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Abstract

Herbicide pollution in headwater streams due to agricultural practices
is a major environmental concern and is characterized by episodic peak
concentrations from fast transport paths. We rely on previous experi-
mental studies in a small (1.2 km?) agricultural catchment in the Swiss
Plateau, to model dynamic diffuse herbicide pollution with emphasis on
fast transport paths in a conceptual modelling framework at the catch-
ment scale. We show how experimentalists’ understanding of the fate of
herbicides (perceptual model) can be translated into conceptual models
considering sorption, degradation, and fast transport of water and chemi-
cals facilitated by impervious surfaces, tile drains and artificial shortcuts.
Different types of experimental data (streamflow, high-frequency concen-
tration measurements, and soil-water distribution coefficients) are used in
a joint Bayesian inference of model parameters. We assess the ability of
different spatial configurations of hydrological response units in explain-
ing observed heterogeneity in transport behaviour of two corn herbicides.
Thereby, we find that (1) relatively simple conceptual models can provide
a realistic description of herbicide fate in small agricultural catchments,
(2) accounting for spray drift onto hard surfaces is necessary to avoid a
severe model bias during the first rainfall event after application, and (3)
including catchment-specific experimentalist knowledge about important
elements like artificial shortcuts and tile drains leads to a reduction in



uncertainty of 30 % compared to the more conventional conception of the
proximity to the stream as the dominant risk factor.

Keywords: Pesticide transport; Experimentalist knowledge; Controlled ap-
plication; Conceptual model; High-frequency concentration data; Bayesian in-
ference

1 Introduction

Diffuse pollution of water bodies by micropollutants has been a growing envi-
ronmental concern during the last few decades. In small headwater catchments
dominated by agricultural land use, peak herbicide concentrations caused by
fast transport during precipitation events are especially concerning [e.g. Munz
et al., 2012, Doppler et al., 2012, Leu et al., 2005, Meyer et al., 2010]. Investiga-
tion of fast transport processes in headwater catchments is therefore important
for assessing and mitigating the risk of diffuse pollution of streams by herbicides
and other micropollutants. Since peak concentrations can only be measured in
costly monitoring campaigns involving high-frequency measurements, modelling
is a valuable and cost-effective complementary tool to quantify and investigate
the herbicide pollution of headwater streams.

The processes involved in herbicide mobilization and transport have been
investigated in many studies at a large range of spatial scales. At lab and
field scales, mostly physically based models like the pesticide root zone model
(PRZM) [Carsel et al., 1985] have been shown to successfully predict water
and pollutant fluxes through the upper soil layers [e.g. Singh and Jones, 2002,
Ma et al., 2004, Fox et al., 2007]. A major finding of previous studies is the
paramount importance of preferential flow and tile drains in transporting pollu-
tants from the top soil layer to streams [e.g. Traub-Eberhard et al., 1994, Zehe
and Flihler, 2001, Géardenés et al., 2006, Ghafoor et al., 2013].

At the scale of headwater catchments in the order of 1 km?, the states, inter-
nal fluxes, and output of interest are likely to be affected by severe heterogeneity.
For example, it has been shown that a substantial part of the herbicide load in a
creek can originate from only a small fraction of the catchment’s area [e.g. Fre-
itas et al., 2008], the so-called critical source areas [Pionke et al., 1996]. Doppler
et al. [2014b] even observed a temporal variability of those areas between suc-
cessive rainfall events. However, data sets with controlled input of pesticides
[e.g. Doppler et al., 2012] are lacking at this scale, impeding the generation
of knowledge about critical source areas. Since any catchment-scale transport
model can only be a simplification of the highly complex underlying system, we
are faced with the difficult task of retaining in the model the most important
features regarding its emergent behaviour.



One common simplification is the use of relatively large grid cells in com-
bination with equations describing physical processes, in order to reduce the
computational and input data demand. Examples include Kannan et al. [2006],
who apply the SWAT model [Arnold et al., 1998] to reproduce daily average
concentrations of four pesticides. Frey et al. [2009] show that critical source
areas can be located through a topographical connectivity analysis (requiring a
high-resolution DEM) and that observed herbicide loss rates are spatially corre-
lated with the modelled amount of surface runoff to the stream and preferential
flow to tile drains on different experimental fields. The ZIN-AgriTra model
Gassmann et al. [2013] was successfully used to simulate high-frequency pesti-
cide loads in an agricultural catchment. Villamizar and Brown [2017] extend
the MACRO model [Jarvis et al., 1991] from the field to the catchment scale
and compare it to the SPIDER model [Renaud et al., 2008] based on data of
daily resolution. Morselli et al. [2018] apply the DynAPlus model in a larger
catchment (130 km?) containing apple orchards to characterize high-frequency
concentration dynamics of three pesticides.

The application of such physically based models at the catchment scale has
been criticised for the excessive degrees of freedom compared to what obser-
vations can constrain and for being based on an “implicit upscaling premise”
[Kirchner, 2006]. Data to inform their effective parameters is often lacking, even
at smaller scales [e.g. Marin-Benito et al., 2014] and their high computational
cost tends to prohibit comprehensive assessments of their large uncertainty.
Models based on residence time distributions have also been applied to char-
acterize daily to weekly average streamflow and concentrations of herbicides
[Bertuzzo et al., 2013]. However, it seems challenging to reflect experimentalist
knowledge about specific processes with such approaches.

Conceptual models, on the other hand, combine some degree of physical in-
terpretation of the processes with simplicity and short run-times. They allow for
the direct description of the emergent behaviour of the system at the catchment
scale, which might not follow the equations used to describe small-scale physical
processes [e.g. Kirchner, 2006]. Their structure and governing equations can be
adapted to include experimental information on the most important processes
in a study site.

Modellers might find it difficult, however, to consider qualitative elements
like experimentalists’ process knowledge, which may be based on their interpre-
tation of site-specific quantitative or qualitative data [e.g. Seibert and McDon-
nell, 2002] or general scientific knowledge of the experimentalists as experts. In
fact, applied models have been found to be strongly dependent on a modeller’s
background and experience [e.g. Hollander et al., 2009]. Since the recognition
of this deficit, there has been some effort to propose more systematic ways of
including experimental data and knowledge in the model building process [e.g.
Seibert and McDonnell, 2002, Fenicia et al., 2008, McMillan et al., 2010, Wrede
et al., 2014]. Specifically, the latter study shows how the construction of a per-



ceptual hydrological model [Beven, 2012] can be informed by field measurements
in the first step of a modelling study. On one hand, perceptual models are well
suited to accommodate qualitative knowledge of experimentalists, on the other
hand they facilitate the use of such knowledge in a modelling study. This study
investigates how experimentalist knowledge and data can be considered in a
modelling study through the use of perceptual and conceptual models of herbi-
cide transport in agricultural catchments, which has been insufficiently done so
far.

