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Abstract 1 

The majority of Brunei’s drinking water is sourced from river water. Increases in population, and 2 

industrialization are putting more and more pressure on water resources not only in Brunei but 3 

worldwide. The management of water resources under a changing climate is of key importance. 4 

The goal of this study was to investigate if current water quality changes in Brunei can be related 5 

to climatic change. The study investigated time series data from water quality parameters as well 6 

as rainfall data measured over a three-year period.  The time series data was analysed using auto-7 

correlation and partial auto-correlation functions.  The results showed changes in climate evident 8 

from a decrease in precipitation and increase in rainfall intensity. These changes can be correlated 9 

with changes in water quality in particular a rise in aluminium concentrations. The highest 10 

correlation was observed between turbidity and colour, with a Pearson correlation coefficient 11 

greater than 0.8. The results from cross correlation showed that pH values tend to be low before 12 

the occurrence of rainfall, due to a dropping of water levels and the likely exposure of acid sulphate 13 

soils. Low pH values were correlated with higher aluminium concentrations which have been 14 

rising consistently throughout the observation period. The rise in aluminium concentration is 15 

correlated with a rise in abstraction from the river during the time period which underlines the 16 

importance of water management in a changing climate. 17 
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Introduction 21 

Brunei Darussalam on the island of Borneo has a tropical climate. Rainfall shows a seasonal pattern 22 

with two maxima and two minima. The first maximum occurs during the period October to January 23 

with December being the wettest month and the second maximum from May to July with May 24 

generally being the wettest month. The least amount of rainfall occurs in February and the second 25 

minimum period occurs during June to August. The average rainfall from 2014 to 2017 was 2676 26 

mm (BMD, 2017) measured at Brunei International Airport. 27 

Most of Brunei’s water resources come from surface water and less than 1% from groundwater 28 

providing a safe yield of 17.3 million m3/year used for oil and gas and local bottled water industries 29 

(FAO, 2011). Brunei’s water consumption is with 350 l/d per person among the highest in South 30 

East Asia (Department of Water Services 2018). 31 

Brunei is relatively unexplored with regards to additional water resources such as groundwater. 32 

However increases in population, industrialization as well as emerging contaminants are putting 33 

more and more pressure on water resources. Possible complex contamination scenarios resulting 34 

from this may require a range of remediation and assessment measures (Gӧdeke. et al. 2003, 2006, 35 

2008a; Schirmer et al. 2006). However, natural occurring microbial processes can break down 36 

even recalcitrant contaminants (e.g. Gӧdeke. et al. 2008b).  37 

Rainfall events have shown to be influencing water quality and human health from increased 38 

surface runoff (Setty et al., 2018), stressing the importance of water safety management plans. 39 

Climate change prediction for Brunei Darussalam based on different climate models predict a rise 40 

in mean annual temperature as well as a decrease in annual precipitation, however with greater 41 

rainfall intensities, a trend that has been confirmed by various studies in other regions (NRC 2002; 42 

Semenov and Bengtsson 2002; Karl and Trenberth 2003; Groisman et al. 2004; Kharin and Zwiers 43 

2005).. Changes in the rainfall intensity and rainfall pH are another indicator of the anthropogenic 44 

effects of climate change (Vet et al. 2014, Häder and Barnes 2019). Recent research has shown 45 

that the frequency of extreme precipitation increases extensively under global warming (Myhre et 46 

al. 2019), which can affect the turbidity of the water (Lee et al. 2015). Research has shown that 47 

pH values for Brunei in rain have been measured to be well below 5 with regional pH values below 48 

4.6 at urban centres in Malaysia (Radojevic and Lim 1995, Vet et al. 2014). Usually, climate 49 
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change is predicted to have a negative effect on water quality (Mimikou et al. 2000, Salerno et al. 50 

2018). The effects of climate change can already be experienced today in Brunei as the annual 51 

average temperature increased by 0.6 degrees over the time period from 1970 to 2014 (BMD 52 

