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Environmental change can alter species’ abundances within communities1

consistently, e.g., increasing all abundances by the same percentage, or more2

idiosyncratically. Here, we show how comparing effects of temperature on species3

grown in isolation and when grown together helps understand how ecological4

communities more generally respond to environmental change. In particular, we5

find that the shape of the feasibility domain (the parameter space of carrying6

capacities compatible with positive species’ abundances) helps explain the7

composition of experimental microbial communities under changing environmental8

conditions. We first introduce a measure to quantify the asymmetry of a9

community’s feasibility domain using the column vectors of the corresponding10

interaction matrix. These column vectors describe the effects each species has on all11

other species in the community (hereafter referred to as species’ multidimensional12

effects). We show that, as the asymmetry of the feasibility domain increases, the13

relationship between species’ abundance when grown together and when grown in14

isolation weakens. We then show that microbial communities experiencing different15

temperature environments exhibit patterns consistent with this theory.16

Specifically, communities at warmer temperatures show relatively more asymmetry,17

and thus the idiosyncrasy of responses is higher when compared to cooler18

temperatures. These results suggest that while species’ interactions are typically19

defined at the pairwise level, multispecies dynamics can be better understood by20

focusing on the effects of these interactions at the community level.21

Environmental conditions vary through space and time and influence whether ecological22

communities contain a mix of rare and abundant species or be composed of species with similar23

biomasses (or abundances)1–3. Temperature is one such condition but its effects on different24

species’ biomasses are often inconsistent4. While some species can increase in biomass and25

others decrease as a function of temperature, the same species can also decrease or increase in26

biomass depending on the presence of other species5–10. Importantly, understanding how27

temperature influences species’ performance (i.e., a species’ ability to transform external28

resources into its own biomass) and interactions can provide one approach for explaining such29

apparently inconsistent effects of temperature5,11. Indeed, temperature often alters interactions30

among plants and animals5 and species’ interactions can even shift from negative to positive in31

different temperature environments12–14. Mathematical analyses and empirical results show32

that indirect effects of temperature mediated by species’ interactions can be large relative to33

direct ones15,16. Hence understanding how temperature affects species’ interactions while at the34

2



same time accounting for its effects on species’ performances has the potential to explain the35

varied effects of temperature on community composition.36

One approach for understanding and predicting effects of temperature on species’ performances37

and on direct interactions is metabolic theory, in which biological rates scale with body size and38

temperature4. Predictions based on metabolic theory often assume common effects of39

temperature on all species (i.e., one common set of activation energies17–19, although variation40

in the distribution of activation energies can be substantial and skewed20). Coupled with the41

relatively large effects of species’ interactions, the effect of temperature on species’ growth rates42

has the potential to create the appearance of idiosyncratic community responses under changing43

environments, and to explain such variation in effects if understood and accounted for. How44

temperature affects the distribution of indirect species’ interactions is, however, currently quite45

unclear, as are implications of interaction distributions for species’ responses to environmental46

change. This multidimensional and changing factors have impaired our ability to understand or47

predict the effect of temperature on population and community dynamics21–23.48

Here we use a structural approach to investigate why temperature inconsistently affects49

communities as a function of species’ interactions14,24. This approach applies a geometric50

perspective to Lotka-Volterra (LV) models of population dynamics to quantify the domain in51

the space of carrying capacities compatible with positive species’ abundances (the necessary52

condition for species’ coexistence) as a function of species’ interactions—what is called the53

feasibility domain24,25. We focus on the effects of temperature on the community composition.54

We study the effect on community composition by looking at how temperature affects the55

relationship between species evenness when grown together and the position of species’56

performance in isolation in the feasibility domain—what we call relative species’ performance.57

