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35

36 Abstract

37

38 Simpson's fossil-record inspired model of ‘adaptive zones’ proposes that evolution is dominated 

39 by small fluctuations within adaptive zones, occasionally punctuated by larger shifts between 

40 zones. This model can help explain why the process of population divergence often results in 

41 weak or moderate reproductive isolation (RI), rather than strong RI and distinct species. Applied 

42 to the speciation process, the adaptive zones hypothesis makes two inter-related predictions: (i) 

43 large shifts between zones are relatively rare, (ii) when large shifts do occur they generate 

44 stronger RI than shifts within zones. Here we use ecological, phylogenetic, and behavioural data 

45 to test these predictions in Timema stick insects. We show that host use in Timema is dominated 

46 by moderate shifts within the systematic divisions of flowering plants and conifers, with only a 

47 few extreme shifts between these divisions. However, when extreme shifts occur they generate 

48 greater RI than do more moderate shifts. Our results support the adaptive zones model, and 

49 suggest that the net contribution of ecological shifts to diversification is dependent on both their 

50 magnitude and frequency. We discuss the generality of our findings in light of emerging 

51 evidence from diverse taxa that the evolution of RI is not always the only factor determining the 

52 origin of species diversity.

53

54 Keywords: host preference, phylogenetics, speciation, reproductive isolation, Timema stick 

55 insects

56

57 Introduction

58

59 A number of evolutionary models, such as Simpson’s adaptive zones model of quantum 

60 evolution [1, 2], propose that small evolutionary changes within adaptive zones (i.e., changes 

61 within a broad resource or habitat category, sensu [3, 4]) are common, but that more extreme 

62 evolutionary change occurs rarely [5, 6]. Most evidence for such models stems from deep macro-

Page 3 of 29

http://mc.manuscriptcentral.com/issue-ptrsb

Submitted to Phil. Trans. R. Soc. B - Issue

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

3

63 evolutionary timescales and high taxonomic levels, such as orders or families [1, 2, 5]. Thus, the 

64 processes and mechanisms generating these patterns are not well understood. For example, the 

65 roles of random drift, fluctuating selection, and macro-mutation (e.g., ‘hopeful monsters’[7]) in 

66 generating patterns consistent with these models remain unclear, but must be resolved to 

67 understand whether and which micro-evolutionary processes best explain broad scale macro-

68 evolutionary patterns. 

69

70 Here, we specifically apply the adaptive zones model to the speciation process, which often 

71 occurs by populations diverging into partially reproductively isolated ecotypes or subspecies, and 

72 eventually into strongly reproductively isolated species [8-15]. Such a differentiation process or 

73 ‘speciation continuum’ has been observed in fish [16-19], amphibians [20], birds [21], plants 

74 [22], and insects [13, 14, 23-25]. However, it is often unclear why populations differ in levels of 

75 RI [9-11, 26]. How such differences affect the diversification of a clade is then further 

76 complicated by the relative frequencies with which different levels of RI are reached. The 

77 adaptive zones hypothesis can be applied to explain this variation, making two inter-related 

78 predictions: (i) shifts between zones are relatively rare, (ii) when large shifts between zones do 

79 occur they generate stronger RI than shifts within zones (Figure 1). 

80

81 Note that even without invoking the adaptive zones model per se, these predictions should hold; 

82 large ecological shifts that generate strong RI may be rare. Moreover, although we here test the 

83 adaptive zones model using discrete categories of ecological divergence, similar logic could be 

84 applied to continuous scenarios. Just as one may ask whether shifts between more extreme 

85 categories generate more RI, one could test whether more extreme quantitative shifts in ecology 

86 (e.g., temperature, elevation, aridity) generate more RI. For example, it has been shown that 

87 more extreme differentiation in quantitative ecological variables is associated with stronger RI 

88 across disparate plant and animal taxa, although this work did not consider phylogenetic shifts 

89 per se [27, 28].

90 Testing these predictions is challenging because it requires integration of macro-evolutionary 

91 patterns, for example at phylogenetic time-scales, with data on micro-evolutionary processes and 

92 the evolution of RI. Most generally, such studies might help connect broad diversification 
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93 patterns (i.e., defined as the net result of the speciation and extinction processes over time) to 

94 micro-evolutionary processes. We provide such a study here by integrating phylogenetically-

95 based inferences on rates of host shifts for >100 host-associated populations of 11 Timema stick 

96 insect species with experimental estimates of host-plant preference. Because Timema feed, mate, 

97 and spend most of their lives on their hosts [29, 30], host preferences are likely to translate to 

98 premating isolation in nature. Thus, we here use results from host preference experiments in the 

99 lab as a proxy for RI, with the understanding that future work testing RI in nature is warranted. 