2016).  53 

The management of water resources in a changing climate requires that all stakeholders such as 54 

government, research, operators and public work together. The goal of this study was to investigate 55 

if current water quality changes can be related to climatic change. As the changes were expected 56 

to be small, high quality data over several years was required. Furthermore, the aim was to 57 

investigate whether seasonality could be identified in the water quality data, e.g. between wet or 58 

dry seasons.  59 

This paper investigates water quality data from the Layong water treatment plant in Brunei 60 

Darussalam together with daily rainfall data over a three-year period (2014-2016, BMD 2017). In 61 

2018 samples were taken again to confirm trends. A previous study compiled all available Brunei 62 

water quality data and put it into a Microsoft Access Database (Yusri et al. 2018). Time series data 63 

mining of large data sets has become increasingly important in water quality research (Deng and 64 

Wang, 2017, Yang and Moyer, 2020). An Auto-Regressive Integrated Moving Average (ARIMA) 65 

model (Shahwan and Odening, 2007; Ömer Faruk, 2010; Tizro, et al., 2014) can be applied for 66 

time series analysis for forecasting purposes. However, for our study, forecasting based on time 67 

series data was not the aim. 68 

Changes in water quality for a selected number of available water quality parameters (aluminium, 69 

chloride, pH, turbidity and colour) are investigated in detail and their changes are put into the 70 

context of climate change. These parameters have been routinely monitored at the raw water intake 71 

of the Layong treatment plant which takes water from the Tutong River for drinking water 72 

purposes (Figure 1).  73 

 74 

  75 

https://www.sciencedirect.com/science/article/pii/S0952197609001390#bib20
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 76 

Figure 1: Location of monitoring site at Layong, Brunei Darussalam with distribution of peat after 77 

Gumbricht et al. 2017 78 

The treatment plant is located away from any urban centres (around 6 km upstream (south) of the 79 

town of Tutong) and agricultural areas and influence from industrial or agricultural activities 80 

during this time period are thus regarded minimal. The abstraction history of the treatment plant 81 

which is a major source of drinking water supply for Brunei is shown in Figure 2. It can be seen 82 

that abstraction has been increasing in 2016. Brunei’s population growth is around 1.6 % per year. 83 

Elevation 



 

6 
 

 84 

Figure 2: Abstraction data of river Tutong for the years 2014 to 2016 at the Layong water treatment 85 

plant 86 

However recently Brunei experienced water quality concerns with the tap water showing slight 87 

discolouration, possibly indicating an increased content of particulate matter in the water. This has 88 

boosted local demand for household water filters as well as the bottled water industry. 89 

Changes of water quality due to climate change have been mostly investigated through isolated 90 

studies, e.g. of rivers or lakes in high-income countries, often with a small number of variables. In 91 

addition, even though some studies extend over as many as 80 years, most of them are short term 92 

(Gejl et al., 2019). With regards to lakes and reservoirs, the most frequently reported change in 93 

water quality is more intense eutrophication as well as algal blooms at higher temperatures, or 94 

shorter hydraulic retention times and higher nutrient loads resulting from increased storm runoff 95 

(Cisneros et al., 2014). Increased runoff can result in greater loads of salts, faecal coliforms, 96 

pathogens, and heavy metals (Pednekar et al., 2005; Paerl et al., 2006; Tibby and Tiller, 2007; 97 

Boxall et al., 2009). In some cases there are associated impacts on health. For instance hospital 98 

admissions for gastrointestinal illness in elderly people increased by 10% when turbidity increased 99 

in the raw water of a drinking water plant even when treated using conventional procedures 100 

(Schwartz et al., 2000). While some studies indicate that turbidity cannot be used to calculate Total 101 

