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Abstract Geogenic arsenic contamination in

groundwaters poses a severe health risk to hundreds

of millions of people globally. Notwithstanding the

particular risks to exposed populations in the Indian

sub-continent, at the time of writing, there was a

paucity of geostatistically based models of the spatial

distribution of groundwater hazard in India. In this

study, we used logistic regression models of secondary

groundwater arsenic data with research-informed

secondary soil, climate and topographic variables as

principal predictors generate hazard and risk maps of

groundwater arsenic at a resolution of 1 km across

Gujarat State. By combining models based on differ-

ent arsenic concentrations, we have generated a

pseudo-contour map of groundwater arsenic concen-

trations, which indicates greater arsenic hazard

([ 10 lg/L) in the northwest, northeast and south-

east parts of Kachchh District as well as northwest and

southwest Banas Kantha District. The total number of

people living in areas in Gujarat with groundwater

arsenic concentration exceeding 10 lg/L is estimated

to be around 122,000, of which we estimate approx-

imately 49,000 people consume groundwater exceed-

ing 10 lg/L. Using simple previously published dose–

response relationships, this is estimated to have given

rise to 700 (prevalence) cases of skin cancer and

around 10 cases of premature avoidable mortality/

annum from internal (lung, liver, bladder) cancers—

that latter value is on the order of just 0.001% of

internal cancers in Gujarat, reflecting the relative low

groundwater arsenic hazard in Gujarat State.

Keywords Groundwater � Arsenic � Health impacts �
Gujarat � Logistic regression � Geostatistics

Introduction

Arsenic (As) is a toxic element, found in more than

200 minerals in nature (Thornton and Farago 1997;

Ravenscroft et al. 2009) with arsenic being released

into groundwater under specific biogeochemical and

hydrogeological conditions (Islam et al. 2004; Guo

et al. 2011). In many parts of the world, arsenic-

contaminated groundwater is used for drinking water

and irrigation (Nickson et al. 2005; Rahman and
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Technology, 8600 Dübendorf, Switzerland

123

Environ Geochem Health (2021) 43:2649–2664

https://doi.org/10.1007/s10653-020-00655-7(0123456789().,-volV)( 0123456789().,-volV)

http://orcid.org/0000-0002-7484-6696
https://doi.org/10.1007/s10653-020-00655-7
http://crossmark.crossref.org/dialog/?doi=10.1007/s10653-020-00655-7&amp;domain=pdf
https://doi.org/10.1007/s10653-020-00655-7


Hasegawa 2011). The long-term consumption of

arsenic may greatly increase the risk of skin cancers,

bladder cancers, lung cancers, cardiovascular disease

and other detrimental health outcomes (Chen and

Ahsan 2004; Chowdhury et al. 2000). The provisional

guideline value of arsenic in drinking water estab-

lished by the World Health Organization (WHO) is

10 lg/L (WHO/UNICEF 2018); however, an increas-

ing number of studies have pointed to detrimental

health outcomes for exposure at lower arsenic con-

centrations (Medrano et al. 2010; Garcı́a-Esquinas

et al. 2013; Monrad et al. 2017; Moon et al. 2017;

Polya et al. 2019b; Ahmad et al. 2020).

Groundwater arsenic contamination (WHO/UNI-

CEF 2018; Bhattacharya et al. 2017; Bretzler and

Johnson 2015) is the most substantive contributor to

preventable detrimental health outcomes arising from

chemicals such as F, Mn, Pb, pesticides in drinking

water (Smith et al. 2000). As many as 100,000

preventable deaths may arise each year from exposure

to such groundwater arsenic across the globe (Polya

et al. 2019a, b; Smith et al. 2000), particularly in

densely populated (van Geen 2008) areas in south and

south-east Asia (Polya and Charlet 2009; Fendorf et al.

2010), Bangladesh (Argos et al. 2010, Flanagan et al.

2012), Pakistan (Podgorski et al. 2017) and India

(Chakraborti et al. 2004).

Although there have been numerous studies of

arsenic-contaminated groundwaters utilized for

domestic consumption (e.g. Chatterjee et al. 1995;

Chowdhury et al. 1999, 2000; Chakraborti et al. 2003),

relatively few studies have produced hazard prediction

maps indicating the spatial distribution of groundwa-

ter arsenic for whole districts or states in India

(Buragohain and Sarma 2012; Ghosh et al.

