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Abstract: Key decisions in the design of biomonitoring programs include taxonomic resolution, geographic extent,
and site selection, each of which can affect our ability to infer human impacts on biodiversity from biomonitoring
data. These decisions are constrained by monitoring goals and budget limitations, which may require trade-offs be-
tween them. In this study, we use species distribution models (SDMs) to assess the effects of key decisions in bio-
monitoring design on our ability to infer the effects of natural and anthropogenic environmental conditions on the
occurrence of benthic macroinvertebrates in streams. We compared 4 datasets that differ in their site-selection
strategy, geographic extent, and taxonomic resolution using data from Swiss federal and cantonal biomonitoring
programs. We used individual SDMs with 3-fold cross validation to identify the environmental variables that best
predict the probability of taxa occurrence across the datasets.We then used a hierarchical multi-species distribution
model (hmSDM) to identify how key aspects of biomonitoring design influence the relative importance of the se-
lected explanatory (predictor) variables in the model as well as the model’s predictive performance. The relative im-
portance of the explanatory variables in the hmSDMs was lowest for the dataset with a grid-based site-selection ap-
proach and family-level resolution. An increase in predictive performance was achieved by either using a species-level
taxonomic resolution for Ephemeroptera, Plecoptera, and Trichoptera or by combining different biomonitoring pro-
grams at the family level to increase the number of sites and improve the coverage of environmental conditions.
Selecting monitoring sites to provide a good coverage of environmental conditions, while also targeting sites with
rare combinations of environmental conditions, could further improve biomonitoring program data. Models based
on finer taxonomic resolution revealed that widespread families consist of species and genera with different and
stronger responses to environmental conditions. However, many families include species that are too rare to allow
inference of significant responses to environmental conditions. We show that hmSDMs of stream invertebrates can
contribute to the selection of specific taxa for identification at finer taxonomic resolution. This strategy could facil-
itate the standardization and combination of multiple biomonitoring datasets and improve the identifiability of
stream invertebrate responses to environmental conditions in biomonitoring programs.
Key words: benthic macroinvertebrates, indicator species, stream biomonitoring, biomonitoring design, multiple
stressors, hierarchical species distribution models
Since the Industrial Revolution, human demands on fresh-
water resources have increased dramatically on a global
scale, leading to the widespread modification, fragmenta-
tion, and destruction of freshwater habitats and ecosystems
(Strayer and Dudgeon 2010). In response, many countries
have established long-term freshwater biomonitoring pro-
grams of algae, fishes, and benthic macroinvertebrate as-
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semblages to provide biological assessments of stream eco-
system health. Benthic macroinvertebrates have proven
particularly suitable for biomonitoring as they are wide-
spread, easy to collect, and have a relatively-high taxo-
nomic and functional diversity, with taxa exhibiting dif-
ferent preferences for habitat conditions and different
responses to multiple stressors. Previous studies have
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identified macroinvertebrate responses to natural and an-
thropogenic environmental conditions (Townsend et al.
2008, Leps et al. 2015) including hydro-morphology (e.g.,
modified river-bed substrates or channelization; see Feld
et al. 2014), hydrological conditions (e.g., flow velocity, tem-
perature, conductivity), impaired water quality (e.g., high
nutrient and fine sediment concentrations; see Wagenhoff
et al. 2011, Piggott et al. 2015, Elbrecht et al. 2016), and
other habitat characteristics under human management (e.g.,
riparian vegetation). Pollution from urban areas (Walsh
and Webb 2016), wastewater treatment plants (Bunzel et al.
2013, Eggen et al. 2014, Stamm et al. 2016), and agricultural
land use (including nutrients, fine sediment, and insecti-
cides; see Liess et al. 2012, Liess et al. 2012, Beketov et al.
2013, Bunzel et al. 2014) affect habitat quality and inver-
tebrate community composition at varying spatial scales
(Sponseller et al. 2001, Domisch et al. 2015).

The ability to quantify stream invertebrate responses
to natural and anthropogenic environmental conditions
largely depends on several key decisions during the design
of a stream biomonitoring program (Cao and Hawkins
2011). These decisions must consider monitoring objec-
tives including, among others, 1) selecting a suitable taxo-
nomic resolution (i.e., taxonomic sufficiency; see Lenat
and Resh 2001) to identify taxa (e.g., all taxa at family level
or to the lowest practical level), 2) the site-selection strat-
egy (e.g., based on a regular grid or targeting sites with
potential impacts), and 3) the geographic extent of the bio-
monitoring area.

Identifying taxa at a finer taxonomic resolution often re-
veals that taxa of the same family can respond differently to
environmental conditions. Genera or species within a fam-
ily may have more varied geographic distributions and spe-
cific ecological preferences (i.e., the environmental toler-
ances that define the niche of a taxon) that differ from the
family as a whole (Bailey et al. 2001, Jones 2008). However,
identifying stream invertebrates at a finer taxonomic reso-
lution is more expensive and requires specialized taxo-
nomic expertise, additional labor, and quality-control proce-
dures (Haase et al. 2004,Marshall et al. 2006, Jones 2008). In
addition, some research has found that a higher taxonomic
resolution is not always necessary for understanding the
effects of particular environmental conditions on stream in-
vertebrates. In the case of the Species at Risk pesticide in-
dex (a biotic index to assess pesticide pollution; Liess
and Ohe 2005), previous analyses have shown that using
family-level instead of species-level data does not lead to
a significantly lower ability of the index to predict pesti-
cide toxicity as quantified by chemical analyses (Beketov
et al. 2009).

The selection of sampling locations is usually con-
strained by the spatial extent of the biomonitoring area
(e.g., limited by political or administrative boundaries) and
dependent on the goals of the program, such as assessing
biodiversity or identifying the impacts of specific stressors
(e.g., impaired water quality caused by intensive agriculture)
or management measures (e.g., river restoration) on aquatic
organisms. Applying a site-selection strategy that matches
the program goals is crucial because biased sampling of
specific environmental conditions can affect the quantifica-
tion and inferred relative importance of natural and anthro-
pogenic impacts driving invertebrate assemblage compo-
sition (Thuiller et al. 2004, Kuemmerlen et al. 2016). For
example, a grid-based site-selection strategy covering a wide
range of environmental conditions may be suitable to obtain
a representative overview of the biodiversity of a region but
may undersample impaired sites, such as sites immediately
downstream of wastewater treatment plants.

In general, effects of human impacts on organisms can
be quantified in 2 ways. The 1st method is a reference con-
dition approach wherein the researcher calibrates a model
with data from (near-) natural reference sites, applies the
model to predict the natural assemblage at impaired sites,
and compares the predictions with observations. The dis-
crepancy between expected and observed probability of
occurrence is used as a measure for the impairment. In the
2nd method, the researcher uses a calibrated model that
considers both natural and anthropogenically-modified en-
vironmental conditions as explanatory variables (i.e., pre-
dictors) from natural and altered sites and analyzes the sen-
sitivity of the predictions to the environmental conditions.
The most prominent implementation of the 1st approach
is the River Invertebrate Prediction and Classification
System method developed in the UK in the late 1980s
(see overview by Wright et al. 2000). Since its develop-
ment, the technique has been refined and applied to other
countries (e.g., Hawkins and Yuan 2016, Rääpysjärvi et al.
2016).

