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Abstract: Urban pluvial flood models need to be calibrated with data from actual flood events in order to validate 15 

and improve model performance. Due to the lack of conventional sensor solutions, alternative sources of data 16 

such as citizen science, social media, and surveillance cameras have been proposed in literature. Some of the 17 

methods proposed boast high scalability but without an on-site survey, they can only provide proxy measurements 18 

for physical flooding variables (such as water level). In this study, the potential value of such proxy measurements 19 

was evaluated by calibrating an urban pluvial flood model with data from experimental flood events conducted in 20 

a 25x25 meter facility, monitored with surveillance cameras and conventional sensors in parallel. Both ideal proxy 21 

data and actual image-based proxy measurements with noise were tested, and the effects of measurement 22 

location and measurement noise were investigated separately. The results with error-free proxy data confirm the 23 
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theoretic potential of such measurements, as in half of the calibration configurations tested, ideal proxy data 24 

increases model performance by at least 70% compared to sensor data. The presence of complex correlated 25 

errors, which has a complex but predominantly negative effect on performance. 26 
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1 Introduction 27 

1.1 The need for flood monitoring data 28 

Urban pluvial floods, also known as nuisance floods or flash floods, occur when a city’s drainage system does not 29 

have the capacity to drain local rainfall during storms. As climate change increases the frequency of extreme 30 

rainfall events (Field et al., 2012), it is expected that the frequency and intensity of urban pluvial floods will also 31 

increase. Such flooding is further aggravated by the reduction of pervious surfaces due to urbanization (Skougaard 32 

Kaspersen et al., 2017). According to certain studies, the societal cost of urban pluvial flooding is comparable to 33 

that of coastal or river flooding, because these tend to occur less frequently (Jiang et al., 2018; ten Veldhuis, 2011). 34 

The issue of urban pluvial floods is of growing importance and demands adequate planning and mitigation tools. 35 

To assess the risk of urban pluvial flooding and design prevention solutions, urban drainage experts use numerical 36 

models tools to simulate the flow and accumulation of water in urban catchments. These models can be of varying 37 

complexity depending mainly on how surface flow is represented, the completeness of the flow equations solved 38 

(if any), and the complexity of sewer-surface interactions (if any). Overviews of the different numerical models 39 

used for urban flood modelling can be found in literature (Ochoa-Rodriguez et al., 2015; Zoppou, 2001). 40 

Regardless of the model used, there are often parameters with poorly defined values, which can introduce 41 

uncertainty in the modelling results. But despite the recognized necessity of calibration to reduce these 42 

uncertainties, calibration of urban drainage models is rarely performed in practice (Tscheikner-Gratl et al., 2016). 43 

The probable cause for this is a lack of monitoring data (Thorndahl et al., 2008), a problem that is aggravated when 44 

it comes to measuring surface flooding. Conventional sensors designed for sewer pipes or well-defined channels 45 

are not suited to the open urban environment with its complex geometries, moving objects, and risk of vandalism. 46 

1.2 Proxy water level measurements from images 47 

The difficulty in monitoring urban pluvial floods with conventional sensors has encouraged researchers to explore 48 

alternative sources of flooding data such as social media (Assumpção et al., 2018; Chaudhary et al., 2019; Hénonin 49 

et al., 2015; Wang et al., 2018) or surveillance cameras (Bhola et al., 2019; Jiang et al., 2019; Leitão et al., 2018; Lv 50 
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et al., 2018; Moy de Vitry et al., 2019a). Of the different methods proposed, that of Moy de Vitry et al. (2019a) 51 

stands out because the measurements obtained do not correspond directly to a physical flooding variable, but 52 

instead contain information on how the water level changes over time. The method exploits the assumption that 53 

the amount of visible water in the images of a static surveillance camera is associated with the actual flooding 54 

water level. Concretely, the method uses a deep convolutional neural network (DCNN) to periodically segment 55 

water in images from a static surveillance camera. The area covered by water in each image is expressed as a 56 

fraction of the whole image and called the static observer flood index (SOFI). When the method was proposed, it 57 

was tested on a range of different surveillance video qualities and contexts (outdoors and indoors, during night 58 

and day, etc.). The initial results showed that SOFI data had an average correlation of 75% with the actual water 59 

level, although the variability between videos was high (minimum of around 35%, maximum around 90%). This 60 

correlation, though imperfect, established SOFI as a proxy measurement for flood water level. The original 61 

publication describes the method and results in detail and lists measures by which the quality of the SOFI 62 

measurements can be improved. 63 

Although the information type provided by SOFI is non-standard, the method has a potential advantage in 64 

scalability that justifies further study: in principle, the assumption SOFI relies on (association of water level with 65 

visible water) is so general that SOFI can be applied to any static surveillance camera footage without the need for 66 

any on-site measurements. Thus, SOFI is well suited to very large networks of surveillance cameras, especially 67 

those for which privacy is an issue and human access to the footage is restricted. 68 

1.3 Hydraulic and hydrologic model calibration with proxy measurements 69 

A measurement can be considered a proxy for a physical variable if it has a correlation with that variable. In urban 70 

pluvial flood modelling, proxy measurements could be obtained via surveillance cameras, as described in Section 71 

1.2, or from conventional sensors that were not correctly calibrated. Proxy measurements differ from conventional 72 

sensor data in that they contain information not in the absolute values of the data but in the shape of the data 73 

series. As proxy measurements cannot be directly compared with the values of a model simulation, metrics like the 74 

Nash-Sutcliffe efficiency, which is commonly used for model calibration, cannot be used. Despite this challenge, 75 
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the lack of suitable sensing techniques motivates the investigation of how proxy measurements could help 76 

calibrate urban pluvial flood models.  77 

While there are no known examples from urban flood modelling, model calibration with proxy measurements has 78 

been performed in stream hydrology, where van Meerveld et al. (2017) investigated the value of stream level 79 

classes reported by citizen scientists. The authors successfully used the Spearman rank correlation coefficient 80 

(Spearman, 1904) as an objective function for calibration, to maximize correlation between observed stream level 81 

classes and the linked but not equivalent stream discharge represented as a state variable. The Spearman rank 82 

correlation has also been used in another study (Jian et al., 2017) to calibrate a hydrologic model with water level 83 

data without a rating curve, which is an equivalent problem. 84 

1.4 Objective of the current study 85 

The objective of this study is to assess the value of proxy measurements, as compared to data from conventional 86 

sensors, when calibrating an urban pluvial flood model. The motivation to investigate proxy measurements from 87 

alternative data sources is the need for monitoring data for numeric model calibration and the lack of conventional 88 

sensor solutions. In particular, the study uses the SOFI method (Moy de Vitry et al., 2019a) as a possible source of 89 

proxy measurements. Using a large lab-like setup, the study first investigated the potential value of ideal, noise-90 

free proxy data under different measurement configurations. Second, the study investigated the impact that noise 91 

in proxy measurements have on model performance after calibration. Noise with a complex correlated structure 92 

and with a Gaussian distribution were considered separately. Due to the restricted dimensions of the setup and 93 

the experimental nature of the flooding events simulated, the aim of this study was primarily of exploratory 94 

nature, to assess the novel concept of urban pluvial flood model calibration with proxy water level measurements. 95 
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2 Material and methods 96 

