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a b s t r a c t

Aquatic pesticide pollution from both agricultural and urban pest control is a concern in many parts of
the world. Making an accurate assessment of pesticide exposure is the starting point to protecting
aquatic ecosystems. This in turn requires the design of an effective monitoring program. Monitoring is
also essential to evaluate the efficacy of mitigation measures aimed to curb pesticide pollution. However,
empirical evidence for their efficacy can be confounded by additional influencing factors, most promi-
nently variable weather conditions. This review summarizes the experiences gained from long-term (>5
years) pesticide monitoring studies for detecting trends and provides recommendations for their
improvement. We reviewed articles published in the scientific literature, with a few complements from
selected grey literature, for a total of 20 studies which fulfill our search criteria. Overall, temporal trends
of pesticide use and hydrological conditions were the two most common factors influencing aquatic
pesticide pollution. Eighteen studies demonstrated observable effects to surface water concentrations
from changes in pesticide application rates (e.g., use restriction) and sixteen studies from interannual
variability in hydrological conditions during the application period. Accounting for seasonal- and
streamflow-related variability in trend analysis is important because the two factors can obscure trends
caused by changes in pesticide use or management practices. Other mitigation measures (e.g., buffer
strips) were only detectable in four studies where concentrations or loads were reduced by > 45%.
Collecting additional agricultural (e.g., pesticide use, mitigation measures) and environmental (e.g.,
precipitation, stream flow) data, as well as establishing a baseline before the implementation of miti-
gation measures have been consistently reported as prerequisites to interpret water quality trends from
long-term monitoring studies, but have rarely been implemented in the past.
© 2020 Swiss Federal Institute of Aquatic Science and Technology (Eawag). Published by Elsevier Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1.0. Introduction

Inadvertent pollution fromboth agricultural and urban pesticide
(e.g., herbicides, insecticides, and fungicides) use is known to be a
threat to the healthy ecological functioning of aquatic environ-
ments in many parts of the world since the chemical revolution of
the 1940’s (Carson, 1964; Spurrier, 1990). Making an accurate
assessment of pesticide exposure is the starting point to protecting
aquatic ecosystems. This in turn requires the design of an effective
monitoring program, which includes sampling and chemical
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analysis. Monitoring is also essential to evaluate the effectiveness of
mitigation measures (e.g., bans and use restrictions, installation of
buffer strips, safe handling procedures, drift reduction sprayers,
Integrated Pest Management) aimed to curb pesticide pollution.
However, providing empirical evidence for the efficacy of specific
measures or entire mitigation programs is challenging because
several characteristics and confounding factors (e.g., variability in
weather) can strongly influence pollution to surface waters, some
being unique to pesticides (Fig. 1). Therefore, statistical analysis of
hydrochemical time-series is often required for trend detection and
to interpret the factors influencing their presence (or absence).

A number of factors differentiate aquatic pesticide pollution
patterns from other pollution types (e.g., nutrients), which makes
them especially challenging for long-term monitoring and trend
detection. For instance, pesticides include hundreds of different
blished by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
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active ingredients, which differ in their chemical properties and
thus in their environmental behaviour, reaction to specific mitiga-
tion measures, and ecotoxicity. Pesticide-use patterns, which are
generally crop and region-specific, can also change markedly over
time due to changing pest pressure and as compounds get banned
and replaced by others (Schreder and Dickey, 2005). Since chemical
analyses of pesticides is time-consuming and costly, the compound
diversity inherent to pesticide pollution poses a challenge for
developing and maintaining a consistent pesticide monitoring
program over time (Spycher et al., 2018).

Individual pesticides often exhibit seasonal application patterns,
which are reflected in pronounced seasonality of their concentra-
tions in streams (e.g., Adams and Thurman, 1991; Leu et al., 2005;
Leu et al., 2010). Furthermore, pesticide transport to surface water
is typically triggered by rainfall events (Leu et al., 2004; Doppler
et al., 2012) or mishandling during dry periods (Kreuger, 1998),
which can cause highly variable concentrations peaks of short
duration (i.e., a few hours) in small catchments. From an ecological
viewpoint, these concentration peaks are of special concern
(Sch€afer et al., 2012; Beketov et al., 2013). Therefore, even multi-
year data series may only contain a limited number of high-
concentration events that can be used for trend analysis (e.g.,
Lerch et al., 2011a).

The problem of observing a limited number of high-
concentrations peaks in surface waters is exacerbated by the
strong dependence between the coincidence of pesticide applica-
tion with precipitation events, particularly with herbicides (Leu
et al., 2004; Singer, 2005; Lerch et al., 2011a; Doppler et al.,
2012). Local pesticide-use data (i.e., pesticide-type, quantity, loca-
tion, and timing of application) is often not available and has been
shown to play a dominant role in determining pesticide losses
(Ryberg and Gilliom, 2015). Furthermore, there are pesticides that
degrade slowly in and have a strong affinity to soils, such as pyre-
throids. Such pesticides have been shown to be mobilized by rain
events in seasons proceeding their application, which further ob-
scures the identification of seasonal trends (Delgado-Moreno et al.,
2011; Budd et al., 2020).

Thus, pesticide monitoring in surface waters is challenged by
choosing the appropriate sampling strategy to meet both the
monitoring objectives and to be able to capture the strong inter-
annual variability in concentrations. Key aspects in designing the
appropriate sampling strategy is choosing the (sub-)sampling fre-
quency and the factor (i.e., time or flow) controlling this frequency.
For composite water samples, the time period in which composite
samples are formed is also a key design aspect. Themonitoring data
can represent significantly different measured quantities depend-
ing on the chosen sampling strategy employed. Detecting temporal
trends from such data is additionally challenged by the large variety
of relevant compounds (Section 2.2) and the need to account for
hydrological effects (Section 2.4).

One way of addressing these challenges is by conducting long-
term monitoring over several growing seasons or years (i.e., >5
years in this review) with a consistent sampling scheme. Long-term
monitoring can help define the range and interannual variability of
aquatic pesticide pollution, which provides greater context when
comparing pesticide levels fromyear to year. Long-termmonitoring
can also help determine the extent that confounding factors affect
pesticide transport to surface waters over a range of environmental
and agricultural conditions. If consistent patterns are observed over
a variety of conditions, more confidence can be made in statements
about observed trends.

The current scientific literature has studied the issue of detect-
ing trends from water quality time series (Hirsch et al., 2010;
Ryberg and Vecchia, 2013). Lloyd et al. (2014) reviewed statistical
techniques used to detect changes in hydrochemistry and provided
a conceptual framework for choosing the appropriate statistical
analysis method based on the scientific question being addressed
and the structure of the data under analysis. However, to date there
is a knowledge gap in how pesticide-specific challenges affect long-
term trend detection and which mitigation measures have consis-
tently demonstrated long-term efficacy in such monitoring studies.
Therefore, there is a need for a comprehensive review that as-
sembles all the lessons learned from the various long-term pesti-
cide monitoring studies throughout the world, in order to get the
most out of existing monitoring programs and enhance the design
of future programs. The objectives of this literature review is to
answer the following questions:

� How does the studies’ design address the issue of confounding
factors?

