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SUMMARY 13	

The importance of functional diversity for the functioning and behavior of microbial 14	

communities is clear, yet the widespread incorporation of functional diversity 15	

measurements into environmental microbiology study designs remains surprisingly limited. 16	

This may, at least to some extent, be a consequence of the unique conceptual and 17	

methodological challenges to measuring functional diversity in microbial communities. To 18	

facilitate the increased incorporation of functional diversity measurements into 19	

environmental microbiology study designs, we review here the process and some key 20	

caveats for measuring functional diversity and provide specific examples. We highlight three 21	

main decision points and provide guidance to making these decisions based on the 22	

underlying mechanisms for how functional diversity relates to an ecosystem process or 23	

property of interest. We discuss the selection of an appropriate type of functional trait, 24	

selection of the specificity at which functional diversity will be measured, and selection of an 25	

appropriate metric for estimating functional diversity from quantitative measures of those 26	

traits. We further discuss decisions regarding the use of one- or multi-dimensional measures 27	

of functional diversity and how advances in the field of trait-based community ecology could 28	

be applied or adapted to address questions in environmental microbiology. 29	

30	
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INTRODUCTION 31	

Functional diversity is an important determinant of the functioning and behavior of nearly 32	

every ecosystem (Balvanera et al., 2006; Cadotte et al., 2011). Functional diversity can affect 33	

the performance of ecosystem processes (Tilman et al., 1997; Dıáz and Cabido, 2001; Griffin 34	

et al., 2009; Flynn et al., 2011; Handa et al., 2014), the resistance and resilience of those 35	

ecosystem processes to environmental change (Norberg et al., 2001; Boles et al., 2004), and 36	

the susceptibility of ecosystems to invasion (Symstad, 2000; Arenas et al., 2006). While 37	

functional diversity is critically important, it is our opinion that its measurement and 38	

incorporation into environmental microbiology study designs are too often ignored or left 39	

unconsidered. This is perplexing for at least three reasons. First, environmental microbiology 40	

research has an extensive history of investigating the taxonomic and phylogenetic diversity 41	

of microbial communities (Pace, 1997; Head et al., 1998; Nocker et al., 2007), and extending 42	

such investigations to also consider functional diversity is seemingly obvious and palpable. 43	

Such extensions are especially important given that functional diversity has repeatedly been 44	

observed to be a better predictor of ecosystem processes and properties than taxonomic or 45	

phylogenetic diversity (Petchey and Gaston, 2006; Suding et al., 2008; Hillebrand and 46	

Matthiessen, 2009; Reiss et al., 2009; Cardinale et al., 2012; Fontana et al., 2018). Moreover, 47	

functional diversity is more predictable over environmental gradients than is taxonomic or 48	

phylogenetic diversity (Fukami et al. 2005). Second, theoretical frameworks for interpreting 49	

functional diversity and relating it to ecosystem processes and properties are well 50	

established, most notably being the well-developed theory of biodiversity-ecosystem 51	

functioning (BEF) (Hooper et al., 2006; Hillebrand and Matthiessen, 2009; Cardinale et al., 52	

2012; Tilman et al., 2014). These theoretical frameworks provide a suitable basis to generate 53	

strong a priori hypotheses that are amenable to experimental testing and correlational 54	
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observation. Finally, the datasets required to measure functional diversity at both the 55	

genetic and phenotypic levels are routinely acquired during environmental microbiology 56	

research, such as DNA and RNA sequencing datasets (Fierer et al., 2006; Dinsdale et al., 57	

2008; Engel et al., 2012; Franzosa et al., 2014; Johnson et al., 2015a; Patsch et al., 2018) and 58	

multiparametric flow cytometry datasets (Czechowska et al., 2008; Müller and Nebe-von-59	

Caron, 2010; Wang et al., 2010; Malkassian et al., 2011; Pomati et al., 2013; Fontana et al., 60	

2014). In many cases, these datasets are readily available to the public. Thus, from our 61	

perspective, there are few barriers regarding data generation, availability, and interpretation 62	

that prevent the increased integration of functional diversity into environmental 63	

microbiology research. 64	

 65	

Given the lack of barriers, why has functional diversity been ignored or overlooked to such 66	

an extent? Admittedly, measuring functional diversity poses conceptual and methodological 67	

challenges that are, to some extent, different from those for taxonomic and phylogenetic 68	

diversity. For example, in contrast to taxonomic and phylogenetic diversity, functional 69	

diversity exists and can be measured across every level of cellular organization, ranging from 70	

genes (e.g., Zhou et al., 2008) to transcripts (e.g., Gifford et al., 2011), proteins (e.g. Erickson 71	

et al., 2012), and finally to phenotypic properties (e.g., Bryant et al., 2012). Given a 72	

particular hypothesis, at what level(s) of cellular organization should functional diversity be 73	

measured? Also unique to functional diversity is that it can be delineated into potential 74	

functional diversity (i.e., all aspects of functional diversity that could, in principle, be 75	

expressed at some point in time or space) and expressed functional diversity (i.e., only those 76	

aspects that are expressed at a given point in time and space). Given a particular hypothesis, 77	

when should one measure potential or expressed functional diversity? Finally, functional 78	
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diversity metrics are typically based on one of two concepts: 1) functional diversity based on 79	

richness and/or evenness of functional traits or groups (alternatively, also Shannon diversity, 80	

Simpson diversity, Hill numbers [Hill, 1973], etc.) (Mason et al., 2005) and 2) functional 81	

diversity based on the shape of trait-space (Petchey and Gaston, 2006; Villéger et al., 2008; 82	

Laliberté and Legendre, 2010; Mouchet et al., 2010; Fontana et al. 2016). Again, given a 83	

particular hypothesis, which approach is most appropriate? Thus, researchers must navigate 84	

many decisions regarding how to measure functional diversity, and these decisions can have 85	

important consequences on the interpretation of the resulting measurements. 86	

Unfortunately, researchers often lack clear guidance to help navigate these decisions. 87	

 88	

To address these challenges, we provide here guidance to specifically help environmental 89	

microbiologists make rational and well-justified decisions regarding the measurement of 90	

functional diversity (Fig. 1). Further, we navigate the process of obtaining meaningful 91	

functional diversity metrics starting from microbial community data. Whenever possible, our 92	

guidance is based on known mechanisms for how functional diversity relates to specific 93	

ecological processes and properties (see discussion below). The advantage of this approach 94	

is that, after formulating or selecting a hypothesis of interest, a researcher can select a 95	

measure of functional diversity in a mechanistically-oriented manner, thus resulting in 96	

strong methodological justifications and convincing interpretations of the results. However, 97	

for some hypotheses of interest, an ideal method for measuring functional diversity may not 98	

be readily available. We therefore propose future directions to improve the measurement of 99	

functional diversity in environmental microbiology research, with particular emphasis on 100	

discussing how concepts and advances in the field of trait-based community ecology could 101	

be applied or adapted to address questions in environmental microbiology (e.g., Petchey 102	
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and Gaston, 2002; Petchey and Gaston, 2006; Raes et al., 2011; Allison and Gessner, 2012; 103	

Krause et al., 2014). 104	

 105	

Selecting the type of functional trait to measure: potential and expressed functional traits. 106	