Dissolved Solids (TDS), recent studies showed a clear and strong linear correlation between TDS 102 

and turbidity in river water (Low et al. 2011, Metcalf and Eddy 2014).  Greater runoff, instead of 103 
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diluting pollution, swept more pollutants from the soil into watercourses (Boxall et al., 2009; Loos 104 

et al., 2009; Benítez-Gilabert et al., 2010; Gascuel-Odoux et al., 2010; Howden et al., 2010; 105 

Saarinen et al., 2010; Tetzlaff et al., 2010; Macleod et al., 2012). For rivers, all reported impacts 106 

on water quality due to climate change were detrimental.  107 

Materials and Methods 108 

Daily rainfall from Benutan dam 10 km southeast of Layong including 1 h rainfall intensity data 109 

(2014-2016) was obtained from the Department of Water Services as well as the Brunei 110 

Meteorological Department (BMD). Water quality data of pH, colour, turbidity, aluminium ir 111 

chloride from the Tutong river for the same three year time period were measured twice daily (8 112 

am and 2 pm) using the following methods: pH was measured according to APHA 4500H (APHA 113 

1992) using a membrane electrode. Colour was measured according to APHA 2120 B using a 114 

Lovibond Nessleriser. Turbidity was measured according to APHA 2130 B using the 115 

Nephelometric method (Hach 2100N). Aluminium was measured using a spectrophotometric 116 

method with a Palintest 7100 photometer. Chloride was measured using argentometric method via 117 

titration applying a silver nitrate solution. Selected samples were shipped to Switzerland for trace 118 

element analysis at the Eawag laboratories. The samples were acidified with HNO3 to dissolve 119 

precipitates and then diluted 1:20 to a final HNO3 concentrations of 0.7% HNO3 for ICP-MS 120 

measurements. In addition selected peat groundwater samples collected in 4 ml sample vials were 121 

taken in February 2018 using a PVC bailer from a pre-installed slotted liner with a screen interval 122 

of 20 cm augered at a depth of around 1 m. 123 

To analyse the three-year time series data as well as identify meaningful trends or relationships 124 

between the parameters, the following steps were undertaken using the IBM Statistical Package 125 

for Social Sciences (SPSS) Software Version 21 (IBM 2012). 126 

The 8am and 2pm data was averaged to get a daily average of the time series. As daily values 127 

fluctuate drastically, calculations were made based on the average of daily values of every two 128 

weeks to smoothen out the data. We refer to this as the bimonthly data. Using different statistical 129 

process control charts and other charts for analysis, we identified any significantly high or low 130 

measurements. 131 
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Firstly, boxplots of raw and bimonthly data for the three years were created. This is to study the 132 

median and interquartile ranges of the different parameters, and to identify any anomalies in the 133 

data. 134 

The XBAR and R charts are control charts generally used to determine whether a system is 135 

predictable and stable. The XBAR chart plots each measurement as a subgroup of a specific 136 

number of points over a one-year period to detect changes, in this case, detecting possible changes 137 

happening at the same time over the different years. Each subgroup in this study contains the three-138 

year average of the average of two weeks’ worth of daily observations. Using the XBAR chart, we 139 

study the general trends of the various water quality parameters over a one-year cycle. Time- 140 

ordered data is usually considered a good basis for forming subgroups due to detectable causes 141 

that can occur over time (Montgomery, 2009). The opportunity for differences between subgroups 142 

will be maximised if such causes are present. 143 

The R chart shows how the range of average values changes over a one-year cycle with each point 144 

representing the range value. This allows us to identify the time periods where changes are high 145 

across the three years. We also examine the upper and lower control limit to study the stability of 146 

the data and to identify if there are causes of variation affecting the mean. The general mean value 147 

is indicated by the centre line. 148 

The values for the XBAR chart are calculated based on m samples, each with n observations on a 149 

particular characteristic. Usually, n is small, e.g. 4, 5, or 6. Let �̅�1, �̅�2, … , �̅�𝑚  be the average of 150 

each sample, where each sample is constructed from rational subgroups. Then �̅̅� would be used as 151 

the center line on the chart. In this study, m is three, for the three years and n is 24 where each 152 

subgroup contains two weeks of daily data. 153 

x̅̅ =
x̅1+ x̅2+⋯+ x̅m

m
     (1) 154 

To calculate the control limits, the range method is used. If 𝑥1, 𝑥2, … , 𝑥𝑛 is a sample of size n, then 155 

the range of the sample is the difference between the largest and smallest observations; that is, 156 