Considering the undeniably large uncertainties of water and pollutant trans-
port models at the catchment scale [Rode et al., 2010], the assessment of the
uncertainty of such models is important. The high simulation cost of the largely
physically-based models [e.g. Frey et al., 2009, Doppler et al., 2014a, Gassmann
et al., 2013] used in this field of research pose a technical challenge for un-
certainty assessment. Moreover, there is a lack of established approaches for
rigorous stochastic description of the output uncertainty of deterministic trans-
port models. The GLUE methodology [Beven and Binley, 1992] has been used
in previous studies [Zheng and Keller, 2007, Bertuzzo et al., 2013, e.g.] for this
purpose. However, GLUE lacks statistical validity when used with an informal
likelihood measures [Mantovan and Todini, 2006, Beven et al., 2007, Mantovan
et al., 2007, Stedinger et al., 2008]. Other studies successfully use more rigorous
approaches [Raat et al., 2004, Gardner et al., 2011, e.g.], but neglect poten-
tial correlation of the errors. Hantush and Chaudhary [2014], Wellen et al.
[2014], Zheng and Han [2016], Han and Zheng [2016] account for correlation,
but refrain from sampling the full joint posterior distribution of error model
and transport model parameters, which would be conceptually preferable [Evin
et al., 2014]. Previous work which does sample the joint posterior distribution
[e.g. Hong et al., 2005, Talamba et al., 2010, Han and Zheng, 2018] is based on
data resolutions in the order of hours to years. It was shown that considering
temporal correlation of residuals can be much more problematic when working
with hourly than with daily data [Ammann et al., 2019]. In this study, we
explore the applicability of such techniques to data resolutions in the order of
15 min, profiting from the time-dependent correlation approach suggested by
Ammann et al. [2019].

This study tries to address the aforementioned shortcomings concerning the
characterization of intermittent peak herbicide concentrations, the lack of re-
search on how to translate perceptual models to conceptual models, and the
uncertainty quantification approaches used in water quality modelling. Conse-
quently, the goals are the following:

1) Show how experimentalist knowledge and data can be used to inform and
constrain the construction of a simple, yet realistic, conceptual transport
model to assess in-stream fluctuations of herbicide concentration.

2) Assess which degree of experimentalist knowledge and model complexity is



needed for an accurate representation of the available data by simplifying
the model developed for goal 1).

3) Quantify the uncertainty of the predictions by using a recently presented
framework for likelihood functions, considering heteroscedastic and corre-
lated errors.

Section 2 gives a brief overview of the chosen study site and past exper-
imental work carried out there, which provides the extensive experimentalist
knowledge and data required for goals 1) and 2). Section 3 summarizes the pre-
existing perceptual model of the catchment (Sect. 3.1) and how it is translated
to conceptual models (Sect. 3.2). The approach to uncertainty quantification
is described in Sect. 3.3 including the error model (Sect. 3.3.1), the inference
techniques (Sect. 3.3.2), and the prior distribution (Sect. 3.3.3). Section 4 sum-
marizes the results of the parameter inference for all the tested models, including
the uncertainty of the model output. Section 5 discusses the implications of the
results and Sect. 6 makes some concluding remarks.

2 Study Site and Data

The Eschibach catchment is located in the northeastern part of Switzerland
(Fig. 1) near the town of Ossingen. For a detailed description of the catchment,
the reader is referred to Doppler et al. [2012, 2014b,a]. It has a temperate
climate typical for a mid-latitude region. Meteorological measurements at 11
km distance from the study site indicate an average yearly precipitation of 900
mm (without strong seasonal pattern) and an average temperature of 9.4 °C
(ranging from a monthly average of 0 °C in January to 19 °C in July) between
1981 and 2010 [MeteoSwiss, 2016]. The catchment has a size of 1.2 km? and a
subdued topography (the elevation ranges from 423 to 473 m a.s.l.). The land
use in the catchment is predominantly agriculture (75 %) and forest (13 %), with
some impervious areas (paved roads, field roads, and settlements) that partially
drain into the stream. The agricultural area is used for crop production (corn,
sugar beet, winter wheat, and rape seed) and roughly half of it is tile drained
(Fig. 1), with pipes located around 1.0 - 1.5 m below ground surface. Some of
the roadside drains are connected to this tile drainage system.

The experimental study by Doppler et al. [2012] took place from summer
2008 to autumn 2009 with a focus on the growing season of 2009. It consisted
of a controlled application of two herbicide mixtures on 19 May 2009, each to
its own set of fields. We model one substance from each mixture; atrazine (CAS
no.: 1912-24-9) and terbuthylazine (5915-41-3). On 19 May, 8.3 kg of atrazine
and 5.6 kg of terbuthylazine were applied. The mixture containing terbuthy-
lazine was applied on a second occasion, the mass of which was known (4.2 kg)
but the timing of application was not. Note that the controlled application of
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Figure 1: Overview of the study catchment of the Eschibach stream near the
town of Ossingen, Switzerland. Experimental fields are denoted as F1-F6. The
land use is crop production if not indicated otherwise. Source: swisstopo [2008],
Gemeinde Ossingen [1995]



Table 1: Overview of the data used for calibration.

. . Typical No. of

Data type Period with data resolution  data points
Streamflow 1 Apr - 12 Oct 15 min 18621
Atrazine 19 May - 22 July 15 min® 259
conc.

Terbuthylazine 1o ppay - 98 May 15 min® 58)
conc.

Distribution

cooff. 19 May - 18 July 5 days 6

@) During baseflow conditions, data is limited to a few grab samples.
b) Only events E1 and E2 are used for calibration w.r.t. terbuthylazine concentrations, since
the date of a second application of this substance after E2 is unknown.

the subsequently analyzed herbicides means that the input is known with high
accuracy in both space and time, which is rarely the case at the spatial scale of
this study. They measured streamflow and electric conductivity at 5 min res-
olution and herbicide concentrations in time-proportional samples taken every
15 min during rainfall events at 5 stream gauges within the catchment (Fig. 1).
The available data also includes continuous measurements of groundwater lev-
els and soil moisture, as well as chemical analysis of samples of ponding water.
Additionally, sorption and degradation experiments have been performed [Ca-
menzuli, 2010, Doppler et al., 2014b] with soil sampled from all the experimental
fields on which atrazine was sprayed (F1-F6, Fig. 1).