After defining a hypothesis of interest, the first decision is to select an appropriate type of 107	

functional trait to measure (i.e., among genes, transcripts, proteins, or phenotypic 108	

properties) (Fig. 1). Functional traits can be broadly delineated into potential and expressed 109	

traits. Potential functional traits refer to traits that could, in principle, be expressed at some 110	

point in time or space. Arguably, the most accessible potential functional trait in 111	

environmental microbiology is the gene. This is typically a protein encoding gene with a 112	

known function. However, it could also be a 16S-rRNA gene. For example, recent 113	

computational advances such as PICRUSt (Langille et al., 2013) and Tax4Fun (Aßhauer et al., 114	

2015) can predict functional traits from 16S-rRNA genes when a sequenced representative 115	

with a very similar 16S-rRNA gene sequence is available in the database, thus enabling 116	

researchers to extract potential functional information from 16S-rRNA gene sequences. 117	

Expressed functional traits refer to traits that are expressed at a given point in time and 118	

space. Expressed functional traits occur across different levels of cellular organization and 119	

include transcripts, proteins, and phenotypic properties. 120	

 121	

When should one select a potential or expressed functional trait for measuring functional 122	

diversity? This ultimately depends on the hypothesis of interest, and the decision would 123	

ideally be based on postulated mechanisms for how functional diversity relates to the 124	

ecological processes or properties of interest. In general, we argue that expressed functional 125	

traits are typically more appropriate when testing relationships with ecosystem processes 126	
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(e.g., the rate of an ecosystem process), while potential functional traits are typically more 127	

appropriate when testing relationships with ecosystem properties (e.g., resistance or 128	

resilience). For example, consider an investigation focusing on the relationship between 129	

functional diversity and the rate of an ecosystem process. In this case, the measured rate of 130	

that ecosystem process is quantitatively related to aspects of functional diversity that are 131	

expressed at the same point in time and space. In this case, expressed functional traits 132	

would likely be most appropriate, as potential functional traits may include irrelevant 133	

information (e.g., they may include genes that are not used at that point in time and space). 134	

Measures of functional diversity based on potential functional traits may therefore increase 135	

noise and consequently make it more difficult to observe the expected relationship. In 136	

contrast, consider an investigation focusing on the relationship between functional diversity 137	

and the resistance or resilience of an ecosystem process to an environmental perturbation. 138	

In this case, the resistance or resilience of the ecosystem process is not necessarily only 139	

related to those functional traits that were expressed at the time of perturbation, but may 140	

also be related to functional traits that only became expressed after the perturbation. In this 141	

case, potential functional traits would likely be most appropriate, as functional diversity 142	

measures based on expressed functional traits may exclude potentially important 143	

information and consequently make it more difficult to observe the expected relationship. 144	

We note here, however, that the time scale of the perturbation should be considered. While 145	

potential functional traits are likely more appropriate for long-term press perturbations, 146	

expressed functional traits could provide important information regarding the adaptive 147	

responses to short-term pulse perturbations.  148	

 149	
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If the decision has been made to use expressed functional traits to measure functional 150	

diversity, the next decision is which expressed functional trait to measure. Ultimately, many 151	

theoretical frameworks developed for relating functional diversity to ecosystem processes 152	

and properties are based on phenotype diversity. For example, it is phenotypes that bestow 153	

complementary and facilitation effects, but how those phenotypes emerge (e.g., via genetic 154	

composition, regulation, etc.) is not explicitly considered. Yet, quantifying phenotypes is 155	

conceptually and technically challenging (see below). What phenotypic traits are important? 156	

How do we reconcile the fact that different phenotypic traits likely have different effect sizes 157	

on an ecosystem process or property and may have different units of measurement? 158	

Because of these challenges, it may be somewhat more-straight forward to use transcripts 159	

or proteins as expressed functional traits, as the abundances of different transcripts and 160	

proteins have the same units of measurement and can be readily extracted from meta-161	

transcriptome or -proteome datasets (Gilbert et al., 2010; Gifford et al., 2011; Erickson et al., 162	

2012; Johnson et al., 2015b; Abu-Ali et al., 2018; Patsch et al., 2018). Alternatively, one may 163	

use phenotypic traits generated via microscopic or flow cytometric analyses, such as cell 164	

size, shape, pigmentation, etc., although mechanistically linking such phenotypic traits (e.g. 165	

size and shape) to a specific ecosystem process or behavior may be difficult as they might be 166	

plastic and relate to multiple functions simultaneously (Litchman and Klausmeier, 2008; 167	

Marañón, 2015). 168	

 169	

While the use of transcripts or proteins as expressed functional traits may be somewhat 170	

more straight-forward, their use poses unique challenges. First, the abundances of 171	

transcripts and proteins are often extracted from datasets generated via non-target 172	

methods, such as meta-transcriptome or -proteome datasets. One important consideration 173	
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of these types of datasets is the highly skewed rank-abundance profiles of transcripts and 174	

proteins. For example, a meta-transcriptome is typically dominated by a small number of 175	

highly abundant transcripts, which are often involved with general metabolism and 176	

information processing (e.g., ribosomal proteins) (Frias-Lopez et al., 2008; Alexander et al., 177	

2015) (Fig. 2). In contrast, the transcripts involved with many important ecosystem 178	

processes can sometimes be exceedingly rare. For example, transcripts encoding for 179	

ammonia monooxygenase comprised less than 0.002% (445 transcripts out of 300,000) of 180	

the analyzed transcripts within the meta-transcriptome of an ammonia-oxidizing microbial 181	

community (Johnson et al., 2015b). Because meta-transcriptome datasets are typically 182	

rarefied to a fixed number of sequence reads across a set of samples (Hughes and Hellmann, 183	

2005), differences in the abundances of highly abundant transcripts could, in principle, have 184	

large effects on the quantitative measures of low abundant transcripts (Fig. 2) (McMurdie 185	

and Holmes, 2014). This could add substantial noise to the measurements, and thus make it 186	

difficult to observe hypothesized relationships. 187	

 188	

A shared challenge to the use of any expressed functional trait is that there may not be a 189	

strong correspondence between these measures of diversity and phenotype diversity, due 190	

to plasticity at the genomic, transcriptomic and proteomic levels. For example, while it is 191	

clear that a new phenotype could emerge via the addition and/or expression of a new gene, 192	

transcript, protein or phenotypic property in a community, this is not necessarily required. 193	

New phenotypes could also emerge due to new intracellular combinations of otherwise 194	

existing genes, transcripts, proteins or phenotypic properties. For example, if an individual 195	

expresses a novel combination of otherwise existing transcripts, then a new phenotype 196	

could emerge without necessarily requiring a new transcript to be added at the community 197	
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level. Typical measures of gene, transcript, and protein diversity often do not consider co-198	

occurrence at the individual level (although measures of phenotypic traits often do consider 199	

this, such as multiparametric flow cytometry), which could make it difficult to observe 200	

hypothesized relationships. While methodologies currently exist to analyze the co-201	

occurrence of genes, transcripts, and proteins at the individual level (Lidstrom and Knopka, 202	

2010; Kalisky and Quake, 2011; Lecault et al., 2012; Stepanauskas, 2012; Macaulay and Voet, 203	

2014; Saliba et al., 2014), their application is limited to relatively small numbers of 204	

individuals or to relatively small numbers of genes, transcripts, or proteins. Novel methods 205	

that could be applied to a large number of individuals is rapidly developing (e.g., Lan et al., 206	

