman 2008; Kochi et al. 2010).
Results

Our experimental data of per capita consumption rates and
density fit power functions with negative exponents (for fit-
ting details, see app. A). This was true when relating both
individual density to per capita leaf consumption (fig. 1)
and density of biomass to biomass-adjusted leaf consump-
tion (fig. A4). To confirm that these derived relationships
explained the density-dependent relationship with per capita
consumption rates, we calculated predicted per-mesocosm
total leaf consumption along a continuous gradient of am-
phipod densities. These curves (solid lines in right panels
of fig. 1) reasonably matched the actual per-mesocosm leaf
consumption rates, while linear extrapolations based on
density-independent, constant per capita consumption rates
overestimated total leaf consumption by orders of magni-
tude for any density greater than a few amphipods per square
meter (fig. 1). Data underlying this figure and all subsequent
analyses have been deposited in theDryadDigital Repository
(https://doi.org/10.5061/dryad.3124p62; Little et al. 2020).
Next we scaled up amphipod abundance estimates in the

10 study catchments. Estimates of whole-catchment abun-
dance ranged from hundreds (808 in Dorfbach) to millions
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(1.46 million in Mannenbach) of amphipods using the
IDW estimation method (table 1) and from thousands
(1,590 in Dorfbach) to millions (1.43 million in Seebach)
using proportional estimation (table S1).
In an example catchment, the Chesselbach (for all other

catchments, see table S1; figs. S1–S9) IDW interpolation
from 13 sampling points (fig. 2) produced an estimate of
∼720,000 amphipods in the catchment (mean of 1,000 sim-
ulations: 720,719; 95% CI: 709,980–731,456). Using the
mean experimental per capita consumption rate (12.5 mg
amphipod–1 day–1) to derive leaf processing (scenario 1)
yielded a mean of 9.02 kg of leaf litter (dry weight) pro-
cessed per day. Applying the experimentally derived nega-
tive DEF relationship to the spatially varying interpolated
densities in the catchment (scenario 2) resulted in a mark-
edly lower predicted processing rate, in this case, a mean of
0.3 kg per day. Indeed, in all but one (the most sparsely oc-
cupied) catchment, estimates of total leaf litter processing
were lower using the experimentally derived DEF relation-
ship than when using a density-independent processing
rate (table 1). The mismatch was substantial: not account-
ing for density dependence resulted in leaf processing rates
up to 50 times higher in some catchments. Results were
similar when based on proportional abundance estimations
(table S1). However, average consumption rates will neces-
sarily vary across experiments depending on the densities in
experimental units, as we demonstrate in figure 1, so the
global average consumption rate from our experiment—
which includes both a wider range of densities and a higher
maximum density than typically used in amphipod leaf
consumption experiments (Little and Altermatt 2018c)—
may actually lead to a less drastic overestimation thanwould
be produced by using average consumption rates from ex-
periments that used only single-individual mesocosms, for
example. The processing estimates based on scenario 2 cor-
responded well with estimated metabolic requirements for
amphipod populations of the estimated size (table 1). In all
catchments with total abundance greater than 500,000 am-
phipods, which corresponded to average densities of more
than 100 amphipods per meter of stream length, the meta-
bolic estimate was within 50% of the scenario 2 estimates.
The scenario 1 estimates, by contrast, were 50 times greater
than the estimated metabolic requirements.
Greater benthic leaf litter standing stock did not corre-

spond to higher abundances of amphipods (fig. 3): the
fixed and random factors combined explained more var-
iance (conditional R2 p 0:29) than the fixed factors alone
(marginal R2 p 0:01), and the fixed factor of leaf litter
availability was not significantly associated with amphi-
pod abundance (F1, 402 p 0:14, p p :70). This was con-
gruent with its overall low contribution to variation in
amphipod presence/absence when assessed together with
other explanatory variables such as water chemistry, land
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use, and microhabitat (Little and Altermatt 2018a). How-
ever, low values of standing stock could be due tomultiple
mechanisms, including low input rates, high processing
rates, or flushing downstream. Therefore, we also esti-
mated total leaf litter input rates. From leaf litter traps
deployed in forested areas capturing vertical litter fall
during the fall leaf drop period, an average of 478 g m–2