We first develop theory to study and measure asymmetry of the feasibility domain using the58

variability within the column vectors of an interaction matrix. These column vectors describe59

the effects each species has on all other species in the community, i.e., species’ multidimensional60

effects. Then, we hypothesize that increasing the asymmetry of the feasibility domain decouples61

species evenness when grown together from their relative performances in isolation. We then62

present empirical results that corroborate this hypothesis, and that also show how and why63

temperature have idiosyncratic effects on community responses: the idiosyncratic effects are, in64

fact, expected by the effect of temperature on the asymmetry of the feasibility domain across65

communities.66
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Results67

Theoretical results and predictions68

To establish our hypothesis, first we define with minimum use of mathematics the measures69

that are used throughout our study (see Box 1 for mathematical details and Figure 1 for a70

conceptual illustration). In our framework, we consider the performance of a species i in71

isolation as its carrying capacity (Ki). Note that intrinsic growth rates (ri) can also be used as72

a measure of species’ performance in isolation, depending on the dynamical model under73

consideration26,27 (see Methods for further details). Then, we consider that a community of74

species is characterized by an interaction matrix (A), whose elements (aij) define the direct per75

capita effect of a species j on the per capita growth rate of a species i. Note that aij and aji do76

not need to be the same. Importantly, the interaction matrix (A) of the community defines the77

parameter-space region of carrying capacities (or intrinsic growth rates) under which all the78

species within the community can have positive biomasses at equilibrium (N∗ > 0). This79

parameter-space region is known as the feasibility domain (DF (A))28. The size of the feasibility80

domain (Ω(A)) can be calculated by the proportion of such region inside the unit sphere (the81

L2 norm)25 (see Methods for further details). Larger feasibility domains represent larger82

differences in species’ performances (carrying capacities) that are compatible with feasibility.83

Assuming that the dynamics of the community are governed by any model topologically84

equivalent to a LV model29, the location of the vector of carrying capacities observed in85

monocultures (K) inside the feasibility domain determines the specific distribution of species’86

biomasses at equilibrium within the community27. We quantify this distribution by the species87

evenness (J ∈ [0, 1]). Thus, we define the position of species’ performance in isolation in the88

feasibility domain (i.e., the relative performance of species in isolation, θ) as the distance89

between the observed vector of carrying capacities in monocultures and the vector that would90

result in all species having the same biomass when grown together (i.e., having maximum91

species evenness). This distance acts as a normalization factor given that only in the case when92

species do not interact, the vector of carrying capacities (K) is exactly proportional to the93

species’ biomasses at equilibrium (N∗)27,30 (see Methods for further details).94

Note that the geometric centroid of the feasibility domain corresponds to the vector of carrying95

capacities leading to all species having the same biomass when grown together27 (maximum96

species evenness, J = 1). This further implies that in order to compare the performance of97

species across communities, we need to normalize the relative performance (θ) by the size of the98

4



feasibility domain as θn = θ(0.5− Ω(A)), where 0.5 is the maximum size of any feasibility99

domain25 (see Methods for further details). Thus, we estimated the relationship between species100

evenness when grown together and the relative performance in isolation by the correlation101

between J and Ωn.102

As we previously mentioned, species’ interactions (aij) can differ in sign as well as strength.103

Moreover, a community can be characterized by a combination of direct and indirect species’104

interactions24. Thus, to provide a well-defined community-level characterization of species’105

interactions, we calculate the asymmetry (φ(A)) of the feasibility domain. Geometrically, this106

corresponds to the variability across the column vectors (known as spanning vectors25) of the107

interaction matrix A. Recall that these columns vectors can be interpreted as the species’108

multidimensional effects on the community (see Figure 1 for a conceptual representation of109

these equivalences). Formally, φ(A) = SD(‖v1‖, . . . , ‖vS‖), where SD corresponds to the110

standard deviation, vi is the ith column vector of the interaction matrix A with S species, and111

‖ · ‖ corresponds to the L2 norm.112

Based on the definitions above, we now turn to establish our hypothesis. We hypothesize113

communities with more symmetric feasibility domains (i.e., small values of φ(A)) generate more114

homogeneous community responses. Among communities, this leads to relative performance in115

isolation (θn) being tightly correlated with species evenness when grown together (J) (Figure116