2017). 207	

 208	

Selecting an appropriate level of specificity of functional diversity: targeted vs non-209	

targeted methods. After selecting the functional trait(s) of interest, the next decision is to 210	

define the level of specificity at which functional diversity will be analyzed (Fig. 1). For 211	

example, if genes are chosen as traits of interest, one needs to decide whether to measure 212	

diversity of a single specific gene, diversity within a sub-group of functionally related genes, 213	

or diversity across broad classes of largely functionally unrelated genes. Depending on the 214	

decision, methods are available that span this breadth of specificity, which can be delineated 215	

at the extremities into targeted and non-targeted methods.  216	

 217	

When should targeted or non-targeted methods be used? Targeted methods are typically 218	

used to measure the diversity of a single specific functional trait, such as estimating the 219	

diversity of sequence variants of a specific gene, transcript, or protein (Cuvelier et al., 2010; 220	

Iwai et al., 2010; Suenaga, 2011). For example, if ammonia oxidation is the ecosystem 221	
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process of interest, a study may focus on measuring the diversity of variants of the ammonia 222	

monooxygenase-encoding gene. In this case, sequences for the gene are obtained, variants 223	

are identified and quantified, and the resulting data are used to estimate the diversity of 224	

that particular gene (e.g. Pester et al., 2011). Non-targeted methods, in contrast, do not 225	

typically focus on the diversity of a single specific functional trait (although this is 226	

conceivably possible), but instead often focus on the diversity across different classes of 227	

functional traits. For example, a researcher may be interested in the diversity of enzyme 228	

commission (EC) classes, gene ontology classes, KEGG classes, or clusters of orthologous 229	

groups (COGs) obtained from an environmental DNA or RNA sequence dataset (Gill et al., 230	

2006; Gifford et al., 2011; Johnson et al., 2015b). In these cases, sequences are annotated 231	

and sorted into different functional classes, the abundances within each class are quantified, 232	

and the resulting data are used to quantify the overall diversity of functional classes. Such 233	

non-targeted approaches require careful consideration of the properties of the underlying 234	

datasets. For example, if average genome size varies across a set of meta-genomic datasets, 235	

then this could skew estimates of functional diversity generated from those datasets. Recent 236	

advances for estimating genome size from meta-genomic datasets, such as MicrobeCensus 237	

(Nayfach and Pollard, 2015) and ShotMAP (Nayfach et al., 2015), may then be useful to 238	

quantify and account for such biases.  239	

 240	

How do we select an appropriate level of specificity for measuring functional diversity? This 241	

ultimately depends on the hypothesis of interest. Consider an investigation that uses meta-242	

genomic datasets to test how gene diversity relates to the rates of ecosystem processes 243	

(e.g., Johnson et al., 2015a; Patsch et al., 2018). BEF theory predicts that complementary 244	

effects should result in a faster rate of that ecosystem process (Tilman et al., 2014). 245	
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Complementary effects refer to a situation where different genotypes perform the 246	

ecosystem process of interest, but they specialize at performing that ecosystem process in 247	

different ecological niches (i.e., one genotype may perform the ecosystem process in a 248	

planktonic state while the other performs the ecosystem process in a sessile biofilm-249	

attached state). The general assumption is that, due to intrinsic tradeoffs between different 250	

ecological lifestyles, a collection of complementary genotypes where each is specialized for a 251	

different ecological niche will collectively achieve a faster rate of an ecosystem process than 252	

would any single genotype (Tilman et al., 2014). Thus, complementary effects are direct in 253	

nature. Due to their direct nature, highly specific functional traits and targeted methods 254	

could be justified, were a researcher may select a few key genes or phenotypic traits directly 255	

involved in that ecosystem process. The assumption is that the diversity of sequence 256	

variants for those key genes or of those phenotypic traits is related to the diversity of 257	

complementary genotypes present in the community. In contrast, facilitation effects refer to 258	

a situation where one genotype does not directly perform the ecosystem process of interest, 259	

but instead performs functions that improve the growth or activity of genotypes that do 260	

perform the ecosystem process of interest (e.g., they may provide a growth limiting nutrient 261	

or consume a toxic compound) (Tilman et al., 2014). Thus, as opposed to complementary 262	

effects, facilitation effects are inherently indirect in nature. Unfortunately, due to their 263	

indirect nature, we often lack a priori knowledge regarding the set of possible facilitation 264	

effects, as they could be numerous, obscure, and highly varied. This then likely precludes our 265	

ability to select highly specific functional traits and the use of targeted approaches, as we do 266	

not know which functional traits to target, and instead requires us to rely on non-targeted 267	

methods. The main point here is that the hypothesized mechanisms for how functional 268	

diversity imposes its effects on an ecosystem process or behavior (e.g., direct or indirect 269	
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effects) is an important consideration when selecting the functional trait to investigate, the 270	

level of specificity of at which functional diversity will be measured, and whether to use 271	

targeted or non-targeted methods.  272	

 273	

Importantly, targeted and non-targeted methods lie on extreme ends of a tradeoff between 274	

specificity and breadth, and their positions on the tradeoff should be the basis for making a 275	

decision regarding which one to use. While targeted methods are highly specific, they can 276	

only be applied to a limited number of functional traits. The resulting measures of functional 277	

diversity are therefore preferably applied to test well-defined and focused hypotheses. Due 278	

to their specificity, these measures of functional diversity may exclude key functional traits 279	

that are critically important for the ecosystem process of interest, which may make it 280	

difficult to observe hypothesized relationships. For example, complementary genotypes may 281	

have no variation in the key genes or phenotypic traits directly responsible for an ecosystem 282	

process, as complementarity might instead emerge from variations in other functional traits. 283	

Unless there is ample a priori knowledge, these effects would be difficult to capture when 284	

using targeted approaches. Non-targeted approaches, on the other hand, capture a wide 285	

breadth of functional traits, but lack specificity. For example, gene diversity measures based 286	

on meta-genomic datasets typically do not evaluate the diversity of individual genes. 287	

Instead, they evaluate the diversity across different classes of genes, and thus may contain 288	

large amounts of information that are irrelevant for the ecosystem process of interest (e.g., 289	

they may include information about genes that do not contribute towards the ecosystem 290	

process of interest). This adds noise to the measurements and can again make it difficult to 291	

observe hypothesized relationships. While many investigations may be ideally suited for 292	

measurements at one of the two extremities (i.e., targeted or non-targeted), other 293	
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investigations may require measurements that lie between these two extremities. These 294	

investigations may have to refine their hypotheses to focus on either the specificity or 295	

breadth aspects or devise novel approaches to achieve the required levels of specificity and 296	

breadth. 297	

 298	

A further important consideration is at what level of biological organization should 299	

functional diversity be assessed. While functional diversity may be calculated at the 300	

individual gene level or gene class level, there may be cases where it is more appropriate to 301	

calculate functional diversity at the pathway level or cellular process level. These latter levels 302	

do not consist of a single gene, but instead consist of more than one gene acting together. 303	

How do we determine whether to measure functional diversity at the gene level or higher 304	

levels of complexity? Our advice aligns with that proposed by Martiny and co-workers 305	