100 Notably, Timema feed on a very wide range of hosts, [29, 30] but the frequency of host shifts of 

101 different magnitude over the ~30 million year old history of this group has yet to be quantified 

102 [25]. 

103

104 We thus here study Timema taxa that use a wide range of conifer (e.g., pine, cedar, redwood, and 

105 fir) and flowering plant (e.g., oak, roses, and manzanita) hosts (Figure 2, Table S1; a host-plant 

106 population is defined as conspecific individuals collected from a common host genus at a 

107 geographic locality).  In this context, we consider conifer and flowering plant hosts to represent 

108 different adaptive zones and thus shifts between them to be large relative to those within plant 

109 divisions, based on: (i) the fact that few insect species (or even sets of closely-related species) 

110 use both these plant divisions as hosts [31], and (ii) the deep phylogenetic divergence between 

111 these two divisions and their great differences in chemistry, physical structure, and evolutionary 

112 dynamics  [32-36]. 

113

114 We first used phylogenetic information and host plant use to infer the frequency of shifts 

115 between conifer and flowering plant hosts [25], relative to shifts between hosts within each 

116 division. An adaptive zones model would be supported by host shifts overall being common, but 

117 those between conifers and flowering plants being rare. Second, we tested for an association 

118 between the magnitude of a host shift (i.e., within or between plant divisions) and divergence in 

119 host preference, a form of premating RI for insects such as Timema that mate on their host plants 

120 [37-39]. Our results support the adaptive zones model, and suggest that the net contribution of 

121 ecological shifts to RI can depend on the shifts’ magnitude. When larger shifts occur less often, 

122 their rarity increases waiting times to speciation. Thus, our findings add to emerging evidence 
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123 that although the evolution of RI is a key component of the speciation process, it may not always 

124 be the factor controlling the frequency at which new lineages originate [40-42].

125

126 Methods and Materials

127

128 Analysis of transition rates between hosts 

129

130 Our sampling effort covered regions where Timema have been systematically studied over the 

131 last two decades [25, 43], and searches were done of the known common hosts of each species. 

132 Missing host taxa would be problematic for our study only if this sampling was not random (i.e. 

133 systematically missing populations on conifers), which is unlikely. Details of the populations 

134 studied here are contained in [25] and in Table S1.

135

136 We first tested whether shifts between conifers and flowering plants occurred multiple times. We 

137 used the reduced-representation sequence data from the 57 geographic populations previously 

138 studied in [25] to infer phylogenetic relationships among Timema species and populations. This 

139 was done using data deposited in a Dryad repository (https://doi.org/10.5061/dryad.nq67q; 

140 linkage-group multiple alignments under the section “Phylogenetic inference and molecular 

141 dating”) to produce two new multiple alignments: selecting only the sites with at least two 

142 different nucleotides (‘strict-ASC’; 5797 variable sites), which allows using ascertainment bias 

143 models for inferences, and selecting also the sites with at least one ambiguity (‘relaxed’; 19,556 

144 variable sites). We used IQTREE 1.6.2 [44] to carry out automatic substitution and partitioning 

145 model selection and to infer maximum-likelihood trees using topological constraints in order to 

146 test five different hypotheses: clustering by host plant division (‘division’, implies a single shift 

147 between conifers and flowering plants), clustering by Timema species (‘species’, allow for 

148 multiple shifts within species), clustering by Timema species and host plant division within 

149 Timema species (‘division within species’, allows a single shift within each species), using the 

150 previous Bayesian inference from [25](‘BEAST’), and a maximum-likelihood tree inferred with 

151 IQTREE for this study (‘free’, no topological constraint whatsoever). Then, we estimated site-

152 wise log-likelihoods and performed Shimodaira-Hasegawa (SH, [45]), weighted Shimodaira-
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153 Hasegawa (WSH,[45]) and Approximately Unbiased (AU,[46]) tests using IQTREE and consel 

154 1.20 [47]. 