Two rain gauges were active within the catchment (Fig. 1) between 19 May
and 31 July 2009, by which point a large part of the sprayed herbicide mass
had been transformed or degraded and the sampling was therefore stopped.
The gauges operated at 15 min resolution and registered a total of 353 mm of
precipitation, where 5 rain events triggered the sampling device sufficiently to
lead to a meaningful representation of the dynamic fluctuations of the in-stream
concentration during the event [Doppler et al., 2012]. Those events are denoted
as E1-E5 in this study (see Fig. A.17). Data on potential evapotranspiration
for the study period was kindly provided by MeteoSwiss [2016].

3 Methods

This section presents the perceptual model (Sect. 3.1), which summarizes the
available knowledge about transport processes in the studied catchment and
continues by showing how we translated this knowledge into numerical models
that are conceptual in nature (Sect. 3.2). It continues with a section on the



chosen approach for uncertainty quantification (Sect. 3.3), which is split into a
description of the probabilistic error model, the numerical technique for infer-
ence and prediction, and the chosen prior distribution. The section ends with
information on the metrics chosen to assess the performance of the developed
models (Sect. 3.4).

3.1 Perceptual model

The perceptual model of a catchment conceptualizes the main transformation
and advection processes of water and substances that happen inside and across
the boundaries of that catchment [Beven, 2012]. In our case, it is formulated
based on experimentalist knowledge and data available from previous work at
the study site. Figure 2 is a graphical summary of the elicited perceptual model,
which is described in the following, focusing on aspects that are especially rel-
evant for guiding model construction. For more details on the experimentalist
understanding of the study catchment, see Doppler et al. [2012, 2014b,a].

Water enters the catchment via precipitation and leaves it via streamflow
or evapotranspiration. Herbicides enter via spraying, experience sorption, are
transformed or degraded (larger part), and exit via streamflow (smaller part)
[Doppler et al., 2012]. Volatilization is not expected to be a major flux due to
the chemical properties of the applied substances. Degradation and sorption to
organic matter in the soil, on the other hand, are important processes influencing
the availability and mobility of pesticides [Grathwohl, 1998, e.g.]. The topsoil
contains a large part of the applied herbicide mass for a considerable time after
application [e.g. Weed et al., 1995] and is known to be the primary origin of the
herbicides found in the stream.

Distinctly different dynamics of in-stream concentration time series were
observed for atrazine and terbuthylazine [Doppler et al., 2012]. Additionally,
atrazine loss rates varied in space and time [Doppler et al., 2014b]. Data from
degradation and sorption experiments [Camenzuli, 2010] show that the variabil-
ity of degradation and sorption cannot explain the difference in dynamics and
loss rates described above. That difference can also not be explained by the
chemical properties of atrazine and terbuthylazine, which are very much alike
due to the similarity of their molecular structure. Instead, the presumed reason
for this difference are the dominant transport processes on the fields sprayed
with either atrazine or terbuthylazine [Doppler et al., 2012]. Well-known domi-
nant paths are macropore infiltration to tile drains [e.g. Traub-Eberhard et al.,
1994] and direct overland flow to the stream [e.g. Leu et al., 2004]. In addition
to these paths, we have visual evidence of overland flow that reaches the stream
via artificial structures that act as shortcuts [Doppler et al., 2012]. In fact, based
on the connectivity analysis of Doppler et al. [2012] in the study catchment, the
area topographically connected to such shortcuts is much larger than the area



connected to the stream directly. Despite its potential impact on surface water
quality, this path has rarely been considered in modelling studies. In summary,
the streamflow and the in-stream concentration signal is believed to be affected
by four dominant groups of transport paths, which are listed below in order of
increasing travel times:

1) Flow on impervious areas. Runoff from paved roads and driveways, as
well as from unpaved field roads' enters the stream via storm drains.

2) Overland flow on connected areas. Overland flow from the fields reaches
the stream either directly or via artificial shortcuts such as maintenance
manholes of the tile drainage system or roadside storm drains.

3) Macropore flow. This path conceptualizes the part of the infiltrating water
that reaches the tile drains via fast vertical macropore flow through the
variably saturated upper soil layers.

4) Flow through saturated zone. This path comprises slower trajectories
that contain vertical transport through the soil matrix or lateral flow in
the saturated zone or both.

Herbicides are expected to reach the stream primarily via paths 2) and 3). Path
1) and 4) are expected to be less important because the amount of substance
input is small for path 1), and sorption, degradation and dilution are strong for
path 4). Water, on the other hand, is expected to be predominantly transported
on paths 1) during rainfall events and 4) during baseflow conditions, and to a
lesser degree on paths 2) and 3).

Note that paths 1) and 3) always include a subsurface pipe on the last
stretch before entering the stream. Paths 2) and 4) may or may not include
such a pipe. The difference in travel times among paths 1) - 4) in the segments
preceding possible pipes is assumed to be large compared to the residence time
in the pipes. Therefore, the paths are distinguished based on those preceding
elements.

3.2 Deterministic conceptual models

In the following, we show how the perceptual model developed in Sect. 3.1 is
translated to conceptual models, which are implemented with the hydrological
modelling framework SUPERFLEX [Fenicia et al., 2011, Kavetski and Fenicia,
2011] (Sect. 3.2.1). The flexibility of this framework facilitates the incorporation
of prior experimentalist knowledge and enables systematic model comparisons.

n a visual assessment of a precipitation event in the catchment, the onset of surface runoff
on field roads was much earlier than on the fields and not much later than on the paved areas.
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Figure 2: Graphical summary of the perceptual model of the fate of water (blue)
and herbicides (red) in the study catchment.

The translation of the perceptual to the conceptual models requires decisions
about how to split the landscape into response units (Sect. 3.2.2) and about the
appropriate model structure and parameterization of each unit (Sect. 3.2.3).

The process of translating the perceptual model to a conceptual one was
an iterative procedure that required repeated exchange between modellers and
experimentalists. The deficits of initial, very simple models were identified and
improved by incorporating more and more available process knowledge while
still constraining model complexity. This section presents some interesting al-
ternative hypothesis (i.e., models) emerging out of this process.

3.2.1 Implementation of substance transport processes within SU-
PERFLEX

The SUPERFLEX framework [Fenicia et al., 2011, Kavetski and Fenicia, 2011]
is based on elementary building blocks that can be customized and combined
in a flexible manner. They consist of reservoirs, splits and unions of fluxes,
as well as lag functions [Fenicia et al., 2011, 2016]. In conceptual modelling
applications, those blocks are typically intended to conceptualize the storage
and release of water at the catchment scale, as well as the river routing. While
previous applications of SUPERFLEX focused on water fluxes, the framework
was extended to consider the fate (transport, degradation, and sorption) of
pollutants for this study. Note that the fate of transformation products is not
considered.
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Figure 3: Basic reservoir element in SUPERFLEX, with water fluxes, @, evap-
otranspiration, F, and substance fluxes, J. The exchange of substance between
the dissolved and two sorbed phases is also shown; sites that are in instanta-
neous equilibrium, ¢f, and sites for slow, kinetically limited sorption, ¢s. The
mixer symbol indicates complete mixing of the substance within the water vol-
ume. S denotes the variable hydrologically active water volume, and S; is the
constant volume of residual pore water.