(Martiny et al., 2015). When a phenotypic trait of interest is clearly encoded by a single 306	

gene, then the diversity of that individual gene is appropriate. However, when a phenotypic 307	

trait is encoded by a set of genes acting together and cannot be deconstructed into simpler 308	

units, then the diversity of the collection of genes may be most appropriate. Thus, this 309	

decision point requires careful consideration of the exact phenotypic trait of interest and 310	

how that trait emerges from genetic information. 311	

 312	

Choice of a functional diversity metric. The final decision is to select a metric for quantifying 313	

functional diversity (Fig. 1). In the Supporting Information attached to this article, we report 314	

specific examples of how to derive functional diversity metrics based on real trait data and 315	

provide detailed comments of the process. The most common approach is to quantify the 316	

richness and/or evenness of the functional trait(s) or groups of interest (alternatively, also 317	



	 15	

Shannon diversity, Simpson diversity, Hill numbers [Hill, 1973], etc.). When analyzing a single 318	

functional trait (i.e., one-dimensional trait space), this is a relatively straightforward 319	

calculation. However, when analyzing multiple functional traits, such as a set of different 320	

genes, transcripts, proteins, or functional traits (i.e., multi-dimensional trait space), then 321	

additional considerations must be made to deal with the multi-parametric nature of the 322	

measurements. One possible approach is to define groups of interest based on a set of focal 323	

genetic or phenotypic traits or on a set of linear combinations of many such traits (for 324	

example, using dimensionality reduction techniques as principal component analysis - PCA) 325	

(Pomati et al., 2013; Fontana et al., 2014). Reduction in the dimensionality of trait data, 326	

however, presents disadvantages such as linear assumptions, which could bias downstream 327	

analyses (for examples of trait space, see further and the Supporting Information). They are 328	

also necessarily specific to a particular dataset, hampering comparisons of results across 329	

studies. After features of interest for groupings are decided, functional categories of 330	

organisms can be obtained using supervised and unsupervised clustering approaches. In 331	

environmental microbiology, this is commonly performed using, for example, genetic and 332	

flow-cytometry data (see the Supporting Information). Care must be taken when selecting a 333	

clustering approach, since bias is unavoidable due to different clustering methods, but some 334	

uncertainty can be avoided by carefully evaluating the underlying assumptions of the 335	

methods, particularly in light of knowledge about the type of data and the organisms of 336	

interest. We discuss some caveats in the examples in the Supporting Information, while 337	

further discussions of these issues can be found elsewhere (Petchey and Gaston, 2006; 338	

Fontana et al., 2014; Lorimer et al., 2017). When clusters are formed, the total abundances 339	

within these clusters can be quantified and characterized by conventional richness and 340	

evenness metrics. However, caution must be used in the interpretation of patterns, since the 341	
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final functional diversity dynamics are based on groupings of individuals that may not have a 342	

direct and obvious taxonomic, ecological or evolutionary interpretation. 343	

 344	

Besides suffering from a series of arbitrary decision steps, another limitation of the above 345	

approach based on classical diversity measures (richness and evenness metrics) is that it 346	

treats individuals within a group as identical, thus ignoring their functional trait variance. 347	

When information is available at the individual level, a more comprehensive approach to 348	

estimate community functional diversity is based on measuring features of the data (i.e. trait 349	

values for each sampled member of the community) projected in a multidimensional space 350	

described by functional traits as axes. This approach of measuring the shape of “trait space” 351	

has a decadal history in trait-based community ecology, albeit originally applied to species 352	

level data (Mason et al., 2005; Cornwell et al., 2006; Villéger et al., 2008). Previous work has 353	

shown that, by studying the convex hypervolume or area in a space described by multiple 354	

trait dimensions, or by measuring the distance of individuals or species along trait axes, it is 355	

possible to infer community ecological and evolutionary responses and their effects on 356	

coexistence and ecosystem processes (Kraft et al., 2008 Kraft et al., 2014;  Diaz et al., 2015; 357	

Fontana et al., 2019). As reviewed previously (Fontana et al., 2014), we suggest that 358	

functional diversity indices based on the shape of data in trait space, are particularly well 359	

suited for individual-level multidimensional trait data, since they allow accounting for 360	

differences among individuals, and better link to biodiversity change to ecosystem 361	

functioning (Fontana et al., 2014; Fontana et al., 2016; Fontana et al., 2018). Trait diversity 362	

indices can be applied at the whole community level (Fontana et al., 2018) or within 363	

taxonomic or functional groups (Fontana et al., 2019). Because such trait-space methods for 364	

measuring functional diversity are not routinely used by environmental microbiologists, we 365	
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provide a complete step-by-step tutorial for their application in the Supporting Information, 366	

including examples, datasets, and relevant scripts. 367	

 368	

In the context of measuring the shape of multidimensional datasets, functional diversity is 369	

mainly defined by three components: richness, evenness, and divergence of individuals in 370	

trait space (Mason et al., 2005). Functional richness is the total amount of trait space 371	

occupied by all components of a community in multiple trait dimensions; functional 372	

evenness is a measure of how evenly individuals are distributed within the trait space 373	

measured; functional divergence measures how spread-out individuals are in the multi-374	

dimensional trait space. Ideally, as in the framework proposed by Fontana et al. (2016), 375	

these components are independent to each other (orthogonal). Additional components of 376	

functional diversity have also been suggested (Podani et al., 2013). However, they may not 377	

be directly applicable to individual level trait data, which are currently becoming more and 378	

more common in ecology and environmental microbiology due to high-throughput 379	

phenotyping and single cell genotyping techniques. They encompass combinatory functional 380	

diversity or functional heterogeneity, which concern combinations of nominal traits (i.e., 381	

non-quantitative traits coded into categories by discrete numbers). This measure might still 382	

be useful when dealing, for example, with categorical gene ontologies. Another metric, 383	

functional identity (multi-trait analog of community weighted mean), represents the 384	

centroid (coordinates) of a trait distribution in a multi-dimensional space (Garnier et al., 385	

2004; Spasojevic and Suding, 2012; Mouillot et al., 2013). With centroid coordinates 386	

information it is possible to detect a translation of all organisms composing a community in 387	

the trait space, case in which indices of richness, evenness, and divergence are not supposed 388	
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to change. More information and methodological details can be found in previous 389	

publications (Fontana, 2014; Fontana, 2016). 390	

 391	

Functional diversity metrics as those summarized above encompass a wide range of 392	

measures that generally target a subset of traits with known ecological or evolutionary 393	

functions, but they could also be applied to non-targeted measures of genetic variation and 394	

morphological features. They offer the advantage of linking functional diversity or 395	

community structure more directly and efficiently, compared to traditional biodiversity 396	

metrics like richness and evenness, to ecosystem processes such as, for example, resource 397	

use efficiency and productivity (Fontana, 2018). When measured at the individual level, 398	

functional diversity metrics targeting changes in the shape of trait space are also sensitive 399	

indicators of individuals’ responses to their growth environment (Krismer, 2016; Fontana, 400	

2019). Perhaps the only disadvantage of this approach might lay in the limited mechanistic 401	

understanding of trait responses and effects, if non-targeted measures of genetic variation 402	

and morphological features are chosen. Additionally, when working with multi-dimensional 403	

data, particularly at the individual level, the effect of trait covariations must be carefully 404	

considered as a potential unknown bias: questions remain on how to account for potential 405	

non-convexity in trait-space emerging from non-linear trait co-variances (Blonder, et al. 406	