2.1 Experimental urban catchment for flood events 97 

The data used in this study was collected in a 25x25 meter lab-like facility. The facility is a simplified urban 98 

catchment with a drainage network and a small building with a basement that can be flooded (Fig. 1). Designed for 99 

training civil protection forces for flood events, the facility was temporarily outfitted with sensors and cameras to 100 

collect unique datasets that were documented and shared in previous work (Moy de Vitry et al., 2017). The 101 

datasets provide both conventional monitoring data and surveillance video documentation for multiple flash flood 102 

events. Despite the facility’s limited size, it was possible to reproduce different phenomena common to urban 103 

pluvial flooding such as shallow overland flow, manhole overflow, ponding, and basement flooding. However, 104 

rainfall-runoff processes could not be reproduced in the catchment. 105 

From the original experiments, four sensors and one camera were selected for inclusion in this study. A magnetic 106 

inductive flow meter provides data about the flow of water into the system and three ultrasonic water level 107 

sensors provide flood level data at three separate locations of the catchment. The ultrasonic sensors and camera 108 

provide the calibration data for this study as described in Sections 2.2, 2.3, and 2.6. 109 

 110 

Figure 1: Hydraulic diagram of the experimental facility in which this study was conducted, including the locations of sensors used and 111 

component codes used for modelling. 112 
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Each flood event consisted in manually regulating a valve to let water from a reservoir into the facility. For the 113 

present study, five flood events with different characteristics were used (Tab. 1 and Fig. 2). The flood events were 114 

selected based on sensor availability, lighting conditions for the cameras, and the occurrence of flooding in the 115 

basement. 116 

Table 1: Characteristics of the flood events used in this study. 117 

 Duration Volume [m3] Flooding in basement original event ID1 

Event 1 00:16:00 33.3 Yes 20 

Event 2 00:17:00 26.5 No 21 

Event 3 00:20:40 34.5 Yes (minimal) 22 

Event 4 00:19:00 31.4 No 23 

Event 5 00:26:00 77.1 Yes 241 

1: Identifier used in published datasets (Moy de Vitry et al., 2017) 118 
2: Experiment 24 is not listed for use in published datasets (Moy de Vitry et al., 2017) because a plastic cone rolled in front of surface flow 119 

sensor during the experiment. The affected surface flow data is not used in the current study. 120 

 121 
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 122 

Figure 2: Hydrographs of the five flood events used in study. The hydrographs represent the flow into the facility measured with a magnetic-123 

inductive flow meter. 124 

2.2 Conventional sensor data 125 

Data from five conventional sensors were used to support this study. Flow into the facility was measured with a 126 

magnetic-inductive flow meter situated in the pipe leading to the inlet of the flood facility. This inflow data was 127 

used as input data for the SWMM model. In addition, three ultrasonic rangefinders provide water level at three 128 

locations where accumulation would occur: the pond, basement, and outlet shaft. The error of these sensors is 129 

assumed to be negligible. Ultrasonic water level data is both used as reference data and is degraded into ideal and 130 

noisy proxy data. The characteristics of each sensor are listed in Tab. 2.  131 
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Table 2: Conventional sensors used to collect data for calibrating the urban pluvial flooding model. 132 

Location Sensor type Variable Frequency Purpose 

Inflow Magnetic-inductive flow meter1 Discharge [l/s] 1 Hz Model input 

Pond Ultrasonic rangefinder2 Water depth [m] ~5 Hz3 Calibration / validation 

Basement Ultrasonic rangefinder2 Water depth [m] ~5 Hz3 Calibration / validation 

Outlet shaft Ultrasonic rangefinder2 Water depth [m] ~5 Hz3 Calibration / validation 

1: Endress+Hauser Proline Promag 53P 133 
2: Maxbotix MB7369 134 
3: Sampling frequency is variable 135 

2.3 Proxy water level measurements 136 

In this study, the SOFI measurement method introduced by Moy de Vitry et al. (2019a) and briefly described in 137 

Section 1.2 was investigated as a proxy for water level. Different qualities of SOFI data, both real and hypothetical, 138 

are explored. Table 3 provides an overview of the data series created, which are explained in the following 139 

sections.  140 
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Table 3: Proxy data used to calibrate pluvial flood model. 141 

Name Quality1 Error type Data source Locations 

IDEAL-100 100%  Negligible  normalized sensor data Pond, basement, outlet 

RAW2 40-80% Complex correlated surveillance footage3 pond 

GAU-60 60% Gaussian synthetic4 pond 

GAU-70 70% Gaussian synthetic4 pond 

GAU-80 80% Gaussian synthetic4 pond 

GAU-90 90% Gaussian synthetic4 Pond 

COR-60 60% Complex correlated synthetic5 pond 

COR-70 70% Complex correlated synthetic5 pond 

COR-80 80% Complex correlated synthetic5 pond 

COR-90 90% Complex correlated synthetic5 pond 

 142 
1: Quality is measured by the Spearman rank correlation with the sensor data. There are slight variations (<2%) between events due to the 143 

method for generating synthetic proxy data (see Section S1 in the supporting information for details). 144 
2: The RAW SOFI data is not used for calibration directly since its quality is highly variable (see supporting information for details). 145 
3: Extracted from footage after Moy de Vitry et al. (2019) 146 
4: Linear combination of IDEAL-100 and Gaussian noise 147 
5: Linear combination of IDEAL-100 and RAW 148 

2.3.1 Raw proxy measurements from surveillance cameras 149 

Raw proxy measurements (RAW) were obtained from surveillance footage of the pond, using the SOFI method 150 

described in Section 1.2 and by Moy de Vitry et al. (2019a). As can be seen in the example frame provided in Fig. 4, 151 

the image quality did not always allow clear differentiation between flooded and wet surfaces. This ambiguity is 152 

reflected in the results of the DCNN prediction and in the proxy measurements, where noise with a complex 153 

correlation structure is visible (Fig. 3f). The Spearman correlation of the raw proxy measurements with the sensor 154 

data varies between 40% and 80% from event to event (see Tab. S1 in the supporting information). 155 