The 2nd approach to quantifying howmacroinvertebrate
taxa respond to natural and anthropogenically-modified
environmental conditions is the use of statistical species dis-
tribution models (SDMs). Increasingly-sophisticated SDMs
have been applied to stream invertebrate assemblages. Typ-
ical approaches to applying an SDM include fitting an indi-
vidual model to each taxon in the community (often with
identical explanatory variables for each model) to yield
stacked individual SDMs (iSDMs; Guisan and Rahbek 2011)
or combining multiple SDMs for 1 taxon in an ensemble-
based approach (Thuiller et al. 2009). However, taxa iden-
tified at a higher taxonomic resolution often include fami-
lies with rare genera and species (i.e., with a low prevalence
and insufficient presence data points), and the responses
of rare taxa are difficult to identify with individual models
(Elith et al. 2006, Guisan et al. 2006, Hernandez et al. 2006,
Sor et al. 2017). More recent studies have applied hierarchi-
cal multi-species distribution models (hmSDM) in which
the responses of multiple taxa to environmental conditions
are jointly inferred (Latimer et al. 2009, Ovaskainen and
Soininen 2011). hmSDMs are often implemented as ex-
tensions of the generalized linear model (Guisan et al. 2002)
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and quantify the responses of all individual taxa and the
overall assemblage as an aggregation of the taxon-specific re-
sponses in the model. For example, Ovaskainen and Soininen
(2011) extended stacked iSDMs (in this case, generalized lin-
ear models) into an hmSDM by assuming that the parame-
ters quantifying the responses of all taxa to each environ-
mental variable in the model are distributed according to
an overarching community distribution (i.e., a community
response), effectively leading to a hierarchical generalized
linear model. Multi-species distribution models have been
extended into joint-species distribution models that param-
eterize the residual correlations among taxa (i.e., the covari-
ance among taxa that is not explained by the predictors)
to account for biotic interactions or joint responses to un-
known factors (Clark et al. 2014, Warton et al. 2015).

In this paper, we follow the SDM approach for the fol-
lowing reasons: 1) in highly-affected regions, only few ref-
erence sites with near-natural conditions can be found;
2) the approach allows us to directly extract information
about the impact of different stressors; 3) it allows us to in-
fer responses of different taxa to natural and anthropo-
genic stressors; and 4) if the model fits well, it will allow
us to predict expected macroinvertebrate assemblages un-
der natural conditions as well as the impact of different
stressors.

The overarching goal of this study is to explore how key
aspects of monitoring design affect the inference of stream
invertebrate responses to natural and anthropogenic envi-
ronmental conditions. Based on a previous investigation
(Caradima et al. 2019), we selected an hmSDM to be ap-
plied to 4 different datasets of stream invertebrate assem-
blages in Switzerland that differ in taxonomic resolution,
site-selection strategy, and geographic extent to address the
following 2 research questions: 1) how do various aspects of
biomonitoring design (taxonomic resolution, site-selection
strategy, geographic extent) affect our ability to explain and
predict the occurrence of stream invertebrates and quantify
the relative importance of explanatory variables in the
model? and 2) to what extent can a model-based analysis
support the identification of taxa for which a finer taxo-
nomic resolution would improve our ability to infer anthro-
pogenic impacts on freshwater ecosystems, and how does
this ability depend on the prevalence of these taxa?

Based on these research questions we derive recommen-
dations for practice on how to further improve monitoring
design and management of macroinvertebrates in streams.
METHODS
Study area

Located in central Europe, Switzerland has a wide varia-
tion in topography, a temperate climate, and abundant
freshwater resources. The flat-to-hilly terrain of the Swiss
Plateau contains the largest urban and agricultural areas
and is bordered by the sub-alpine Jura Mountains to the
northwest and the Swiss Alps to the south. The Swiss Alps
are significant headwater sources for 4 major European
river basins, including the Rhine catchment encompass-
ing most of Switzerland, the Rhone in the southwest, the
Ticino River in the south, and the Inn to the east.

Historically, excessive nutrient inputs from urban areas
and agriculture, extensive channelization of lowland rivers
(for land reclamation and flood control), and the construc-
tion of hydroelectric dams have led to habitat losses, im-
paired ecosystem functioning, and declines in biodiversity
(Hering et al. 2012). Since the early 1970s, significant ad-
vances in environmental regulation and investments in
wastewater treatment plants have greatly improved the eco-
logical integrity of Swiss rivers. Current challenges in Swiss
water management include the conservation of biodiversity
and native species, particularly through impact mitigation
of constructed dams, restoring the natural morphology of
channelized rivers, and reducing in-stream micropollutant
concentrations (e.g., pharmaceutical substances, pesticides)
from wastewater discharge and agricultural runoff (Hering
et al. 2012, Eggen et al. 2014).
Biomonitoring program design and data
We combined data from different monitoring programs

into 4 datasets that differ in taxonomic resolution, site-
selection strategy, and geographic extent to investigate how
various aspects of biomonitoring design affect our ability to
explain and predict the occurrence of stream invertebrates.
We derived presence-absence data from semi-quantitative
abundance observations of stream invertebrates through-
out Switzerland from the Center for Swiss Cartography of
FaunaMacroinvertebrate Database (Neuchâtel, Switzerland)
and prepared the datasets based on Swiss federal and can-
tonal monitoring programs. All monitoring programs ap-
ply the same multi-habitat sampling strategy (Stucki 2010).
The 1st dataset is based on the Swiss BiodiversityMonitoring
program (BDM; BDM 2009), a federal program designed to
monitor terrestrial and freshwater biodiversity in Switzer-
land. This dataset resolves the Ephemeroptera (mayflies),
Plecoptera (stoneflies), and Trichoptera (caddisflies) (EPT)
orders to species and genus level and most other taxa to
family level, with a few exceptions at coarser levels. It in-
cludes 580 samplings at 492 sites from 2011 to 2015. The
site-selection strategy of BDM is based on the Swiss topo-
graphic grid (Fig. 1), with 49% of sites located in small head-
water streams (i.e., 2nd-order streams; Fig. 2). Throughout
this study, we abbreviate this dataset as SGs (Switzerland-
wide dataset with Grid sampling of species as the finest tax-
onomic level).

We prepared a 2nd dataset from this monitoring pro-
gram by pooling the EPT species and genera at the family
level to analyze the effects of taxonomic resolution on our
ability to infer responses to environmental conditions (Ta-
ble 1). We abbreviate this dataset as SGf (Switzerland-wide
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dataset with Grid sampling of family as finest taxonomic
level). As a result, the SGf and SGs datasets share the same
sites and sample size but differ greatly in taxonomic diver-
sity (Table 1, Fig. S9).