The water balance for a generic reservoir (Fig. 3) is given by:

dsS
E = Qin -FE- Qout (1)
E = fer(S, Epots - -+ ) (2)
Qout = fq(S,...) (3)

where S is the active storage of the reservoir, Qi, and Qo are the inflow and
outflow of water, respectively, E and E,. are the actual and the potential
evapotranspiration, respectively, and ...  represents additional parameters of
the functions frr and fq. Qin can be precipitation or the outflow from another
Teservoir.

Concerning the fate of substances in the reservoir, consider the mass of
dissolved substance in pore water, which is equal to (S + S;)C, where S, is
the residual soil water content and C' is the pore water concentration (Fig. 3).
We distinguish fast and slow sorption; fast sorption is assumed to always be
in equilibrium with a linear isotherm, i.e. g¢ = Kq¢C, where ¢¢ is the mass of
substance sorbed to fast sites per mass of soil and Kgq¢ is the corresponding
distribution coefficient. Let M be the sum of the dissolved and the fast-sorbed
mass, i.e. the total mass that is in equilibrium:

My = (54 5,)C + meonKa C (4)
Its counterpart, the mass that is sorbed via slow sorption processes, is given by:

My = myoings (5)

11



where ¢ is the specific sorbed mass on slow sorption sites (mass of substance
per mass of soil). The differential equations of the two compartments are given
by:

dM
dtl = QinCin - Qoutc —J - )\Ml (6)
dM>
=J - \M.
= =AM, (7)
J = msoiIT:Q(Kd,SC - QS) (8)

where J is the flux of substance between the equilibrium and the slowly sorbed
fraction, r} is the kinetic rate of sorption, Kq ¢ is the distribution coefficient
of the slow sorption reaction, and A is the degradation rate. Note that the
sorption speed is dependent on 6, the total relative water content of the soil:
0 = %, based on findings by Gaillardon and Dur [1995] and similar
to Christophersen and Wright [1981]. Note also that we assume a first order
degradation of substances (Eq. 6 and 7) in the dissolved and the sorbed state
in all the soil compartments (reservoirs). Based on Eq. (6) to (8) and Eq.
(A.12), we construct a set of output vectors ¥mod = (Ymod,1s---,Ymod,4) =

(Qou‘m Catraa Cterba Kd,app)~

Note that all the quantities that would naturally be extensive (masses M and
Msoil; fluxes @, E, and J; volumes S and S,) are turned into intensive quantities
through division by the area of the part of the catchment which they represent.
These similarly behaving parts of the catchment are called hydrological response
units (HRUs), see Sect. 3.2.2.

3.2.2 HRU delineation

Since two of the three important transport paths elicited in Sect. 3.1 are linked to
spatial elements (tile drains and shortcuts), some degree of spatial distribution
of the model is required. HRUs are suitable to represent the routing of fluxes
through those elements, which would be more difficult to achieve with a grid-
based approach.

To reflect the experimentalist knowledge, the splitting of the landscape is
directly derived from the four main transport paths listed in Sect. 3.1. Paths
1) - 3) can be located in the catchment with some degree of confidence; the
landscape is split according to their presence and absence (Fig. 4a), resulting in
the following HRUs: impervious areas (I), areas topographically connected to
a shortcut or the stream (C), drained areas (D), areas that are both connected
and drained (C&D), and all the remaining “unconnected” areas (U). Path 4)
(groundwater flow) is expected to be relevant in all of the HRUs except for
the impervious areas; instead of influencing the division of the landscape, it is
included as a parallel flow path in the HRUs listed above.

12
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(a) Delineation of the catchment into HRUs based on experimentalist under-
standing of the most important transport paths (see Sect. 3.1).
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Figure 4: Two sets of HRUs used as alternative hypothesis of spatial elements
controlling transport processes. Note that only the fields sprayed at the first
application of terbuthylazine are shown. Source: swisstopo [2008], Gemeinde
Ossingen [1995]
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The impervious areas were delineated in ArcGIS (version 10.2.2) based on
spatial vector data [swisstopo, 2008]. Ounly roads, settlements, and field roads
that are known to drain into the stream based on spatial data or visual obser-
vations at the study site were considered as impervious areas. For the areas
connected to shortcuts, we make use of the areas resulting from the topograph-
ical connectivity analysis conducted by Doppler et al. [2012]. Based on visual
observations of overland flow in the catchment, we modify the original version
of the connected areas by assuming that overland flow does not cross field roads
and by changing the catchment polygons of some shortcuts. The resulting short-
cut areas are visible in Fig. 4a. The HRU for the drained areas is obtained by
applying a 10 m buffer around each tile drain, which results in a homogeneous
coverage, given the typical distance of ca. 20 m between two pipes.

The second set of HRUs represents the hypothesis that spatial proximity
to the stream is the most important driver for the risk of herbicide export to
the stream, which is the basis for current Swiss legislation [FOAG, 2018]. The
resulting set of HRUs (Fig. 4b) consists of impervious areas, which are the same
as in the other set of HRUs, and areas that are near, medium and far from the
stream. In order to guarantee comparability to the previously introduced set of
HRUs, we use the same total coverage for the near, medium, and far areas as we
did for the connected, drained, and unconnected areas, respectively. Note that
the stream is partly open and partly in a culvert; the near areas are assumed
to be close to the open stream only, where fast transport is possible, while the
medium areas are a buffer around the near areas and the subsurface part of the
stream (Fig. 4b). By selecting a buffer of width 100 m around the open channel
to define the near area, we assure that it has the same total coverage than the
connected areas. In analogy, a buffer of 106 m around the near area and the
culvert part of the stream results in the same total area coverage of the medium
and the drained areas.

Precipitation and evapotranspiration are assumed to be uniform over the
catchment. The input of herbicides to each HRU is obtained by overlaying
the sprayed fields with the HRUs (Fig. 4a and 4b). The resulting amount of
herbicide input to all HRUs in both spatial configurations can be found in Table
A.2. The input to the impervious areas (spray drift) is the same for both sets of
HRUs; it is the load calculated from the observed streamflow and concentrations
during event E1 (0.2 g, see Fig. 7). The effect of including or not including this
mass as input is assessed within the model comparison performed in this study.

3.2.3 Model structure selection

While the above considerations determine how we split the landscape, this sec-
tion describes the model structure applied in each of those landscape units. The
full equations of all the models are given in Appendix A.3).