2.3.2 Synthetic ideal proxy data 156 

Ideal proxy data (IDEAL-100) was created by normalizing water level sensor data, thus retaining 100% correlation 157 

with the water level but losing all absolute water level information. It represents “perfect” proxy measurements 158 

that could be obtained if the image segmentation was improved to be error-free and if moving visual obstructions 159 

could be avoided (Fig. 3a). Although proxy data of such high quality may not be obtainable from surveillance 160 

cameras and automatic image analysis, such data could come from an uncalibrated water level sensor within the 161 
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sewer network. For the purpose of this study, these ideal synthetic proxy data allow the theoretic potential of 162 

proxy measurements for model calibration to be assessed. 163 

2.3.3 Synthetic proxy data with complex correlated noise 164 

To assess the impact of noise on the utility of proxy data for calibration, the level of noise in the raw proxy 165 

measurements was modified to predefined levels (COR-60 to COR-90, see Tab. 3). The modification was performed 166 

by linear combination of the raw proxy measurements with the ideal proxy data to achieve synthetic proxy data 167 

with the same noise structure as the raw proxy measurements (Fig. 3g-j). The method for combining the raw and 168 

ideal proxy measurements is described in the supporting information (Section S1). 169 

2.3.4 Synthetic proxy data with Gaussian noise 170 

Synthetic proxy data with pure Gaussian noise were created to provide further insight into the role of error 171 

structure on model calibration (GAU-60 to GAU-90, see Tab. 3). These synthetic proxy data (Fig. 3b-e) were created 172 

by linear combinations of Gaussian distributed noise with the ideal proxy data (as described in the supporting 173 

information in Section S1). The synthetic proxy data Gaussian noise were designed to have the same Spearman 174 

correlation with the sensor data as  the synthetic proxy data with complex correlated noise.  175 
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 176 

Figure 3: Proxy water level measurements for flood event 5. For example, GAU-90 is synthetic proxy data generated by combining the ideal 177 

proxy data with Gaussian noise such that the resulting signal has a 90% correlation with the sensor data (see Tab. 3). (a) Ideal synthetic 178 

proxy data, (b-e) synthetic proxy data with Gaussian noise, (f) raw proxy measurements derived from surveillance footage after Moy de 179 

Vitry et al. (2019a), and (g-j) synthetic proxy data with the same correlated noise as the raw proxy measurements. The percentages on the y-180 

axis indicate the Spearman correlation with sensor data. Data series for flood events 1-4 can be found in the supporting information. 181 
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 182 

Figure 4: Surveillance camera video frame of the pond. The wet ground and lighting make it difficult to distinctly identify floodwater. 183 

2.4 Hydraulic modelling with EPA SWMM 184 

To model the flood events, the EPA SWMM 5.1 software (Rossman, 2010) was used for both the drainage system 185 

and the surface flows. EPA SWMM (aka SWMM) is an established urban drainage modelling software that has the 186 

additional advantage of being open source, which facilitates dissemination of this work. SWMM only allows 187 

creation of one-dimensional models, but this was not critical thanks to the simplicity of the flooding in the 188 

experimental catchment. The surface flows, which had mostly been channeled with sandbags, were approximated 189 

as conduit links in the model. Depressions where water could pond were modeled as storage nodes with 190 

appropriate depth-area curves. The high similarity between simulations and measurements confirmed that the use 191 

of a 1D model was acceptable.  192 

2.5 Model calibration and evaluation 193 

2.5.1 Calibration parameters 194 

Seven parameters were selected for calibration based on the uncertainty or heuristic nature of their values. These 195 

parameters, including their respective value ranges, are provided in Tab. 4. These parameters were selected for 196 

calibration because their values were not measured or could not be directly measured during the experiments. The 197 

roughness of pipe p3 is considered separately from that of other pipes because pipe p3 has sharp bends that could 198 

increase flow resistance. 199 
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Table 4: SWMM calibration parameters and value ranges.  200 

Component Property Unit Lower limit Upper limit 

Weir w1 Height m 0.4 0.6 

Weir w1 Discharge coefficient m3 s-1 m-1 1.1 2.1 

Pipe p3 Manning’s roughness coefficient s m-1/3 0.009 0.03 

All other pipes Manning’s roughness coefficient s m-1/3 0.005 0.02 

Orifice r4 Discharge coefficient - 0.36 0.72 

Manhole m1 Discharge coefficient - 0.48 0.72 

Manhole m3 Discharge coefficient - 0.42 0.78 

 201 

2.5.2 Calibration algorithm 202 

Calibration was conducted with the Shuffled Complex Evolution - University of Arizona (SCE-UA) algorithm (Duan 203 

et al., 1993), a global search algorithm implemented in the SPOTPY Python package (Houska et al., 2018). The SCE-204 

UA algorithm begins with points sampled randomly in the parameter space and divided into groups (complexes). 205 

Optimization is conducted in cycles, wherein the complexes are incrementally optimized in parallel (complex 206 

competitive evolution). At the end of each evolution cycle, if stopping criteria are not met, then information is 207 

shared (shuffled) between all complexes and a new cycle begins. The competitive evolution gives SCE-UA efficiency 208 

and the complex shuffling exploits the information contained in the initial population. When the stopping criteria 209 

are met, the parameter combination that gave the best performance during the whole calibration procedure is 210 

retained. With the 10-fold repetition of each calibration exercise, a qualitative understanding of uncertainty can be 211 

gained. SCE-UA does not have parameters that need to be “tuned” (unlike algorithms such as simulated annealing), 212 

which is favorable for conducting automatic calibration on different combinations of data. 213 

2.5.3 Objective function for proxy data 214 

The original Spearman rank-order correlation coefficient (Spearman, 1904) measures the degree of association 215 

between two synchronous signals and was previously used for the study presented by van Meerveld et al. (2017) 216 
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to assimilate categorical proxy measurements for the water level of rivers. The Spearman rank-order correlation 217 

coefficient (or Spearman correlation) is suited for comparisons between signals of differing orders of magnitude, 218 

even with non-linear relationships. The coefficient is computed by first determining the relative rank of each signal 219 

value and computing the Pearson correlation coefficient between the ranks. For signals with duplicate values, 220 

ranks can be tied and the Spearman correlation 𝜌 is then given by 221 

𝜌 =
∑(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)

√∑(𝑥𝑖 − 𝑥̅)2 ∑(𝑦𝑖 − 𝑦̅)2
. 222 

where 𝑥𝑖  and 𝑦𝑖  are the ranks of the two signals for time step 𝑖, and where 𝑥̅ and 𝑦̅ are the mean ranks of the SOFI 223 

and water level signals, respectively. A Spearman correlation of 1 indicates a perfectly monotonic increasing 224 

relationship between two signals, whereas a correlation of 0 indicates absence of correlation (positive or negative) 225 

between two signals. In the present study, the implementation of the Spearman correlation of the pandas Python 226 

library (McKinney, 2010) was used. 227 

The Spearman correlation cannot be computed if all data points in one of the series has the same rank, as this 228 

leads to a division by zero. This was problematic for flood events 2 and 4 of this study, for which no flooding occurs 229 

in the basement, leading to all-zero values in the water level. In literature, the issue of undefined objective 230 

functions has been solved by modifying the objective function to remove singularities (Haupt et al., 2009). This 231 

solution is not satisfactory for the current problem, because although it would be possible to add terms to avoid 232 

singularity, the resulting function would have a constant value in situations without flooding. Thus, for flood events 233 