155

156 Subsequently, we reconstructed ancestral states using the function rayDISC from the R package 

157 corHMM 1.24 [48] in R 3.4.4 [49]. This function allows estimates of transition rates and 

158 ancestral states for multistate traits given a tree, allowing for polymorphism on the tips (i.e., 

159 assigning equal likelihoods to several hosts for a given population in our case), and recognising 

160 both gains and losses of host plant genera. First, we estimated ancestral states using the Bayesian 

161 maximum credibility tree from [25], coding the hosts of each of the 57 geographic populations as 

162 conifer, flowering plant, or both, and estimating the root probability with the method described 

163 in [50, 51]. This allowed us to visualize ancestral state marginal probabilities on the nodes of the 

164 tree (Figure 3). 

165

166 Additionally, however, we were interested in comparing the transition rates between hosts in 

167 different genera or families belonging to the same division (‘within’, i.e., conifer to conifer or 

168 flowering plant to flowering plant) to those between different divisions (‘between’, i.e., conifer 

169 to flowering plant or vice versa). Therefore, we used the host genera as states and fit five 

170 different models (Figure 4): (1) r1: all transition rates forced to have the same rate, (2) r2: one 

171 rate from transitions between conifers and flowering plants and vice versa, and another rate for 

172 transitions within conifers or within flowering plants; (3) r3a: one rate for transition within either 

173 conifers or flowering plants, one rate for transitions from conifer to flowering plant, and another 

174 rate for flowering plant to conifer; (4) r3b: one rate for transitions within conifers, one rate for 

175 transitions within flowering plants, and another rate for transitions between conifers and 

176 flowering plants and vice versa; and (5) r4: one rate for transitions from conifer to flowering 

177 plant, another rate for flowering plant to conifer, another rate for transitions within conifers, and 

178 another rate for within flowering plants. 

179

180 To assess the robustness of our results, we used five priors for the root: same probability for all 

181 host genera (‘flat’), root probabilities weighted using estimated transition rates following [52] 

182 (‘yang’ ) or [50, 51] (‘madd’), same probability for all conifer host genera (‘con’), and same 

183 probability for all flowering plant genera (‘flo’).
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184

185 The results were similar in most of the cases, but we focus our description of the results on the 

186 inferences using the method of [50, 51]. We ran the analyses on 1000 trees taken randomly from 

187 the posterior distribution of time calibrated trees (from [25]) to account for phylogenetic 

188 uncertainty. Rates and states were estimated jointly (node.states=”joint”, state.recon=”estimate”), 

189 because such an approach is less prone to getting stuck in local optima [53]. However, most 

190 other studies commonly carry out marginal reconstructions (i.e., rate inference followed by 

191 ancestral states estimation), and we also did that here for comparative purposes 

192 (node.states=”marginal”, state.recon=”subsequently”).

193

194 Host preference trials

195

196 We carried out host preference experiments with 3492 individuals from 70 populations (35 pre-

197 determined population/species pairs; see Table S2 for details of species, populations, sample 

198 sizes, hosts tested, etc.). Tested individuals were captured with sweep nets and placed in plastic 

199 cups containing cuttings of two plant species: (1) the plant species that individual was collected 

200 on (‘native host’) and (2) a different plant species, usually the plant species used by the alternate 

201 paired population (‘alternative host’). In the morning, the plant species that each individual was 

202 found to be resting on after overnight incubation was recorded as the preferred plant species. 

203 Each individual was used only once and trials where individuals did not choose a host were 

204 excluded from analysis. We quantified host preference differences between paired populations 

205 using different host plants in nature (Table S2). 

206

207 Host preference differentiation as a function of host-plant use

208

209 The goal was to test if population pairs on more phylogenetically distant hosts (i.e., conifers 

210 versus flowering plants) exhibited greater divergence in host preferences than those using more 

211 similar hosts. The pairs were chosen primarily to represent a range of divergence in host plant 

212 use, including pairs using the same genus, different genera in the same plant division, and 

213 different plant divisions. In addition, the taxa compared were generally not distantly related to 

214 one another, encompassing also the practical component of access to taxon pairs across disparate 
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215 parts of the widespread species ranges. Accordingly, 24 pairs were analysed (the remainder used 

216 the same host, and were thus not relevant here, but were used for tests of phylogenetic 

217 conservatism using individual populations described below). These pairs represented both those 

218 where one population used a conifer host and one used a flowering plant host (n = 8 pairs, mean 

219 number of individuals tested per population = 37) and those using two different flowering plants 

220 hosts (n = 16 pairs, mean number of individuals tested per population = 46). 