14



For the impervious areas, a simple structure with one single linear reservoir
is chosen (Fig. 5). For all other areas, we differentiate between the saturated
and the unsaturated zone, where the latter is split into two reservoirs repre-
senting the topsoil and the lower soil zone. This split is motivated by the
large vertical gradient of substance concentrations commonly found in the top
10-20 cm [e.g. Weed et al., 1995] and by soil moisture measurements at differ-
ent depths [Doppler et al., 2012] following recommendations of McMillan et al.
[2010]. Motivated by visual evidence of both, infiltration excess and saturation
excess overland flow in the study catchment those fluxes are considered in the
basic model structure. The groundwater reservoir represents the slow hydro-
logical response processes and is assigned a large sorption capacity (Table A.1)
to reflect extended contact of water with the soil matrix along this path and,
consequently, its limited contribution to in-stream concentrations (supported
by baseflow samples). Due to the shallow groundwater level in parts of the
catchment indicated by measurements, evapotranspiration from groundwater is
enabled if all other reservoirs are empty. In addition to this basic configuration,
we add a fast reservoir, the parameterization of which depends on the HRU
(Fig. 5). For the connected areas, we add a linear reservoir, whereas for the
drained areas we allow a non-linear response to consider that the wetting of
the macropores before efficient transport might lead to a more threshold-like
behaviour. The areas that are connected and drained are assigned the same
model structure as the connected areas, assuming that the overland flow en-
ters the shortcut or the stream directly and is not available for infiltration to
macropores and tile drains anymore.

The parameters of the topsoil, the lower unsaturated zone, and the ground-
water reservoirs are chosen to be identical in the different HRUs, which means
that those reservoirs behave exactly the same in all the HRUs in which they are
present. This is motivated by the fact that the topsoil texture is rather homo-
geneous [Doppler et al., 2014b, FAL, 1997] and a uniform underlying moraine
material and Freshwater molasse formation span the whole catchment [Einsele,
2000, swisstopo, 2007]. Furthermore, agricultural practice does not show any
systematic differences across space and the spatial heterogeneity of sorption
and degradation rates was shown to be rather limited in the study catchment
[Doppler et al., 2014b] so that there is no obvious reason to assume system-
atic differences in soil properties between different HRUs. Linking parameters
between HRUs by introducing global parameters is an efficient and reasonable
way of reducing the size of the parameter space in semi-distributed hydrological
models [e.g. Fenicia et al., 2016].

Table 2 lists the tested models, which are based on combinations of the
HRUs delineated in Sect. 3.2.2 and the model structures derived in this section.
The naming convention is as follows: “exp” and “prx” stand for the HRU de-
lineation based on catchment-specific experimentalist knowledge (Fig. 4a) and
proximity (Fig. 4b), respectively. “top” follows the experimentalist approach,
but directly uses the connected areas resulting from the topographical connec-
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Figure 5: Combination of reservoirs that form the model structure of each HRU.
All reservoirs of a certain type (e.g. S,) have the same parameterization in all
the HRUs in which they are present. The flows indicated by the dashed arrows
are only active if the reservoir at the arrow’s origin is not present; in this case
the flux is forwarded to the next reservoir. Dashed lines on top of reservoirs
mean that a fraction of the incoming flux is directly forwarded, depending on
the state of the reservoir.

Table 2: Overview of the tested model configurations. The abbreviations for the
HRUs are: U: unconnected, I: impervious, C: connected, D: drained, N, M, F:
areas that are near, medium and far from the stream, respectively. U—(C,D,U)
means that the model structure of U (Fig. 5) is applied to the combined HRUs
C, D, and U.

Model® parNazleiirs Mod. sm«m.% HRUs
MexpH1 14 D—(L,C,D,U)
MexpH2 15 I, D—(C,D,U)
MexpH3a 14 I, C, U—(D,U)
MexpH3b 15 I, D, U—(C,U)
MexpH4 16 I,C,D,U
MtopH4 16 I,CY, D, U
MprxH4 16 Del\l/i,%il\;:

a) Each of the listed models has an equivalent version in which spray drift is neglected,
which is denoted by appending “_nsd” to the model name.
b) This uses the connected areas originally presented in Doppler et al. [2012].
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tivity analysis of Doppler et al. [2012] without modifications. The number of
HRUs (e.g. “H2”) is also given in the model name. With MexpH1-4, we test
different degrees of complexity of the spatial configuration based on experimen-
talist knowledge (Fig. 4a) in terms of number of HRUs considered. MexpH1
is fully lumped, hypothesizing that all the areas in the catchment behave sim-
ilarly and can be described with the model structure of the drained areas (see
Fig. 5). MexpH2 contains a minimal degree of spatial distribution by distin-
guishing impervious and pervious areas. MexpH3a and MexpH3b additionally
consider the connected or the drained areas, respectively, as separate HRUs.
MexpH4 uses the full complexity of the experimentalist HRU arrangement (Fig.
4a). MprxH4, on the other hand, follows the more conventional alternative hy-
pothesis that spatial proximity to the stream (Fig. 4b) is the most important
driver for the risk of fast transport. It only differs from MexpH4 in the spatial
arrangement of the HRUs and therefore in the herbicide input to each HRU
(precipitation is assumed to be homogeneous over the catchment); the model
structures in all HRUs are the same as for MexpH4. All the models above are
run with and without spray drift; the latter case is denoted by appending _nsd
for “no spray drift” to the model name.

3.3 Uncertainty assessment
3.3.1 Probabilistic model formulation

We construct a probabilistic model for the observations by adding a stochastic
error term to the output of the deterministic transport model. This stochastic
error term accounts for all the uncertainty in the model output in a lumped
way. For this, we use an approach that was recently developed in a hydrological
setting [Ammann et al., 2019], but which can naturally be extended to water
quality modelling. It is based on specifying the marginal distribution, Dy,
for the observation of type k at time ¢, Yousk(t), which depends on the model
output, Ymod k(t), and some additional parameters of the distribution, 1, so
that Yobs k(t) ~ Dy, (Ymod,k(t), ¥y,). For the detailed theoretical description and
an example of application, see Ammann et al. [2019].

We choose Dy, = N (where N is the Gaussian distribution) for all model
outputs k (streamflow, atrazine, terbuthylazine and soil/water distribution co-
efficients), which is characterized by the mean, uj, and the standard devia-
tion, 0. The mean is set to be the output of the deterministic model, i.e.
1k (t) = Ymoa x(t), and the standard deviation is a function of the model output
in order to consider heteroscedasticity:

N ymod,k(t) *
ox(t) = aryo,x Ton + Yo,k (9)
0,
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where y( is a typical value of the modelled quantity, and a, b and ¢ are
error model parameters. yq is introduced for practical reasons to make a and b
unitless and independent of ¢, and thus more universal. In addition, we consider
autocorrelation of the stochastic model deviations by a random process that
has one single parameter, 7, as described in Ammann et al. [2019]. Therefore,
the parameters of our error model are v, = (ax, bk, ¢k, Tk, Yo,k ), reflecting our
different expectation of the uncertainty [Reichert and Schuwirth, 2012] w.r.t.
the four target variables used for calibration (Table 1). For streamflow, we
use the error model denoted as “E3” in Ammann et al. [2019], whereas for the
other target variables, we use “E1”. Table A.1 shows which of the error model
parameters are inferred and which are kept fixed. The complete likelihood
function is given in Appendix A.5.