2014; Laughlin et al., 2015). Determining the most unbiased way to describe a 407	

multidimensional trait space is remains an active topic of research. 408	

 409	

CONCLUSIONS 410	

The importance of functional diversity to ecosystem processes and properties is 411	

unquestionable, yet the integration of functional diversity measurements into 412	
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environmental microbiology research remains incomplete. We provide guidance that we 413	

hope will encourage environmental microbiologists to incorporate functional diversity 414	

measurements into their study design. We highlight that careful consideration is needed 415	

regarding the selection of the type of functional trait to measure, the level of specificity at 416	

which to measure functional diversity, whether to use non-targeted or targeted methods, 417	

and which metric to use for quantifying functional diversity. If these decisions are made 418	

based on the hypothesized mechanisms regarding how functional diversity is likely related to 419	

an ecosystem process or property of interest, then the increased consideration and 420	

measurement of functional diversity has the potential to greatly improve our understanding 421	

of the functioning and behavior of microbial ecosystems. 422	

 423	
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FIGURE LEGENDS 634	

 635	

Fig. 1. Decision points regarding the measurement of functional diversity. The main 636	

decision points are (D1) selecting an appropriate type of functional trait for 637	

measurement, (D2) selecting a level of specificity at which to measure functional 638	

diversity, and (D3) selecting a metric for quantifying functional diversity. 639	

 640	

Fig. 2. Effect of the skewed rank-abundance profiles of meta-transcriptome and meta-641	

proteome datasets on measurements of functional diversity. When rarefaction is used, 642	

small differences in the abundances of high-abundance transcripts and proteins can 643	

result in large differences in the abundances and detection events of low-abundance 644	

transcripts and proteins. This can result in artifactual measurements of functional 645	

diversity, with particularly large effects on richness measurements. Note that the red line 646	

predicts higher richness due to the lower abundances of the most abundant transcripts 647	

or proteins. 648	
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Exemplary procedure to derive functional diversity metrics based on expressed traits 

This example workflow presents a general procedure to obtain biodiversity estimates from 
individual level trait data and guidance for navigating fundamental decision steps. More 
detailed considerations about such decisions are reported in the main text, or else in 
previous publications (e.g., Petchey and Gaston, 2006; Fontana et al., 2014). This example 
starts from cleaned data, as cleaning and quality control of raw data is often instrument 
specific. We use two input files from a previously reported study (Fontana et al., 2019). 
These are scanning flow-cytometry measurements of a mixed culture of two species, the 
cyanobacterium Microcystis aeruginosa and the green alga Pseudokirchneriella subcapitata. 
Specifically, the two samples correspond to the 20th day of the experiment, highest and 
lowest light treatments (File_S1_HighLight.csv and File_S2_LowLight.csv) (Fontana et al., 
2019). In these input files, rows correspond to individual cells scanned by flow-cytometry 
and columns report values of different parameters of scan profiles in light scattering and 
emitted fluorescence. 

With individual-based data, conventional ecological measures of diversity such as richness 
or evenness are not directly applicable. One approach is to define groups based on some 
key traits or on a set of linear combinations of all traits (for example, principal components) 
(Pomati et al., 2013; Fontana et al., 2014). In this context, we suggest utilizing a set of 
defined and well understood traits for studying functional diversity changes, rather than 
principal components (which would be specific to the dataset), in order to allow for 
comparison of results across studies. We use the R programming language to guide the 
reader though the process of trait data selection, processing, grouping and biodiversity 
estimation. 

What and how many traits to include? 

In the words of Petchey and Gaston (Petchey and Gaston, 2006), “the simple answer to 
which traits to use in functional classifications is all traits that are important for the function 
of interest and no traits that are functionally uninformative. Consequently, it is critical to 
define the function of interest explicitly and in as much detail as possible”. In our example, 
the parameters measured with scanning flow-cytometry represent the amplitude, length, 
and shape of scattering and fluorescent signals (Fontana et al., 2014). These parameters 
describe morphological and pigment-related traits of phytoplankton such as size, pigment 
type, pigment concentration and pigment distribution within cells or colonies, coloniality, 
internal cell structures (Pomati et al., 2013). Such traits are important to study 
phytoplankton responses to the environment and their consequences for community 
dynamics (Litchman and Klausmeier, 2008). Here we include a set of 9 specific flow-
cytometry parameters that have known roles as response or effect traits (Fontana et al., 
2014): size, total fluorescence in each of the red, orange, yellow and green channels (ability 



 

2 

to compete for light across spectrum), ratio between fluorescent signals, and fluorescence 
signal discontinuity within cells (fill factor).  

If the final goal is unsupervised clustering of individuals into functional categories, we 
recommend to include more information (i.e., a larger number of traits - in our example, 14 
traits). This increases the probability of distinction between groups. It is, however, advisable 
to avoid including too many variables with uncertain contribution in terms of essential 
grouping information. This might add noise and confound the clustering exercise (Fontana 
et al., 2014; Lorimer et al., 2017; Thomas et al., 2018). Also, in this case we suggest to use 
information that has mechanistic interpretation in the context of the hypothesis to test and 
the system of interest. 

## load data 

high_light<-read.csv("File_S1_HighLight.csv", header=TRUE) 

str(high_light) 

'data.frame': 43741 obs. of  94 variables: 

... 

low_light<-read.csv("File_S2_LowLight.csv", header=TRUE) 

str(low_light) 

'data.frame': 9191 obs. of  94 variables: 

... 

## selection of traits 

names(low_light) 

few_traits<-c('SWS.Length','FWS.Range','FL.Red.Range','FL.Green.Range', 'FL.Orange.Range', 

               'FL.Yellow.Range', 'RedOrange.ratio', 'FL.Red.Fill.factor','FL.Orange.Fill.factor') # 9 

more_traits<-c('SWS.Length','FWS.Range','FL.Red.Range','FL.Green.Range', 
'FL.Orange.Range', 

               'FL.Yellow.Range', 'RedOrange.ratio', 
'FL.Green.Gradient','FL.Red.Gradient','FL.Yellow.Gradient', 

               'FL.Yellow.Maximum', 'FWS.Fill.factor', 'FL.Red.Fill.factor', 

               'FL.Orange.Fill.factor') # 14 
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Data processing 

In general, we recommend minimum data transformation, since this can impose a priori bias 
in the shape of data, which we want to exploit as objectively as possible to derive 
biodiversity information. Specifically, if the objective is unsupervised clustering of 
individuals into functional categories, we suggest no further data processing unless, as in 
the case of our example, input parameters have very different ranges and therefore a log10 
transform is required. For estimating individual level trait diversity, we recommend to 
standardize selected traits (mean = 0; SD = 1), so that each trait has equal weight on the 
final functional diversity metric (Petchey and Gaston, 2006; Fontana et al., 2018).  