1C). Otherwise, differences across communities in the asymmetry of the feasibility domain can117

increase the idiosyncrasy of community responses: weaken any potential association between θn118

and J (Figure 1F). This verbal account of the theory is illustrated with simulations of model119

communities (see Figures 2 & 3 and Methods Section).120

How does all this relate to the effects of temperature on community responses? Based on this121

theory, we can make contingent hypotheses. If temperature has proportionally similar effects on122

interaction strengths across communities (i.e., if temperature does not affect the asymmetry of123

the feasibility domains), then temperature will not affect the association of relative performance124

in isolation and species evenness when grown together (i.e. Figure 1A-C). For example, if125

temperature doubled the effect on all interactions (including self-regulation), it would not126

change the shape of the feasibility domain nor its asymmetry. If, however, temperature has127

different effects on interaction strengths (i.e., temperature increases the asymmetry of the128

feasibility domain across communities), then temperature will create idiosyncratic community129

responses (Figure 1D-F), weakening the correlation between θn and J .130
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Empirical results131

We tested these hypotheses against aquatic microbial communities grown in132

temperature-controlled environments. Each community contained one, two, or three of six133

species of bacterivorous protists (Colpidium striatum, Dexiostoma campylum, Loxocephalus sp.,134

Paramecium caudatum, Spirostomum teres, and Tetrahymena thermophila) competing for the135

same food resource (the bacterium Serratia fonticola). Protists, as the most prevalent and136

diverse organisms on Earth, are essential components of aquatic food webs providing various137

ecosystem services and also excellent model organisms due to their fast generation and the ease138

to control experimental conditions31. Furthermore, protist growth rates are strongly139

temperature-dependent32, which allows for investigating the effects of different environmental140

manipulations. Communities experienced either a control temperature (15 ◦C) which the141

organisms had already experienced for many generations, or one of five elevated constant142

temperatures (gradually increasing 2◦C each level).143

At control temperature (15◦C), we observed a negative relationship between relative144

performance in isolation (θn) and species evenness when grown together (J) in 2- and 3-species145

communities (Figure 4), as expected when the feasibility domains are less asymmetric. These146

negative relations persisted at 17, 19 and 21◦C for 2-species communities, and at 17, and 19◦C147

for 3-species communities. Above these temperatures, there was little evidence of a negative148

relationship, such that relative performance in isolation did not explain species evenness when149

grown together. Additionally, we found no systematic directional change in the size of the150

feasibility domain nor the relative performance across temperatures (Figure 5A & B).151

Furthermore, and consistent with the theory, these weaker relationships at higher temperatures152

are accompanied by more asymmetric feasibility domains (Figure 5C). Importantly, these153

findings reveal that temperature primarily affected species’ multidimensional effects on the154

community, which affected the asymmetry of feasibility domains, which in turn created a weaker155

relationship between the relative performance (θn) and species evenness (J).156

Discussion157

The close match between our empirical findings and our hypotheses corroborates our structural158

theory of community responses to environmental change. Specifically, the relationship between159

species evenness when grown together and their relative performance when grown in isolation.160

This confirms that changes in species’ performances due to external perturbations insufficiently161

explain changes in community composition2. Instead, we need to also know the shape162
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(asymmetry) of the feasibility domain. Yet, in order to explore the generality of our findings, we163

need considerably more empirical research examining how temperature, and other164

environmental factors, affect species’ multidimensional effects across communities.165

Importantly, our experiment shows that modest increases in temperature do not disrupt the166

ability of relative performance in isolation to explain species evenness when grown together, but167

that larger temperature increases do. The observed diversification of community responses168

appears to be driven by differences in the asymmetry of feasibility domains. This determines a169

mapping between composition and structural properties that depends on both responses of170

species’ performance and of interactions to environmental change. The increasing asymmetry of171

feasibility domains with greater temperature change may explain why previous empirical work172

has shown a lack of unidirectional community responses to warming7. Due to the increasing173

asymmetry of the feasibility domain, species’ performance and single pairwise interactions174

become a less reliable explanatory variable of species evenness when grown together. These175

results suggest that while species’ interactions are typically defined at the pairwise level,176