Our 3rd dataset included data from the National Surface
Water Quality Monitoring Programme (NAWA; BAFU
2013, Kunz et al. 2016), which uses a different method for
selecting stream invertebrate monitoring sites. We used this
data to investigate the effect of site-selection strategy on
model performance and inference of responses to environ-
mental variables. NAWA selects only sites with catchment
areas >25 km2 to provide a representative overview of water
quality in midsized to larger streams in Switzerland, covering
different river types and all cantons (Fig. 1). As a result,mostly-
unimpaired sites with near-natural conditions are underrep-
resented in the NAWA program. In contrast, the cantonal
programs (including Vaud, Aargau, Zürich, Bern, Geneva,
St Gallen, Valais, Jura, Appenzell Ausserrhoden, Uri, Schwyz,
Obwalden,Nidwalden, andLuzern) have various site-selection
strategies and often include sites that are assumed to be im-
paired (e.g., downstream of wastewater treatment plants or
with intensive agriculture; Fig. 1). We aggregated the data
to the family level to derive a dataset that combines BDM,
NAWA, and the cantonal monitoring programs. We chose
family level because federal and cantonal programs use dif-
ferent approaches to select taxa to identify at the genus or
species level (e.g., a species identified in Zürich may not be
identified in the adjacent canton of St Gallen). This dataset,
abbreviated to SCf (Switzerland Combined families), in-
cludes a greater number of sites inmidsized to larger streams
than the SGf and SGs datasets (Figs 1, 2).

For our 4th dataset, we selected a subset of the SCf sites
to analyze how the geographic extent of the monitoring
data used for calibration affects model performance and
the quantification of anthropogenic impacts (Fig. 1, Table 1).
We abbreviate this dataset as PCf (Plateau Combined
families).
Figure 1. Geographic distribution of federal and cantonal biomonitoring sites in Switzerland, including the National Surface Water
Quality Monitoring Programme (NAWA) and Biodiversity Monitoring (BDM) program.
Figure 2. Frequency of Strahler stream orders of sites in the
Switzerland Grid families (SGf ), Switzerland Grid species (SGs),
Switzerland Combined families (SGf ), and Plateau Combined
families (PCf ) datasets.
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Model definition
We defined individual models that we used to select

themost important explanatory variables to predict the com-
position of stream invertebrate assemblages. We extended
the individual models into a hmSDM (as defined in greater
detail by Caradima et al. 2019) that we then applied to ana-
lyze how key aspects of monitoring design affect the infer-
ence of stream invertebrate responses to natural and anthro-
pogenic environmental conditions. To define the models,
we use the following indices throughout: sites: i ∈ {1, ... , I};
sampling time at each site: ti ∈ {1, ... , Ti}; taxa: j ∈ {1, ... , J };
and explanatory variables: k ∈ {1, ... , K }.

Given a presence-absence observation with the response
yitij 5 1 if a taxon is observed as present and yitij 5 0 if
the taxon is observed as absent, we used a general linear
model with a logistic link function to model the probability
of occurrence for an individual taxon PðYitij 5 1 ∣ x, ataxa,
btaxaÞ. The probability of occurrence given the selected ex-
planatory variables x and the taxon-specific parameters ataxa

and btaxa is equal to the link function evaluated at the lin-
ear predictor z, with the linear predictor equal to the linear
combination of the explanatory variables and parameters:

zitij 5 ataxa
j 1 o

K

k51
xitikb

taxa
kj (Eq. 1), and

P Yitij 5 1 ∣ x, ataxa, btaxa
� �

5
1

1 1 e2ziti j
(Eq. 2).

Note that in our model, the predicted probability of oc-
currence for a given taxon j at site i at sample time ti is de-
pendent on specific explanatory variables that vary based
on the sample (see Table S1). The observations yitij are as-
sumed to be Bernoulli distributed with probabilities:

P yitij ∣ x, ataxa, btaxa
� �

5
P Yitij 5 1 ∣ x, ataxa, btaxa
� �

if yitij 5 1

1 2 P Yitij 5 1 ∣ x, ataxa, btaxa
� �

if yitij 5 0

8<
:

(Eq. 3).

When fitting an iSDM to each taxon, the joint probability of
the observations given the model structure, inputs, and pa-
rameters is given as:

P y ∣ x, ataxa, btaxa
� �

5
YI
i51

YTi

ti51

YJ
j51

P yitij ∣ x, ataxa, btaxa
� �

(Eq. 4).ðEq. 4Þ.
The hmSDM assumes that the taxon-specific responses
(i.e., the parameters ataxa

j and btaxakj ) are distributed and
constrained according to their respective community re-
sponses (i.e., the community parameter distributions acomm

and bcomm
k , which are not jointly conditioned upon a hyper-

hyper prior) (Ovaskainen and Soininen 2011). The taxon-
specific parameters are then inferred jointly with the com-
munity parameters from the data. The joint probability
distribution of the model parameters and outcomes is given
by the product of the marginal and conditional probability
densities and is formulated as a probability network (Fig. 3,
Eq. 5).

Assuming the community parameters acomm and bcomm
k

are normally distributed and each are informed by re-
spective means and standard deviations macomm , jacomm and
mbcomm

k
, jbcomm

k
, the joint probability distribution of the model

is given as:
Table 1. Sample size and number of taxa in the datasets.

Dataset In-text abbreviation Sites Samples Taxa

Switzerland Grid families SGf 493 581 103

Switzerland Grid species SGs 493 581 245

Switzerland Combined families SCf 1330 1802 124

Plateau Combined families PCf 637 950 117
Figure 3. Network representation of conditional probability
distributions in the hierarchical multi-species model. The nodes
macomm , jacomm and mbcomm , jbcomm parameterize the means and stan-
dard deviations of their respective community distributions
acomm, bcomm. The nodes ataxa, btaxa are taxon-specific param-
eters (i.e., responses) constrained by and jointly inferred with
their respective community distributions acomm, bcomm from the
model inputs (i.e., explanatory variables) x and model output y.
Variables and parameters in bold are vectors or matrices.
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P y, ataxa, btaxa, macomm , jacomm , mbcomm , jbcommjx� �

5 P yjx, ataxa, btaxa
� �

� o
J

j51
fN ajjmacomm , jacomm
� ��

� o
K

k51
fN bkjjmbcomm

k
, jbcomm

k

� �
Þ

� f macomm , jacomm , mbcomm , jbcomm
� �

(Eq. 5),

where fN is the density of the normal distribution and f
is the density of the joint prior distribution of the means
and standard deviations of the community parameters.