## data preparation 

more_traits_HL<-high_light[,more_traits]; str(more_traits_HL) 

more_traits_LL<-low_light[,more_traits]; str(more_traits_LL) 

few_traits_HL<-high_light[,few_traits]; str(few_traits_HL) 

few_traits_LL<-low_light[,few_traits]; str(few_traits_LL) 

## trait logging for clustering (log of all except for Fill.factor, which ranges from 0 to 1) 

HL_clust<-data.frame(log10(more_traits_HL[,-c(12:14)]), more_traits_HL[,c(12:14)]) 

head(HL_clust) # high light data for clustering 

LL_clust<-data.frame(log10(more_traits_LL[,-c(12:14)]), more_traits_LL[,c(12:14)]) 

head(LL_clust) # low light data for clustering 

## trait scaling for functional diversity 

HL_fdiv<-data.frame(scale(few_traits_HL)) 

head(HL_fdiv) # high light data for individual level functional diversity 

LL_fdiv<-data.frame(scale(few_traits_LL)) 

head(LL_fdiv) # low light data for individual level functional diversity 

 

Functional diversity metrics based on categories 

In case the functional identity of phenotyped individuals is known and important for the 
analysis, such as the membership to a specific functional group, we assume that information 
can be attached to the dataset as an extra column for grouping. One way to reach this goal 
with microorganisms is, for example, to phenotype a large number of individuals per taxon 



 

4 

or type using laboratory cultures of known identity, and then i) manually set boundaries on 
multiple trait axes (also known as gating in flow-cytometry), or ii) train a machine learning 
classifier to attach a membership label to individuals based on multiple trait dimensions 
simultaneously. While the first manual approach can be tedious, time consuming and 
arbitrary, machine learning has shown to represent a valid means to classify microbial 
phenotype data by flow cytometry and imaging microscopy (Malkassian et al., 2011; Colin et 
al., 2017; Dunker, 2019). In the example data used here, phytoplankton cells from known 
laboratory cultures have been employed to train a random forest classifier for broad algal 
functional groups (cyanobacteria, green algae, diatoms, dinoflagellates, etc.) (Thomas et al., 
2018), and the same approach was applied to attach a label to individuals from the mixed 
culture of cyanobacteria and green algae (Fontana et al., 2019). 

More pertinent to our example is the case in which the goal is to group individual entities 
into functional categories based on expressed phenotypic traits using an unsupervised 
clustering approach. For the discovery of groups in natural data, the most fundamental 
requirement for clustering is that it should not impose an a priori bias on the shape of 
clusters (Lorimer et al., 2017). When dealing with large datasets, typically obtained when 
phenotyping microbial populations and communities, the approach used for unsupervised 
clustering should also provide rapid and accurate results using relatively limited 
computational resources (Fontana et al., 2014). For our example here, based on flow-
cytometry data, we employ flowPeaks, an efficient algorithm that uses a k-means-based 
clustering to first group individuals in the entire dataset into large numbers of small clusters, 
and then merges clusters based on density gradients (Ge and Sealfon, 2012; Thomas et al., 
2018). In our input data, the high light treatment shows 5 identified clusters, while the low 
light treatment 3 clusters. Note that in both cases the mixed cultures comprise 2 species 
only (Fontana et al., 2019). Once groups are formed, traditional indices of biodiversity, 
based on abundances per category, can be estimated. 

## clustering 

levels(factor(low_light$species)) 

## unsupervised clustering  

library(flowPeaks) 

# the smoothness of the flowPeaks density function is determined by tunable parameters 

# for information on used values of tol, h0, and 2 h see Thomas et al. PLOS-ONE 2018 

HL_flow<-flowPeaks(HL_clust, tol = 0.5, h0 = 0.05, h = 2) 

LL_flow<-flowPeaks(LL_clust, tol = 0.5, h0 = 0.05, h = 2) 

# examine details of interest.  
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# the 'weight' column indicates the proportion of the data belonging to that cluster 

summary(HL_flow) 

summary(LL_flow) 

## diversity indices 

library(vegan) 

diversity(data.frame(t(summary(HL_flow)))[2,], index = "simpson") 

[1] 0.5257784 

diversity(data.frame(t(summary(LL_flow)))[2,], index = "simpson") 

[1] 0.348233 

Metrics based on raw or individual level data 

Traditional indices of biodiversity, as those above (e.g. richness, Simpson), treat individuals 
within a cluster as identical, i.e., ignoring within-group phenotypic variance. For individual 
level data, a more complete estimate of functional diversity should account for intraspecific 
trait differences. Over the past decade, the literature of trait-based diversity has been 
constantly reviewed and indices have been critically evaluated for their performance for 
both species and individual level data (Schleuter et al., 2010; Fontana et al., 2014). A set of 
three trait diversity indices have emerged as the most appropriated for phenotypic data 
(Fontana et al., 2016). These include a measure of richness (TOP index), one of evenness 
(TED index), and one of divergence (FDiv index) in trait space. TOP represents the sum of all 
successive convex envelopes touching all the points in the trait distribution; TED measures 
how evenly distributed are individuals within the trait space by comparing the distance 
matrix among all individual data points in the test sample relative to a reference distribution 
(obtained starting from equidistant points in trait space) by calculating the inverse of 
Kullback–Leibler divergence (TED = 1 - log10(KLdiv + 1); maximum value = 1); FDiv represents 
the mean distances of individual data points to the centroid of the trait space (Mouillot et 
al., 2013; Fontana et al., 2016). Limitations and caveats in the use of these indices have 
been discussed in previous publications (Fontana et al., 2016, 2018). 

For the sake of this explanatory example, and to speed up the calculation of trait diversity 
indices (they are computationally expensive), we will limit the total number of individuals to 
a subset of 5000 randomly selected rows per sample, and calculate only TED and Fdiv for 
the whole community (the same can be done within populations by separating species 
based on the column $species). In general, we advise to standardize the number of 
individuals per sample before calculating the TED index, while the choices of using all 
individuals, a subset, or a bootstrapping approach are all applicable to the calculation of 



 

6 

TOP and FDiv, depending on the aims of the study (Fontana et al., 2016, 2018). As expected 
from the previous publication, the low light sample has a higher trait diversity (particularly 
evident in TED) compared to the high light sample (Fontana et al., 2019). Note that we 
found the opposite result above, using unsupervised clustering and functional diversity 
metrics based on categorizing individuals. The within-group trait diversity can be a major 
driver of overall functional diversity under many environmental conditions (Fontana et al., 
2018). 

## calculation of individual level functional diversity 

source("2.Trait_diversity_indices.R") 

# subsample 5000 random individuals 

HL<-HL_fdiv[sample(nrow(HL_fdiv), 5000),]; str(HL) 

LL<-LL_fdiv[sample(nrow(LL_fdiv), 5000),]; str(LL) 

# Define maximum number of individuals and traits for TED reference distribution 

max1 <- 5000 # number of individuals 

dim1 <- 9 # number of traits 

# TED reference distribution 

ref.matrix<-matrix(ncol=2,nrow=max1) 

if (dim1 == 1) { 

  i=0.9 } else { i=1.9 } 

n <- 0 

rows1<-0 

while(rows1<max1){ 

  i=i+0.1 

  n=n+1 

  traits.ref <- sphere.solid.grid(p=dim1, n=i) 

  rows1<-nrow(traits.ref$points) 

  ref.matrix[n,1]<-i 

  ref.matrix[n,2]<-rows1 } 
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k <- i+1 

while(i<k){ 

  i=i+0.1 

  n=n+1 

  traits.ref <- sphere.solid.grid(p=dim1, n=i) 

  rows1<-nrow(traits.ref$points) 

  ref.matrix[n,1]<-i 

  ref.matrix[n,2]<-rows1 } 

ref.matrix<-na.omit(ref.matrix) 

# calculcate trait diversity indices 

> FDis.index(HL) 

[1] 2.68102 

> TED.index(HL) 

[1] 0.03768223 

## calculate trait diversity indices 

> FDis.index(HL) 

[1] 2.668309 

> FDis.index(LL) 

[1] 2.678158 

> TED.index(HL) 

[1] 0.03779867 

> TED.index(LL) 

[1] 0.0727729 
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Extension of trait-based methods to meta-omics data 
 