2004, 2019). However, such maps have been gener-

ated for other regions (Amini et al. 2008; Winkel et al.

2008) and countries (Lado et al. 2008; Sovann and

Polya 2014; Bretzler et al. 2017), notably including

Bangladesh (Kinniburgh and Smedley 2001) and

Pakistan (Podgorski et al. 2017).

Spatial geostatistical models used to predict the

distribution of groundwater contaminants include

logistic regression (Winkel et al. 2008; Ayotte et al.

2017; Podgorski et al. 2017; Bretzler et al. 2017)

Tyson polygons (Ghosh et al. 2019), ordinary Kriging

(Ghosh et al. 2019; Sovann and Polya 2014), regres-

sion Kriging (Sovann and Polya 2014), and random

forest models (Podgorski et al. 2018). Methods such as

logistic regression and random forest find statistical

relationships between a target variable and predictor

variables in order to make predictions (Winkel et al.

2008; Ayotte et al. 2017; Podgorski et al. 2017;

Bretzler et al. 2017; Podgorski et al. 2018). Such

methods can be used to consider a variety of environ-

mental factors that may act as proxies or have a direct

relationship to the release and accumulation of arsenic

in groundwaters. Due to the often highly heteroge-

neous distribution of groundwater arsenic in sedimen-

tary aquifers, modelling based on a binary target

variable to produce probabilities, such as logistic

regression, is often performed rather than attempting

to predict a continuous variable.

As a preliminary step to developing a comprehen-

sive model of the spatial distribution of arsenic in

groundwaters across India, we (1) present logistic

regression-based geostatistical models of the distribu-

tion of arsenic in groundwaters in the state of Gujarat,

(2) outline methods permitting model results to be

rendered as a pseudo-contour map of likely concen-

trations and (3) combine the modelled arsenic hazard

with simple exposure route and dose–response models

to provide plausible estimates of detrimental health

outcomes in Gujarat that can be attributed to arsenic in

drinking water.

Materials and methods

Study area

Gujarat is located between 20� 060 and 24� 420 north

latitude and 68� 100 to 74� 280 east longitude, with an

area of 196,024 sq. km (CGWB 2016) (Fig. 1). The

population of Gujarat State is 70,445,000 (Chan-

dramouli 2011). Gujarat has nearly 1600 km of

coastline which is the longest coastline in India

(CGWB 2016). Diverse climatic, topographic and

geological and physiographic conditions result in

diversification of groundwater conditions in different

parts of Gujarat State (Sharma and Kumar 2008).

Dataset compilation

Groundwater arsenic data from throughout Gujarat

were obtained from surveys conducted by the Central

Ground Water Board of India (CGWB) in 2015

(CGWB 2016). The CGWB collected groundwater
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samples from dug wells, tube wells and bore wells

during May 2015, which is the end of dry season

shortly before the onset of monsoon and analysed for

arsenic by a colorimetric method using a visible

spectrophotometer with an implied detection limit of

around 1 lg/L. Of the 599 samples reported, (1) 183

samples for which the arsenic concentration was

recorded as ‘‘nd’’ we have taken to have not been

analysed and have excluded from the dataset; (2) a

further 18 samples for which arsenic concentrations

were reported without location data were also

excluded from the dataset, leaving 398 datapoints

with both groundwater arsenic and location data

(Fig. 1): of these only 6% showed arsenic concentra-

tions greater than 10 lg/L, with the maximum

reported arsenic concentration being 26 lg/L. The

frequency distribution of groundwater arsenic con-

centrations is shown in Fig. S1.

Potential independent variables (n = 28) related to

geology, hydrology, soil properties, climate, and

topography were compiled from a variety of sources,

many based on or relying upon remote sensing

(Table S1). These variables were initially chosen

based on established and proposed relationships with

the release and enrichment of groundwater arsenic

(Smedley and Kinniburgh 2002; Islam et al. 2004;

McArthur et al. 2004; Charlet and Polya 2006; Polya

and Charlet 2009; Rodrı́guez-Lado et al. 2013; Polya

and Middleton 2017; Podgorski et al. 2018; Polya et al.

2019a, b) and prepared to predict the distribution of

groundwater arsenic in Gujarat State. The resolution

and sources (Trabucco and Zomer 2009, 2010; ISRIC

2017; Hijmans et al. 2005; Hengl 2018; Fan et al.

2013; The World Bank 2017; Pelletier et al. 2016;

Hartmann and Moosdorf 2012) of the independent

variables dataset are shown in Table S1.