� Which sampling strategy is appropriate to meet monitoring
objectives?

� What are metrics used to describe interannual variability in
pesticide pollution levels?

� How do the studies statistically account for confounding factors
and make annual values more comparable?

� What factors have been commonly associated with long-term
aquatic pesticide trends?

� What kind of mitigation measures have been demonstrated to
be effective based on the long-term monitoring data?

� What are limitations to existing monitoring programs?

In Section 1.1, we start by discussing a theoretical monitoring
design aimed to evaluate the effectiveness of mitigation measures
and suggest ways inferences can be drawn if the monitoring is less
than ideal. We then provide a general overview of the confounding
factors that make interpreting long-term aquatic pesticide pollu-
tion data difficult and introduce a causal diagram that maps the
interconnectivity of these factors (Fig. 1). Section 2.0 discusses
common methods used in the reviewed literature, which includes:
sampling strategies, substance selection for chemical analysis,
metrics used to describe the interannual variability in pesticide
pollution, and the statistical treatment of factors affecting pesticide
concentrations. Section 3.0 discusses the specific factors from the
reviewed literature observed to affect long-term pesticide trends
and the limitations of the monitoring design. In Section 4.0 we
conclude with recommendations for future aquatic pesticide
monitoring programs. In the Supporting Information we present
the methods used for our literature search and provide a table that
summarizes the reviewed case studies (Table S2).

1.1. Evaluating effectiveness of mitigation measures

The effectiveness of a specific mitigation measure can be eval-
uated by monitoring before (i.e., baseline) and after its imple-
mentation, while simultaneously monitoring a control. This is
known as a Before-After, Control-Impact (BACI) design, which aims
to quantify the effect size (i.e., the effectiveness of a mitigation
measure) and differentiate environmental changes due to some
planned intervention from other factors (Green, 1979; Downes
et al., 2002). The Before monitoring forms a baseline and should
be long enough to establish an envelope of ‘normal’ behaviour or
variability. Pesticide concentrations in flowing waters tend to
exhibit strong seasonality (Kreuger, 1998). Therefore, sampling
should cover the full range of seasons and more than one instance
of each season should be sampled. This means that baseline sam-
pling would need to span at least two years, but ideally three or
more depending on the strength of the interannual variability
(Downes et al., 2002). A baseline is important for two reasons. The
first is to form a basis to evaluate whether a significant change has
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occurred. The second reason is that baseline monitoring can indi-
cate whether there is a pre-existing trend, which may indicate the
influence of factors other than the implemented mitigation
measure.

The Control-Impact component refers to the simultaneous
monitoring of the site being impacted and a control site that is
outside the influence of the impact (Downes et al., 2002). In hy-
drology, the Control-Impact design can be implemented through
paired catchment experiments, which provide a logical basis to
separate (to some extent) water quality responses from natural or
human-induced disturbances (see Neary, 2016 for a review). Na-
tional databases on catchment characteristics, such as StreamCat by
the United States Environmental Protection Agency (Hill et al.,
2016), can be useful in finding an appropriate control site. If
similar changes are observed at both the control and impact sites
after mitigation, then it would be illogical to infer that the changes
were due to the mitigation.

Due to the inherent costs and difficulties of conducting a BACI
design in long-term environmental experiments at the
catchment-scale, all long-term pesticide studies we reviewed lack
one or more of the BACI elements (i.e., the Before or Control). Thus,
long-term pesticide studies are observational studies by nature,
which are empirical investigations that monitor and collect data
on key status indicators (e.g., in-stream concentrations) to eluci-
date trends, but lack a baseline or experimental controls
(Rosenbaum, 2002). Observational studies are potentially useful
because they allow us to document progress toward policy goals
and can indicate if more action is needed. However, without a
baseline and/or an experimental control it can be difficult to
isolate for factors contributing to cause-and-effect relationships.
For instance, peak pesticide concentrations in surface waters often
coincide with rainfall events due to the runoff generated from
fields of pesticide application (Leu et al., 2004; Doppler et al.,
2012). Therefore, drier annual weather conditions (i.e., lower
frequency and intensity of rainfall events) could lead to less
runoff, resulting in lower pesticide concentrations in surface wa-
ters. If the coincidence of rainfall events and pesticide application
was the only relationship governing the transport of pesticides to
surface waters, the main cause of pesticide loss reduction would
be the prevailing (drier) weather conditions. In this case, it would
be incorrect to conclude that any mitigation measure imple-
mented during the same time period was effective.

In the absence of a BACI-type design, Runge et al. (2019) rec-
ommends the use of causal inference methods on observational
time-series to identify and quantify causal interdependencies of the
underlying system. Such methods often require large high-
dimensional datasets, which makes them less suitable for long-
term pesticide monitoring programs. Ryberg et al. (2020) pro-
vides an example of such an effort by applying structural equation
models to infer major causal factors driving long-term atrazine and
deethylatrazine concentration trends in conterminous U.S. streams,
which turned out to be corn acreage, moisture supply, and tile
drainage. Downes et al. (2002) has proposed a less stringent levels-
of-evidence approach that takes into account nine causal criteria in
order to lower the inference uncertainty (Table 1). Using the levels-
of-evidence approach provides a practical framework to interpret
data from observational studies and can help to elucidate the
effectiveness of specific mitigation measures from other factors.
However, it is important to note that none of the criteria by
themselves can establish definite causality. Instead, various sorts of
correlative evidence can collectively build a robust case to infer
causality. Hill (1965), who was first to formalize these nine types of
evidence, argued against demanding that any particular criterion
be met and that there is no formal way toweigh some criteria more
heavily than others.
1.2. Factors affecting the evaluation of aquatic pesticide pollution

Accounting for factors that affect aquatic pesticide pollution is
important for two reasons. The first is to make year-to-year pesti-
cide pollution levels (more) comparable. The second is to make an
accurate evaluation of the effectiveness of specific mitigation
measures. To better understand the observational case studies in
this review (See Table S2) we explicitly mapped the main factors
(ignoring minor feedbacks for clarity) that affect pesticide con-
centrations in surface waters with a focus on agricultural pesticide
use (Fig. 1). We would expect a causal diagram for non-agricultural
pesticide use to be similar to Fig. 1; however, the anthropogenic
factors such as farming practices and crop types could be replaced
by urban pesticide use practices and the farmyard source pathway
could be replaced by urban hardscapes and landscapes. Having this
visual tool allows us to evaluate the levels of the evidence (Table 1)
and hypothesize plausible explanations that could explain changes
in observed pesticide levels.

Fig. 1 divides the factors into two broad categories: (1) envi-
ronmental factors and (2) anthropogenic factors. In this context, a
confounding factor is one that can disguise trends caused by
changes in pesticide use or the effect of mitigation measures. The
main confounding environmental factor that can affect nearly all
others is the weather (e.g., precipitation, evapotranspiration (ET),
temperature, and wind). The weather can influence which organ-
isms are likely to thrive, including both pests and beneficial pred-
ators, which subsequently affects which pesticide products are
applied and their dosage. The weather also drives the transport of
pesticides from their site of application to surface water (Larson
et al., 1998).