2 and 4, calibration with proxy data from the basement would not be possible. 234 

The solution found was to use the intersection over union (IoU) to evaluate the agreement between the proxy and 235 

sensor data when either signal has only zero values: 236 

𝐼𝑜𝑈 =  
𝑁𝑠0 & 𝑡0

𝑁𝑠0 | 𝑡0

 239 

where 𝑁𝑠0 & 𝑡0 is the number of time steps for which both the sensor data and proxy measurements have values of 237 

zero, and 𝑁𝑠0 | 𝑡0 is the number of time steps for which either the sensor data or the proxy data have values of 238 
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zero. The IoU also varies between 0 (no agreement) and 1 (perfect agreement). In this study, a hybrid Spearman 240 

correlation that combines the IoU and Spearman correlation was used to evaluate model simulations with proxy 241 

data: 242 

𝜌𝐼𝑜𝑈 = {
𝐼𝑜𝑈, 𝑖𝑓 𝑎𝑛𝑦 𝑠𝑖𝑔𝑛𝑎𝑙 ℎ𝑎𝑠 𝑜𝑛𝑙𝑦 𝑧𝑒𝑟𝑜 𝑣𝑎𝑙𝑢𝑒𝑠            

𝜌, 𝑖𝑓 𝑛𝑒𝑖𝑡ℎ𝑒𝑟 𝑠𝑖𝑔𝑛𝑎𝑙 ℎ𝑎𝑠 𝑜𝑛𝑙𝑦 𝑧𝑒𝑟𝑜 𝑣𝑎𝑙𝑢𝑒𝑠
 243 

Again, this metric reaches a value of 1 for “perfect” correspondence between the two signals. Another possible 244 

solution to the problem of signals with only zero values would have been to append identical non-zero values to 245 

both signals. 246 

2.5.4 Aggregated objective function 247 

The SCE-UA algorithm is a single-objective search algorithm, so when calibrating with multiple data sources the 248 

objective functions need to be aggregated. Aggregation of multiple objective functions is common in hydrological 249 

modeling. Madsen (2003) was among the first to demonstrate this approach for a catchment with multiple 250 

measurement locations and measurement types. More recently, Garcia et al. (2017) combined two objective 251 

functions to fit both high and low flow regimes. Vis et al. (2015) also used function aggregation, with the 252 

particularity of combining up to four objective functions of different types, the Spearman correlation being among 253 

them. In all cases, the aggregate objective functions lead to satisfactory model calibration. 254 

The aggregated objective function used in this study is a weighted sum of the root mean square of errors (RMSE) 255 

for available sensor data and the hybrid Spearman correlation (𝜌𝐼𝑜𝑈) for proxy data. Since the SCE-UA algorithm 256 

performs minimization of the objective function, the hybrid Spearman correlation was inverted so the best 257 

attainable value is zero. Additionally, the hybrid Spearman correlations were given a weight of 0.5 because the 258 

expected range of the Spearman correlation is about twice that of RMSE values: 259 

𝑂𝐹 = ∑ 𝑅𝑀𝑆𝐸𝑖

𝑖

+ 0.5 ∗ ∑ 1 − 𝜌𝐼𝑜𝑈𝑗

𝑗

 260 

Where 𝑖 represents locations where sensor data is available, and 𝑗 represents locations where proxy data are 261 

available. The weight of 0.5 was validated by comparing the distributions of the combined RMSE terms (𝜇=0.27, 262 
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𝜎=0.14) and the weighted Spearman terms (𝜇=0.36, 𝜎=0.11) for flood event 1, with all measurement locations and 263 

uniformly sampled parameters. 264 

2.5.5 Convergence criteria and computation cost  265 

The SCE-UA algorithm was run with seven simultaneous complex evolutions, mirroring the number of calibration 266 

parameters. Calibration was considered successful if the value of the objective function did not improve more than 267 

0.5% over five consecutive evolution cycles. The algorithm was capped by an upper limit of 2000 model runs, but 268 

this limit was rarely reached. A typical model calibration took approximately 1500 seconds on a computer with 8 269 

GB of RAM and an Intel® Core™ i7-3770K 3.5GHz processor. 270 

2.5.6 Evaluation of model performance with benchmarks  271 

Model prediction error was evaluated with the sum of RMSEs computed by comparing the simulated water level 272 

with the sensor data at the pond, basement, and outlet shaft. 273 

∑𝑅𝑀𝑆𝐸 =  𝑅𝑀𝑆𝐸𝑝𝑜𝑛𝑑 + 𝑅𝑀𝑆𝐸𝑏𝑎𝑠𝑒𝑚𝑒𝑛𝑡 + 𝑅𝑀𝑆𝐸𝑜𝑢𝑡𝑙𝑒𝑡  274 

While in practice the different errors are usually weighed based on the desired application of the model, the 275 

present model did not have a clearly defined application and differentiated weighting would be arbitrary. 276 

In order to evaluate model performance despite flooding events of different magnitudes, a model performance 277 

index was used to normalize each of the five flood experiments separately. Doing so makes it possible to aggregate 278 

the performance of multiple events without having one event with consistently large errors dominate the results. 279 

The performance index chosen, described by Seibert et al. (2018), uses an upper benchmark that represents the 280 

best attainable model performance with the available monitoring data, and a lower benchmark that represents the 281 

expected model performance attainable without monitoring data. 282 

In this study, the upper benchmark was computed using sensor data for water level at all three measurement 283 

locations, and the lower benchmark was computed as the median validation performance of 100 uncalibrated 284 

model realizations, where parameter values were sampled with Latin Hypercube Sampling (LHS). The normalized 285 
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performance 𝑝𝑖,𝑗  of a model calibrated with a combination 𝑖 of data sources (see Tab. 5 for the list of possible 286 

combinations)  and a flood event j can then be written as: 287 

𝑝𝑖,𝑗 =  
∑𝑅𝑀𝑆𝐸𝑙𝑜𝑤𝑒𝑟,𝑗 − ∑𝑅𝑀𝑆𝐸𝑖,𝑗

∑𝑅𝑀𝑆𝐸𝑙𝑜𝑤𝑒𝑟,𝑗 − ∑𝑅𝑀𝑆𝐸𝑢𝑝𝑝𝑒𝑟,𝑗

 288 

This normalized model performance 𝑝𝑖,𝑗  takes values between 0 and 1, with 0 corresponding to the performance 289 