(dry weight) of litter inputs were available annually
(range: 373–509 g m–2, n p 4 sites; fig. A4). We then
mapped these inputs onto land cover patterns in the
catchments. All but four catchments had 150% of their
1-m buffer zone in forested areas, and these four catch-
ments had 53%–91% of their buffer area in riparian strip
This content downloaded from 152.08
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vegetation (fig. 4A). Overall, nonshrub/tree cover accounted
for only 2%–28% of the near-stream buffer zone, except for
one outlier catchment (Seebach), for which it represented
47% of the buffer area (fig. 4A). Seebach thus had the lowest
estimated leaf litter inputs (77 kg year–1), while the other
catchments received an estimated 1,084–3,533 kg of leaf lit-
ter from their directly adjacent vegetation annually (fig. 4B).
For most catchments, this was substantially more leaf litter
than we estimated to be consumed annually under sce-
nario 2, which incorporated spatial heterogeneity in abun-
dances as well as density-dependent consumption (fig. 4B).
At the extremes, in a sparsely inhabited but heavily vege-
tated catchment(Dorfbach), inputwas700timestheestimated
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Figure 1: Left, negative power functions relating density and per capita consumption rates for Gammarus fossarum (consumption p
38:6#density20:87; top) and Dikerogammarus villosus (consumption p 49:7#density20:81; bottom) in mesocosm experiments. Gray shading
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consumption requirement, while in a densely inhabited but
sparsely vegetated catchment (Seebach), it was only eight
times the estimated consumption.
Discussion

As ecology moves toward a more predictive science, a cen-
tral challenge is that mechanisms underlying a response ob-
served at one scale—for example, ecosystem function—are
occurring at a different scale (Levin 1992). In this context,
the nonlinear relationships abundant in nature present chal-
lenges for scaling up. Often, it may be necessary to incorpo-
rate variance in the explanatory variable—and not simply
mean values—for predictions to be accurate: as Jensen’s in-
equality states, variance and skewness influence the integrals
of nonlinear functions (Ruel and Ayres 1999; Martin and
Huey 2008; Denny and Benedetti-Cecchi 2012). Using exper-
imental manipulations at the level of individual small organ-
isms, we found that local population density had a strong
effect on leaf litter processing rates of two dominant fresh-
water detritivores and thus their per capita (or per bio-
mass) contribution to ecosystem function. At the reach
This content downloaded from 152.08
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scale, the shape of this DEF relationship meant that esti-
mated ecosystem function was similar across stream reaches,
even when there was substantial spatial heterogeneity in
organismal abundances. At the landscape scale—that is,
the scale of riverine networks—the shape of this non-
linear relationship had strong implications for scaled-up
predictions of ecosystem function, because population
density increases much faster than its corresponding eco-
system function. As a result, ecosystem function predic-
tions based on our experimentally derived DEF relation-
ship were more than an order of magnitude lower than
predictions made using more simplistic, mean-based esti-
mates. Predictions based on DEF relationships also better
aligned with the estimated consumption rate needed to
meet the metabolic requirements of a catchment’s popula-
tion. Thus neglecting the role of density may systematically
bias estimates of ecosystem function and lead to unrealistic
predictions.
Intraspecific competition for resources is an essential

regulator of population dynamics. Here we demonstrate
that intraspecific density could also regulate leaf litter
processing, a key ecosystem function globally providing
Table 1: Total amphipod abundance estimated using inverse distance weighted interpolation from field sampling
and three estimates of whole-catchment leaf litter processing (grams/day)
Stream name
 n

Length
(km)
Total
abundance
Scenario 1
processing
8.031.155 on March
and Conditions (htt
Scenario 2
processing
 17, 2020 05:43:24 AM
p://www.journals.uchicago.
Metabolic
requirement
Chesselbach
 13
 4.5
 720,719
 9,023.9
 325.9
 164.1

(51,035)
 (5134.4)
 (5.6)
 (5.2)
Dorfbach
 15
 4.3
 808
 10.1
 10.0
 .2

(56)
 (5.3)
 (5.2)
 (5.0)
Eschlibach
 12
 4.1
 1,135,006
 14,211.1
 324.3
 258.5

(51,249)
 (5160.6)
 (5.5)
 (5.3)
Hepbach
 13
 3.8
 231,020
 2,892.5
 182.5
 52.6

(5622)
 (574.4)
 (5.7)
 (5.1)
Imbersbach
 11
 3.3
 139,222
 1,743.2
 121.4
 31.7

(5613)
 (549.7)
 (51.2)
 (5.1)
Mannenbach
 15
 4.8
 1,464,130
 18,331.9
 392.4
 333.4

(51,408)
 (5196.1)
 (5.6)
 (5.3)
Seebach
 11
 3.2
 1,370,115
 17,154.8
 270.8
 312.0

(51,250)
 (5153.2)
 (5.4)
 (5.3)
Tobelmühlibach
 12
 3.7
 696,563
 8,721.5
 247.4
 158.5

(51,081)
 (5118.7)
 (5.5)
 (5.2)
Unnamed
stream 1
 9
 2.8
 518,543
 6,492.5
 177.7
 118.1
(5849)
 (5133.0)
 (5.7)
 (5.2)