multispecies dynamics can be better understood by focusing on the multidimensional nature of177

these interactions at the community level.178

Our results also corroborate theoretical findings on the link between species evenness and179

productivity27: communities maximize their tolerance to random external perturbation when180

their compositions are described by a high species evenness and an intermediate level of181

productivity. This corroboration shows that diversification of species’ interactions can be a182

plausible consequence of different mechanisms responsible for maintaining the tolerance to183

environmental changes (see Extended Data Figures 3-4). For example, the observed increase in184

the asymmetry of the feasibility domains is a likely consequence of the multidimensional185

interaction effect of interspecific variation in thermal sensitivity, differences in thermal range or186

thermal optima, and differences in adaptation or plasticity to novel temperatures7. Importantly,187

these results suggest that direct and indirect temperature effects are essential to understand188

(and potentially predict) community dynamics. Indirect effects that complexity brings, whereby189

change in the abundance of a species affects the abundance of another via a third can be larger190

compared to direct effects15. Our results also suggest that mechanistic models must include the191

structure of interactions among organisms and not only the direct effects of temperature33.192

While our theoretical results hold under higher diversity and mechanistic models (see Extended193

Data Figure 2), in order to move to a general theory of community responses, future194

experimental work needs to address communities with more than three species and in other195
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ecosystems and environments. Such work should explicitly include comparison of theoretical196

and experimental work, and involve estimation of responses of species’ performances and197

interactions to environmental change. It could also relax some of the assumptions made in our198

study, such as temporally invariant performances and interaction strengths, and that species’199

performances are independent of community composition. Also important is to investigate the200

effects of temporally varying environmental conditions, including increasing variability and201

extremes in temperature.202
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Box 1: Theoretical framework

Species’ performance measures the ability of a species to transform resources into its own

biomass. This ability depends both on the species’ traits and the species’ environment. Species’

performance is measured as the carrying capacity (Ki) of each species i in isolation or as the

intrinsic growth rate (ri), depending on the mathematical formalism (see Methods). Hereafter,

we define all measures below in terms of carrying capacities.

Feasibility domain (DF (A)) is a community’s parameter space comprised by the carrying

capacities that provide all species’ populations with a positive equilibrium as a function of the

interaction matrix A. Formally, under LV dynamics, this feasibility domain corresponds to

a convex region defined by DF (A) =
{

K = N∗
1v1 + · · ·+N∗

SvS , with N∗
1 > 0, . . . , N∗

S > 0
}

,

where N∗ are the positive solutions of the system, vi are the column vectors of the interaction

matrix A, and S is the number of species in the community. The column vectors of an

interaction matrix can be ecologically interpreted as the multidimensional interaction effects

of an individual species on the community. Recall that the elements (aij) of the interaction

matrix (A) define the direct per capita effect of a species j on the per capita growth rate of a

species i.

Geometric centroid of the feasibility domain (Kc) corresponds to the point of maximum

species evenness whenever the columns of the interaction matrix have been normalized under

any norm25. This is true given that in this case, the centroid is equivalent to the center of

mass of a convex object with n vertices all having the same mass. Formally, the centroid is

calculated as Kc = 1
S
v1+ · · ·+ 1

S
vS which corresponds to the conditions under all species have

the same biomass at equilibrium.

Species evenness (J) is a description of the distribution of species biomasses within a com-

munity. Formally, it is defined as J(N∗) = −
∑S

i=1 Pi log(Pi)/ log(S) ∈ [0, 1], where Pi is the

relative biomass of species i at equilibrium, i.e., Pi = N∗
i /

∑S
j N∗

j . Note that J(N
∗) = 1 is the

case when all species have the same biomass.

Asymmetry of the feasibility domain (φ(A)) is the variation across all the column vectors

of an interaction matrix A. Note that the column vectors correspond to the spanning vectors

of the feasibility domain DF (A)), implying that φ(A) represents geometrically the asymmetry

of the feasibility domain. Mathematically, it is given by φ(A) = SD(‖v1‖, . . . , ‖vS‖), where
SD corresponds to the standard deviation and ‖ · ‖ corresponds to the L2 norm. The higher

the value of φ(A), the more asymmetric the feasibility domain.