Fig. 1 The location of Gujarat State and distribution of groundwater arsenic concentrations used in modelling
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Dataset preparation

The six thresholds of 10 lg/L, 5 lg/L, 4 lg/L, 3 lg/L,

2 lg/L and 1 lg/L were used to create binary datasets

for creating six different geostatistical models. These

values were chosen based on being the WHO provi-

sional guideline of 10 lg/L and due to 85% of arsenic

concentrations in the dataset being in the range of 1 to

5 lg/L. Of the 398 groundwater arsenic concentra-

tions, 24 (6%), 57 (14%), 78 (20%), 124(31%), 185

(46%) and 301 (76%) arsenic concentrations exceeded

10 lg/L, 5 lg/L, 4 lg/L, 3 lg/L, 2 lg/L and 1 lg/L,

respectively. The dataset was converted into high and

low classes by assigning one to all arsenic concentra-

tions[ threshold concentrations and zero to all

arsenic concentrations B the threshold concentra-

tions. The converted dataset was randomly divided

into training (80%) and testing (20%) datasets main-

taining the same ratio of low to high values as in the

entire dataset.

Statistical modelling

In this study, we used the logistic regression models to

predict arsenic contamination in Gujarat groundwa-

ters. Logistic regression uses a logistic function to

predict a binary dependent variable with the proba-

bility between 0 and 1 (Hosmer et al. 2013). In this

case, the binary dependent variable represents whether

or not groundwater arsenic concentration exceeds a

given threshold. The logistic function is as follows:

log
P y ¼ 1ð Þ

1 � P y ¼ 1ð Þ

� �
¼ log

P y ¼ 1ð Þ
P y ¼ 0ð Þ

� �

¼ b0 þ b1x1 þ � � � þ bnxn

P y ¼ 1ð Þ
1 � P y ¼ 1ð Þ ¼ odds ¼ exp b0 þ b1x1 þ � � � þ bnxnð Þ

P y ¼ 1ð Þ ¼ 1

1 þ exp � b0 þ b1x1 þ � � � þ bnxnð Þð Þ

where P y ¼ 1ð Þ and P y ¼ 0ð Þ are the probability of the

dependent variable being 1 or 0; x1. . .xn are the

independent variables; b0. . .bn are the regression

intercept and other coefficients.

Multicollinearity is a statistical phenomenon in

which predictor variables of a logistic regression

model are highly correlated. The existence of

collinearity increases the variances of parameter

estimates and thus leads to erroneous inferences about

the relationship between dependent and independent

variables (Midi et al. 2010). Variance inflation factor

(VIF) quantifies the severity of multicollinearity of

independent variables (predictors) in regression anal-

ysis (Franke 2010). It was used for independent

variable selection in this study.

VIF ¼ 1

1 � R2

where R2 is the coefficient of determination, R2 ¼
1 � e�

D
n (D is the test statistic of the likelihood ratio

test, n is the sample size.)

The empirical judgment method is that if VIF[ 10

then multicollinearity is high (Franke 2010).

We used stepwise variable selection in which

Akaike information criterion (AIC) is used as criterion

for removing or adding variables to determine final

logistic regression models. AIC is an estimator of the

complexity and goodness of fit of statistical models

(Akaike 1974).

AIC ¼ 2k � 2 ln Lð Þ

where k is the number of parameters; L is the

Likelihood of the model.

The objectively preferred variable combination in

stepwise selection was the one with the lowest AIC

value, providing the best combination of performance

and complexity.

Variable selection

Based on their known or potential relationships to

arsenic occurrence in groundwater, twenty-eight inde-

pendent variables (see Table S1), including twenty-

four continuous variables and four categorical vari-

ables, were considered for potential use in logistic

regression modelling. In order to help identify effec-

tive independent variables, univariate logistic regres-

sions were run for each of six thresholds on the

training dataset which is consistent with the dataset

used for logistic regression analysis. The significance

of each independent variable was assessed through its

p value tested by the analysis of variance (AVOVA)

type II test (Pearce and Ferrier 2000). Independent

variables with p values\ 0.05 (within the 95%

confidence interval) were retained for further selec-

tion. Multicollinearity of the continuous variables

123

2652 Environ Geochem Health (2021) 43:2649–2664



following the univariate analysis was then calculated

on the training dataset at each threshold. Predictor

variables with a variance inflation factor (VIF)[ 10

were removed on the basis of strong multicollinearity.