221

222 Mean preference for individual populations was calculated as the proportion of trials that one of 

223 the offered hosts was chosen, a value that ranges from zero (focal host never chosen) to one 

224 (focal host always chosen). We then calculated host preference divergence between pairs as the 

225 absolute difference in mean preference between pairs, a value that also ranges from zero 

226 (identical preferences of the two populations) to one (completely divergent preferences between 

227 the two populations, i.e., 100% preference divergence). Note that this value of host preference 

228 divergence is identical when either of the two offered hosts is used to calculate mean preference 

229 for individual populations. Phylogenetic distance between hosts was grouped into two categories: 

230 moderate for the pairs on two different flowering plants and strong for the pairs on a conifer 

231 versus a flowering plant host (see Introduction for justification of these categories).

232

233 Because preference divergence was bounded between zero and one we employed beta regression 

234 to model the influence of divergence in host plant use on divergence in host plant preference 

235 (dependent variable) using the betareg function in the package betareg 3.1-2 [54] in R, specifying 

236 “logit” as link function. We performed analyses with the complete data set of 24 comparisons, 

237 and two subsets including either only conspecific population pairs (n = 18 pairs), or only 

238 conspecific population pairs from the same geographical site (n = 13 pairs). We obtained 

239 congruent results from all three analyses (see Results).

240

241 Phylogenetic conservatism of host preference

242

243 Phylogenetic relatedness of taxa generates non-independence of data points obtained from 

244 multiple populations or species. To assess the need to account for this effect in the analysis of 

245 host preference in Timema, we tested for the presence of phylogenetic signal in the strength of 
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246 the preference for the native host. We analysed the host preference data described above (see 

247 also Table S2) in combination with the population level Bayesian time-calibrated maximum 

248 credibility tree from [25] pruned to represent the 48 populations for which host preference data 

249 was available (corresponding to 28 geographic localities on the tree). Host preference of each of 

250 these individual populations was estimated as the proportion of trials the native host was picked 

251 over the alternative host. In cases where a population with host preference data was not 

252 represented in our phylogeny (n = 25), we chose the geographically closest population of the 

253 same species as its representative in the phylogeny (mean distance to the nearest population was 

254 not overly large, being 17.7 km).

255

256 As several populations with host preference data mapped to the same tip in the phylogeny, we 

257 used two approaches to assign trait values to those tips: (1) we used the mean of host preference 

258 for populations mapping to the same tip, and (2) for each tip represented by multiple populations 

259 we sampled a trait value randomly from those populations 1000 times to generate a sample 

260 distribution of host preference for those populations. Results were congruent between the two 

261 approaches (see Results below). We used the function phylosig in the package phytools 0.6-99 

262 [55] in R to calculate the K statistic of [56] and its statistical significance. Higher values of K 

263 indicate successively stronger phylogenetic signal, with K=0 in the absence of phylogenetic 

264 signal, K=1 under a Brownian motion model of trait evolution, and K>1 when trait evolution is 

265 more constrained. In general, we found a lack of phylogenetic signal for host preference (details 

266 below).

267

268 Results

269

270 Frequency and magnitude of host shifts

271

272 We found that large ecological shifts between conifer and flowering plant hosts have occurred 

273 multiple times among our study populations, including shifts within species (Table S3, 

274 Approximately Unbiased test, p < 0.001 for both clustering by host divisions, and clustering by 

275 host divisions within Timema species). Indeed, host shifts in general appear common in Timema, 

276 likely facilitated by standing genetic variation in the ability to use novel hosts [30]. 
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277

278 Phylogenetic analyses of transition rates between hosts support a key prediction of the adaptive 

279 zones model; i.e., that large host shifts between conifer and flowering plant hosts are relatively 

280 rare. Specifically, we compared the fit of five transition rate models by maximum likelihood 

281 (Figure 4). Our main interest was on the support for a ‘one-rate model’ that enforced a single 

282 transition rate irrespective of whether shifts were within or between plant divisions, relative to 

283 models that allowed rates to vary between different types and magnitudes of host shifts. Our 

284 analyses revealed that the one-rate model was consistently the least supported one (Figure 5, 

285 Table S4, difference in Akaike Information Criterion values corrected for sample size (∆AICc)). 

286 The best-fit model allowed for transitions within each division and between them (‘three-rate 

287 model b’). However, the most noticeable increase in support was observed when moving from 

288 the one-rate model to a two-rate model that allowed the rates for transitions between divisions to 

289 differ from those within divisions (Figure 5). Notably, these results were robust to using multiple 

290 root probabilities and inference methods (Figure S1, Table S4). Thus, we found that transition 

291 rates within divisions were ~5x higher than those between divisions (Figure 5, range ~3-10x 

292 higher using different inference methods and root probabilities, Figure S2-S3, Table S5).