An anthropogenic factor that influences aquatic pesticide levels
is the changing of pesticide use patterns over time. This includes
the switching of products due to changes in pest pressure (also to
avoid resistance; Hawkins et al., 2019) or crops. Furthermore,
pesticide registration, which is the permission granted by author-
ities to allow the sale (pricing and taxation) and use of specific
products, can change the pesticides available on the market. This
ultimately determines which pesticides will be used and exposed
to the environment.

Additionally, farmers may adopt mitigation measures against
point and diffuse pesticide losses either voluntarily or with mon-
etary compensation. Agricultural point sources have been
frequently found to originate from farmyards (Neumann et al.,
2002). Measures that target point sources include courses on
proper pesticide disposal and handling, cleaning of spraying
equipment, and restrictions on aesthetic farmyard pesticide use
(Kreuger, 1998). A common measure to limit diffuse losses are to
install buffer strips, which are vegetated spray-free zones between
the fields and waterways, designed to reduce pesticide spray drift,
runoff and erosion inputs into surface waters (Reichenberger et al.,
2007).

There are two general analysis methods to treat confounding
factors in order to reveal potential trends caused by changes in
pesticide use or mitigation measures: 1) stratification, and 2) multi-
variate regressionanalysis.Bothmethods require confounding factors
to be identified and monitored during the study period (Braga et al.,
2012). Stratification is the process in which subgroups or strata are
formed based on the value of the confounder and compared within
their respective strata (e.g., years are categorized by their total annual
rainfall). Stratification is useful if there are only one or two con-
founders and if there are several years of data.Multivariate regression
analysis uses a mathematical model that estimates the associations
between a number of independent variables (e.g., riverflow, seasonal
pesticide use) and one dependent variable (i.e., pesticide concentra-
tion in surface water). The drawbacks of regression analysis are that



Table 1
The causal criteria in decreasing order of importance. The criteria can be used when a correlation is observed between a mitigation measure and the decrease of in-stream
pesticide concentrations, to help decide whether there is a case for inferring the effectiveness of a mitigation measure (Adapted from Downes et al., 2002).
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the interpretation of the results may be inaccurate if assumptions of
themathematicalmodels are not satisfied. Anobjective of this review
is to see which confounding factors were commonly dealt with and
the methods used to account for them. This will be discussed further
in Section 2.4.

2.0. Methods from case studies

2.1. Sampling strategies

The choice between sampling strategies depends strongly on
the monitoring objectives. For the monitoring of aquatic pesticide
levels three sampling strategies were common to the reviewed
studies: 1) grab sampling, 2) time-proportional sampling, and 3)
flow-proportional sampling. Bundschuh et al. (2014) compared all
three sampling strategies and found that occasional grab sampling
during periods without rainfall is not a sensible option because it
can substantially underestimates the peak pesticide exposure
triggered by transport losses across the land-water interface. Time-
proportional composite sampling strategy is recommended for
assessing the ecotoxicological risks because this strategy reflects
concentrations levels that aquatic organisms actually experience.
However, time-proportional sampling may underestimate the
maximum acute exposure because sampling over a constant time
interval can cause the sample to be diluted with low flow or
baseflow aliquots with little or no pesticides. Therefore, if peak
exposures are of concern an event triggered sampling strategy is
recommended (Oelsner et al., 2017). Flow-proportional sampling
provides concentrations, which can be useful for calculating loads
and loss rates (if quantity of pesticide application is known).
However, it can be challenging to implement because sampling is
driven by unpredictable weather conditions. One way of making
flow-proportional sampling more practical is to conduct time-
proportional sampling and to weight the composite sample on
flow measurements (e.g., Daouk et al., 2019).

The main issue, irrespective of the sampling strategy, is whether
the sampling frequency is high enough to capture the short-
duration pesticide concentration dynamics, which can be less
than a few hours in small headwater catchments (Leu et al., 2004;
Doppler et al., 2012). Furthermore, there are constraints from the
cost and labour of chemical analysis. Therefore, samples are usually
combined to form a composite sample for chemical analysis. How
composite samples are formed will depend on the objectives of the
pesticide exposure monitoring. For instance, 14-day composite



Fig. 1. Causal diagram of factors affecting evaluation of in-stream pesticide monitoring.
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samples would be adequate to assess chronic exposure. However, if
the objective is to assess acute exposure, composite samples would
need to be 3.5-days or less (Spycher et al., 2018).

A promising alternative to the aforementioned active sampling
strategies is the use of passive samplers, which require no technical
facilities or power supply and can be deployed flexibly both
temporarily and spatially (Bundschuh et al., 2014). There are
however several shortcomings that confound the level of confi-
dence associated with the data obtained from passive samplers,
such as the optimal duration of sampler deployment, possible in-
fluence of seasons and biofouling, implications of other non-target
water quality parameters (e.g., dissolved organic matter, nutrients),
and chemical properties of compounds on their sorption rate
(Mi�ege et al., 2012). For these reasons, none of the long-term
aquatic pesticide studies we reviewed used passive samplers for
their monitoring programs. Nevertheless, the use of passive sam-
plers to monitor aquatic pesticide pollution is an area of active
research (e.g., Moschet et al., 2015; Lao et al., 2016; Liao et al., 2017;
Xue et al., 2017; Curchod et al., 2020).

All studies focused their sampling over the plant-growing sea-
son, which starts between MarcheMay and ends between
SeptembereOctober (in the Northern hemisphere). Kreuger and
Nilsson (2001) extended their sampling to the off-season months
(i.e., October to November) and observed substantial pesticide
losses in 1992, suggesting that sampling is required in late fall and
earlywinter for amore comprehensive assessment. Sampling in the
off-season is especially important in regions where most rainfall
events occur in the winter months (e.g., California), which can lead
to a delay between the time of application and increased concen-
trations in surface waters (Wang et al., 2017).

2.2. Limitations of substance selection for chemical analysis

A recurring theme from this review is the uncertainty and
possible underestimation of the aquatic pesticide exposure because
the suite of analytes were limited. Without a comprehensive
chemical analysis over time (e.g., Spycher et al., 2018), the possi-
bility remains that some unscreened substances may be present in
quantities that are harmful to aquatic organisms. Daouk et al.
(2019) recommends collecting additional information, such as
pesticide use (i.e., application and registration) to help narrow
down target screening and to keep costs manageable. Luo et al.
(2018) developed the Surface Water Prioritization (SWMP) model
to prioritize the monitoring of specific pesticides and geographic
locations by incorporating pesticide use data, physicochemical
properties, aquatic toxicity, and watershed morphology.