The univariate regression and multicollinearity anal-

ysis were repeated 1000 times in order to avoid the

random bias produced by specific splitting of training

and testing datasets at one time. The averaged p value

and VIF were used to determine the addition or

removal of variables during variable selection.

Logistic regression analysis

Logistic regression analysis was run on the training

dataset for each of six thresholds using a stepwise

selection of variables (both directions), which

removes or adds variables according to their improve-

ment to the Akaike information criterion (AIC). The

Hosmer–Lemeshow goodness-of-fit test (Hosmer

et al. 2013) was also used on the testing dataset to

determine the accuracy of regressions at the 95%

confidence level, such that there is no significant

difference between the fitted values and observed

values if the p value is[ 0.05. In order to avoid

introducing bias to the model by performing only a

single split of training and testing datasets, logistic

regressions were performed 1000 times with the

Hosmer–Lemeshow goodness-of-fit test. The logistic

regression models passing the Hosmer–Lemeshow

goodness-of-fit test (p value is[ 0.05) provided

various variable combinations determined by AIC

values. The different combinations of variables of the

logistic regressions passing the Hosmer–Lemeshow

goodness-of-fit test were counted. The mean of

coefficients of each combination passing the Hos-

mer–Lemeshow goodness-of-fit test were utilized as

the coefficients of the model.

The true-positive rate (sensitivity) and true-nega-

tive rate (specificity) were calculated on both the

entire dataset and testing datasets passing the Hosmer–

Lemeshow goodness-of-fit test for each of the six

thresholds. Plotting sensitivity against specificity for

the range of probability cut-off values from 0 to 1 on

the entire dataset produced a receiver operating

characteristic (ROC) curve and the associated area

under the ROC curve (AUC), which generally ranges

from 0.5 (no predictive capability) to 1 (perfect

predictive capability) (Fawcett 2006). Mean AUC

values were also calculated on the test dataset of each

logistic regression. The largest AUC value among the

variable combinations passing the Hosmer–Leme-

show goodness-of-fit test was used to select the final

model.

Hazard and potential exposure maps

The final logistic regression models were utilized to

calculate the probability of groundwater arsenic

concentration exceeding each of the threshold con-

centrations. The sensitivity, accuracy, and specificity

of the final models were plotted against cut-offs. The

cut-off values at which sensitivity and specificity are

equal were used to classify whether arsenic concen-

trations exceed the given thresholds (Podgorski et al.

2017). These were then used to generate a pseudo-

contour map of groundwater arsenic concentrations,

which was combined with population density (Pages

et al. 2018) to generate a potential exposure map.

Health risk estimation

Based on the potential exposure map, we used dose

response functions for arsenic-induced cancers to

evaluate the health effects of exposure to groundwater

arsenic in Gujarat.

(1) Prevalence ratio of arsenic-induced skin cancer

as a function of arsenic concentration, c, and

age, t (Brown et al. 1989).

p c; tð Þ ¼ 1 � exp � q1c þ q2c2
� �

t � mð ÞkH t � mð Þ
� �

where p c; tð Þ denotes prevalence ratio of the gender

with arsenic-induced skin cancer; c denotes arsenic

concentration, lg/L; t denotes age, year; q1; q2; k;m

are the nonnegative parameters, listed in Table S2;

H(t - m) denotes the Heaviside function with

H t � mð Þ ¼ 0 for t\m and H t � mð Þ ¼ 1 for t�m.

(2) Incidence rate of arsenic-induced internal can-

cer (lung cancer, bladder cancer, liver cancer) as

a function of arsenic concentration, c, and age, t

(NRC 1999, 2001; Yu et al. 2003).

h c; tð Þ ¼ k q1c þ q2c2
� �

t � mð Þk�1H t � mð Þ

where h c; tð Þ denotes incidence rate of the gender with

arsenic-induced internal cancer, per year; c denotes

arsenic concentration, lg/L; t denotes age, year;
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q1; q2; k;m are the nonnegative parameters, listed in

Table S2;

H(t - m) denotes the Heaviside function with

H t � mð Þ ¼ 0 for t\m and H t � mð Þ ¼ 1 for t�m.