293

294 The evolution of premating isolation due to host preference

295

296 Next, we were interested in the evolutionary consequences of extreme host shifts. For 24 

297 population pairs (2252 trials) that use different hosts, we found that host preference was ~2-3x 

298 more differentiated between Timema taxa feeding on different divisions than between those 

299 feeding on different families within divisions (Figure 6). This result was robust to whether we 

300 considered all 24 taxon-pairs (z = 3.50, p = 0.0005, beta regression; Table S6), the 18 within-

301 species comparisons (z = 2.72, p = 0.0065), or the 13 within-species within-locality comparisons 

302 (z = 2.49, p = 0.0128). 

303

304 Phylogenetic conservatism of host preference

305

306 We found little to no evidence for phylogenetic conservatism of host preference, justifying the 

307 population level analyses above. Specifically, Blomberg’s K was found to be low and non-
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308 significant in the core analysis using the mean as the trait value for tips represented by more than 

309 one population (K = 0.101, p = 0.747). This result was robust to the approach of considering the 

310 mean, because randomizing the trait value to be equal to that from one of the populations when 

311 multiple populations represented one tip always resulted in K’s smaller than 0.2. Furthermore, 

312 only seven out of 1000 permutations yielded a P-value lower than 0.05, all being non-significant 

313 after correction for multiple comparisons. 

314

315 Discussion

316

317 We use ecological and behavioural data in a phylogenetic comparative framework to test general 

318 predictions about adaptive zones and the speciation process. Although Timema stick insects use a 

319 wide breadth of host plants, we found that host use is dominated by moderate shifts between 

320 families within flowering plants or conifers, with only a few extreme shifts between these plant 

321 divisions. When extreme shifts do occur, however, they likely generate greater premating 

322 isolation (via host preference) than do moderate shifts (Figure 1). These results are consistent 

323 with the adaptive zones model and suggest that the net contribution of ecological shifts to 

324 diversification can reflect a balance between their magnitude and frequency.

325

326 As in many correlational or comparative studies, which abound in evolutionary biology, 

327 causation is difficult to definitively infer. Thus, it is possible that host preference itself affects the 

328 frequency of extreme shifts. However, we consider it more likely that preference evolution is a 

329 consequence (rather than cause) of extreme shifts because: (1) host preferences are generally 

330 quite modest in absolute terms such that they are unlikely to strongly constrain host shifts 

331 (Figure 6; Table S2), and (2) they appear evolutionarily labile, with no evidence for phylogenetic 

332 conservatism. Below we discuss the causes of observed patterns of host shift, the completion of 

333 speciation, and limits to diversification (i.e. the net result of the speciation and extinction 

334 processes over time). Future work could usefully consider whether this pattern applies to other 

335 forms of RI.

336

337 Causes of observed patterns of host shift

338
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339 We have shown that several large ecological shifts between conifers and flowering plants have 

340 occurred during the diversification of Timema, although their frequency is much lower than 

341 shifts within the divisions. There are at least two core factors that could limit the frequency of 

342 shifts between evolutionary distant host plants. First, there could be inherent adaptive 

343 constraints, as highly different host plants are likely to constitute distant adaptive peaks. For 

344 example, specialization can involve trade-offs resulting in metabolic constraints, in turn making 

345 shifts to new hosts more difficult [57, 58]. Performance experiments indicate that this is not 

346 strongly the case in Timema in terms of the physiological ability to digest new hosts [30], but the 

347 existence of trade-offs associated with crypsis and predation is likely [59, 60]. 