3.3.2 Inference procedure

Inference and forward prediction is performed according to the procedure de-
scribed in Ammann et al. [2019]. For each of the models listed in Table 2, we
perform Bayesian inference using the observations listed in Table 1, where we
used streamflow and concentrations recorded at the most downstream gauging
station only (Fig. 1). Data of the remaining stations is used to assess the spatial
distribution of predicted and measured loss rates on the individual experimen-
tal fields. The calibration period extends from 1 April to 12 October 2009. As
a burn-in, we add one month before that period. A local sensitivity analysis
reveals that the influence of the initial condition of the groundwater reservoir
completely decays within one month. The lower soil zone reservoir is initialized
at 90 % of its capacity based on inspection of soil moisture data [Doppler et al.,
2012]. Due to the short concentration time series, which is limited to a few
rainfall events, we refrain from validation in an independent time period.

We apply an affine-invariant ensemble Markov Chain Monte Carlo technique
[Foreman-Mackey et al., 2013] to obtain a sample from the full posterior dis-
tribution. An ensemble of 50 particles is started from independently sampled
initial values for each parameter. The initial range is chosen wide enough to
cover a reasonable spectrum of the parameters. Convergence of the chains is
checked visually, the burn-in is removed, and the final sample size is 25,000 for
each posterior distribution. The procedure for prediction is described in more
detail in Appendix A.5.

3.3.3 Prior distribution

Appendix A .4 lists the independent one- and two-dimensional prior distributions
for all the parameters used in this study. Note that some of the parameters
related to a specific reservoir are only present if that reservoir is present in the
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model configuration (see Fig. A.2 for which reservoir is present in which HRU
and Appendix A.3 for which parameter belongs to which reservoir). However,
if a parameter is present in a model, it always has the prior distribution given
in Appendix A.4.

The priors for the hydrological parameters are largely based on the authors’
modelling experience with the kind of hydrological models applied in this study.
For example, ¢, is likely to be close to unity, since it is a correction factor
for the potential evapotranspiration. A uniform distribution is used to reflect
the lack of knowledge about the split parameter, D, but a lower limit of 0.5
is chosen to prevent potential identifiability problems between the fast and the
slow reservoirs. The priors for the reservoir release rates k¢, kq, and kg reflect
our expectation of a typical time scale of the respective reservoirs response time.

The parameters with a more chemical nature are based on literature values,
our understanding of the chemical processes in the study catchment, or lab
measurements. For example, we neglect the difference in chemical properties of
atrazine and terbuthylazine by assuming only one set of chemical parameters
for both of the substances (similar degradation rates and sorption properties
are reported e.g. in [Lewis et al., 2016]). The layer that feeds fast transport
processes (topsoil layer), is expected to be 5 (£5) cm thick, which has to be
multiplied by a typical effective porosity of 0.4 (£0.1) to get the maximal water
content of this layer, S¢max. As a prior for the sorption parameters S;; and
St,2 we choose a 2-dimensional lognormal distribution to reflect a dependence
between the two parameters, motivated by Altfelder and Streck [2006], who
found a typical value of approx. 1/3 for the fraction of fast sorption sites and
by Karickhoff and Morris [1985], who found similar values between 0.2 and 0.38.
For the kinetic rate of sorption, rg, we use a relatively wide prior, but we limit
it to the region given by a typical time scale of a few days or weeks that we
expect for equilibration to happen.

3.4 Performance evaluation

The developed models are assessed through qualitative visual inspection, as well
as quantitative performance measures. The first is applied to the hydrograph,
chemographs, as well as internal states of the models, which are compared to our
understanding of the catchments behaviour. Thereby we focus on the determin-
istic model output obtained with the maximum posterior parameter estimates.

The quantitative performance metrics, on the other hand, provide informa-
tion about the quality of the full predictive distribution of a model. More specif-
ically, they quantify to which degree the observed data are compatible with a
model’s predictive distribution (henceforth called reliability) [e.g. Brocker, 2009,
McInerney et al., 2017] and how broad this distribution is (spread) [e.g. Gneit-
ing et al., 2007, McInerney et al., 2017]. In combination, those metrics provide
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concise and meaningful information about the quality of a sample of stochastic
predictions in the form of time series. Here, we use the slightly adapted and
renamed versions presented in Ammann et al. [2019]. The reliability is large
if a large part of a model’s predictions are centered at the observations. The
spread, on the other hand, quantifies the width of the predictive distribution
relative to the magnitude of the observations. Good performance is therefore
indicated by a large reliability in combination with a small spread. For more
detailed information on the performance metrics, see Appendix A.6.

4 Results

4.1 Model comparison

Figure 6 shows the reliability and spread of all tested models in the calibration
period for streamflow, atrazine, terbuthylazine, and the average performance
with respect to those variables. Note that the two metrics are not calculated
for the distribution coefficient, K, due to the limited number of measurements.
Figure 7 shows the hydrographs and chemographs obtained with the maximum
posterior parameter set of MexpH2, MexpH4, and MprxH4, and compares them
to the observed values. The posterior parameter distributions of all models are
given in Appendix A.9 and information on some selected internal states can be
found in Appendix A.10.

The performance of the models regarding streamflow (Fig. 6a) varies less
than the performance regarding atrazine (Fig. 6b) and terbuthylazine (Fig. 6¢).
For streamflow, the lumped models (1 HRU) have a large spread of over 0.75,
while models with 2 or more HRUs clearly show a better performance with
spreads that are all close to 0.5 (Fig. 6a). Fig. 7 confirms the similar perfor-
mance of the more complex models w.r.t. streamflow. The performance (the
spread in particular) of the different models is more variable for atrazine and
terbuthylazine than for streamflow (Fig. 6b,c, Fig. 7).

Models considering spray drift show an overall better performance than mod-
els neglecting spray drift (Fig. 6d). In particular, they tend to have a smaller
spread than models without spray drift, and the the performance of each in-
dividual model improves when adding spray drift (Fig. 6¢). The better overall
performance is based on the herbicide concentrations (Fig. 6b,c). For stream-
flow, the models considering spray drift have actually a lower reliability than
the ones neglecting it (Fig. 6a).