Results and discussion

Logistic regression models

The univariate regression and multicollinearity anal-

ysis retained 10, 15, 16, 13, 9 and 2 independent

variables for models with thresholds of 10 lg/L, 5 lg/

L, 4 lg/L, 3 lg/L, 2 lg/L, and 1 lg/L, respectively

(Table 1). Of the 1000 logistic regression iterations

performed, 707, 535, 679, 736, 858 and 473 regression

runs passed the Hosmer–Lemeshow goodness-of-fit

test of models using the thresholds of 10 lg/L, 5 lg/L,

4 lg/L, 3 lg/L, 2 lg/L, and 1 lg/L, respectively. The

variables appearing in the regressions passing the

Hosmer–Lemeshow goodness-of-fit test for each of

six thresholds are listed in Table S3.

The optimum combinations of independent vari-

ables in the final model for each threshold were

determined using the areas under the ROC curve

(AUC). Both the AUC calculated using entire dataset

and testing datasets of regressions passing the Hos-

mer–Lemeshow goodness-of-fit test were very similar.

Six variable combinations with highest AUC values

(Table 2) were selected as final models. The coeffi-

cients and intercepts of normalized variables and their

standard deviations in final models are summarized in

Table 3. However, many other variable combinations

not selected for various thresholds may also have good

predictive capabilities, as evidenced by high AUC

values, see Tables S4–S8.

The AUC values indicate that models with thresh-

olds of 10 lg/L (Fig. 2), 5 lg/L (Fig. 2), 4 lg/L

(Fig. S2), 3 lg/L(Fig. S2), and 2 lg/L (Fig. 2)

perform well (AUC 0.71–0.83), whereas the classifi-

cation performance of the 1 lg/L model is not

satisfactory (AUC 0.60, Fig. S2), which may be due

to detection limits of the arsenic analysis. The 1 lg/L

model was therefore excluded from the further con-

sideration. The crossover between sensitivity (true-

positive rate) and specificity (true-negative rate)

against cut-offs (Figs. 2 and S3) were utilized to

determine high-risk areas of groundwater arsenic

concentrations.

Predictor variables

Eight predictor variables were included in the final

models to predict the distribution of groundwater

arsenic in Gujarat and can be grouped into three

categories: (1) climate variables, (2) geological vari-

ables and (3) topographic variables (Fig. S5). Positive

coefficients were found for fluvisols, soil and sedi-

mentary deposit thickness, potential evapotranspira-

tion, temperature, and topographic wetness index,

whereas negative coefficients were found for aridity,

slope, and soil water capacity.

Climate variables (temperature, potential evapo-

transpiration, and aridity) in final models relate to

arsenic accumulation in aquifers significantly. High

temperature promotes the evapotranspiration and can

increase drought. The combination of high tempera-

ture, high evapotranspiration and low aridity index

(average precipitation/potential evapotranspiration)

can increase the evaporative concentration of ground-

water and hence increase arsenic concentrations,

particularly in inland and/or enclosed basins in arid

or semi-arid climates (Smedley and Kinniburgh 2002;

Ravenscroft et al. 2009; Alarcón-Herrera et al. 2013).

Fluvisols and soil and sedimentary deposit thick-

ness are also conducive to the enrichment of arsenic in

groundwaters. Fluvisols are genetically young soils in

alluvial deposits (IUSS 2015). Previous studies

(Ahmed et al. 2004; Chakraborti et al. 2013; McArthur

et al. 2001) have shown that arsenic pollution occurs

dominantly in the alluvial deposits of major rivers

which flow south and east from the Himalayas and

Tibetan plateau, where rivers flow through the highest

mountains with the largest rainfall and generate the

greatest sedimentary deposit worldwide. The widely

accepted mechanism of arsenic release into ground-

waters in alluvial aquifers is the microbially mediated

dissimilatory reductive dissolution of arsenic-bearing

Fe oxides (Fe oxyhydroxides, hydroxides, and oxides)

(Islam et al. 2004; Berg et al. 2007). The abundance of

relatively young reactive organic matter in sedimen-

tary deposits is plausibly causally linked to the

occurrence of high arsenic concentrations in ground-

waters (Rowland et al. 2007, 2011; Mukherjee et al.

2019). Hence, increased fluvisols, soil and sedimen-

tary deposit thickness promote arsenic accumulation

in groundwaters.