We estimated the parameters of the hmSDM by Bayes-
ian inference and used uniform priors for the means and
standard deviations of the community parameter distribu-
tions. We sampled from the joint posterior probability dis-
tribution of the model parameters by doing Bayesian infer-
ence with a Hamiltonian Monte Carlo (see Duane et al.
1987, Brooks et al. 2011) algorithm implemented in Stan
(Carpenter et al. 2017) and accessed through the package
rstan in R (version 3.5, R Project for Statistical Computing,
Vienna, Austria).

Model performance
The quality of fit, explanatory power, and predictive

performance for each taxon in the iSDM and hmSDM is
based on the deviance (a statistic equivalent to the residual
sum of squares under the assumption of normality) given
as:

dj 5 22o
I

i51
o
Ti

ti51
log P yitij ∣ x, ataxa, btaxa

� �� �
(Eq. 6),

where dj is the taxon-specific deviance over all samples
based on the probabilities of occurrence predicted by the
proposed or null model. Under the null model, the taxon-
specific intercept ataxa

j corresponds to the prevalence of a
taxon, and the model’s parameters btaxakj are set to 0. Divid-
ing the deviance by the number of samples for a taxon
yields a standardized deviance that enables comparisons of
quality of fit and predictive performance among taxa with
different sample sizes.

When calibrating the hmSDM to each dataset, we mea-
sured the explanatory power of the selected variables for
each taxon with the D2 statistic (similar in interpretation
to the R2 of a linear model assuming a normally-distributed
response) to assess the proportion of null model deviance
that is reduced by the proposed model (i.e., by including
explanatory variables; Guisan and Zimmermann 2000):

D2
j 5

dnull
j 2 dproposed

j

dnull
j

(Eq. 7).
The predictive performance for each taxon in all 4 models
was assessedwith k-fold cross validation. Samples were ran-
domly divided into k 5 3 subsamples of nearly equal size.
Each model was calibrated with all combinations of k – 1
subsamples and used to predict the probability of occur-
rence for each taxon in the independent subsample. We
chose k 5 3 because of the computationally-intensive in-
ference of the hmSDM and to avoid deteriorating the
predicted probabilities of occurrence in the independent
subsample. We then obtained the mean standardized devi-
ance over k subsamples for each taxon as a measure of
predictive performance. We quantified the geographic dis-
tribution of the quality of fit and predictive uncertainty for
all individual taxa in each model by propagating a thinned
subsample of the posterior distribution through the model
and obtaining the 5th and 95th quantiles of the marginal
posterior probabilities of occurrence for comparison with
the observations at each sampling site.
Selection of explanatory variables
Following methods used by Caradima et al. (2019), we

applied individual models to identify a set of explanatory
variables that provides the best predictive performance
for multiple datasets of stream invertebrate taxa. We iden-
tified potential explanatory variables for the occurrence of
taxa based on a-priori expert knowledge and existing liter-
ature about potential causal mechanisms (Table 2; see Ta-
bles S1, S2 for details). In an exhaustive search procedure
similar to a best subsets approach (James et al. 2013), we
constructed models containing all possible combinations
of p potential explanatory variables and applied 3-fold cross
validation to each model for all taxa. The number of poten-
tial models to cross validate was constrained by excluding
models with collinear variables (i.e., Pearson correlation
>0.6 or <–0.6; see Figs S1–S3) and selecting models with
stream temperature, the land-use index for agricultural in-
secticides, and flow velocity, which were previously shown
to be key explanatory variables (Caradima et al. 2019). We
also included quadratic terms for variables for which we
can expect a parabolic shape of the response to the linear
predictor (Eq. 1). The quadratic terms allow us to model taxa
that prefer intermediate levels of an explanatory variable
(e.g., temperature) and respond negatively to both low and
high values.

We calculated the predictive performance of each model
as the mean standardized deviance over all taxa. We did
the exhaustive search procedure separately for each family-
level dataset to explore the predictive performance of addi-
tional explanatory variables in a dataset with a larger sample
size (Table 1). For the SGf and PCf datasets, we included
models with 5 to 13 parameters, and for the SCf dataset
we included 5 to 15 parameters. We selected a final com-
promisemodel based on the lowestmean standardized devi-
ance across the family-level datasets.
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The taxon-specific parameters ataxa
j , btaxakj in the indi-

vidual models were identified by maximum likelihood es-
timation. We obtained parameter estimates with an itera-
tive weighted least squares algorithm in the glm function
in R and used the null model parameters as starting val-
ues. If the iterative weighted least squares algorithm pro-
duced parameter estimates with a proposed model deviance
greater than the null model deviance (Eq. 6), we applied a
more robust optimization method with the optim func-
tion in R to identify the maximum likelihood solution (as in
Nelder and Mead 1965). Because of the difficulty in iden-
tifying the parameters of individual models for rare taxa
through maximum likelihood estimation, taxa occurring in
<10% of the samples were excluded from model selection.
Relative importance of explanatory variables
With the hmSDM calibrated to each dataset, we cal-

culated the relative importance of the selected explanatory
variables for each taxon as the individual contribution of
each explanatory variable to the linear predictor (Eq. 1) at
each sample (zitikj, excluding the taxon-specific intercept
ataxa
j ):

zitikj 5 xitikbkj (Eq. 8),

where xik are the explanatory variables in the dataset with
the widest range over the study area (i.e., SCf ), and btaxakj is
themaximumof the posterior taxon-specific parameter dis-
tribution inferred for each dataset and explanatory variable.
The linear predictor for an explanatory variable with a qua-
dratic transformation (e.g., Temp2 in Table 3) is calcu-
lated as:

zitikj 5 xitikb
taxa
kj 1 x2itikb

quad
kj (Eq. 9),

where bquadkj is the taxon-specific parameter for a quadratic
explanatory variable. The range of the linear predictor
Table 2. Potential explanatory variables for the composition of stream invertebrate communities in Switzerland (selected variables for
the model with the highest predictive performance are in bold and detailed definitions for all variables are found in Appendix S1).
The mean of each explanatory variable was subtracted at each site ðxk 5 xik 2 �xikÞ to reduce correlations among the marginal
posterior parameter distributions. Temp (temperature) and FV (flow velocity) include a quadratic transformation to identify
taxa with midrange preferences for temperature and flow velocity (i.e., Temp2, FV2).