Additionally, improvements in chemical analytics are likely to
occur over the course of a long-term monitoring program, which
can potentially lead to different statements about the chemical
status of rivers (Wahlin and Grimvall, 2008). Stenrød (2015) and
Lindstr€om et al. (2015) noted that limits of quantification lowered
over the course of their studies, which can replace pesticides that
were once below the detection limit with quantified concentration
values. In the Charmilles catchment, the ecotoxicological risk
increased as of 2013 after nicosulfuron (water quality criteria for
chronic exposure 0.0087 mg/L; Annex 2 e RS 814.201; WPO, 1998)
was included in the chemical analysis (Daouk et al., 2019), which
also suggests that the ecotoxicological risk could have been
underestimated prior to its inclusion.

Thus, there are two reasons that the chemical status of rivers
could change due to improvements in analytical methods. First, is
from finding newly included substances at relevant concentrations
that were previously excluded (e.g., nicosulfuron in Charmilles;
Daouk et al., 2019). Second, is from the lowering of the limit of
detection over time. Substances that were once below the detection
limit could be replaced with quantified (albeit low) concentrations.
If the detected substance is toxic at low concentrations (such as
pyrethroids e.g., cypermethrin), this could increase the quantified
risk of exposure to aquatic organisms. Conversely, the exposure risk
could be lowered as limits of quantification (LOQ) decrease and
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substances continue to be very low or nondetectable. For instance,
cases that previously replaced values below the LOQ with half the
LOQ value may now be replaced by actually concentrations that are
less than half the LOQ, lowering the exposure risk. Despite the
inappropriateness and criticism of substituting censored pesticide
monitoring data, it still commonly occurs. Instead, there are more
appropriate methods to analyze censored pesticide data for trends
(e.g., Helsel, 2012; Therneau, 2013; Wang et al., 2016; Lee, 2020).
Furthermore, van Leeuwen and Vermeire (2007) recommends
conducting a sensitivity analysis with a range of values between
zero and LOQ instead of replacing concentrations below LOQs with
a single value. In this way improved analytics should result in a
smaller range of uncertainty rather than inconsistent results.
Nonetheless, pesticides that are currently known to be toxic at
concentrations below or around the limit of detection for many
analytical methods (e.g., neonicotinoids and pyrethroids; Boye
et al., 2019), will drive the need for improved method detection
limits and have the potential to play a larger role in future risk
assessments.

Additionally, some pesticides are difficult to detect analytically.
For instance, glyphosate requires a separate and costly analytical
method (Ib�a~nez et al., 2005; Boye et al., 2019). For this reason,
glyphosate is often excluded from the suite of substances being
analyzed (Moschet et al., 2014; Stone et al., 2014). This data gap can
lead to the potential underestimation of the exposure risk and will
be discussed further in Section 3.3: Toxic tradeoffs.

Consistent sampling and laboratory practices are critical to the
interpretation of long-term environmental trends. Wahlin and
Grimvall (2008) have found strong evidence that long-term
trends in measured nutrient concentrations can be more exten-
sively influenced by changes in sampling and laboratory practices
than by actual changes in the state of the environment. This raises
important concerns regarding quality assurances in environmental
monitoring and laboratory analysis. However, it is important to
note that consistency should not come at the expense of im-
provements in basic monitoring design. It is of little use for a
monitoring program to continue in the same way, if it is known to
be unfit-for-purpose. Therefore, Downes et al. (2002) recommends
that the design of new monitoring programs should consider prior
experience, which is subject to critical review, and that improve-
ments in design are favoured over adherence to heuristic traditions.

2.3. Metrics to describe the interannual variability in pesticide
pollution

A variety of different metrics and statistical methods have been
used by the reviewed studies to evaluate for pesticide trends in
surface waters. A common approach is to take the measured
pesticide concentrations, calculate a time-weighted annual average
value, then sum the values for all detected pesticides (Kreuger and
Nilsson, 2001; Hermosin et al., 2013). An issuewith this approach is
that interannual pesticide concentrations can vary considerably
over the years, often denoted by short-term peaks in concentration
over the application period and surrounded by frequent low or
nondetect values. This can skew the mean and underestimate
short-term acute exposure. Thus, the use of box-plots is helpful to
depict the interannual distribution (i.e., median, upper and lower
quartiles,10th and 90th percentiles, and outliers) of total pesticides.
In particular, several studies (Schreder and Dickey, 2005; Phillips
et al., 2007; Todd and Struger, 2014) used box-plots to show the
interannual variability of pesticide concentrations and a clear
reduction in concentrations before and after the ban of specific
pesticide products. Censored values are typically set to any single
value lower than the reporting limit, with the box-plot distribution
below the reporting limit blanked out (Helsel, 2012).
Richards and Baker (1993) displayed concentration time-series
practically through a concentration exceedancy curve (CEC). To
plot a CEC, samples are first sorted by decreasing concentrations,
allotting a duration of time for each sample. For grab samples, the
time duration allotted to each sample is equal to half the time
between it and the preceding sample, plus half that between it and
the following sample. It is important to have a sufficiently short
duration of time between samples to create a useful CEC plot.
Richards and Baker (1993) stated that a majority of their time in-
tervals did not exceed 2 days, and that longer intervals (<7 days)
were typically associated with low-flow periods with low pesticide
concentrations. After time allotment, concentrations are plotted
against cumulative time, expressed as a percentage of entire
observation period. These cumulative frequency plots display the
percentage of time a given pesticide exceeds a particular concen-
tration (e.g., Environmental Quality Standard), which can be
compared annually for concentration exceedance trends.

Annual pesticide loads are another important metric for evalu-
ating water quality trends. Pesticide loads can be calculated if
measurements of flow are taken concurrently with sampling. In the
small Charmilles stream, a clear reduction in annual pesticides
loads from 2008 to 2013 was observed, whereas the interannual
concentrations were more erratic due to interannual variability in
river discharge (Daouk et al., 2019). This decreasing trend in loads,
was linked to substantially reduced pesticide wash off after rain
events due to the installation of grass strips between vine rows.
This example shows us how pesticide loads can be a useful metric
in evaluating the effectiveness of mitigation measures and that
analyzing concentrations alone, which showed no clear trends,
would not have led to the same conclusion.

Additionally, the variability in annual pesticide use can be
treated by normalizing annual pesticide loads with the total
amount of pesticides applied annually. This equates to an annual
pesticide loss rate. Comparing annual loss rates is one way to
evaluate whether measures other than changing annual pesticide
application rates had an effect. For instance, Singer (2005) showed
that pesticide losses to Lake Greifensee in Switzerland were mainly
related to the coincidence of pesticide application and rain events
(i.e., timing, quantity, and intensity). There was no evidence that
the implemented pesticide loss-reduction measures (e.g., sprayer
inspections, buffer strips) were affecting loss rates, which suggests
that restricting the quantities of pesticide use was the main miti-
gation measure that reduced pesticide loads to Lake Greifensee
(Singer, 2005). Similarly, Leu et al. (2010) found close relationships
between herbicide loss rates and catchment metrics for fast flow
during the application periods for six streams in the US and
Switzerland.