Low slope can be regarded as a proxy for slow

groundwater flow, which suppresses the flushing of
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arsenic from groundwater systems. The gentle slope

facilitates the accumulation of abundant organic

matter within floodplains and alluvial deposits,

arsenic-bearing Fe-oxyhydroxide minerals, and finer

sediments (Shamsudduha and Uddin 2007; Shamsud-

duha et al. 2009). Then, arsenic is released into

groundwaters by microbial activities, resulting in

groundwater arsenic occuring in flat, low-lying areas

where groundwater flows are sluggish; such areas

include low-lying deltaic and floodplain areas (Sham-

sudduha et al. 2009).

Hazard maps

The probabilities of arsenic concentration exceeding

10 lg/L, 5 lg/L, 4 lg/L, 3 lg/L and 2 lg/L were

calculated by the 5 final models, and the probability

maps of arsenic concentrations are shown in Figs. 3

and S4. The cut-offs where sensitivity equals speci-

ficity in the respective 5 final models (shown in Figs. 2

and S3) were 0.69 (10 lg/L), 0.66 (5 lg/L), 0.61

(4 lg/L), 0.57 (3 lg/L) and 0.50 (2 lg/L), which were

used to create maps of the occurrence of arsenic

concentration exceeding each of the thresholds. Fig-

ure 4 contains the pseudo-contour map of various

concentrations of groundwater arsenic, combined

from the individual hazard map of each of the

thresholds. Of the 26 districts of Gujarat State as

defined by the 2011 Indian Census (Chandramouli

2011), our map predicts that groundwater arsenic

exceeds 10 lg/L in the northwest, northeast and south-

east parts of Kachchh district and the north-western

and south-western part of Banas Kantha district. In

comparison, a pseudo-contour map of groundwater

arsenic determined using a fixed cut-off of 0.50

indicates more widely varying higher concentrations

(Fig. S6).

The pseudo-contour map of arsenic concentrations

(Fig. 4) shows a similar spatial pattern to the distri-

bution map of soil organic carbon content (Fig. S7),

which is not one of the predictor variables. Dissolved

organic matter is the main driver of microbe-mediated

reductive dissolution of arsenic-bearing Fe-oxyhy-

droxide (Fendorf et al. 2010). Other processes,

including complexation of arsenic by dissolved humic

substances, competitive sorption and electron shut-

tling reactions mediated by humic substances may also

influence arsenic mobility in groundwaters (Guo et al.

2011; Mladenov et al. 2015). The amount and

availability of organic carbon in sediments and soil

affect the spatial variability of groundwater arsenic

concentrations (McArthur et al. 2004; McArthur et al.

2011).

Potential exposure map

We combined the pseudo-contour map of varying

arsenic concentrations with projected 2020 population

density (Pages et al. 2018) to produce a potential

exposure map showing the population living in areas

with different groundwater arsenic concentrations

(Fig. 5). Of a projected total population of Gujarat of

70,445,000 (Chandramouli 2011), approximately

122,000 (i.e. about 0.17% of total Gujarat population)

live in areas where groundwater arsenic concentra-

tions exceed 10 lg/L. The number of people living in

areas with other groundwater arsenic concentrations is

summarized in Table 4. In Gujarat State, only a low

percentage of people (0.07%) were exposed to high

arsenic groundwaters, and most people are likely to be

exposed to low groundwater concentrations of arsenic.

Table 2 Variable combinations and AUC values of final models in 1000 logistic regressions using thresholds of 1–10 lg/L for

groundwater arsenic

No. Threshold (lg/L) Variable combination AUC value

1 10 Potential evapotranspiration, slope, soil water capacity 0.83

2 5 Soil and sedimentary deposit thickness, potential evapotranspiration, slope 0.79

3 4 Topographic wetness index, potential evapotranspiration, fluvisols 0.77

4 3 Aridity, fluvisols, temperature 0.76

5 2 Aridity, temperature 0.71

6 1 Evapotranspiration 0.60
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Fig. 2 ROC curves of final logistic regression models with

a 10 lg/L, b 5 lg/L, and c 2 lg/L as thresholds for groundwater

arsenic in Gujarat State, India. Plots of sensitivity (true-positive

rate), specificity (true-negative rate) and accuracy against cut-

offs of the final logistic regression models with d 10 lg/L,

e 5 lg/L, and f 2 lg/L as thresholds for CGWB (2016) dataset

for groundwater arsenic in Gujarat State, India

Fig. 3 Hazard maps showing the probability of the geospatially modelled occurrences of groundwater arsenic concentration exceeding

thresholds of a 10 lg/L, b 5 lg/L, and c 2 lg/L in Gujarat State, India
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However, many studies (Medrano et al. 2010; Moon

et al. 2017; Polya et al. 2019b; Ahmad et al. 2020)

pointed out that low concentrations of arsenic also

pose health risks to humans, although the harm is not

as serious as that arising from higher arsenic concen-

trations in drinking water.