Relative performance in isolation (θ) is defined as the distance between the vector of car-

rying capacities observed in monoculture (K) and the vector of carrying capacities that would

result in all species having the same biomass when grown together (i.e., the geometric centroid

(Kc) of the feasibility domain). Simply put, this measure captures the position of performances

in isolation in the feasibility domain. Formally, it is measured as θ = arccos
(

K·Kc
‖K‖·‖Kc‖

)

, where

‖ · ‖ corresponds to the L2 norm. Note that this distance normalizes species’ performances

by the interaction matrix A, given that the geometric centroid (Kc) is particular of every

interaction matrix.

Size of the feasibility domain (Ω(A)) is the proportion of the unit sphere of carrying

capacities that provide positive equilibria for all populations in the community. That is, the

size corresponds to the normalized solid angle generated by the feasibility domain DF (A),

such that it is equal to one for the whole unit sphere B
S . The normalized solid angle Ω(A)

is equal to the probability of sampling uniformly a vector of carrying capacities on the unit

sphere inside the feasibility domain of an interaction matrix A. Formally, it is calculated as

Ω(A) = vol(DF (A)∩BS)
vol(BS)

∈ [0, 0.5]25.

203
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Figure 1: Theory relating differences in species’ performances in isolation and species
evenness when grown together. Hypothetical 3-species communities in which symbols and
colors correspond to different species, while the thickness of arrows represents the direct pairwise
interaction strengths. Communities a and b have more variability in the strength of species’
interactions and communities c and d have less variability. The triangles in panel B & E show
a 2-dimensional simplex (projection) of a 3-dimensional cone generated by the column vectors of
the interaction matrix. This simplex corresponds to the feasibility domain—region encapsulating
all the vectors of the carrying capacities K (or intrinsic growth rates, r) leading to positive
biomasses at equilibrium (see Box 1 for further details). The yellow and red areas inside the
feasibility domain represent higher and lower levels of species evenness J , respectively. The size
and asymmetry of the feasibility domain are represented by Ω and φ, respectively. Note that the
distribution of species’ biomasses has maximum evenness (J = 1) at the centroid of the feasibility
domain (black circle). Instead, the corner defines the location of perfect unevenness (J = 0),
whereas at the border one has partial unevenness. The blue circle inside a feasibility domain
corresponds to the vector of carrying capacities observed in monocultures, K. The arrows show
the distance between the observed vector K (or r) and the centroid of the feasibility domain.
We call this distance the relative performance in isolation (θ). Top row: a scenario in which
different communities have homogeneous interactions (Panel A), which can be translated into a
symmetric feasibility domain (Panel B), which leads to a strong negative relationship between
species evenness when grown together (as a measure of the distribution of species biomasses) and
the relative performance in isolation (Panel C). Bottom row: a scenario in which communities
have heterogeneous interaction (Panel D) that result in asymmetric feasibility domains (Panel
E), which lead to an unpredictable outcome between species evenness and relative performance
in isolation (Panel F).

10



ρ = −1

ρ = −0.96

ρ = −0.94

ρ = −0.83

ρ = −0.81

ρ = −0.66

S = 3

low

S = 3

medium

S = 3

high

S = 2

low

S = 2

medium

S = 2

high

0 0.1 0.2 0.3 0.4 0 0.2 0.4 0.6 0 0.25 0.5 0.75

0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Relative Performance in Isolation (θn)