of an uncalibrated model, and 1 corresponding to the performance of a model calibrated with all available data for 290 

that experiment. The normalized model performance is always evaluated on events that were not used for model 291 

calibration. 292 

Using the normalized performance, two aggregate performance indicators can be defined. First, the median model 293 

performance (𝑀𝑃𝑖) is the median normalized model performance of one or multiple combinations 𝑖 of data 294 

sources, and all flood events.  295 

𝑀𝑃𝑖 = 𝑚𝑒𝑑𝑖𝑎𝑛({𝑝𝑖,𝑗 ∶ 𝑗 ∈ (1, … ,5)}) 296 

Second, the marginal performance increase (𝑀𝑃𝐼𝑖,𝑘) is the median change in performance 𝑀𝑃 when adding an 297 

additional data source 𝑘 (either sensor data or proxy data) to a given combination 𝑖 of data sources. The MPI 298 

provides a way to quantify the benefit of additional sensor or proxy data to a system in which some monitoring 299 

data is already available. 300 

2.6 Calibration experiments 301 

2.6.1 Calibration with ideal proxy data 302 

In these experiments, the value of calibrating with ideal (noise-free) water level proxy data was compared to the 303 

value of calibrating with actual water level sensor data, holding all other experimental variables like sensor 304 

location and measurement errors constant. To perform this comparison, the SWMM model was calibrated with 305 

different combinations of either sensor data or the corresponding proxy data at the three monitoring locations 306 

(pond, basement, or outlet shaft). For example, proxy data from the pond and sensor data from the outlet shaft 307 

are one possible combination, but it was not allowed to calibrate with both proxy data and sensor data from the 308 
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pond at the same time. The full list of 26 possible combinations can be found in Tab. 5. For each combination, the 309 

model was calibrated 10 times on each of the five flood events. Each calibrated model was validated with the four 310 

other flood events.  311 
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Table 5: List of different data source combinations that were used to calibrate the flood model. 312 

pond (proxy) pond (sensor), outlet (sensor) 

pond (sensor) basement (proxy), outlet (proxy) 

basement (proxy) basement (proxy), outlet (sensor) 

basement (sensor) basement (sensor), outlet (proxy) 

outlet (proxy) basement (sensor), outlet (sensor) 

outlet (sensor) pond (proxy), basement (proxy), outlet (proxy) 

pond (proxy), basement (proxy) pond (proxy), basement (proxy), outlet (sensor) 

pond (proxy), basement (sensor) pond (proxy), basement (sensor), outlet (proxy) 

pond (sensor), basement (proxy) pond (proxy), basement (sensor), outlet (sensor) 

pond (sensor), basement (sensor) pond (sensor), basement (proxy), outlet (proxy) 

pond (proxy), outlet (proxy) pond (sensor), basement (proxy), outlet (sensor) 

pond (proxy), outlet (sensor) pond (sensor), basement (sensor), outlet (proxy) 

pond (sensor), outlet (proxy) pond (sensor), basement (sensor), outlet (sensor) 

 313 

2.6.2 Calibration with noisy proxy data 314 

The SWMM model was also calibrated with the synthetic proxy data containing complex correlated noise and 315 

Gaussian noise. The objective was to gain insight into how the structure and magnitude of noise in proxy 316 

measurements affects the utility of proxy measurements for calibration. The synthetic proxy data allow an 317 

isolation of the effects of noise structure and magnitude (e.g., Figs. 3g-j share the same noise structure). First, the 318 

situation was considered where only noisy proxy data from the pond are available. Second, the situation was 319 

considered where noisy proxy data from the pond were complemented by ideal proxy data from the basement. 320 

For each situation and each quality of proxy data, the SWMM model was calibrated 10 times on each of the five 321 

flood events. Each calibrated model was then validated with the four other flood events. 322 
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3 Results 323 

3.1 Model calibration with ideal proxy data 324 

To illustrate typical model calibration results, hydrographs for event 5 are plotted for an uncalibrated model (Fig. 325 

5a), a model calibrated with sensor data at all three possible measurement locations (Fig. 5b), and a model 326 

calibrated with ideal proxy data at the same locations (Fig. 5c). While the level of agreement is very high for the 327 

calibrated models, certain features of the curves do not perfectly fit the measured data. In the pond, for example, 328 

simulated flooding ends more abruptly than the measured data. These differences can be due to simplifying 329 

assumptions used when setting up the model, or small inconsistencies between where the water level was 330 

measured and where it is reported from the model. 331 

Comparing the models calibrated with sensor data (Fig. 5b) vs. with IDEAL-100 data (Fig. 5c), the proxy-based 332 

calibration gives priority to matching the end of the flooding in the basement and at the outlet shaft, as expected. 333 

It is surprising that although only proxy data are used for the model shown in Fig. 5c, the absolute errors are still 334 

relatively small. 335 
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 336 

Figure 5: Water level hydrographs for flood event 5, with sensor data and simulations of an uncalibrated model (a) and of models calibrated 337 

with sensor data (b) and with ideal proxy data (IDEAL-100). Note the slight mismatches that remain between the calibrated models and the 338 

monitoring data. 339 

Calibration experiments that failed to converge were filtered out of the dataset. Such failures occurred almost 340 

exclusively when calibrating with trend-like data in the basement from event 3. This issue, which appears to be 341 

caused by a local minimum in the objective function, is documented in the supporting information (Section S3). 342 

3.2 Benchmarks 343 

Figure 6 shows the distribution of absolute modelling error achieved for uncalibrated models (blue) and for models 344 

calibrated with all available sensor data (red). The calibrated models have such consistent performance that 345 

variability is not visible at the scale of the figure. The diamonds indicate the median model error of each case, 346 

which are used for the upper and lower benchmarks described in Section 2.5.6.  347 
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Flood event 5 stands out from the other events with higher error rates for both the upper and lower benchmarks. 348 

This difference can probably be explained by the fact that flood event 5 involved roughly two times the water 349 

volume compared to the other events (see Tab. 1), resulting in higher water levels and therefore higher possible 350 

errors. 351 

 352 

Figure 6: Absolute error of model runs for uncalibrated models (blue) and models calibrated with all available sensor data (red). The 353 

diamonds indicate the median values of model performance, which are used as benchmarks for each flood event. Uncalibrated models have 354 

a broad performance distribution represented by boxplots. 355 

3.3 Ideal proxy data would be competition for sensor data 356 

This section presents the results of the first calibration experiment described in Section 2.6, which explores the 357 

calibration value of ideal proxy data (IDEAL-100), which represent a hypothetical situation where surveillance 358 

footage analysis has been perfected and no moving obstructions affect the measurement. In Fig. 7, the 26 data 359 

source combinations have been summarized by the number of proxy and sensor data sources used. The model 360 

performance distributions are depicted, with boxplots showing the median, 25th, and 75th percentiles. The 361 