Accounting for 48% of rural household water

supplied being through hand pumps and tube wells

(The World Bank 2006) and 29% of urban households

using untreated taps, bore wells, hand pumps and wells

as water supply infrastructure (IIHS 2014), we

estimate that approximately 49,000 people in Gujarat

are exposed to elevated arsenic contamination

([ 10 lg/L) through domestic consumption of

groundwater. The population exposed to other arsenic

concentrations in groundwaters is summarized in

Table 4.

Health effects of exposure to groundwater arsenic

in Gujarat (Table 5) estimated using dose response

functions of arsenic-induced cancers (Brown et al.

1989; NRC 1999, 2001; Yu et al. 2003) include a

prevalence of 670 cases of skin cancer arising from

exposure to groundwater arsenic in Gujarat. However,

in Gujarat, groundwater arsenic does not significantly

contribute to internal cancers (lung cancer, bladder

cancer, liver cancer) with a combined modelled

incidence of only 12 cases—corresponding to just

0.001% of cancer-related fatalities in Gujarat. The low

number of cancer cases modelled to be caused by

groundwater arsenic reflects the relative low ground-

water arsenic hazard in Gujarat State. These results are

similar to those estimated by Yu et al. (2003) for low

groundwater arsenic areas in Bangladesh (viz.

Brahmaputra FP (Chandina regions), the Chittagong

Coast (sandstone/shale regions), and the Terraces

West/East (clays and alluvium regions) where mean

groundwater arsenic concentrations are in the range of

1–6 lg/L. Notwithstanding this, there are method

model and parameter uncertainties in the dose–

response relations used and these warrant further

investigation in order to obtain more accurate esti-

mates of arsenic attributable health outcomes.

Fig. 4 Pseudo-contour map of geospatially modelled ground-

water arsenic hazard distribution in Gujarat. Contour boundaries

surround the regions in which the modelled probability of

groundwater arsenic exceeding the contour value is equal to the

cut-off value for that concentration (being 0.5 for As = 2 lg/L;

0.57 for As = 3 lg/L; 0.61 for As = 4 lg/L; 0.66 for As = 5

lg/L; 0.69 for As = 10 lg/L)
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Implications

The groundwater arsenic hazard and potential expo-

sure maps for Gujarat produced in our study facilitate

the calculation of the spatial distribution of ground-

water arsenic attributable health outcomes. The pre-

dictive maps generated in this paper have high

resolution and so provide a means of interpolating

existing data (CGWB 2016), thereby providing value

added to such existing datasets. Our arsenic distribu-

tion map, potential exposure map and associated

health risk estimation of population present an obvious

improvement in the rendering of both the detailed

distribution of different arsenic concentrations in

groundwaters and in estimates of the number of

people potentially affected in Gujarat State. Our

Fig. 5 Population density (persons per 1 km2) co-plotted with

modelled groundwater arsenic concentrations in Gujarat State,

India. Cities are shown for illustrative purposes only. The

proportion of people utilizing untreated groundwater for

drinking purpose differs substantially between urban and rural

areas, so this map should not be utilized as an exposure map

without appropriate correction for groundwater usage

Table 4 Estimated population exposed to various groundwater arsenic concentration in Gujarat

Arsenic

concentrations (lg/

L)

Population living in areas with indicated range of

groundwater arsenic concentrations

Population exposed to indicated range of

groundwater arsenic concentrations

[ 10 122,000 49,000

(5, 10) 206,000 82,000

(4, 5) 1,773,000 708,000

(3, 4) 5,011,000 2,000,000

(2, 3) 32,981,000 13,162,000

(0, 2) 30,351,000 12,113,000

Total 70,444,000 28,114,000
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models also provide a basis for applying to other parts

of India and globally, particularly useful for estimating

populations at risk of exposure to different levels of

hazard. Notwithstanding the utility of these models,

we note that they are not intended to be an authori-

tative indicator of the quality of individual ground-

water sourced tube-well water. Accordingly, these

findings should be used with caution. In particular, the

well-known significant local scale spatial heterogene-

ity in arsenic in groundwater indicates that wells

should be tested individually in order to obtain the

most robust assessment of groundwater arsenic

hazard.
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