Accurate pesticide use data (i.e., location, timing, and quantity of
specific pesticide application) is also critical for the interpretation
of monitoring results for patterns and trends, but may be difficult to
obtain. Lerch et al., (2011a) used corn planting progress as a sur-
rogate for the timing of pesticide application, which showed
promising results when combined with streamflow and degrada-
tion rates for predicting atrazine loads. Schreder and Dickey (2005)
used annual sales of pesticides as a substitute for pesticide use data.
Using such proxy data can be useful if the area under study is large
enough so that statistical downscaling is meaningful or for simple
agronomic systemswith limited crop diversity (i.e., monocropping)
where a few herbicides dominate.

Stenrød (2015) extended their analyses by assessing ecotoxico-
logical risk, which combines the exposure assessment with an
ecological effects assessment (van Leeuwen and Vermeire, 2007).
An effect assessment estimates the relationship between the
exposure level of a substance and the severity of an effect to an
organism. The effects assessment can be used to establish the
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threshold of allowable concentrations in the environment, e.g.,
forming the basis for Environmental Quality Standards. Since
different substances vary in their dose-response relationship with
differing aquatic organisms, a long-term aquatic pesticide moni-
toring program would require the analysis of a large spectrum of
pesticides to conduct an accurate ecotoxicological assessment
(Spycher et al., 2018). For instance, 96 active ingredients and 19
metabolites were analyzed in 6 small Norwegian catchments,
which allowed Stenrød (2015) to evaluate water quality trends
regarding mixture toxicity. To account for this, Stenrød (2015)
calculated a summed monthly relative cumulative risk value, or
cumulative risk for short. Cumulative risk is the sum of the ratios
between the measured environmental concentration and its Envi-
ronmental Quality Standard (EQS; EC, 2011), which was based on
the most sensitive aquatic test species for the active ingredient of
each pesticide. From her cumulative risk assessment, she observed
both a reduction in the detection frequency and concentrations for
in-stream pesticides in catchments growing heavily sprayed potato
and vegetable crops, while catchments mainly comprised of cereal
production showed no significant reduction in the environmental
pesticide loads. In general, Stenrød (2015) concluded that the
presence of in-stream pesticides can be mainly explained by
pesticide use on nearby land areas and the prevailing weather
conditions.

2.4. Treatment of factors affecting pesticide trends

Most studies included some treatment of factors such as river
flow, seasonality, and/or pesticide use when comparing aquatic
pesticide pollution levels from year to year. As already mentioned,
Singer (2005) accounted for changes in annual pesticide use by
calculating and comparing annual loss rates. However, a few long-
term studies were observational in nature (Cerejeira et al., 2003;
Schreder and Dickey, 2005), meaning that the studymainly focused
on observing whether pesticide concentration trends were taking
place rather than attempting to determine the precise cause of the
trend (e.g., the effectiveness of mitigation measure other than
restricting use). For those studies explicit treatment of factors was
unnecessary.

Several authors accounted for river flow by calculating flow-
weighted average concentration (Bodo, 1991; Richards and Baker,
1993; Lerch et al., 2011a, 2011b). Whereas others (Power et al.,
1999; Phillips et al., 2007; Todd and Struger, 2014) noted that no
flow adjustment was needed because their analyses showed no
correlation between flows and concentrations. Power et al. (1999)
found that lindane was an exception and that its concentrations
correlated with flow rates in the River Thames, which they believed
were due to its chemical properties.

Several studies treated seasonality in their trend analysis by
introducing stratification to nonparametric tests. For example,
Bodo (1991) used the seasonal Mann-Kendall test (Hirsch et al.,
1982) and Phillips et al. (2007) used a seasonal step-trend anal-
ysis (Helsel and Hirsch, 1992). Seasonal stratification is common in
the analyses of pesticide time-series because peak concentrations
in agricultural settings typically occur seasonally within the spring
and summer months when planting and pesticide application,
particularly herbicides, take place (see Table 2). It should be noted
that certain pesticides, which degrade slowly in and have a strong
affinity to soils (e.g., diazinon, fipronil, pyrethroids), that are
applied in regions where rain events dominate in the winter
months (e.g., California) have shown to be delayed in their trans-
port to surface waters relative to their time of application (Budd
et al., 2015, 2020; Wang et al., 2017). This fact does not under-
mine the importance of evaluating seasonality in the analyses of
pesticide time-series, but highlights the fact that the seasonality of
pesticide application and peak surface water concentrations do not
always coincide.

Researchers from the USGS created a parametric regression
model specifically designed for analysing pesticide concentration
trends treating both seasonal- and streamflow-related variability,
which they called SEAWAVE-Q (Vecchia et al., 2008, 2009). Ryberg
and Gilliom (2015) used SEAWAVE-Q to analyze pesticide trends in
major rivers throughout the US from 1992 to 2010, where they
found concentration trends mostly agreeing with pesticide use
trends. Sullivan et al. (2009) compared SEAWAVE-Q with and
without streamflow adjustment to the nonparametric seasonal
Kendall test (SEAKAN) by analyzing 10 years of pesticide concen-
trations in the US Corn Belt streams. They favoured the SEAWAVE-Q
method because it required substantially fewer measurements
than the flow-adjustment procedure for SEAKAN and found that
including flow-adjustment was an important part of trend analysis
because changing flow conditions could alter or disguise trends
caused by changes in pesticide use or management practices.

To the best of our knowledge, process-based models have yet to
be used to evaluate long-term pesticide monitoring data. A more
flexible alternative for treating confounders is the use of process
based catchment-scale hydrological pesticide transport models,
such as the one developed by Ammann et al. (2020) for the
Ossingen catchment in Switzerland. Such a model could provide
process-based estimates of pesticide concentrations in surface
water. It can be used to simulate the situation before and after the
implementation of a mitigation measure (e.g., 50% reduction in
pesticide use) and can therefore be used to simulate the counter-
factual assuming that no measures were taken. This type of
modelling could help fill the gap frommissing baseline monitoring
by calculating pesticide concentrations using historic meteorolog-
ical forcings. In essence, this would be using a conceptual hydro-
logical model for quantitative counterfactual thinking (Ferraro,
2009), which attempts to answer the question “does the inter-
vention (i.e., mitigation measure) work better than no intervention
at all?” Using counterfactual thinking to develop various model
scenarios allows one to estimate the expected effect size from
introducing mitigation measures and to assess the potential con-
ditions necessary to meet water quality objectives.

Wang et al. (2019) proposes to supplement physical and statis-
tical models used to analyze aquatic pesticide pollution data with
machine learning methods (e.g., Random Forests), which are tools
that can extract important trends from data. Machine learning
methods could be used to conduct meta-analyses that compiles
data from many different monitoring programs across different
regions to identify potential relationships between the fate and
transport of pesticides in the aquatic environment, the effective-
ness of specific mitigation measures, and a large number of current
and historical factors at the given sites (e.g., land use, de-
mographics, geomorphological and hydrological attributes). Ma-
chine learning methods have the advantage of relying on few
assumptions; however, they are notably more difficult to interpret
(Rudin, 2019). Therefore, machine learning methods can be used as
an initial screening tool to identify the factors that influence aquatic
pesticide pollution the most. Afterwards, physical and statistical
models can be applied considering these factors to expand upon
limited (spatial and temporal) monitoring data and to gain a better
mechanistic understanding of the processes governing aquatic
pesticide fate and transport.