348

349 Second, the geographic distribution of the plants can put constraints on the colonization of new 

350 hosts. Opportunities to shift between conifers and flowering plants may have been ample for 

351 Timema, as both kinds of host plants are found commonly intermixed throughout California 

352 currently, and were so during most of the Timema diversification history [61, 62]. Nonetheless, 

353 this geographic overlap has not been formally quantified for the populations studied here. Further 

354 work is thus required to quantify the contribution of inherent biological constraints versus the 

355 geographic arrangement of plants on the host shifts, but either way shifts between divisions are 

356 rare. Future insights on the role of syntopy of host plants would need to consider their past 

357 distributions over long time periods, and at a fine geographical scale. One methodological 

358 consideration is that most of Timema species not included in our analysis feed on conifers (i.e., 

359 those outside of California)[29, 63-65]. If most of these constitute a sister group to Californian 

360 species, our results would hold valid, but could be limited to the Californian lineage. 

361

362 Interestingly, when each plant division is considered, transition rates between conifers were 

363 higher than rates between flowering plants. Gymnosperms are known to have lower 

364 morphological and chemical diversity than angiosperms, as well as lower morphological and 

365 genomic evolutionary rates [31, 66, 67]. This could translate into different conifers representing 

366 relatively closer adaptive peaks when compared to flowering plants, thus making shifts between 

367 them easier. In addition, mixed conifer forests are common in California, but tend to be restricted 

368 to particular altitudinal bands and separated in geographic space [67-69], which may have 

369 favoured repeated parallel shifts between conifers. Lastly, we cannot discard a potential effect 

Page 13 of 29

http://mc.manuscriptcentral.com/issue-ptrsb

Submitted to Phil. Trans. R. Soc. B - Issue

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

13

370 derived from our choice of taxonomic level (i.e. genus). For example, for most of the conifer 

371 genera that Timema use, the use is restricted to a single species, whereas for flowering plant 

372 genera usually there are several species per genus used [30, 63]. This could result in reduced 

373 transition rates within flowering plants. In other words, our conclusions hold well for transition 

374 rates between genera, and further work on transitions between species is warranted.

375

376 Evolution of host preferences, premating isolation, and completing speciation

377

378 Studies of T. cristinae have shown that host preferences are likely partially heritable, with 

379 ‘hybrids’ between host-plant ecotypes exhibiting preferences intermediate between the parental 

380 forms [70-72]. However, further work is required to determine the relative contribution of 

381 genetic versus induced environmental factors to this form of RI during the diversification of 

382 Timema, and to RI in general across taxa. Induced effects on RI have been reported for 

383 imprinting of song in birds [73], cultural differences among killer whale ecotypes [74], and host 

384 or mate preference in other insects [75, 76]. On the other hand, if environmental effects can be 

385 reversed, this could decrease RI. Further work on the role of genetic and environmental effects in 

386 speciation is warranted.

387

388 In contrast with previous work on patterns of host use in nature [29], we did not find evidence 

389 for phylogenetic conservatism for behavioural host preference. This is likely because 

390 phylogenetic relations in past work were based on a single marker (mitochondrial DNA) and not 

391 as accurate as those used here, and because host use in nature doesn’t necessarily correspond to 

392 behavioural host preference (i.e., less preferred hosts may be used in nature due to availability, 

393 necessity, or convenience)[71]. Moreover, our results are in agreement with recent experiments 

394 showing that most populations retain plasticity in host use [30]. 

395

396 Finally, we note that even the most extreme host preferences documented here were not perfectly 

397 divergent between any of the tested taxon pairs (i.e., we never observed a 100% difference 

398 between a pair). Thus, RI due to host preference does not appear to reach completion. In part, 

399 this could reflect that our experimental design in the lab under-estimates host preferences in 

400 nature, but even so it seems unlikely that host preferences alone can complete speciation in 
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401 Timema. Moreover, the frequency of shifts between very different hosts is very low such that 

402 they alone are unlikely to explain late stages of speciation and the diversification of Timema. 

403 Thus, the completion of speciation likely requires other factors, such as periods of geographic 

404 isolation and restricted gene flow [25], and the evolution of additional forms of RI. Indeed, there 

405 is evidence for RI due to chemical-mediated mate choice [25, 72, 77-79], selection against 

406 immigrants onto new hosts and hybrids [59, 60, 77, 79], and postmating, prezygotic isolation 

407 [72, 80]. Further work is required to test how moderate versus extreme host shifts affect these 

408 forms of RI, if they do at all.