The lumped models have a poor performance that clearly deviate from the
other models (Fig. 6d). Models with 2 HRUs already show a strongly improved
performance w.r.t. streamflow (Fig. 6a) which is confirmed by the visual in-
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spection of hydrographs (Fig. 7). MexpH2 fits the atrazine chemograph rather
well, but shows substantial deficits w.r.t. terbuthylazine concentrations (Fig.
7, Fig. 6¢). MexpH2 produces very similar chemographs for atrazine and ter-
buthylazine, failing to reproduce the measured earlier and sharper peak of ter-
buthylazine compared to atrazine during event E2. The performance of the
“H3” models strongly increase w.r.t. terbuthylazine (Fig. 6¢), but not w.r.t
streamflow and atrazine compared to the models with 2 HRUs (Fig. 6a,b). The
models with 4 HRUs show the best overall performance (Fig. 7) with relatively
high reliability and low spread (Fig. 6d), given that they consider spray drift.

Regarding the different spatial configurations of the HRUs, the “experimen-
talist” and the “topographical” setup tend to show a better performance than
the “proximity” setup in terms of herbicide concentrations (Fig. 6b,c). Model
MprxH4 overestimates the atrazine concentrations during event E2 by a fac-
tor of 3-4 (Fig. 7). In terms of streamflow, MprxH4 leads to similar results as
MexpH4 (Fig. 7).

While the marginals of the posterior parameter distribution of all the tested
models can be found in the Appendix, we provide a summary in the following.
The inferred value of the hydrological parameters are similar for all the tested
models except for MexpH1. This is in agreement with the very similar perfor-
mance metrics regarding streamflow for those models (Fig. 6a). Typical values
of the evaporation multiplier, ¢,, are around 1.5, the infiltration capacity, Pex, is
ca. 47 mm/h and the split between the groundwater and the fast reservoir, D, is
ca. 0.95 in all the mentioned models. The maximal water content of the topsoil
layer, St max, and the lower unsaturated zone, Sy max, are around 10 mm and
150 mm, respectively. Note that the former is also the lower bound we set for
that parameter (see Table A.1). Regarding the parameters of chemical nature,
the fitted degradation rate, A, corresponds to a half-life time of ca. 10 days in
the case of MexpH4 and is within 5 - 10 days for the other models. The sorption
parameters, S; 1 and S 2, both result in values of around 20 mm, which corre-
sponds to a distribution coefficient of K app =~ 1.9 1/kg according to Eq. (A.10),
which compares well with the measured distribution coefficients of 0.7 - 3 1/kg
in the first two weeks of the study period [Camenzuli, 2010]. The parameters
that mainly cause the different performances for atrazine and terbuthylazine
among the tested models are the ones of the fast responding reservoirs in the
HRUs representing connected and drained areas, k. (Eq. A.26), kq, and aq (Eq.
A.29).

4.2 Output uncertainty and loss rates

Figure 8 shows the output uncertainty to be expected for predictions in stream-
flow, atrazine, and terbuthylazine concentrations during events E2-E5 with
MexpH4, based on the 90%-confidence intervals given by the stochastic predic-
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tions obtained with the full probabilistic model after inference (see Sect. 3.3.2).
The modelled relative export of atrazine and terbuthylazine via streamflow at
the catchment outlet predicted by MexpH4 and MprxH4 is visible in Fig. 9.
MexpH4 predicts that over the whole study period, the relative export amounts
to between 0.2 and 0.5 %, and between 0.4 and 0.8% of the applied mass for
atrazine and terbuthylazine, respectively. The former range of values agrees well
with the measured overall atrazine loss rate of 0.26 % [Doppler et al., 2014b].
The contribution of the individual events to atrazine exports are very different:
a large part of the atrazine mass is exported during event E2, which is the first
major event after spraying, while the other events export a much smaller frac-
tion (Fig. 9a). Note that there were two applications of terbuthylazine and the
exported mass in the different events is given as a fraction of the mass applied
up to that time, which is why the total exported fraction can be lower than the
one for event E2 (Fig. 9b). The resulting spatial distribution of atrazine loss
rates at the individual experimental fields is less biased with MexpH4 than with
MprxH4 (Fig. 10a). The terbuthylazine loss rates, for which no measurements
are available, are also distinctively different between MexpH4 and MprxH4 (Fig.
10Db).

Figure 9c and 9d show the relative exported mass of atrazine and terbuthy-
lazine over the whole study period split according to the HRUs. The connected
and the drained areas export approx. 0.4-0.8 % of the mass of atrazine applied
to them, while the HRU representing unconnected areas exports less than 0.03
% of the mass applied to it. The mass of atrazine exported from impervious
areas according to the maximum posterior model output amounts to ca. 0.14 g
or 70 % of the assumed amount of spray drift.

5 Discussion

5.1 Model building and inference

A large part of the available prior knowledge was incorporated in the division of
the landscape (Sect. 3.2.2) and the choice of the model structure (Sect. 3.2.3);
only a small part of the prior knowledge was used for the definition of the
actual prior distribution of parameters. It is important to be aware of this, in
particular when applying more complex physically based models “off the shelf”,
in which case the splitting of the landscape and the choice of model structure
are potentially more implicit.

Although the experimentalist knowledge provides guidance in the delineation
of HRUs in this study, the exact extent of each HRU is believed to be associated
with uncertainty; it likely depends on time-varying factors like the wetness of
the catchment, crop growth stages, plowing practice, microstructures, etc., that
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can potentially alter flow paths. This requires us to make some assumptions
on the spatial extent of the active processes that are difficult to test. However,
the rather similar performance of MtopH4 and MexpH4 (Fig. 6d), which use
two different versions of connected areas, indicate that the results might be ro-
bust w.r.t. the delineation of the catchment of artificial shortcuts, which is a
promising result for up-scaling of the experimentalist informed HRUs that con-
sider artificial shortcuts. Soil thickness and slope potentially affect hydrological
and transport processes. Nonetheless, their spatial variation was not consid-
ered when delineating the HRUs, in order to ensure model parsimony. Another
assumption to be aware of is the absence of fluxes across the boundaries of
HRUs, which is not very realistic at the small spatial scale of this study. In
fact, Doppler et al. [2012] found evidence for substance fluxes via overland flow
across the HRU boundaries delineated in this study in at least one instance.
However, these fluxes are not believed to be excessive compared to the fluxes
from the HRUs to the stream and the chosen approach is seen as a necessary
compromise to ensure model parsimony.