3.0. Factors associated with pesticide trends and limitations
of monitoring design

Several common factors have been associated with long-term
aquatic pesticide pollution from the reviewed studies (Table 2).
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The two most common factors were pesticide application rates (18
studies), which includes bans and restricted use of specific prod-
ucts, and hydrology (16 studies), particularly post-application
rainfall-runoff events. Fourteen studies have recognized or statis-
tically treated for seasonal patterns in aquatic pesticide pollution,
which is primarily due to increases in pesticide use during the plant
Table 2
Factors associated with pesticide concentrations in long-term surface water monitoring
growing season in predominantly agricultural catchments or sea-
sonal pest pressure in predominantly urban catchments. Ten
studies discussed the chemical properties of pesticides (e.g., sorp-
tion, persistence, volatility, photolysis) to partly explain observed
differences in concentration patterns between different substances
and why long-term trends were detectable for some pesticides and
studies.
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not for others. Only four studies specifically attributed mitigation
measures (other than limiting pesticide use) to curbing aquatic
pesticide pollution.

A notable exception comes from a study conducted in Costa Rica
(Carazo-Rojas et al., 2018), where crop growing seasons and
pesticide application extend throughout the year. In this case,
pesticide application patterns were not a good predictor of aquatic
pesticide concentrations. Higher pesticide application rates (mainly
fungicides) throughout the rainiest months were associated with
lower aquatic pesticide concentrations, suggesting a dilution effect.
Tropical environments prove to be an exceptional agro-ecosystem,
where the occurrence of aquatic pesticide pollution may be more
related to environmental factors that govern the fate and transport
of pesticides (e.g., rainfall events, soil properties, adsorption, runoff,
leaching, and degradation) rather than the anthropogenic factor of
pesticide application rates.

Furthermore, the timing of peak concentrations in surface water
may not necessarily coincide with seasonal pesticide application
patterns. There can be a delay of several months between pesticide
application and peak concentrations in regions where rainfall
events occur with greater frequency in the winter months (e.g.,
California). This delay is particularly prominent for those pesticides
(e.g., diazinon, fipronil, pyrethroids) that degrade slowly in and
have a strong affinity to soils (Budd et al., 2015, 2020; Wang et al.,
2017). Wang et al. (2017) found that the diazinon application rates
from the preceding year was better at explaining the variance in
exceedance frequency compared to the current year’s application
rates, which suggests that the physiochemical properties of diaz-
inon and the prevailing weather conditions in California may cause
a significant delay in diazinon transport to surface waters.

A few other less commonly noted factors shown to be associated
with aquatic pesticide pollution include: catchment size, soil type,
catchment flashiness, population density, crop prices, and trans-
boundary pesticide sources from neighbouring countries. Although
these factors relate more to spatial differences, rather than tem-
poral trends, they provide important insights into observed pesti-
cide patterns through inter-catchment comparisons. Richards and
Baker (1993) observed the tendency for peak observed concentra-
tions to increase as watershed size decreased, which they theorized
was due to the greater mixing and dilution in larger watersheds
that receive water from various tributaries. Richards and Baker
(1993), Lerch et al. (2015), and Stenrød (2015) noted that the
greater proportion of fine-grained soil types in the near-surface
could lead to less pesticide sorption and more rapid transport to
streams. Similarly, Leu et al. (2010) observed an increasing risk for
herbicide losses with the flashiness of the catchment. Todd and
Struger (2014) found significant relationships between population
density or urban land cover and the concentrations of urban-use
insecticides in surface water. Bodo (1991) linked a decline in atra-
zine concentrations with a drop in corn prices, illustrating a direct
connection between economics, crop selection, and pesticides use
(or non-use). Vryzas et al. (2009) found evidence of transboundary
aquatic pesticide pollution sources in three Greek rivers that border
Bulgaria, which suggested the clandestine use of banned sub-
stances (i.e., DDT and g-HCH) by their neighbour.

3.1. Identifying urban pesticide sources

Understanding the main source and pathways of aquatic pesti-
cide pollution can help with the development of targeted mitiga-
tion measures. A major source of pesticide pollution to surface
water comes from agricultural pesticide use. However, a few long-
term studies also highlight the importance of urban pesticide use as
a source (Phillips et al., 2007; Ryberg et al., 2010; Todd and Struger,
2014; Budd et al., 2020). Specific pesticides that are registered for
non-agricultural use can be particularly useful as tracers to identify
urban pesticide sources. For instance, Todd and Struger (2014) used
the ratio of the active ingredients in products sold for urban use and
compared them to the observed concentration ratios in streams
and found them to be somewhat similar, suggesting an urban
source. In catchments with both agricultural and nonagricultural
pesticide use, Ryberg and Gilliom (2015), found that concentration
trends could be explained by a combination of agricultural-use
trends and concentration trends in urban streams. It is important
to note that long-term aquatic pesticide monitoring programs may
be inadequate for the purpose of identifying pesticide sources
because they typically lack the high-frequency temporal resolution
necessary for the analysis of source dynamics (e.g., Peter et al.,
2020).

3.2. Effective mitigation measures

A majority of the long-term studies we reviewed attributed a
reduction in pesticide use (including bans or use restrictions) as the
main factor linked to reductions in aquatic pesticide concentrations
(Table 2). Restricting or banning the use of a pesticide is a partic-
ularly powerful mitigation measure that directly affects the quan-
tity of that pesticide available for transport to surface waters.
However, the benefits of an outright ban can be obscured if the
pesticide is simply replaced by another (Section 3.3) or if it can
persist in groundwater, which can be a long-term source of pesti-
cides to surface waters even decades after a ban (T€ornquist et al.,
2007; Larsson et al., 2014). Furthermore, the effectiveness of
pesticide use restrictions can be unclear because the quantity of
pesticides that are ultimately applied is influenced by a number of
other factors, such as pest pressure and weather conditions.

The moderate effects of potentially effective mitigation mea-
sures (other than use restrictions) were often indistinguishable
against the background of interannual variability in surface water
concentrations. Nonetheless, numerous short-term (i.e., <3 years)
studies have shown that specific mitigation strategies (e.g., grassed
buffer strips, spray drift reduction, better handling practices) are
effective to varying degrees at reducing pesticide losses to surface
water (Reichenberger et al., 2007).