In principle, the trait-based methodology described above could be applied to meta-omics 
data. In this case, the data file would consist of columns for individuals and rows for 
different genes, transcripts or proteins. The values would be the presence/absence of 
genes, transcripts or proteins. Alternatively, the values could also consider sequence 
variance. For instance, the values could be the divergence of a gene, transcript or protein 
sequence from a consensus sequence. While conceptually straight forward, the main 
challenge is to obtain the necessary individual-level data. One approach would be via single 
cell sequencing (Woyke et al., 2017), where each row would be a single individual. A second 
approach would be to use metagenome-assembled genomes (MAGs) (Parks et al., 2017), 
where each row would be an individual MAG. While application of trait-based 
methodologies to such data have not yet been performed, continuing advances in single cell 
sequencing and metagenome-assembled genomics should pave the way for such 
applications. 
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Exemplary procedure to derive functional diversity metrics based on expressed traits 

This example workflow presents a general procedure to obtain biodiversity estimates from 
individual level trait data and guidance for navigating fundamental decision steps. More 
detailed considerations about such decisions are reported in the main text, or else in 
previous publications (e.g., Petchey and Gaston, 2006; Fontana et al., 2014). This example 
starts from cleaned data, as cleaning and quality control of raw data is often instrument 
specific. We use two input files from a previously reported study (Fontana et al., 2019). 
These are scanning flow-cytometry measurements of a mixed culture of two species, the 
cyanobacterium Microcystis aeruginosa and the green alga Pseudokirchneriella subcapitata. 
Specifically, the two samples correspond to the 20th day of the experiment, highest and 
lowest light treatments (File_S1_HighLight.csv and File_S2_LowLight.csv) (Fontana et al., 
2019). In these input files, rows correspond to individual cells scanned by flow-cytometry 
and columns report values of different parameters of scan profiles in light scattering and 
emitted fluorescence. 

With individual-based data, conventional ecological measures of diversity such as richness 
or evenness are not directly applicable. One approach is to define groups based on some 
key traits or on a set of linear combinations of all traits (for example, principal components) 
(Pomati et al., 2013; Fontana et al., 2014). In this context, we suggest utilizing a set of 
defined and well understood traits for studying functional diversity changes, rather than 
principal components (which would be specific to the dataset), in order to allow for 
comparison of results across studies. We use the R programming language to guide the 
reader though the process of trait data selection, processing, grouping and biodiversity 
estimation. 

What and how many traits to include? 

In the words of Petchey and Gaston (Petchey and Gaston, 2006), “the simple answer to 
which traits to use in functional classifications is all traits that are important for the function 
of interest and no traits that are functionally uninformative. Consequently, it is critical to 
define the function of interest explicitly and in as much detail as possible”. In our example, 
the parameters measured with scanning flow-cytometry represent the amplitude, length, 
and shape of scattering and fluorescent signals (Fontana et al., 2014). These parameters 
describe morphological and pigment-related traits of phytoplankton such as size, pigment 
type, pigment concentration and pigment distribution within cells or colonies, coloniality, 
internal cell structures (Pomati et al., 2013). Such traits are important to study 
phytoplankton responses to the environment and their consequences for community 
dynamics (Litchman and Klausmeier, 2008). Here we include a set of 9 specific flow-
cytometry parameters that have known roles as response or effect traits (Fontana et al., 
2014): size, total fluorescence in each of the red, orange, yellow and green channels (ability 
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to compete for light across spectrum), ratio between fluorescent signals, and fluorescence 
signal discontinuity within cells (fill factor).  

If the final goal is unsupervised clustering of individuals into functional categories, we 
recommend to include more information (i.e., a larger number of traits - in our example, 14 
traits). This increases the probability of distinction between groups. It is, however, advisable 
to avoid including too many variables with uncertain contribution in terms of essential 
grouping information. This might add noise and confound the clustering exercise (Fontana 
et al., 2014; Lorimer et al., 2017; Thomas et al., 2018). Also, in this case we suggest to use 
information that has mechanistic interpretation in the context of the hypothesis to test and 
the system of interest. 

## load data 

high_light<-read.csv("File_S1_HighLight.csv", header=TRUE) 

str(high_light) 

'data.frame': 43741 obs. of  94 variables: 

... 

low_light<-read.csv("File_S2_LowLight.csv", header=TRUE) 

str(low_light) 

'data.frame': 9191 obs. of  94 variables: 

... 

## selection of traits 

names(low_light) 

few_traits<-c('SWS.Length','FWS.Range','FL.Red.Range','FL.Green.Range', 'FL.Orange.Range', 

               'FL.Yellow.Range', 'RedOrange.ratio', 'FL.Red.Fill.factor','FL.Orange.Fill.factor') # 9 

more_traits<-c('SWS.Length','FWS.Range','FL.Red.Range','FL.Green.Range', 
'FL.Orange.Range', 

               'FL.Yellow.Range', 'RedOrange.ratio', 
'FL.Green.Gradient','FL.Red.Gradient','FL.Yellow.Gradient', 

               'FL.Yellow.Maximum', 'FWS.Fill.factor', 'FL.Red.Fill.factor', 

               'FL.Orange.Fill.factor') # 14 
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Data processing 

In general, we recommend minimum data transformation, since this can impose a priori bias 
in the shape of data, which we want to exploit as objectively as possible to derive 
biodiversity information. Specifically, if the objective is unsupervised clustering of 
individuals into functional categories, we suggest no further data processing unless, as in 
the case of our example, input parameters have very different ranges and therefore a log10 
transform is required. For estimating individual level trait diversity, we recommend to 
standardize selected traits (mean = 0; SD = 1), so that each trait has equal weight on the 
final functional diversity metric (Petchey and Gaston, 2006; Fontana et al., 2018).  

## data preparation 

more_traits_HL<-high_light[,more_traits]; str(more_traits_HL) 

more_traits_LL<-low_light[,more_traits]; str(more_traits_LL) 

few_traits_HL<-high_light[,few_traits]; str(few_traits_HL) 

few_traits_LL<-low_light[,few_traits]; str(few_traits_LL) 

## trait logging for clustering (log of all except for Fill.factor, which ranges from 0 to 1) 

HL_clust<-data.frame(log10(more_traits_HL[,-c(12:14)]), more_traits_HL[,c(12:14)]) 

head(HL_clust) # high light data for clustering 

LL_clust<-data.frame(log10(more_traits_LL[,-c(12:14)]), more_traits_LL[,c(12:14)]) 

head(LL_clust) # low light data for clustering 

## trait scaling for functional diversity 

HL_fdiv<-data.frame(scale(few_traits_HL)) 

head(HL_fdiv) # high light data for individual level functional diversity 

LL_fdiv<-data.frame(scale(few_traits_LL)) 

head(LL_fdiv) # low light data for individual level functional diversity 

 

Functional diversity metrics based on categories 

In case the functional identity of phenotyped individuals is known and important for the 
analysis, such as the membership to a specific functional group, we assume that information 
can be attached to the dataset as an extra column for grouping. One way to reach this goal 
with microorganisms is, for example, to phenotype a large number of individuals per taxon 
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or type using laboratory cultures of known identity, and then i) manually set boundaries on 
multiple trait axes (also known as gating in flow-cytometry), or ii) train a machine learning 
classifier to attach a membership label to individuals based on multiple trait dimensions 
simultaneously. While the first manual approach can be tedious, time consuming and 
arbitrary, machine learning has shown to represent a valid means to classify microbial 
phenotype data by flow cytometry and imaging microscopy (Malkassian et al., 2011; Colin et 
al., 2017; Dunker, 2019). In the example data used here, phytoplankton cells from known 
laboratory cultures have been employed to train a random forest classifier for broad algal 
functional groups (cyanobacteria, green algae, diatoms, dinoflagellates, etc.) (Thomas et al., 
2018), and the same approach was applied to attach a label to individuals from the mixed 
culture of cyanobacteria and green algae (Fontana et al., 2019). 