Unnamed

stream 2
 10
 3.6
 317,053
 3,969.7
 241.4
 72.2

(5672)
 (570.7)
 (5.5)
 (5.2)
Note: The first two processing scenarios are based on our laboratory data of leaf litter consumption rates: scenario 1 assumes density-independent per capita
processing, while scenario 2 assumes density-dependent leaf consumption calculated for each stream reach’s interpolated density. The third estimate is based
on the metabolic requirement for growth and respiration, assuming 40% assimilation of ingested leaf litter. Estimates are means of 1,000 simulations of total
abundance, with 95% confidence intervals shown in parentheses. For streams, n gives the number of sampling points in the catchment, while length equals
total stream length in the catchment.
edu/t-and-c).
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terrestrial resources to freshwater ecosystems (Tank et al.
2010; Hines et al. 2016; Gounand et al. 2018). Previously,
leaf litter processing was shown to vary nonlinearly with
abundance of macroinvertebrates, which was attributed
to intraspecific competition for resources at high densities
(Klemmer et al. 2012). However, in our experiments, re-
sources were not limiting, and per capita leaf processing
decreased even at relatively low densities. Thus, we suggest
two reasons for higher per capita consumption at lower
densities. First, we find it likely that interference competi-
tion (Schoener 1983)—competition for space rather than
food resources (Moksnes 2004; Ward et al. 2007)—gener-
ated some of these nonlinearities. Second, our estimates of
the metabolic requirements of different catchments’ popu-
lations suggest that individuals consumemore than needed
at low densities, while this interference competition reduces
consumption rates to the metabolic minimum at high den-
sities. In the broader context of scaling up, all mechanisms
of intraspecific interaction, including exploitation and in-
terference competition, are important as they could shape
DEF relationships.
One main consequence of a nonlinear DEF relationship

is that predictions at the landscape scale become challeng-
ing. This is especially relevant for organisms that are known
to vary in their abundance locally over several orders of
magnitude, such as the dominant shredders studied here.
In our case, neglecting the role of density would lead to
vast overestimates of ecosystem function; in other contexts
(species, relationships, and functions), the reverse may be
true. Here the magnitude of overestimation depends on
the mean consumption rate used for density-independent
scaling up.Mean consumption rates fromexperimentswhere
individuals were kept in tanks at a high density would lead
to less drastic overestimation than those from experiments
where individuals are kept alone in microcosms, as is com-
mon in amphipod laboratory experiments (reviewed in Lit-
tle and Altermatt 2018c). Thus, knowing the DEF curve
could help identify which experimental data could lead to
less biased scaled-up estimates, even where linear extrapola-
tions are used. Connecting nonlinear population dynamics
and spatial heterogeneity led to the development of scale
transition theory (Melbourne and Chesson 2005; Chesson
2012), which has been applied to populations and commu-
nities and should be expanded to ecosystem-level processes.
This nonlinear spatial averaging effect is likely to be of inter-
est for optimizing regional ecosystem function. For exam-
ple, extremely high densities of organisms may not provide
the most bang for their buck in contributing to ecosystem
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Figure 2: Hot spots of abundance (top) and leaf litter processing
(center, bottom) in the Chesselbach stream catchment (outlined in
yellow), based on scaling up abundance data from 13 sampling
points up to longitudinal abundance distributions using inverse
distance weighted interpolation. Daily processing rates were calcu-
lated by multiplying the interpolated abundance in a 1-m section
of stream length by either the average per capita consumption rate
of Gammarus fossarum (center) or the experimentally derived neg-
ative power function relating G. fossarum density to per capita leaf
litter consumption (bottom). This figure shows the mean of 1,000
simulations of the interpolation process. Because stream reaches
with higher densities of individuals have the lowest per capita
processing rates, the spatial distribution of leaf litter processing
under this scenario is very different from the spatial distribution
of amphipod abundance, with the effect of homogenizing ecosys-
tem function in space despite having heterogeneous biomass. Data
sources: swisstopo (2010, 2014).
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function, since each additional individual contributes less
and less; as such, some intermediate abundance may lead
to maximal functioning. In another perspective, this could
be an argument formaintaining environmental heterogene-
ity and patches with high and low organismal abundance
throughout a landscape. Even patches with relatively low
density may have good ecosystem function, but source
patches with high density are needed in order to supply
colonists for sink patches, which aremore subject to demo-
graphic stochasticity (Hanski and Simberloff 1997), even if
those high-density patches do not necessarily have sub-
stantially higher ecosystem function themselves.
Our scaling-up exercise relies on several simplifying