Explanatory variable Abbreviation (units)

Proportion of riparian agriculture (A) or forest (F) cover within a buffer distance (e.g., 10 m) along
the upstream riparian zone in the catchment

A10m, A100m,
A1km, F10m,
F100m, F1km (%)

Land use index for agricultural insecticides (insecticide application rate): fractions of cropland in the
catchment weighted by the average number of insecticide spray treatments for each respective
cropland (mean annual spray treatments � fraction of cropland)

IAR (unitless)

Livestock unit density: cattle equivalent (CE) units of livestock per square kilometer of catchment area LUD (CE/km2)

Proportion of urban and transport-related land cover within the catchment Urban (%)

Proportion of forest-river intersection within 150 m of the site and within the subcatchment of the site bFRI (%)

Forest-river intersection: proportion of upstream river length in the catchment intersected by forest cover. FRI (%)

Stream flow velocity estimated from spatial data (channel width, channel slope, mean annual simulated
discharge, and Manning’s friction coefficient)

FV (m/s)

Evaluation of stream channel width variability (0 5 bad, 1 5 very good) WV (unitless)

Predicted mean maximum morning water temperature during the summer based on a linear model with
catchment area and mean catchment elevation as inputs

Temp (7C)

Evaluation of stream bed modification (0 5 bad, 1 5 very good) BM (unitless)

Evaluation of overall stream morphology (0 5 bad, 1 5 very good) Morph (unitless)

Total agricultural (A) or forest (F) land cover in the catchment inversely weighted by the Euclidean
distance to the site

A.EDO, F.EDO (%)

Toxic units (TU) of modelled micropollutant concentrations for Daphnia magna (TU.Dm) and
Chironomidae (TU.Cr)

TU.Dm, TU.Cr

Urban index: sum of specific urban land uses weighted by stormwater discharge coefficients UI (%)

Discharge of treated wastewater as a proportion of stream discharge WW (%)

The fraction of residual stream discharge from upstream hydroelectric dams HP (unitless)



422 | Biomonitoring design and species responses B. Caradima et al.
(zrangekj ) is then the overall contribution of an explanatory
variable to the occurrence probabilities of a taxon over all
samples:

zrangekj 5 max zitikj
� �

2 min zitikj
� �

(Eq. 10).

Given that not all taxa will exhibit a good quality of fit, using
the variability of the linear predictor zrangekj to quantify the
relative importance of the explanatory variables may pro-
duce biased results.
Effect of taxonomic resolution
We sorted the EPT families according to their preva-

lence and then compared the explanatory power and pre-
dictive performance of the model for the different taxo-
nomic levels to assess the effect of taxonomic resolution
on model performance for each taxon. Furthermore, we
compared the geographic distribution of the observations
and the model output for taxa that belong to the same
family. The effect of taxonomic resolution on our ability to
infer responses of EPT taxa to environmental conditions
was compared directly using the full samples of the mar-
ginal posterior distributions of the taxon-specific param-
eters btaxakj for all families and their respective genera and
species.
RESULTS
Effects of monitoring design on model performance
and relative importance of explanatory variables
Selection of explanatory variables Based on the exhaus-
tive search procedure, we selected explanatory variables with
the highestmean predictive performance among all 4 data-
sets. The top 10 models had a similar standardized devi-
ance and a generally-consistent set of explanatory variables,
including multiple agricultural and forest-related explana-
tory variables (Table 3). Therefore, the choice among those
top performing models is rather arbitrary. A robust choice
is to select variables that occurred in most of the top per-
forming models. This is the case for the model with the low-
est mean predictive error among the family-level datasets,
which we selected to compare model performance among
the datasets. Based on the mean standardized deviance, the
compromise model ranked 126th for SCf, 47th for PCf, and
1st for SGf.

The distributions of the selected explanatory variables in
each dataset reflect the different site-selection strategies
of the underlying monitoring programs (Fig. 4; see Figs S4–
S6 for pairwise comparisons and Appendix S11 for the geo-
graphic distributions of the values of the selected explana-
tory variables). Variables related to urban and agricultural
land use (e.g., riparian agriculture, agricultural insecticides,
livestock unit densities) were lowest in the grid-based SGf
dataset, higher in the combined SCf dataset, and highest
in the Swiss Plateau PCf dataset. In SGf, sites had higher
flow velocity, colder stream temperatures, and a larger range
of riparian forest cover, which is consistent with a greater
proportion of sites with a low stream order (Fig. 2). By con-
trast, the PCf dataset included a higher proportion of sites
with slower flow velocities and higher stream temperatures,
and 20% of sites featured an impaired morphological evalu-
ation of the channel width variability (compared to 17% in
SCf and 10% in SGf ) (BAFU 2006).

The range of the linear predictor over all samples and for
each taxon and explanatory variable (zrangekj ; Fig. 6) indicates
the relative importance of a given explanatory variable in
the model. Stream temperature emerged as a dominant ex-
planatory variable in all model versions, particularly in the
model for the SGs dataset (Fig. 6). The land-use index for
Table 3. Top 10 models with the lowest mean standardized deviance during prediction over the family-level datasets. For complete
definitions of all explanatory variables, see Appendix S1.

Mean standardized deviance

Model SCf PCf SGf Mean

A10m IAR LUD Urban bFRI FRI FV WV Temp Temp2 0.847 0.940 0.871 0.886

A10m IAR LUD Urban FRI FV WV WW Temp Temp2 0.847 0.936 0.882 0.888

A10m IAR LUD Urban FRI FV WV Temp Temp2 0.847 0.936 0.882 0.889

A10m IAR LUD Urban F.EDO bFRI FRI FV WV Temp Temp2 0.845 0.938 0.884 0.889

A10m IAR LUD Urban bFRI FRI FV WV WW Temp Temp2 0.846 0.940 0.881 0.889

A10m IAR LUD Urban F.EDO FRI FV WV Temp Temp2 0.846 0.934 0.887 0.889

A10m IAR LUD Urban F.EDO FRI FV WV WW Temp 0.849 0.935 0.885 0.890

A10m IAR LUD Urban F.EDO bFRI FRI FV Temp Temp2 0.851 0.939 0.881 0.890

A10m IAR LUD Urban bFRI FRI FV WV BM Temp Temp2 0.846 0.942 0.883 0.890

A10m IAR LUD Urban FRI FV WV Temp 0.852 0.938 0.880 0.890
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agricultural insecticides, urban land use, and flow velocity
are of secondary importance in the models for all datasets.
Variables related to riparian agriculture and livestock unit
densities have a lower but consistent impact in all dataset
models. All models also showed that riparian forest cover
within the entire catchment is more important than the ri-
parian forest cover at the site. Riparian forest cover at the
site and width variability of the stream channel are among
the least important explanatory variables for all datasets.
Effects of monitoring design on model performance We
found that model performance was affected by monitor-
ing design decisions including taxonomic resolution, site-
selection strategy, and geographic extent. The hmSDMs
achieved a similar performance, based on the standardized
deviance, for calibration to the whole dataset and for pre-
diction during 3-fold cross validation (Figs S10, S11). When
the model was calibrated to each dataset with all samples,
the model for the SGs dataset achieved a higher quality of
fit (i.e., a lower standardized deviance) and explanatory power
(i.e., a higher D2) than any of the models for datasets with
a family-level resolution (Fig. 5A, B; see Fig. S8 for similar
results during cross validation). Among the family-level
datasets, the quality of fit of the model was highest when ap-
plied to the SCf dataset. However, the model applied to the
PCf dataset yielded the lowest quality of fit and explanatory
power. These results indicate that a finer taxonomic resolu-
tion as well as a better coverage of environmental influence
factors can both increase our ability to infer human impacts
on stream invertebrates from biomonitoring data.
Effects of monitoring design on the relative importance of
explanatory variables in the model Our model results
showed that taxonomic resolution, site-selection strategy,
and geographic extent had an influence on the relative
importance of the explanatory variables (Fig. 6). Within
grid-based site selection datasets, the relative importance
of all explanatory variables (with the exception of the chan-
nel width variability) increased when moving from family-
level (SGf) to genera and species resolution (SGs), particu-
larly for anthropogenic variables such as riparian agriculture,
agricultural insecticides, livestock unit densities, and urban
land use.