More pertinent to our example is the case in which the goal is to group individual entities 
into functional categories based on expressed phenotypic traits using an unsupervised 
clustering approach. For the discovery of groups in natural data, the most fundamental 
requirement for clustering is that it should not impose an a priori bias on the shape of 
clusters (Lorimer et al., 2017). When dealing with large datasets, typically obtained when 
phenotyping microbial populations and communities, the approach used for unsupervised 
clustering should also provide rapid and accurate results using relatively limited 
computational resources (Fontana et al., 2014). For our example here, based on flow-
cytometry data, we employ flowPeaks, an efficient algorithm that uses a k-means-based 
clustering to first group individuals in the entire dataset into large numbers of small clusters, 
and then merges clusters based on density gradients (Ge and Sealfon, 2012; Thomas et al., 
2018). In our input data, the high light treatment shows 5 identified clusters, while the low 
light treatment 3 clusters. Note that in both cases the mixed cultures comprise 2 species 
only (Fontana et al., 2019). Once groups are formed, traditional indices of biodiversity, 
based on abundances per category, can be estimated. 

## clustering 

levels(factor(low_light$species)) 

## unsupervised clustering  

library(flowPeaks) 

# the smoothness of the flowPeaks density function is determined by tunable parameters 

# for information on used values of tol, h0, and 2 h see Thomas et al. PLOS-ONE 2018 

HL_flow<-flowPeaks(HL_clust, tol = 0.5, h0 = 0.05, h = 2) 

LL_flow<-flowPeaks(LL_clust, tol = 0.5, h0 = 0.05, h = 2) 

# examine details of interest.  
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# the 'weight' column indicates the proportion of the data belonging to that cluster 

summary(HL_flow) 

summary(LL_flow) 

## diversity indices 

library(vegan) 

diversity(data.frame(t(summary(HL_flow)))[2,], index = "simpson") 

[1] 0.5257784 

diversity(data.frame(t(summary(LL_flow)))[2,], index = "simpson") 

[1] 0.348233 

Metrics based on raw or individual level data 

Traditional indices of biodiversity, as those above (e.g. richness, Simpson), treat individuals 
within a cluster as identical, i.e., ignoring within-group phenotypic variance. For individual 
level data, a more complete estimate of functional diversity should account for intraspecific 
trait differences. Over the past decade, the literature of trait-based diversity has been 
constantly reviewed and indices have been critically evaluated for their performance for 
both species and individual level data (Schleuter et al., 2010; Fontana et al., 2014). A set of 
three trait diversity indices have emerged as the most appropriated for phenotypic data 
(Fontana et al., 2016). These include a measure of richness (TOP index), one of evenness 
(TED index), and one of divergence (FDiv index) in trait space. TOP represents the sum of all 
successive convex envelopes touching all the points in the trait distribution; TED measures 
how evenly distributed are individuals within the trait space by comparing the distance 
matrix among all individual data points in the test sample relative to a reference distribution 
(obtained starting from equidistant points in trait space) by calculating the inverse of 
Kullback–Leibler divergence (TED = 1 - log10(KLdiv + 1); maximum value = 1); FDiv represents 
the mean distances of individual data points to the centroid of the trait space (Mouillot et 
al., 2013; Fontana et al., 2016). Limitations and caveats in the use of these indices have 
been discussed in previous publications (Fontana et al., 2016, 2018). 

For the sake of this explanatory example, and to speed up the calculation of trait diversity 
indices (they are computationally expensive), we will limit the total number of individuals to 
a subset of 5000 randomly selected rows per sample, and calculate only TED and Fdiv for 
the whole community (the same can be done within populations by separating species 
based on the column $species). In general, we advise to standardize the number of 
individuals per sample before calculating the TED index, while the choices of using all 
individuals, a subset, or a bootstrapping approach are all applicable to the calculation of 
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TOP and FDiv, depending on the aims of the study (Fontana et al., 2016, 2018). As expected 
from the previous publication, the low light sample has a higher trait diversity (particularly 
evident in TED) compared to the high light sample (Fontana et al., 2019). Note that we 
found the opposite result above, using unsupervised clustering and functional diversity 
metrics based on categorizing individuals. The within-group trait diversity can be a major 
driver of overall functional diversity under many environmental conditions (Fontana et al., 
2018). 

## calculation of individual level functional diversity 

source("2.Trait_diversity_indices.R") 

# subsample 5000 random individuals 

HL<-HL_fdiv[sample(nrow(HL_fdiv), 5000),]; str(HL) 

LL<-LL_fdiv[sample(nrow(LL_fdiv), 5000),]; str(LL) 

# Define maximum number of individuals and traits for TED reference distribution 

max1 <- 5000 # number of individuals 

dim1 <- 9 # number of traits 

# TED reference distribution 

ref.matrix<-matrix(ncol=2,nrow=max1) 

if (dim1 == 1) { 

  i=0.9 } else { i=1.9 } 

n <- 0 

rows1<-0 

while(rows1<max1){ 

  i=i+0.1 

  n=n+1 

  traits.ref <- sphere.solid.grid(p=dim1, n=i) 

  rows1<-nrow(traits.ref$points) 

  ref.matrix[n,1]<-i 

  ref.matrix[n,2]<-rows1 } 
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k <- i+1 

while(i<k){ 

  i=i+0.1 

  n=n+1 

  traits.ref <- sphere.solid.grid(p=dim1, n=i) 

  rows1<-nrow(traits.ref$points) 

  ref.matrix[n,1]<-i 

  ref.matrix[n,2]<-rows1 } 

ref.matrix<-na.omit(ref.matrix) 

# calculcate trait diversity indices 

> FDis.index(HL) 

[1] 2.68102 

> TED.index(HL) 

[1] 0.03768223 

## calculate trait diversity indices 

> FDis.index(HL) 

[1] 2.668309 

> FDis.index(LL) 

[1] 2.678158 

> TED.index(HL) 

[1] 0.03779867 

> TED.index(LL) 

[1] 0.0727729 
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Extension of trait-based methods to meta-omics data 
 
In principle, the trait-based methodology described above could be applied to meta-omics 
data. In this case, the data file would consist of columns for individuals and rows for 
different genes, transcripts or proteins. The values would be the presence/absence of 
genes, transcripts or proteins. Alternatively, the values could also consider sequence 
variance. For instance, the values could be the divergence of a gene, transcript or protein 
sequence from a consensus sequence. While conceptually straight forward, the main 
challenge is to obtain the necessary individual-level data. One approach would be via single 
cell sequencing (Woyke et al., 2017), where each row would be a single individual. A second 
approach would be to use metagenome-assembled genomes (MAGs) (Parks et al., 2017), 
where each row would be an individual MAG. While application of trait-based 
methodologies to such data have not yet been performed, continuing advances in single cell 
sequencing and metagenome-assembled genomics should pave the way for such 
applications. 
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