Although a decrease in pesticide pollution is expected after bans
or policies on restricted use, there are a number of cases where
declining trends in pesticide concentrations were observed before
such measures were put into place (e.g., Power et al., 1999; Philipps
et al., 2007; Todd and Struger, 2014). The presence of a decreasing
trend before a ban puts into question their effectiveness and in-
dicates the presence of other factors that could be contributing to a
decreasing trend. It also emphasizes the importance of sampling
before the implementation of mitigation measures in order to
establish a baseline. Todd and Struger (2014) speculated that the
decreasing trend before the ban could be related to increased public
awareness due to bans in neighbouring provinces that potentially
led to voluntary reductions in pesticide use. Similarly, Wang et al.
(2017) concluded that a downward diazinon-use trend from 1994
to 1998, which occurred before introducing regulatory stimulus,
could have resulted from changing pest pressures, economy, or
market forces.

Only one study by Singer (2005) specified a water quality
objective to be met through the implementation of mitigation
measures, which was to reduce pesticide loads in Lake Greifensee,
Switzerland by 50% from 1993 to 2003. All other studies did not
state meeting specific water quality objectives. Singer (2005)
analyzed pesticide loads within Lake Greifensee from 1993 to
2003, concluding that none of the mitigation measures (e.g., 3 m
wide buffer strips along water courses, regulated crop rotation,
field sprayer inspections, soil erosion measures), except restrictions
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on the allowable quantity of pesticide use led to detectable trends
in load reduction. This is consistent with Lerch et al. (2011b), who
concluded that best management practices (i.e., grassed water-
ways, Conservation Reserve Programs, terraces) implemented in
the Goodwater Creek catchment from 1992 to 2006 were either
ineffective and/or insufficient in their areal extent to achieve
meaningful reductions in herbicide transport. There are currently
no long-term studies that have attributed buffers to reducing long-
term aquatic pesticide pollution. However, this does not mean that
they are ineffective, since there are numerous studies that have
demonstrated their short-term efficacy (Reichenberger et al.,
2007).

In the Charmilles stream, annual pesticide loads decreased by
60% (5.2e2.1 kg/year) between 2008 and 2015 (Daouk et al., 2019).
This decrease in loads was linked to the installation of grass strips
between vine rows in 2009e2010, which appeared to have reduced
peak flows following rain events. However, Daouk et al. (2019)
concluded that establishing precise quantitative relationships be-
tween specific mitigation measures and observations was difficult
because several measures (e.g., washing stations, better storage)
were implemented simultaneously by varying degrees in addition
to other confounding factors (e.g., interannual variability in
precipitation).

In the Vemmenh€og catchment (Sweden), numerous mitigation
measures were implemented to reduce aquatic pesticide pollution
in late-1994 and from 1997 to 1999 (Kreuger and Nilsson, 2001). In
late 1994, a meeting was held with farmers, where informationwas
shared on sources of pesticide contamination, reduction strategies,
and safe pesticide use. Afterwards, free anonymous consultations
were offered to farmers where they were given site-specific advice,
such as safe storage of pesticides, best practices for filling and
cleaning of sprayers, and appropriate parking grounds for sprayers.
Additionally, restricting aesthetic herbicide spraying on farmyards
and other areas with low organic matter was discussed. These
initial measures reduced annual average pesticide concentrations
by about 65%, which Kreuger (1998) suggests may be mainly
attributed to the reducing farmyard point sources and aesthetic
herbicide use. In 1997, new legislation was introduced requiring
spray-free buffer zones and compulsory record keeping of pesticide
applications. From 1998 to 1999, a program was introduced that
provided small and mid-sized farmers economical compensation
over a 5-year period for complying to risk reductionmeasures, such
as spray-free buffer zones, safe filling and cleaning areas (e.g.,
biobeds), sprayer inspections, licensing and training courses, which
contributed to an additional 25% reduction in total annual average
pesticide concentrations. Combined, these mitigation measures
resulted in a 90% cumulative reduction of total annual average
pesticide concentrations in surface water between 1992 and 2000
(Kreuger and Nilsson, 2001).

Hermosin et al. (2013) associated a decreasing trend in mean
herbicide levels from 2002 to 2010 in the Guadalquivir river of
southern Spain to regulations (changes in authorized products) and
actions (courses and technical workshops on pesticide manage-
ment practices). Surface water concentrations of diuron decreased
by 99% (2.36 mg/L to 0.3 mg/L) from 2003 to 2010 and terbuthylazine
decreased by 78% (0.89 mg/L to 0.20 mg/L) from 2008 to 2010.
Although substantial decreases were observed, it is unclear what
the relative contribution of regulations and actions were to this
decrease. Similarly, Budd et al. (2020) attributed a decreasing trend
in aquatic bifenthrin concentrations from 2008 to 2018 in Northern
California to the adoption of regulations and licensing applied to
professional pest control operators that limited their application of
pyrethroids to structures.

The simultaneous implementation of several mitigation mea-
sures is common to national action plans aimed at curbing aquatic
pesticide pollution. Along with the implementation of measures is
the surface water monitoring program to gauge the progress to-
wards water quality objectives. Such monitoring programs are not
designed to evaluate the effectiveness of individual measures.
Instead the evaluation of individual mitigation measures would
require an experimental approach, such as the BACI design
(Downes et al., 2002). Nonetheless, these four studies (Kreuger and
Nilsson, 2001; Hermosin et al., 2013; Daouk et al., 2019; Budd et al.,
2020) demonstrated that mitigation measures, other than pesticide
use restrictions, have the potential to produce detectable long-term
reductions in pesticide concentrations or loads. In all four studies, a
reduction of greater than 45% led to conclusions that the imple-
mented mitigation measures were the causal criteria. Thus, relying
on the strength of association and temporality within the levels-of-
evidence approach (Table 1).

3.3. Toxic tradeoffs

Toxic tradeoffs refers to the scenario where banned or restricted
pesticides are replaced by others, whichmay not necessarily lead to
improvements to the aquatic environment. For instance, Power
et al. (1999) observed declining atrazine herbicide concentrations
in the Thames Estuary between 1988 and 1997. After atrazine was
placed on the UK Red List (i.e., banned) in August 1993, atrazine
concentrations continued to decrease significantly while the con-
centrations of simazine stabilized and showed no further declines
from 1994 to 1997. This suggests that the atrazine ban led to the
increased use of simazine as a substitute. Therefore, there may have
been little improvement to the cumulative toxicity in the Thames
Estuary after the atrazine ban because simazine has similar toxic
effects to atrazine (Cheremisinoff and Rosenfeld, 2010).

Similarly, the net effect on aquatic organisms may not neces-
sarily improve if a banned pesticide is replaced with one that is
more toxic to aquatic organisms. For example, in the Charmilles
catchment, several substances replaced atrazine after its ban in
2012, one of which was nicosulfuron. Nicosulfuron requires lower
application rates compared to atrazine because of its greater
effectiveness. However, it has an EQS value approximately 100
times lower than atrazine and can contribute significantly to the
overall ecotoxicological risk (Daouk et al., 2019). Furthermore,
substitution of one pesticide with another may lead to an increase
in surface water concentrations due to its differing chemical
properties (e.g., sorption, degradation half-lives). For instance,
Richards and Baker (1993) attributed a higher time-weightedmean
concentration for atrazine compared to alachlor due to its greater
mobility and relative half-life. Therefore, the dosage, ecotoxicity,
and chemical properties are critical factors to include when
assessing the replacement of one pesticide with another.