“whiskers” show the full extent of each distribution, but extend at most 1.5 times the inter-quartile range (the 362 

distance between the 25th and 75th percentiles). Any data beyond that limit are considered outliers and plotted as 363 

individual points. 364 

The situation where neither sensor nor proxy data are used (left-most boxplot in Fig. 7) groups together all 365 

uncalibrated model runs, for which median model performance (MP) is zero by definition of the lower benchmark 366 

in Section 2.5.6. As the number of data sources used for calibration increases, performance tends to increase as 367 
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well. As might be expected, models calibrated with sensor data perform better than models calibrated with the 368 

same number of proxy data sources. Even models calibrated with just two sensors (MP=97%) tend to perform 369 

better than models calibrated with three proxy data sources (MP=90.2%). 370 

Models calibrated with just one data source have high variability in performance, both for sensor and proxy data. 371 

Different factors contribute to the variability in performance. One factor is that model performance depends not 372 

only on the type (proxy or sensor) of the data used for calibration but also on their location (pond, basement, or 373 

outlet shaft). For example, upstream measurement locations are less informative than downstream measurement 374 

locations. In certain cases, some of the parameters remain poorly defined after calibration. Another factor is linked 375 

to the discrepancies between model and measurement, which are visible in the calibrated models plotted in Figs. 376 

5b and 5c. These discrepancies represent a risk of overfitting if only certain locations are available for calibration, 377 

and overfitting leads to higher errors during validation (which is always performed with all measurement 378 

locations). An example and analysis of overfitting is provided in the supporting information (Section S4). 379 

 380 

Figure 7: Model performance (validation) for different combinations of data sources, grouped by the number of sensor or ideal proxy data 381 

sources used for calibration. When three sensors are used (far right), there are no locations left for proxy data to be collected, hence the 382 

single boxplot. 383 

Diving deeper into the results, Fig. 8 presents the marginal performance increase (MPI) when adding a data source 384 

(either a sensor or an ideal proxy measurement) at a given location, for various initial data source combinations. 385 

Initial data source combinations are defined by the number of sensors and/or proxy measurements used for 386 

calibration, as indicated on the heatmap axes. For example, the +94% of the heat map in the upper right tells us 387 
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that, compared to the median uncalibrated model (zero initial sensors and zero initial proxy measurements), 388 

adding a sensor to the outlet shaft will result in a median increase of 94 percentage points (median value). Since 389 

there are multiple variations for each situation (for instance different flood events to calibrate on), the MPI is 390 

computed as the median increase of MP across all possible combinations. 391 

As might be expected, the highest MPI is achieved when adding a sensor or proxy measurement to an initially 392 

ungauged system (lower left of each heatmap). As the number of initial measurement locations rises and the 393 

system is saturated with data, the MPI decreases. Thus, MPI is under 5% for all situations where two sensors are 394 

already present in the system (uppermost cell in each heatmap). 395 

 396 

Figure 8: Marginal performance increase (MPI) when adding either a sensor (top) or an ideal proxy measurement (bottom) for calibration, 397 

relative to an initial calibration situation defined by number of sensors and proxy measurements already present in the system. The values 398 

represent the median increase of median performance (MP) across all possible variations of a situation (e.g., different events used for 399 

calibration) 400 
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There are systematic differences between the three measurement locations. Adding a data source to the pond, 401 

which is furthest upstream in the catchment, has the lowest impact whereas a measurement in the outlet shaft, 402 

which is furthest downstream, increases the performance significantly more. 403 

Although sensor data delivers a higher MPI than proxy data at the outlet shaft, proxy data generally provides a 404 

high improvement at the pond and in the basement. Again, the surprising advantage of proxy data is linked to 405 

overfitting, as described in the supporting information (Section S4). 406 

On average over all situations, the median MPI from using additional proxy data is 5.8%, whereas the median MPI 407 

from using additional sensor data is 10.1%. By comparing proxy and sensor data on a case-by-case basis, with each 408 

case representing an initial configuration of sensors and data and given calibration and validation events, the MPI 409 

of proxy data is just over 70% that of sensor data from the same location (median value). 410 

3.4 Costs and benefits of noise 411 

In this section, the impact of noise on the calibration value of proxy data is assessed. Both complex correlated 412 

noise and simple Gaussian noise are assessed with the help of the synthetic proxy data presented in Section 2.3. 413 

This analysis has an illustrative purpose and limits itself to two situations that have measurements at the pond 414 

and/or in the basement. These locations were selected because measurements at the outlet shaft are too 415 

redundant with the other two locations. 416 

3.4.1 Situation 1: Calibration with proxy data from pond only 417 

In the first situation, a single measurement point at the pond is available. At the pond, the following possible data 418 

are considered: none (uncalibrated), sensor data, ideal proxy data, proxy data with Gaussian noise (Fig. 9a), and 419 

proxy data with complex correlated noise (Fig. 9b). The situation with no data (Data series at pond = “none”) 420 

corresponds to the uncalibrated model simulations from which the lower benchmark was computed.  421 

Compared to the uncalibrated models, models calibrated with ideal proxy data (IDEAL-100) or with sensor data 422 

have higher performance and lower variability. Nevertheless, variability is still high, with a significant portion of 423 

models performing worse than the median uncalibrated model. This variability has to do with parameter 424 
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uncertainty and overfitting (as discussed in relation to Fig. 7). Overfitting is also the reason why models calibrated 425 

with IDEAL-100 have a higher MP (48%) than those calibrated with sensor data (35%), as explained in the 426 

supporting information (Section S4). 427 

  

Figure 9: Performance of models calibrated with data from pond of different qualities. In (a), the proxy data have Gaussian distributed noise, 428 

whereas in (b) the proxy data have correlated noise with the same structure as the proxy measurements obtained by automatic analysis of 429 

surveillance camera footage. 430 

The presence of Gaussian noise does not seem to have a strong negative impact on the MP, which hovers below 431 

50% for all quality levels above GAU-60 (Fig. 10a). For GAU-60, overall performance is lower, closer to that of the 432 

uncalibrated models. Surprisingly, it appears that overall performance is highest for GAU-80, which could be linked 433 

to a reduction of the overfitting mentioned in the previous paragraph. 434 

Correlated errors (Fig. 9b) have a visible impact on model performance, with the MP for COR-60 near 0%. 435 

Nevertheless, the overall performance is improved by a reduction in variance as compared to the uncalibrated 436 

models. As the quality of the proxy data increases, the calibration performance increases as well, although the 437 

change is slight and even COR-90 has a distinctly lower performance than IDEAL-100.  438 