Contrary to our expectations, limiting the sites of the
combined family-level SCf dataset to the more densely-
populated Swiss Plateau PCf dataset did not increase the
relative importance of anthropogenic explanatory variables
(e.g., agricultural insecticides, livestock unit densities, urban
land use) that mainly occur in the Swiss Plateau (Fig. 6).
Note that this model also had a lower quality of fit and
explanatory power than the other models (Fig. 5A, B).
Combining all biomonitoring programs at the family-level
Figure 4. Boxplots showing the distribution of the selected explanatory variables in each dataset, including variables related to ri-
parian agriculture (A10m), agricultural insecticides (IAR), livestock unit density (LUD), urban land use (Urban), riparian forest cover
at various spatial scales (bFRI, FRI), flow velocity (FV), channel width variability (WV), and stream temperature (Temp) (see Table 2
for complete definitions). Box plots show the quartiles (colored box) and whiskers (black line) extending to the most extreme data
point (outliers are defined as >1.5� the interquartile range), and black points indicate the position of the median of skewed distribu-
tions (see Appendix S11 for maps of the selected explanatory variables).



Figure 5. Quality of fit (A) indicated by the standardized deviance (lower is better) and explanatory power (B), indicated by the D2

(higher is better) of the selected variables for all taxa during calibration of the hierarchical multi-species distribution model to all sam-
ples in each dataset. (Note that the model can yield negative D2 values for specific taxa because of the overarching community param-
eters constraining the taxon-specific responses; see Fig. 3). Box plots show the quartiles (white box) and whiskers (black line) extend-
ing to the most extreme data point (outliers are defined as >1.5-fold the interquartile range), and violin plots (colored) show
the density distribution.
Figure 6. Boxplots showing the relative importance of the explanatory variables in the model for each dataset quantified as the dis-
tribution of the range of the linear predictor (zrangekj ) per taxon with the explanatory variables for the dataset with the widest range of
environmental conditions, SCf (to ensure comparable zrangekj values between models). The box shows the interquartile range and the
black lines extending to outliers, which are defined as data points >1.5-fold the interquartile range. Note that the maxima of the zrangekj
distributions for stream temperature in SGs and SCf are 22 and 23, respectively.
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in the SCf dataset led to a relative importance of explana-
tory variables in the corresponding model that is similar to the
model applied to grid-based SGs data, with the exception
of stream temperature.

A comparison of the parameter estimates reflects the re-
sponses of taxa to the explanatory variables in the different
model versions. The parameters generally had a consistent
positive or negative response to the environmental variables
in all models and had some differences in the absolute value
for some variables (see Figs. S12–S14). For example, family
responses in SCf and SGf were similar for riparian agricul-
ture and agricultural insecticides, but differed in their re-
sponses to urban land use and riparian forest cover at the
site (Fig. S12). When comparing responses of families in
SCf with families observed at sites limited to the Swiss Pla-
teau (PCf), the taxon-specific responses were generally sim-
ilar but differed for flow velocity and riparian forest cover
at the site, with minor differences for stream temperature
(Figs. S13, S14).
Effects of taxonomic resolution on explanatory
power and inference of responses

Comparing EPT taxa in the models calibrated to the SGf
and SGs datasets shows the effects of taxonomic resolution
on the explanatory power of, and specific responses to, ex-
planatory variables. The model calibrated to the SGf data-
set had a higher predictive performance (i.e., a lower devi-
ance) for widespread families (e.g., Baetidae, Nemouridae,
Limnephilidae) than for many of their genera and species
when calibrated to the SGs dataset (Fig. 7B). The distri-
butions of very widespread families can be accurately pre-
dicted without explanatory variables (i.e., the null model
has a reasonably good performance by predicting a high
Figure 7. Explanatory power (i.e., D2 during model calibration) (A) and predictive performance (B) based on taxonomic resolution
of Ephemeroptera, Plecoptera, and Trichoptera taxa in SGf and SGs, with predictive performance quantified as the mean standardized
deviance during 3-fold cross validation. A lower mean standardized deviance indicates a better predictive performance. Numbers on
the x-axis indicate the number of occurrence data points in the SGf dataset.
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probability of occurrence everywhere) but have poor ex-
planatory power (D2) of the selected explanatory variables
(Fig. 7A). However, multiple widespread families, such as
Baetidae, Nemouridae, Heptageniidae, and Rhyacophilidae,
include genera or species for which the proposed model
had a higher explanatory power (Fig. 7A) than their respec-
tive family.

These differences in model performance are generally
due to genera and species exhibiting stronger and different
responses to the explanatory variables than their respective
families. For example, Baetidae is a widespread mayfly fam-
ily (Fig. 8A) that was present in 94% of the samples. The
model has a low explanatory powerD2 5 0.13 for Baetidae,
which shows only a slight positive response to stream tem-
perature and a negative response to riparian agriculture
(Fig. 9). Specific baetid species, such as Baetis alpinus, B.
rhodani, and B.muticus, differ in observed geographic dis-
tributions, which can be captured reasonably well by the
model (Fig. 8A–D). In the model, these species show stron-
ger and more variable responses to explanatory variables
than the family, which is illustrated by their taxon-specific
parameters (Fig. 9) and higher D2 values (Fig. 8A–D; see
Appendix S2 for parameter plots for all taxa in SGf and
SGs, Appendices S3–S6 for complete maps for all taxa
and all datasets, and Appendices S7–S10 for plots show-
ing response curves of the predicted probabilities of occur-
rence and observations vs the explanatory variables for all
taxa in each dataset). Additionally, B. alpinus is the only
selected taxon of this family that responds negatively to the
agricultural insecticides index and positively to flow veloc-
ity, whereas B. rhodani and B. muticus respond negatively
to flow velocity. Furthermore, many of the selected Baetis
species show stronger and different responses to stream
temperature in the hmSDM than the Baetidae family. For
example, B. alpinus has decreasing probabilities of occur-
rence at temperatures greater than ∼157C (Appendix S8,
p5), B. rhodani has lower occurrence probabilities at tem-
peratures below ∼77C (Appendix S8, p7), and B. muticus
appears to prefer intermediate temperatures indicated by
higher occurrence probabilities between ∼10 and 177C (Ap-
pendix S8, p13).