409

410 Limits to the rate of speciation

411

412 The evolution of RI is generally thought to be a key component of the speciation process [9, 81-

413 85]. However, several recent studies suggest that the evolution of RI is not the step limiting 

414 speciation rates, particularly over long timescales. For example, the rate of the evolution of RI in 

415 birds and flies, estimated experimentally, is uncoupled from speciation rates estimated using 

416 phylogenies [42]. Likewise, the diversification of Himalayan songbirds appears limited by the 

417 rate of niche filling, not the acquisition of RI [40]. In insects, host shifts usually result in an 

418 increase of RI and can initiate speciation processes, but their relative contribution to insect 

419 diversification is unclear [3, 38, 57, 86, 87]. 

420

421 Our results inform this issue by showing how a key factor other than RI, i.e., the rate at which 

422 new niches are colonised, can be important for understanding diversification. In particular, 

423 ecological shifts large enough to generate substantial RI may be rare. Thus, the total contribution 

424 of an ecological shift of particular magnitude to the diversification of a clade might be the net 

425 result of the amount of RI it confers and its frequency. These two factors might be opposing and 

426 are potentially interlinked, and consequently the empirical role of ecological shifts in speciation 

427 requires further work. Further studies that examine a range of closely related taxa that vary both 

428 in RI and the magnitude of ecological shifts they underwent are warranted. 

429

430 Conclusions

431
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432 In summary, our results provide evidence that the ecological magnitude of a host shift can affect 

433 levels of RI. Shifts themselves appear common in Timema and this is likely facilitated by 

434 standing genetic variation in the ability to use novel hosts [29, 30], which is likely maintained at 

435 least in part by gene flow [72, 79, 88, 89] and balancing selection [43, 90, 91]. Finally, the 

436 results inform limits to divergence, as they show that shifts between ecologically distant host 

437 plants are rare, and therefore unlikely to explain diversification on their own. Thus, the rate of 

438 species formation could largely be the result of the waiting time for shifts between distant 

439 adaptive peaks coupled with events that create geographic isolation.

440
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474

475 Figure 1. Ecological shifts and the process of speciation. A schematic depiction of how large 

476 peak shifts between flowering plant and conifer hosts, although relatively rare, generate greater 

477 RI than more moderate host shifts among flowering plant families.

478

479
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480

481 Figure 2. Timema species and populations, and host-plant use. (A) Timema species ranges 

482 (from [25]). (B) Host-plant species used by Timema populations used in this study (conifers have 

483 blue labels, flowering plants have orange labels).
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484

485 Figure 3. Timema species phylogenetic relationships and host plant use, including ancestral 

486 use inferences using conifers and flowering plants as states. The bars on the periphery depict 

487 the host-plant use of each population. The pie charts on the internal nodes represent the 

488 proportional likelihoods of conifers (blue) and flowering plants (orange) for reconstructed 

489 ancestral states.
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490

491 Figure 4. The models tested in transition rate analyses. Graphical representation of the 

492 transition rate models built considering four rates: from conifer to conifer (q1), from flowering 

493 plant to flowering plant (q2), from conifer to flowering plant (q3), and from flowering plant to 

494 conifer (q4). The one-rate model (r1) assumes a single rate for all shifts (q1=q2=q3=q4). The 

495 two-rate model (r2) assumes a single rate for within-division shifts and another one for between-

496 division shifts (q1=q2≠q3=q4). The three-rate model ‘a’ (r3a) assumes a single rate within 

497 divisions, and different rates for shifts from conifers to flowering plants and vice versa 

498 (q1=q2≠q3≠q4). The three-rate model ‘b’ (r3b) assumes a single rate for between-division shifts, 
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499 and different rates within conifers and within flowering plants (q1≠q2≠q3=q4). The four-rate 

500 model (r4) assumes different rates for all kinds of shifts (q1≠q2≠q3≠q4).
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501

502 Figure 5. Support for each transition-rate model (see also Figure 3). (A) Violin plots depict 

503 the distribution of ∆AICc values (difference in sample-size corrected AIC between the focal 

504 model and the best model) after fitting the models by maximum likelihood to 1000 trees 

505 randomly taken from the Bayesian posterior distribution of trees from [25]. The median ∆AICc 

506 for each model is shown above each violin plot. (B) Distribution of transition rate estimates for 

507 the most supported models r2 and r3b. Colours of violin plots follow the same scheme as rates in 

508 Figure 3. The median of each rate is shown above each violin plot. The white diamonds and bars 

509 represent the median and the interquartile range, respectively. 
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510

511 Figure 6. Behavioural host preference experiments. Shown is mean divergence in host 

512 preference (±95% CI) between population pairs differing in the degree to which their hosts 

513 differ.
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