Further differences appear when distinguishing performance based on the event used for calibration. A discussion 439 

of the differences is provided in the supporting information (Section S5). 440 
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3.4.2 Situation 2: Calibration with proxy data from pond and basement 441 

The second situation is equivalent to the first except that the noisy proxy data from the pond are supplemented 442 

with ideal proxy data (IDEAL-100) from the basement (Fig. 10). The base case (Data series at pond = none) now 443 

corresponds to models calibrated only with ideal proxy data from the basement, hence the improved performance 444 

relative to Fig. 9. Considering that the performance with sensor data at the pond is now clearly better than the 445 

performance with ideal proxy data at the pond, it now appears that the problem with overfitting, which occurred 446 

in absence of other data sources (Fig. 9), is resolved. 447 

  

Figure 10: Performance of models calibrated with ideal proxy data from basement and data from pond of different qualities. In (a), proxy 448 

data from pond have Gaussian distributed noise, whereas in (b) the proxy data have correlated noise with the same structure as the proxy 449 

measurements obtained by automatic analysis of surveillance camera footage. 450 

Again, the proxy data with Gaussian noise are not systematically worse than the proxy data with no noise (Fig. 451 

10a), although the variability is higher. For all cases, the MP is higher than if only calibrating with ideal trend-like 452 

data from the basement (the “none” base case). Even GAU-60, for which the noise previously appeared to 453 

negatively affect the MP, performs no worse than the other proxy data series with Gaussian noise. 454 

In contrast, calibrating with trend-like data with complex correlated noise decreases the MP as compared to the 455 

base case (Fig. 10b), even when the magnitude of noise is small (COR-90). Performance does seem to correlate 456 
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positively with data quality, but the relationship is weak. The poorly performing models and increased variability 457 

for COR-80 and COR-90 are again linked to overfitting that occurs specifically when calibrating with events 2 and 4, 458 

which are the only events to lack flooding in the basement.  459 

Further differences appear when distinguishing performance based on the event used for calibration. A discussion 460 

of the differences is provided in the supporting information (Section S5). 461 
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4 Discussion 462 

4.1 Significance of this work 463 

4.1.1 Importance and novelty 464 

No conventional sensor solution exists for measuring small-scale surface flooding in urban areas, even though such 465 

measurements are needed to ensure the reliability of models and thus the effectiveness of risk mitigation 466 

measures. Thanks to a unique case study, this work sheds light on a new opportunity for urban pluvial flood model 467 

calibration with alternative data sources, namely with proxy data automatically obtained from surveillance 468 

footage. The aspect of automatic image analysis is particularly important for privacy reasons, which are one of the 469 

main risks associated to smart urban water solutions (Moy de Vitry et al., 2019b). While many studies have looked 470 

into the collection of data from alternative sources including social media and drones, none has yet investigated 471 

the actual benefits that such data provides. This work tackles that question specifically, while at the same time 472 

differentiating between sensor placement and different data qualities. 473 

4.1.2 Why overfitting was tolerated 474 

Discrepancies between model and data, which sometimes led to overfitting, were observed in this study. These 475 

discrepancies were tolerated even though they complicated the analysis and could have been resolved, e.g., by 476 

optimizing model structure. The presence of such discrepancies can be attributed to the realism of the case study, 477 

which gives significant practical value to the findings. In particular, this rather unique approach reduces the risk of 478 

overestimating the value of trend-like data, as might occur when using simulated data (Viero, 2018). 479 

4.2 Could cameras replace sensors? 480 

4.2.1 Error-free proxy data are almost as useful as sensor data 481 

In this study, ideal error-free proxy data were used to calibrate a simple flash flood model and were found to 482 

improve validation performance of the model in a consistent manner. This finding suggests that proxy 483 

measurements have the potential to satisfy the lack of monitoring data for urban pluvial flood model calibration. 484 
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Other studies have come to comparable conclusions for other alternative data sources, for example regarding the 485 

use of citizen science to calibrate hydrologic river models (van Meerveld et al., 2017) or the use of binary sensors 486 

to calibrate an urban drainage model (Wani et al., 2017).  487 

This study also found that the difference in value between sensor data and error-free proxy data is smaller than 488 

might be expected: in more than half of all the calibration situations analyzed, proxy data provided at least 70% of 489 

the benefit of sensor data. To take a more specific example, calibrating with proxy data at all available locations 490 

provided a median performance that was only 4.5% poorer than when calibrating with sensor data at the same 491 

locations. 492 

In situations where overfitting is a risk, such as when calibrating with only one upstream measurement in a 493 

catchment, the results point to the surprising conclusion that trend data provides more robust models than sensor 494 

data. This was explained by the fact that proxy-based calibration is less opinionated as compared to calibration 495 

with sensor data and objective functions that favor perfect fitting of the model to measurement values.  496 

4.2.2 Measurement noise is usually detrimental 497 

The proxy data that were automatically extracted from surveillance footage of the case study contained noise, and 498 

although there are ways to reduce it, it is unlikely that such noise can be completely resolved. The errors are due 499 

to classification problems and changes in the flooding scene (Moy de Vitry et al., 2019a), and they have a complex 500 

autocorrelation structure. 501 

In the present study, the effect of complex correlated noise was usually detrimental. In the worst cases, even the 502 

proxy data with the lowest level of noise (COR-90) would give significantly lower performance than the ideal proxy 503 

data (IDEAL-100). Gaussian noise (random noise with low autocorrelation, in contrast to complex correlated noise) 504 

had a vastly different effect on performance. When calibrating with proxy data from the pond alone, then only the 505 

highest noise level (GAU-60) provoked a clear reduction in performance compared to the ideal proxy data. In the 506 

other cases, performance was similar or even higher than the ideal proxy data. Compared to previous research 507 

that suggests that random noise in calibration data do not have a strong negative effect during calibration (Dotto 508 
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et al., 2014), we go a step further and suggest that some noise could even be beneficial in situations where model 509 

overfitting is a risk. 510 

It follows that until complex correlated noise is kept below an acceptable threshold (which remains to be defined), 511 

proxy data obtained from surveillance footage should be used for calibration only with extreme care. Possible 512 

approaches for reducing errors have been outlined by Moy de Vitry et al. (2019a). Until then, proxy-based 513 

calibration should be limited to the assimilation of proxy data with uncorrelated errors, such as proxy 514 

measurements from uncalibrated conventional sensors (data from uncalibrated sensors do have systematic errors, 515 

but these do not affect the trend information contained in the data). 516 

4.3 Outlook and future research 517 

4.3.1 Suitability of the Spearman correlation for calibrating proxy data 518 

The hybrid Spearman correlation used in this study was effective in fitting the SWMM model to the shape of the 519 

proxy data, even when a large amount of noise was present. The use of the IoU in cases where the proxy data were 520 

flat (e.g., when no flooding occurred in the basement) proved to be effective for calibration, although future 521 

research could investigate whether there are better alternatives to the proposed solution. 522 