5.2 Model comparison

The results in Sect. 4.1 highlight the need to distinguish the impervious areas
directly connected to the stream as a separate HRU, with a characteristically
different hydrological behaviour, and to acknowledge the limited amount of sub-
stance input to those areas. The improved performance with increasing spatial
resolution is in agreement with a previous study [Ghirardello et al., 2014]. The
results also indicate that the heterogeneity of fast paths relevant for herbicide
transport require rather detailed information about a catchment like the loca-
tion of potentially active artificial shortcuts and tile drains. The models that
consider only one of those elements also show reduced performance, in partic-
ular for terbuthylazine (Fig. 6¢), which supports the assumption that both of
those elements are important transport paths.

5.3 Uncertainty and extrapolation

Note that the output uncertainty presented in Sect. 4.2 is conditional on the
assumptions related to the model structures of MexpH4 and MprxH4, the prior
distribution of the parameters, and the characteristics of the error model (in
particular the fixed exponent, ¢, Eq. 9). Furthermore, the applied likelihood
function assumes that the errors in one output variable are independent of the
other output variables, which is not necessarily the case, but is a common as-
sumption in multi-objective modelling problems [e.g. Hong et al., 2005, Talamba
et al., 2010, Han and Zheng, 2016, 2018]. The uncertainty originating from the
unknown application date of the second load of terbuthylazine is not considered
in this study.
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Limited availability of additional data sets similar to the one used in this
study prevented a strict validation of the developed models. Therefore the va-
lidity of a spatio-temporal extrapolation remains to be tested in future work.
Still, the chosen site is in many regards typical for the Swiss Plateau; i.e. topog-
raphy, climate, land use, tile drained area, and presence of artificial shortcuts.
The structure of MexpH4 (and MtopH4) is therefore believed to be suitable to
describe the behaviour of other small catchments in the Swiss Plateau. The
findings indicate, however, that high-resolution digital elevation models and
site-specific knowledge about artificial shortcuts and tile drains might be neces-
sary to achieve accurate representation of high-frequency chemographs. These
are not readily available in many catchments, which impedes the delineation of
HRUs similar to the ones in this study. Parameter regionalization could also
be hampered by factors that are catchment-specific like soil type and organic
matter content, soil management, slope, erosion risk, etc. The extrapolation to
other substances is believed to be less problematic, since the model’s parameters
for sorption and degradation properties can be related to measurable quantities
like distribution coefficients (Sect. A.2.2) and half-life times. Validation with
independent data would certainly be needed for a more accurate estimate of the
extrapolation error.

5.4 Methodological pitfalls

We encountered some methodological pitfalls that we believe possess some gen-
erality and are therefore of potential interest for future water quality modelling
studies. First, pollutant concentrations and loads can easily span many orders
of magnitude. In that case, a careful choice of the error model parameters
(see Eq. 9) is necessary in order to accurately reflect the expected errors in
the whole range of possible model outputs. If we require a reasonable relative
accuracy also for small modelled concentrations, the model can become sensi-
tive to “missed” concentration peaks, which have very large relative errors. In
our case, we could adapt the input in the form of spray drift to correct for an
otherwise missed peak, but in other cases more heavy tailed distributions than
the Gaussian might be necessary [e.g. Schoups and Vrugt, 2010, Ammann et al.,
2019] for a reduction of the sensitivity to very strong outliers. Certainly, more
research is needed on realistic uncertainty estimates with probabilistic models
that allow for a robust inference process w.r.t. water quality data.

Second, the comparison of models with and without spray drift (Fig. 6) shows
the sensitivity to herbicide input onto fast-responding elements like impervious
areas, which possess a high risk for mobilization and transport, at least during
the first event after spraying. Properly accounting for the uncertainty related
to this input would require more elaborate techniques. While some methods
to consider input uncertainty have been established in hydrology [e.g. Kavetski
et al., 2003, Gotzinger and Bardossy, 2008], they have only recently been trans-
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lated to the large input uncertainties of water quality modelling [Han and Zheng,
2016]. Note that in our study, due to the controlled herbicide application, the
input uncertainties are much smaller than in conventional settings.

Third, reservoirs containing high concentrations of substances (i.e. the top
soil) are supported by field observations [Doppler et al., 2012] but can be prob-
lematic in the modelling procedure. Especially when the model simulates very
low streamflow, the simulated in-stream concentration is highly sensitive to the
outflow of reservoirs that have high internal concentrations of a compound. In
a bucket-model it is important to limit the transport of tracer along that path
during baseflow conditions, which might require special parameterizations de-
pending on the property of the reservoirs. In our case, this required a strongly
non-linear constitutive function of the top soil reservoir (Eq. A.19), so that
it does not contribute to the streamflow during baseflow conditions and small
precipitation events.

6 Conclusions

In this study, we showed how a perceptual model of herbicide fate in a small
agricultural catchment, which is based on prior expert knowledge, can inform
and constrain the construction of a conceptual transport model in combination
with a Bayesian uncertainty quantification setting. Model deficits were identified
and improved based on a discussion between modellers and experimentalists.
Some alternative hypothesis, in the form of different spatial model configurations
were tested to assess the degree of complexity of site-specific knowledge needed.
Based on this, we reach the following conclusions:

1. The available experimentalist knowledge mainly informed the division of
the landscape into HRUs and in the design of the model structure. Its use
in the definition of the prior parameter distribution was less pronounced.
Modellers experience was mainly used as complementary information in
the model structure selection and in the definition of the prior distributions
of model parameters.

2. In the translation of the perceptual to the conceptual model, we found that
the model bias w.r.t. the data could strongly be reduced when including
spray drift on impervious areas. This is a strong indication of spray drift
during the controlled herbicide application experiment in the study catch-
ment, even if the estimated amount (0.2 g) was rather small. This also
shows that experimentalist knowledge can be useful in identification and
improvement of model deficits in an iterative procedure.

3. While completely lumped models fail to jointly reproduce observed stream-
flow and concentration time series, a minimal degree of spatial distribution

30



by separate treatment of impervious areas is sufficient to capture stream-
flow and atrazine concentrations. However, the large heterogeneity of
dominant transport processes, which is revealed by the markedly different
chemograph of terbuthylazine, is more elusive. It can be partially captured
once detailed knowledge about the location of tile drains and potentially
active shortcuts is used.

4. The experimentalist-informed division of the landscape into connected and
drained areas reduces the uncertainty by 30 % and results in a better
spatial distribution of loss rates compared to the conventional way that is
based on proximity to the stream. Together with finding 2 this indicates
that site-specific knowledge of elements like artificial shortcuts and tile
drains might be important for accurate estimations of exposure risks in
catchments with sizes similar to the one in this study.

5. Regarding uncertainty quantification, the standard deviation of the model
output of MexpH4 in the calibration period is in the order of 50 % of
the observed values for streamflow, atrazine, and for terbuthylazine (Fig.
6a,b,c). The uncertainty of herbicide input to fast responding areas is a
major factor that would ideally be accounted for separately, preferably
with independent validation of the model.
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