E
ve

n
n

e
s
s

Figure 2: Theoretical results. Each point (n=500) represents a different model-generated
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values of feasibility domains φ(A) (low=0.1, medium=0.5 and high=0.9) marked at the top of
each panel. We calculated species evenness at equilibrium (J(N∗)) and the relative performance
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< 0.001. See Methods for full details.
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Figure 4: Empirical results. This figure shows experimental microbial communities formed by
different combinations of 2 (A) and 3 (B) protist species under different temperatures. The first
column corresponds to communities under a control temperature of 15 ◦C, whereas the other
columns correspond to the communities at elevated constant temperatures. Panels show the
relationship between the observed species evenness (J) and the inferred relative performance in
isolation (θn). Inside the panels, we report the Spearman’s rank correlation coefficients (ρ) with
corresponding p-values inside parentheses among all experimentally-generated communities. Solid
and dotted lines correspond to slopes that are statistically distinguishable and non-distinguishable
from zero, respectively. See Methods for full details.
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ping. The numbers on error bars show the magnitude of the interquartile range. See Methods
for full details.
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Methods204

Theory and simulations205

For our theoretical investigation, we defined the population dynamics given by the classic206

Lotka-Volterra (LV) model using the K-formalism Ṅi = Ni
ri
Ki

(

Ki −
∑S

j=1 aijNj

)

, where Ni is207

the biomass of species i, ri is the intrinsic growth rate of species i, and aij is the direct per208

capita effect of species j on i. The biomasses at equilibrium are calculated as N∗ = A−1
K.209

Note that the carrying capacity of species i is defined as Ki = ri/αii. That is, the model can be210

written in the r-formalism as Ṅi = Ni

(

ri −
∑S

j=1 αijNj

)

, where N
∗ = α

−1
r. That is, in the211

K-formalism, the carrying capacities modulate the equilibrium points, whereas in the212

r-formalism is the intrinsic growth rates which determine the equilibrium points. Note, however,213

that A and α do not have the same units. Here we used the K-formalism to illustrate our work;214

however, both formalisms are interchangeable for our purposes and their use should depend on215

data availability.216

Recent work29 has shown that in any model topologically equivalent to the LV model, the217

structure of species interactions (embedded in the interaction matrix A) defines a unique218

relationship between parameters K and the community composition at equilibrium N
∗ (where219

Ṅ = 0). This relationship is established by the feasibility domain, which corresponds to a220

convex region DF (A) within the parameter space, from which is possible to link uniquely a set221

of Ki to a set of feasible (positive) solutions N∗
i > 0 (see Box 1 for further details). Formally,222

this feasibility domain can be written as223

DF (A) =
{

K = N∗
1v1 + · · ·+N∗

SvS , with N∗
1 > 0, . . . , N∗

S > 0
}

, where N
∗ are the positive224

solutions of the system, vi are the column vectors of the interaction matrix A, and S is the225

number of species in the community. This definition implies that the feasibility domain of an226

interaction matrix can be geometrically represented as an algebraic cone by normalizing the227

parameter space under any norm25. An algebraic cone is defined as the space spanned by228

positive linear combinations of S linearly independent vectors vi. Then, the size of the feasibility229

domain can be estimated by normalizing the solid angle generated by the feasibility domain,230

such that it is equal to one for the whole unit sphere (using the L2 norm) BS . This normalized231

angle can be analytically calculated by Ω = 1

(2π)S/2
√

| det(α)|

∫

· · ·
∫

N∗≥0 e
− 1

2
N∗TαTαN∗

dN∗, and is232

computed via a quasi-Monte Carlo method24,34.233

To theoretically investigate the relationship between species evenness and the relative234

performance in isolation, we generated 2- and 3-species communities by randomly sampling235

interaction matrices following a uniform distribution U [−P, P ]. We used a tuning parameter236
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(P), where the larger the values of P, the larger the asymmetry of the interaction matrix is. By237

including positive and negative interaction coefficients, we ensured the comparability to our238

empirical results. All intra-specific coefficients are set to aii = −1, such that each species239

saturates to its carrying capacity in isolation. This is an important consideration to take into240

account given that if one aims to change all pairwise interactions in a community, these values241

would have to be normalized such that the diagonal elements are always equal to one. Our242

results are qualitatively robust to the choice of distribution34. We assumed a fully-connected243

interaction structure for both 2- and 3-species communities (i.e. connectance is 1).244