There are situations in which calibration with the Spearman correlation is difficult. For flood event 3, which 523 

involves a very short and shallow flood in the basement, calibrations were sometimes unsuccessful because they 524 

would stop at a local minimum. It appears that such issues could be avoided by making the calibration stopping 525 

criteria more strict.  526 

A strong downside of the Spearman correlation for describing data quality is that it is not very telling of the noise 527 

structure. As seen in the results, two proxy measurements with the same Spearman correlation can give very 528 

different results during calibration. Better characterization of the noise structure would possibly also allow for 529 

correlated errors in the measurement data to be accounted for. 530 



33 
 

4.3.2 Further experiments are necessary 531 

The floodX data sets are of unique value thanks to their provision of multiple flood events on which flood models 532 

can be calibrated and validated. Nevertheless, they are limited due to the small size of the facility. In this study, the 533 

small catchment size meant that with three sensors, redundancy was higher than what is expected in a real 534 

catchment with perhaps a thousand times more components. This led to interdependence between measurement 535 

locations, meaning that it was not completely possible to isolate the effect of measurement location from the 536 

effect of other measurements. Thus, larger case studies should be considered in the future.  537 

Measurement location was found to have a strong influence on the value of the monitoring data, which underlines 538 

the importance of research for identification of optimal sensor placement for monitoring campaigns (Vonach et al., 539 

2018). Compared to reality, the flooding events studied in this paper lacked rainfall-runoff processes. In cases 540 

where these processes need to be modelled, they can introduce parameter uncertainty that might shift the need 541 

for monitoring data upstream. Therefore, it is also important that future case studies include such rainfall-runoff 542 

processes. It is expected that these processes increase modelling complexity and uncertainty, thereby increasing 543 

the need for data (especially surface flooding data) and the potential benefit of proxy measurements. 544 

As this study focused only on proxy measurements for water level from cameras using the SOFI method, future 545 

studies should consider combining SOFI proxy measurements with other data sources. Examples include flow 546 

velocity data from surveillance cameras (Leitão et al., 2018), citizens (Le Boursicaud et al., 2016), and drones (Perks 547 

et al., 2016), or water level information obtained from social media (Chaudhary et al., 2019). 548 

4.3.3 Implications for model calibration with alternative data sources  549 

In this study, the identifiability of parameters was found to depend on measurement location, data type, and data 550 

quality. For example, proxy data from the pond was found to provide only limited information on parameters 551 

downstream. In certain cases, this led to the selection of extreme parameter values. In future studies, calibration 552 

parameters should be defined according to a sensitivity analysis based on the available measurement data. 553 

Alternatively, parameters that remain undefined after calibration should be assigned a value based on prior 554 
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knowledge. While a Bayesian approach may be applicable in certain cases, the definition of appropriate likelihood 555 

functions may be difficult, as in the case of proxy data.  556 

The presence of complex correlated noise was found to be a critical factor influencing model calibration in this 557 

study. Since such noise might be expected in practice, a method to identify and screen erroneous data before 558 

calibration is needed. Accurate characterization of noise structure is also necessary for effective Bayesian 559 

parameter estimation (Wani et al., 2019). The Spearman correlation seems to be an insufficient indicator of quality 560 

in this regard. A similar call was issued concerning erroneous crowd-sourced data in hydrological modelling 561 

(Mazzoleni et al., 2017). Once the reliability of a data source has been assessed, it can be used or rejected based 562 

on a threshold. Alternatively, when calibrating with multiple sources of data, the reliability of each source can be 563 

used to weigh its objective function, so that information that is more reliable has precedence. 564 



35 
 

5 Conclusions 565 

The lack of overland flood monitoring data is a recognized issue in urban pluvial flood modelling, but in most 566 

situations, conventional sensor solutions are very impractical if not impossible. Alternative data sources like social 567 

media and surveillance cameras appeal as a novel and cost-effective approach to the problem. This study assessed 568 

the potential of proxy measurements such as could be obtained from surveillance footage by automatically 569 

tracking the evolution of the visible flood extent with computer vision. Data from five flood events were used to 570 

calibrate and validate a one-dimensional dual-drainage EPA SWMM model with different combinations of proxy 571 

and sensor data. Overall, the results showed that ideal proxy data with no errors or with Gaussian noise are almost 572 

as good as sensor data. However,  the complex correlated errors currently featured in camera-sourced proxy 573 

measurements are detrimental and can completely cancel any benefits of the proxy data. The use of multiple 574 

measurement locations for calibration is also important for model performance. The main contributions of this 575 

study are: 576 

▪ An objective function, based on the Spearman rank correlation coefficient, was proposed and 577 

demonstrated for calibrating with water level proxy data. It worked in most cases but experienced 578 

difficulty with one very short and shallow flooding event. 579 

▪ The results confirmed that proxy data have a strong potential to improve a urban pluvial flood model’s 580 

predictive performance. For example, models calibrated with three ideal proxy data series had a median 581 

performance of 90% that of a perfectly calibrated model. However, complex correlated noise reduces the 582 

utility of proxy data and can even be counter-productive. Gaussian noise was generally unproblematic and 583 

was sometimes beneficial in making the model more robust. 584 

▪ Inevitable discrepancies in the model and data, for example due to modelling assumptions, can be 585 

harmless if a sufficient number of measurements are available. Too few measurements can lead to 586 

overfitting, in which case performance was sometimes improved when data contained Gaussian noise. 587 
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▪ The Spearman correlation is not a sufficient indicator of the presence of complex correlated noise as 588 

opposed to random Gaussian noise, which is a critical factor for model calibration. In practice, alternative 589 

data sources such as surveillance cameras are not expected to provide perfect data, so the issue of data 590 

quality assessment and screening should be investigated further. 591 

Code and data availability 592 

The code used in this work for creating, training, and evaluating the DCNN, as well as extracting the SOFI and 593 

plotting results can be found in the following repositories:  594 

▪ https://github.com/mmmatthew/cq-analysis contains code to prepare and run the calibration 595 

experiments 596 

▪ https://github.com/mmmatthew/swmm_calibration contains a framework to calibrate a SWMM model 597 

with sensor and/or proxy data 598 

The results generated from the calibration experiments and the analysis of the results can be found in the 599 

following archive:  600 

Moy de Vitry, Matthew. (2019). Trend-based calibration experiments with floodX data (Version 1.0) [Data set]. 601 

http://doi.org/10.25678/0001B6  602 
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