The fact that multiple widespread families contain spe-
cies with a wider range of responses demonstrates that
identifying specific taxa at finer taxonomic resolution can
reveal additional information. However, many families in-
clude rare taxa for which we cannot infer significant re-
sponses (b parameter distributions largely overlap with 0;
see Appendix S2 for complete results on the effects of
Figure 8. Geographic distribution of the calibrated probabilities of occurrence (indicated by the point size) compared with
presence-absence observations (blue or red points, respectively) of the family Baetidae (A) and selected Baetis species (B, C,
and D). The size and color of the points indicate observations with a good (i.e., large blue and small red points) or bad (i.e.,
large red and small blue points) quality of fit. To visualize predictive uncertainty, the point fill shows the 5th (filled) and 95th

(unfilled) quantiles of the marginal posterior probabilities of occurrence, with large differences between the filled and unfilled
points indicating a high predictive uncertainty.
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taxonomic resolution on the responses of EPT taxa in SGf
and SGs datasets).

DISCUSSION
The main objective of this study is to identify how key

aspects of biomonitoring design affect the inference of taxa
responses to anthropogenic and natural environmental
conditions. Because resources for biomonitoring are lim-
ited, monitoring design should be optimized to best ful-
fill monitoring objectives. Identifying the response of taxa
to human impacts is one important objective, which can be
supported by the use of SDMs. However, in the past, re-
search using SDMs has often focused on the prediction of
species occurrences (e.g., Elith and Leathwick 2009) with
less focus on improving understanding about underlying
mechanisms. Moreover, the selection of explanatory vari-
ables in SDMs often largely depends on data availability
and is less often based on the understanding of causal mech-
anisms that drive species distributions (Dormann 2007, Elith
and Leathwick 2009). However, if the pre-selection of ex-
planatory variables accounts for potential mechanistic links,
correlative species distribution models can support the iden-
tification of important mechanisms (Buckley et al. 2010).

Effects of monitoring design on model performance
and relative importance of explanatory variables

In our application of SDM analysis, we identified 2
predominantly-natural and 7 anthropogenic environmen-
tal variables as the best predictor variables for macroinver-
tebrate occurrences in Switzerland across different biomoni-
toring datasets. Stream temperature emerged as the most
important explanatory variable in all datasets, indicating po-
tential effects of climate change on the future distributions
of sensitive species. Anthropogenic variables representing
catchment-wide properties, such as the land-use index for
the application of agricultural insecticides and urban land
use have a greater effect on stream invertebrate communi-
ties (particularly at finer taxonomic resolutions) than ri-
parian agriculture. The presence of drainage systems may
contribute to the importance of agriculture beyond the ri-
parian zone (e.g., Doppler et al. 2012) and biocides from
urban sources seem to be relevant as well (Wittmer et al.
2010, 2011). Data on drainage networks of intensively-
cultivated farmland would be needed to better resolve the
spatial scale at which they affect stream invertebrate as-
semblages. Although the agricultural insecticides variable
used in this study is a proxy designed to represent pollution
caused by agricultural insecticides, it cannot be excluded
that it more generally indicates other types of agricultural
pollution (e.g., organic matter inputs, fine-sediment run-
off ) that are known to adversely affect stream invertebrates
(Liess et al. 2012, Wagenhoff et al. 2012, Baumgartner and
Robinson 2017). Studies selecting variables in SDMs should
consider that multiple stressors potentially underlie a single
proxy variable. Our general finding thatmany taxa responded
to multiple anthropogenic explanatory variables highlights
Figure 9. Taxon-specific responses to explanatory variables (i.e., the marginal posterior distributions of the taxon-specific parame-
ters btaxakj ) in the SGf and SGs model, respectively, for the Baetidae family (F) and selected species (S) in the genus Baetis. The number
of occurrences of each taxon is provided in brackets after the taxon names. Responses are colored according to significant positive
(blue), negative (red), and non-significant (gray) responses based on the 5th and 95th quantiles of the marginal posterior distributions
of the taxon-specific parameters btaxakj .
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the need for a coordination of management measures that
aim to tackle multiple stressors, such as river restoration or
water quality improvements, to increase their success with
regard to biological responses.

In applying hmSDMs to all 4 datasets of stream inver-
tebrate assemblages that differ in taxonomic resolution,
site-selection strategy, and geographic extent, we found
that our ability to quantify the effects of selected natural
and anthropogenic environmental conditions on these
communities is strongly interdependent on these key deci-
sions in biomonitoring design. Comparing the models for
2 datasets that differ in taxonomic resolution (for EPT
taxa) but share the same sites revealed that identifying
families at a finer taxonomic resolution (genus and species)
led to improvements in both predictive performance of
the model and explanatory power of the selected variables.
As expected, the relative importance of explanatory vari-
ables also increased with finer taxonomic resolution. How-
ever, in practice, increasing taxonomic resolution also in-
creases the cost/sample. Budget constraints may therefore
limit the number of samples that can be collected, poten-
tially resulting in tradeoffs between taxonomic resolution
and other monitoring design choices such as the selection
of sites and the range of environmental conditions included
in data collection.

The grid-based site-selection strategy in the SGf dataset
led to a low coverage of sites with high levels of anthropo-
genic impacts, such as urban areas in the catchment, com-
pared to the combined SCf dataset. This imbalance may
explain the lower relative importance of urban land use in
the SGfmodel compared to the SCfmodel. These results in-
dicate that a stratified site-selection strategy with a factorial
design could improve the inference of taxa responses to
anthropogenic impacts. Combining biomonitoring pro-
grams to increase sample size and improve the coverage
of influence factors allowed us to infer stronger taxon-
specific responses and thus to improve quality of fit and
predictive performance of the model (Fig. 5A, B). This out-
come implies that a harmonization of biomonitoring pro-
grams in terms of sampling methods would be beneficial
because it would allow a joint analysis of monitoring pro-
grams that are designed for different purposes and therefore
may apply different site-selection strategies (e.g., grid-based
site selection vs targeting impaired sites). However, in our
study the combination of data from different biomoni-
toring programs required aggregating observations to the
family-level because the different monitoring programs
did not resolve the same taxa to genus or species level,
which reduced the model’s predictive performance and ex-
planatory power. Despite this limitation, the explanatory
variables in the model applied to the SCf dataset had a rel-
ative importance similar to the SGs model.