Parameterizations of Ki inside the feasibility domain are sampled by Ki =
∑S

j=1N
∗
i vi, where245

N∗
i are all values in (0, 1) and

∑S
i=1N

∗
i = 1.246

We then calculated the size of the feasibility domain (Ω), relative performance in isolation θ, the247

asymmetry of the feasibility domain φ, and the species evenness J(N∗) of the248

randomly-generated communities (see Box 1 for definitions). We studied how species evenness249

J(N∗) changed as a function of the relative performance in isolation θ across different values of250

asymmetry. Figure 3 confirms that the higher the asymmetry, the higher the variation251

(measured as the interquartile range) of Ω, θ, and φ across communities. Additionally,252

regardless of the asymmetry, Ω and θ were positively correlated, while φ was not correlated with253

any measure. This confirmed that the relative performance in isolation needs to be normalized254

by the size of the feasibility domain in order to be compared across communities: we normalized255

it as θn = θ(0.5− Ω) (note that 0.5 is the least upper bound of Ω)25. In turn, Figure 2 confirms256

that J(N∗) and θn are negatively correlated under low asymmetry. However, the higher the257

asymmetry, the more the relationship between J(N∗) and θn weakens, indicating that the258

relative performance in isolation becomes less and less a reliable indicator of species evenness.259

Importantly, these differences are driven by the asymmetry of the feasibility domains φ.260

Importantly, the asymmetry is size dependent and can be modulated by the structure of a261

community, e.g., changing the connectance within a community. Yet, the effect of asymmetry on262

the relationship between relative performance in isolation and species evenness when grown263

together remains (see Extended Data Figure 2).264

Empirical methods265

We factorially manipulated temperature (15, 17, 19, 21, 23 and 25◦C) and community266

composition (31 unique compositions). Each of the six temperature treatments was controlled267

by two independent incubators. Prior testing showed low temperature variation of the liquid268

medium (set-point temperature varied by 0.1◦C). Measuring temperature with a replicated269
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gradient is recommended to harness the power of a regression design, while still allowing to test270

for a nonlinear temperature effect35. Long-term protist cultures are kept at 15◦C, representing271

the control temperature to which the species used in the experiment are adapted. Warming272

usually decreases their carrying capacities but increases growth rates36. Experimental273

communities were created by growing protists to their respective carrying capacities at 20◦C in274

1L of bacterized medium. The medium consisted of protist pellets (Carolina Biological Supplies,275

Burlington, NC, USA) at a concentration of 0.055 gL−1 of Chalkley’s medium in which the276

bacterium Serratia fonticola was grown as common resource for the bactivorous protists. Two277

autoclaved wheat seeds were added to each bottle for slow nutrient release. Monocultures were278

initiated at a density of 3 individuals mL−1 in a total of 100 mL medium. Communities were279

initiated with a total of 40 mL protist culture topped up with 60 mL fresh medium (100 mL280

culture in total). The 40 mL culture were assembled by adding a fixed fraction (i.e. 20 mL for281

two species, 13.33 for three species) of each species at their specific carrying capacity, adopting282

a substitutive design. Each experimental community was cultivated in 250 mL Duran bottle.283

Since the number of possible species compositions exceeded the number of feasible experimental284

units, we used all possible compositions only for the monocultures (6 compositions, 3 replicates)285

and two species communities (15 compositions, 2 replicates). For three species communities, ten286

compositions (2 replicates) were randomly selected from the set of all possible compositions287

such that all species occurred the same number of times. This generated a total of 68288

experimental units per temperature. Microcosms were sampled 19 times over 36 days to289

measure community dynamics. To do so, a microcosm was taken out of the incubator, gently290

stirred to homogenize the culture, and a fixed sample pipetted into a counting chamber. The291

height of the sampling chamber was 600 µm and the area filmed 68.7 mm2 resulting in 41.2 µL292

sampled. The counting chamber was covered with a lid and a 5 second video was taken under293

the microscope. The videos were subsequently processed with the R package BEMOVI37 to294

extract morphological and behavioural traits. Individuals in polycultures were classified into295

species by a random forest classifier trained on trait information obtained from the monoculture296

data38. We derived the biomass of each species by summing the biovolume of all individuals of297