assumptions, discussed in full in table S2. One central as-
sumption was that the taxa in question are providing the
bulk of the ecosystem function studied. Indeed, amphipods
are numerically dominant among all macroinvertebrates
in many European forested headwater streams, and their
shredding function cannot easily be replaced by other taxa
(Piscart et al. 2009;Nery andSchmera 2015). Furthermore, in
these forested headwaters, our two lines of evidence sug-
gested that abundance of these consumers—rather than
leaf litter supply rates—should limit leaf litter processing
(figs. 3, 4). First, higher shredder abundances are not associ-
ated with higher leaf litter standing stock. Locally, leaf litter
availability remained high even in some reaches with high
This content downloaded from 152.08
All use subject to University of Chicago Press Terms 
densities of shredders. This was matched by our catchment-
scale examination of leaf litter supply. Annual leaf litter
inputs—estimated using several intentionally conserva-
tive assumptions—are one to several orders of magnitude
greater than estimated consumption by spatially heteroge-
neous shredder populations feeding according to density-
dependent behavior. Our measurements of vertical input
during fall leaf were consistent with published estimates
of annual leaf litter input from forested and riparian shrub
habitats in the Northern Hemisphere (reviewed in Conners
and Naiman 2008). While there is spatiotemporal variation
in the availability of this annual input, a substantial amount
is stored in streams by debris dams, snags, and other features
(Tank et al. 2010) and remains available for many months
(Little and Altermatt 2018c). At the same time, leaf litter is
transported downstream. While many inputs are retained
near their point of entry, benthic leaf litter standing stock
is not strongly driven by local vegetation characteristics and
is rather redistributed through a stream network (Little and
Altermatt 2018b) and thus available to consumers distant
from its point of origin. Leaf litter inputs are more likely to
be limiting in larger rivers, where inputs are an order of mag-
nitude less per unit area (Naiman and Decamps 1997).
Some other assumptions (table S2) limit the quantita-

tive realism of our scaling-up exercise but should not al-
ter our main conclusions. For example, it is unlikely that
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the DEF relationship has the same parameters in natural
streams with complex habitats as it does in simplified lab-
oratory mesocosms. However, a negative power relation-
ship should produce similar qualitative results in terms
of identifying areas of the landscape with higher versus
lower leaf litter processing, even if the shape of the density-
consumption relationship was somewhat different. To ex-
plore this further, we recalculated the scaled-up estimates
of whole-catchment leaf litter processing using the experi-
mentally derived parameters for D. villosus rather than G.
fossarum (table S3). The two parameters differed by ∼25%
and ∼6% between the two species, which belong to different
genera and are functionally distinct (Little and Altermatt
2018c). Catchment-scale leaf litter processing was quanti-
tatively different (and higher) when parameterized with
the D. villosus curve, but the rank order of total leaf litter
processing between catchments was the same for almost all
catchments (table S3); that is, qualitative differences between
catchments were reproduced.
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Futurework should consider howothermechanismsmight
modify the DEF relationship and its implications for scal-
ing up. For example, we focused on a single trophic level of
consumers, but interspecific interactions including compe-
tition and predation also influence behavior, consumption
rates, and ecosystem function (Werner and Peacor 2003;
Hines and Gessner 2012); a multitrophic examination of
the effects of dominant species density on ecosystem func-
tion is needed, including for cases unlike ours where re-
sources are limiting and there is a functional response by
consumers. Leaf litter quality and diversity could potentially
affect the shape of DEF relationships by altering resource
quality. It would also be of interest to investigate the as-
sumption that the DEF relationship was the same in all
patches, perhaps using simulation studies; habitat heteroge-
neity may alter organisms’ perception of density and thus
their behavior. Likewise, we doubt that temporal variation
in the parameters of the DEF relationship would alter qual-
itative results; however, simulations could explore how
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seasonal changes in water temperature and population age/
size structure (Pöckl et al. 2003) would affect quantitative
predictions of catchment-scale ecosystem function. Nota-
bly, some of these assumptions (such as seasonality and
temporal averaging) could affect all extrapolations from
laboratory to field estimates, regardless of whether density
dependence is incorporated.
Our results expand the current understanding of biodi-

versity effects on ecosystem function to include density-
dependent effects on ecosystem function, recognizing that
nonlinear dependencies are prevalent and important (Grace
et al. 2007; O’Connor et al. 2017). In fact, the two frame-
works are related: release from intraspecific competition has
been discussed as a mechanism through which increasing
species richness accelerates ecosystem function (Jonsson
andMalmqvist 2003;Weis et al. 2007; Patrick 2013). Con-
necting plot- and patch-level results to real, complex eco-
systems and larger scales is recognized as one of the biggest
challenges in ecosystem function research, with some de-
bate as to the success of efforts to date (Hewitt et al. 2007;
Snelgrove et al. 2014; Eisenhauer et al. 2016;Wardle 2016).
Our results suggest that in some contexts, DEF may be ex-
tremely important: even without considering interactions
with other species, intraspecific dynamics can be a strong
control on ecosystem function, and thus accounting for
organisms’ interactions will be essential in determining
the drivers of ecosystem function.
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