Contrary to our expectation, limiting the geographic
extent of sites to the more densely-populated areas did not
increase the relative importance of anthropogenic explana-
tory variables (Fig. 6). The limited range of natural environ-
mental conditions (temperature, flow velocity) within the
Swiss Plateau may have caused its poorer model perfor-
mance. This outcome indicates that it may be advantageous
to include larger datasets covering not only larger ranges of
environmental conditions, but also a better coverage of dif-
ferent combinations of explanatory variables instead of fo-
cusing on a specific area with more homogenous environ-
mental conditions.
Effects of taxonomic resolution on explanatory
power and inference of responses

It would be beneficial for different programs to agree
on the taxa that are resolved to genus or species level to
avoid a loss in taxonomic resolution when combining dif-
ferent monitoring programs, as is done in several other
countries (e.g., Haase et al. 2004). This decision should be
based on practical considerations (e.g., taxon-specific effort
and error rates) and the gain in information that can be
achieved with a finer resolution (e.g., inferring more dif-
ferentiated responses of taxa to environmental conditions).
Therefore, we investigated if a model-based analysis can
support the identification of taxa for which a finer taxo-
nomic resolution is particularly useful in identifying hu-
man impacts and how this ability depends on the taxa’s prev-
alence. By comparing the explanatory power and parameter
distributions for the different taxonomic levels, we found
that genera and species with an intermediate prevalence that
belonged to widespread families showed more differentiated
and stronger responses to explanatory variables than their
respective families. These taxa would be particularly useful
to improve bioassessment methods that are currently based
on family level, as is the case in Switzerland (BAFU 2019).
However, a majority of families in our study area (e.g.,
Rhyacophilidae, Hydropsychidae) showed no clear differ-
entiation in their responses at finer resolutions, mainly be-
cause of their low prevalence. This lack of differentiation
due to rarity would likely be consistent, regardless of the ex-
planatory variables or modeling approach chosen (Sor et al.
2017, Caradima et al. 2019).

A particularly interesting outcome of our study is the
variable response of species within families to agricultural
insecticides. Most of the 10 most-widespread EPT families
respond negatively to agricultural insecticides (see Ap-
pendix S2), which supports independent findings that family-
level identification of stream invertebrates is generally
sufficient to identify significant responses to agricultural
insecticides (Beketov et al. 2009). However, Baetidae, Lim-
nephilidae, and Leptophlebiidae were exceptions to this
trend. These families show an insignificant response at the
family level but include 1 to 3 species that respond neg-
atively to agricultural insecticides, which points to the bene-
fit of a finer resolution for selected families when assessing
the impacts of insecticide use.
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Ensuring consistently-low rates of observation error with
traditional methods of identifying stream invertebrates (i.e.,
relying on morphological characteristics of individuals) is
difficult for specific taxa and increases program costs. In
the future, DNA-based methods may serve as complemen-
tary tools to traditional identification methods to increase
the taxonomic resolution of biomonitoring data (Hering
et al. 2018, Pawlowski et al. 2018). DNA identification may
also allow for identification of previously unknown taxa and
may help to develop new biotic indices based on genetic
characteristics (Gibson et al. 2015, Elbrecht et al. 2017).
Our model-based approach could be used to compare the
information gained from DNA-based vs traditional iden-
tification methods. As with this study’s outcomes, the model
could be used to identify which specific taxa provide the
greatest increase in information at a finer resolution for
specific areas of interest.
CONCLUSIONS
We successfully applied hmSDMs to datasets of benthic

macroinvertebrate assemblages in Swiss rivers to assess
the effects of key biomonitoring design criteria on the infer-
ence of stream invertebrate responses to natural and an-
thropogenic environmental conditions. Site-selection strat-
egy and taxonomic resolution both affected the predictive
performance of the models and the strength of inferred re-
sponses of taxa. The degree to which taxonomic resolution
affected the predictive and explanatory power of the mod-
els depended on how rare or widespread the taxa were and
on how differently species from the same family responded
to environmental conditions. Based on the findings of this
study, we draw the following conclusions regarding prac-
tical implications for biomonitoring and management.
Biomonitoring
Systematic site selection (ideally with a factorial design)

is an important aspect of the design of biomonitoring pro-
grams that aims to disentangle the effects of different natu-
ral and anthropogenic environmental conditions. The ex-
tent to which the effects of different explanatory variables
can be disentangled with statistical methods depends on
the coverage and correlation of the environmental condi-
tions in the data. Additional sites with rare combinations
of important influence factors should be targeted to im-
prove the coverage of explanatory variables in existing mon-
itoring programs. In the Swiss context, sites with low tem-
perature and impairedwater quality would bemost valuable.

A finer taxonomic resolution can greatly improve the
identifiability of responses to explanatory variables of gen-
era and species if they have a sufficient prevalence for sta-
tistical analyses and show different and stronger responses
than their respective families. These improvements are par-
ticularly evident among genera and species with an inter-
mediate prevalence, as the responses of very widespread
or very rare taxa are difficult to identify. Harmonizing the
taxonomic resolution across different monitoring programs
by agreeing on an operational taxa list that specifies the
taxonomic level of identification for each taxon would avoid
a loss of information in joint analyses and could increase cost
efficiency.

The more biomonitoring data are available, the stronger
are the conclusions that can be drawn from statistical anal-
yses and the greater the potential to use the results for the
development of new stressor-specificmacroinvertebrate in-
dices. A central database to store data from different pro-
grams, as implemented in Switzerland, facilitates analyses
across differentmonitoring programs and can improve data
management. We recommend the inclusion of additional
environmental information collected during sampling in
such a database.
Management
As many macroinvertebrate taxa in the model respond

to multiple stressors, a coordination of management pro-
grams regarding different stressors seems important to in-
crease program effectiveness regarding the response of aquatic
organisms. For example, coordination between morpholog-
ical restoration and water quality management programs
could improve outcomes compared to the application of
these programs at different locations.

Model results can facilitate the selection of taxa for the
development of biological indices to assess the impact of
management measures on organisms. Taxa that appear to
be sensitive to flow velocity and width variability can be ex-
pected to respond to morphological restoration measures.
Likewise, taxa with sensitive responses to indicators of agri-
cultural activities (proportion of riparian agriculture, agri-
cultural insecticides index, livestock unit densities) can be
expected to respond to measures to improve agricultural
practice. Taxa with sensitive responses to the proportion
of urban area in the catchment will potentially respond to
measures to improve urban wastewater management.

Because temperature was identified as the most impor-
tant influence factor, climate change can be expected to
change the distribution of species and decrease the habitat
availability for cold water species. This potential impact
should be taken into account when assessing management
effects over longer time scales, for example by implement-
ing a before–after control-impact monitoring design. The
model could facilitate the distinction of temperature effects
from effects caused by other environmental conditions.

The prohibition of pesticide applications only within the
riparian zone of streams may not be sufficient to greatly
reduce adverse impacts on invertebrate communities, as
indicated by the greater importance of catchment-wide vs
riparian zone indicators of agricultural land use.



430 | Biomonitoring design and species responses B. Caradima et al.
We conclude that a finer taxonomic identification of
carefully-selected taxa combined with a strategic choice of
monitoring sites to improve the coverage of environmental
conditions could increase the information gain achievable
at given monitoring costs. We also conclude that hmSDMs
can support the optimization of such a monitoring design.
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