a given species in a given community and multiplying biovolume with a constant density equal298

to water (i.e. 1 g/cm3).299

Estimation of species interactions300

We fitted a topologically equivalent model to the classic LV model29 to our observations using301

the following form Ṅi = Ni
ri
Ki

(Ki −
∑S

j=1 aij
2Nj

(1+N
β
j )
), where β is a tuning parameter that allows302

us to gradually enter more nonlinear forms of functional responses (β ∈ [0, 2] by step size 0.1).303
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Note that β = 0 results in a linear functional response. These models were fitted (see an304

example in Extended Data Figure 1) to 178 out of 180 combinations (due to early extinctions)305

where all possible pair combinations were represented (composition (15) x temperature (6) x306

replicate (2)) and to 120 three-species communities where also all possible species pairs were307

contained (not all possible three-way combinations). The model parameters (carrying capacities308

Ki and growth rates ri) were obtained by fitting logistic growth models to 36 monoculture time309

series using the following form: Ṅi = Ni
ri
Ki

(Ki − 2Ni

(1+N
β
i )
). Growth rates were fitted to the310

average biomass (of three replicates) at each time point. Carrying capacities were calculated as311

the median biomass from the observed time series. Fitting was performed with312

temperature-specific Ki as an environment-dependent parameter for each species i resulting in313

temperature-specific ri values. Using these parameters, the fitting was performed to 2-species314

and 3-species mixtures as well as to each replicate (see Fig. 1 as an example). We used the315

Nelder-Mead algorithm for optimizing the mean absolute error (MAE) between observations316

and predictions.317

The model selection was based on maximizing the partial correlation between the fitted and318

observed time series data (controlling for time). We selected the simplest model (with the319

lowest β) from a 5% deviation interval from the highest partial correlation coefficient. This320

procedure resulted in the selection of the linear LV model 77% of cases for 2-species mixtures321

and 51% of cases for 3-species mixtures. Note that ri and Ki are inferred from monocultures,322

we set aii = 1 in consistency with the K-formalism26, and all cases yield topologically similar323

models to the LV model29. We also tested the robustness of this relationship by bootstrapping324

the time series 100 times using a uniform sampling within ±1% of each data point and325

recalculating all our measures from these slightly perturbed time series. This sensitivity analysis326

provided appropriate confidence intervals for each variation and regression coefficient given that327

observational noise is unavoidable.328
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Extended Data421
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Figure 1: Example of fitting 2-species GLV model across temperature. Illustration
using time series of interacting Colpidium (blue) and Dexiostoma (red) as an example. Each
panel shows a different temperature-replicate combination. Dots are the observations and the
corresponding lines indicate the prediction of the best fitting model. The mean absolute error
(MAE), partial correlation (R) and the tuning parameter (β) of the best fit are also plotted in
each graph.
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Figure 2: The effect of (A) connectance, (B) niche overlap and asymmetry on the relationship
(measured as the Spearman’s rank correlation) between species evenness and relative performance
in isolation in 10-species communities. Panel (A) shows a strong interaction between asymmetry
and connectance, i.e. high asymmetry and connectance leads to the weaker negative correlation
between species evenness and the relative performance in isolation. Connectance is measured
as the fraction of non-zero coefficients and modeled following Ref.34. Note that the value of
asymmetry corresponds to the tuning parameter P used in the sampling of the interaction matrix
(see Methods). In panel (B), we generated the interaction matrices based on a niche framework
27, where all interaction coefficients are negative (competitive). Here, similarly to panel (A) high
asymmetry and niche overlap lead to the weakest correlation.
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Figure 3: The relationship between species evenness and temperature empirically measured in 2-
and 3-species microbial communities. Species evenness was measured as the median evenness of
the time series for each community. There was no statistical relationship found between species
evenness and temperature.
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Figure 4: The relationship between average productivity and temperature empirically measured in
2- and 3-species microbial communities. Average productivity was measured as the median of the
time series of total biomass for each community. Average productivity declined with increasing
temperature in 2- and 3-species communities as well.
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