Another example of a toxic tradeoff occurred in the US after the
federally mandated phaseout of insecticides diazinon and chlor-
pyrifos in 2001 (Schreder and Dicky, 2005; Phillips et al., 2007;
Ryberg et al., 2010). Following the 2001 phaseout, Schreder and
Dickey (2005) observed a significant increase of the carbaryl con-
centrations in two northwestern US creeks. Phillips et al. (2007)
extended the analysis to 20 sites throughout the US and did not
detect significant changes in carbaryl concentrations in the north-
eastern andmidwestern US in response to the phaseout. From 2000
to 2008, Ryberg et al. (2010) found that trends for carbaryl were
mostly nonsignificant and mixed (upward and downward in a few
locations), and instead detected significant upward trends for
fipronil and its degradation products throughout the US, indicating
that fipronil was the more popular substitute for organophosphate
insecticides during that period.

Three conclusions come from synthesizing the findings from
these studies. Firstly, the toxic tradeoff Schreder and Dicky (2005)
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observed seemed to be localized to the northwestern US and not
generalizable across the entire US. Indicating a strong spatial
preference for the use of specific pesticide products and the
importance of site selection in the design of monitoring programs.
Secondly, analysis of different (overlapping) time periods can result
in very different trends. This is illustrated by comparing the sig-
nificant carbaryl upward trend in Thornton Creek from 1996 to
2003 (Schreder and Dicky, 2005), followed by a downward trend
from 2000 to 2008 (Ryberg et al., 2010). Significant downward
trends were observed when the intervention (e.g., pesticide ban or
mitigation measure) occurred within the time period as opposed to
the beginning of the time period, which indicates the importance of
including a baseline in the trend analysis. Finally, greater evidence
indicated that fipronil was a more widespread substitute than
carbaryl throughout the US from 2000 to 2008, which would have
been missed from only analyzing diazinon, chlorpyrifos, and
carbaryl. This stresses the importance of having a sufficient selec-
tion of substances for chemical analysis so that accurate statements
can be made regarding national scale water quality trends.

Besides explicitly measured toxic tradeoffs, there can also be
hidden toxic tradeoffs due to limited sampling and chemical ana-
lytics. With any kind of substitution, the important aspect for
monitoring is that the substitute is also analyzed. Otherwise, there
might only be an apparent improvement in water quality. For
instance, Kreuger and Nilsson (2001) noted that glyphosate use
doubled in the Vemmenh€og catchment after the implementation of
mitigation measures in 1994. However, glyphosate concentrations
were not reflected in the monitoring results from 1992 to 2000.
Therefore, the apparent improvement to water quality in their
study may have been less if glyphosate was analyzed.

Another hidden toxic tradeoff is if banned pesticides are
replaced by others that preferentially enter other parts of the
environment (e.g., atmosphere, groundwater, sediments) that can
evade detection if unmonitored. Although, our review focuses on
pesticides in surface water, it is important to mention general
pesticide pollution here because hidden toxic tradeoffs can be a
total environmental issue. For instance, the herbicide prosulfocarb
is a popular substitute for triazine herbicides (Devault et al., 2019).
In Vavihill, Sweden, Kreuger and Lindstr€om (2019) detected pro-
sulfocarb at high frequencies in precipitation (>55% of samples
from 2012 to 2015) and high quantities of atmospheric deposition
(>70 mg/m2$year from 2012 to 2015). Prosulfocarb has the tendency
to contaminate areas surrounding the targeted application due to
its volatilization potential followed by vapour drift. There have
been reports in Denmark and France of non-targeted produce (e.g.,
autumn apples) that exceeded maximum prosulfocarb residue
limits, which makes it a potential human health hazard (Devault
et al., 2019). Thus, this type of hidden toxic tradeoff can lead to
the appearance of improved surface water quality at the detriment
of other environmental compartments, which would be concealed
unless monitored.

4.0. Conclusions

The importance of collecting accurate pesticide use data has
been unanimous in all the reviewed studies. Data on pesticide use
includes the location, timing, and quantity of the specific pesticide
products used. Such data can indicate which substances to include
in the chemical analysis and reduce the uncertainty when inter-
preting monitoring results for aquatic pesticide trends. Although
there is a need to have a standard set of analytes for chemical an-
alyses to make results more comparable from year to year, there is
also a need to make updates as pesticide use changes to guard
against potential toxic tradeoffs. In many cases accurate pesticide
use data cannot be obtained, which has led to the use of proxies,
such as crop planting progress (Lerch et al., 2011a) and pesticide
sales (Schreder and Dickey, 2005).

Collecting data on the implementation of mitigationmeasures is
also critical to evaluate their overall effectiveness. This includes the
timing, spatial extent, and magnitude of the specific measures that
were implemented. However, this data can also be difficult to
obtain. Several studies have collected such data and were able to
demonstrate long-term reductions in aquatic pesticide pollution
from mitigation measures (Kreuger and Nilsson, 2001; Hermosin
et al., 2013; Daouk et al., 2019; Budd et al., 2020). It may however
be difficult to separate the effects from an individual mitigation
measure since several were implemented simultaneously.

When it comes to choosing the appropriate sampling method
for surface water, we emphasize the need to sample at a high
enough frequency to capture the short-duration concentration
dynamics typical of streams in headwater catchments. This can be
met by either a time- or flow-proportional sampling strategy,
where the former is better at providing long-term exposure pat-
terns relevant to organisms and the latter has the benefit of being
able to derive loads and potentially loss rates (if quantity of pesti-
cide application is known). It is also important to consider the
periods inwhich subsamples aremixed to form composite samples.
14-day composites are suitable to assess water quality objectives
for chronic exposure. However, composite samples would need to
be 3.5-day or less to assess for acute exposure. Additional sampling
of other environmental compartments (e.g., atmosphere and
groundwater) and the periodic analysis of highly used but costly-
to-analyze substances (e.g., glyphosate) could potentially identify
some hidden toxic tradeoffs.

Statistical analysis of long-term pesticide trends in surfacewater
should account for seasonality and make some adjustment for
streamflow either through stratification (e.g., seasonal Mann-
Kendall test; Hirsch et al., 1982) or a multivariate regression anal-
ysis (e.g., SEAWAVE-Q; Vecchia et al., 2009) because these two
factors can obscure trends caused by changes in pesticide use or
management practices.

Long-term monitoring studies consistently show that reducing
aquatic pesticide pollution can be linked to the ban or restricted use
of specific pesticide products. However, several studies have
observed the presence of a decreasing trend prior to a ban, which
indicates the presence of other influencing factors and the impor-
tance of baseline sampling to identify pre-existing trends. None-
theless, updating and enforcing pesticide registration as the science
of pesticides advances appears to be a key way to curb future
pesticide pollution.
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