R =  𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛. Let R1, R2, … , Rm be the ranges of the m samples. The average range is 157 

R̅ =
R1+ R2+⋯+ Rm

m
    (2) 158 
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The control limits (CL) of the XBAR chart are as follows with the constant A2 specified according 159 

to various sample sizes (Montgomery, 2009). 160 

CL = x̅̅      (3) 161 

UCL =  x̅̅ + A2R̅    (4) 162 

LCL =  x̅̅ − A2R̅    (5) 163 

with UCL as the upper control limit and LCL as the lower control limit. 164 

The control limits for the R Chart are as follows:   165 

CL =  R̅     (6) 166 

UCL =  D4R̅     (7) 167 

LCL =  D3R̅     (8) 168 

The constants D3 and D4 are chosen based on various values of n in Appendix Table VI of 169 

Montgomery (2009).  Process variability may be examined by plotting sample range R values on 170 

a control chart.  171 

In order to identify trends, stacked area charts are drawn to visually study how much differences 172 

there are between the three years through the difference in height of two graphs at each vertical 173 

section. We can also study the trends in the stacked area charts of more than one parameter. 174 

For our time series analysis, we used autocorrelation function plots (ACF) and partial correlation 175 

function plots (PACF) in order to identify whether there are serial dependencies or seasonal 176 

patterns within each time series.  177 

 An ACF plot is used to determine the correlation between a time series with its past values up to 178 

and including the lag unit and not used to determine correlation between two different variables. 179 

It tells us how a time series is correlated with itself at different lags. In an ACF plot, the x-axis 180 

represents the number of lags while the y-axis determining the correlation coefficient.  181 

A PACF plot shows the amount of autocorrelation at lag k that is not explained by lower order 182 

autocorrelations. Thus a PACF graph shows the resulting correlation at lag k of the residuals which 183 

remains after removing the effects of any correlation already explained by the earlier lags. To 184 
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determine whether parent autocorrelations are zero after lag 𝑞, the Bartlett’s approximation is used 185 

which is provided by SPSS. Pearson’s correlation function was used to study the correlations 186 

between the different water quality and climate parameters. In addition, cross-correlation function 187 

was applied to find correlations between any two stationary time series x and y, described below 188 

as in (Derrick and Thomas, 2004). In Lehmann and Rode (2001), cross-correlation is applied to 189 

detect any relationship between the time series of different water quality parameters. In this study, 190 

we apply cross-correlations to detect relationships between time series of water quality and climate 191 

parameters (rainfall). One way to calculate cross-correlation is as follows: 192 

ρxy(l) =
∑ (xi−x̅)∗(yi−l−y̅)N−1

i=0

√∑ (xi−x̅)N−1
i=0

2
√∑ (yi−l−y̅)N−1

i=0

2
    (9) 193 

Where l denotes lag, xi and yi are data points at time point i from time series x and y respectively. 194 

Results and Discussion 195 

The results from the descriptive statistics are presented in Figure 3. pH values range from below 4 196 

to well over 6 with a median of around 5.  The colour according to Hazen (1892), which is generally 197 

a useful indicator of the amount of humic substances present in the water (Hongve and Akesson 198 

1996) show an median value of around 400. Turbidity values show a particular large range with 199 

values ranging from just above 0 to 150 N.T.U units. Aluminium values range from around 0 to 200 

around 0.15. Chloride values are generally below 8.5 mg/l with a median of slightly above 7.5 201 

mg/l. Rainfall has a median of around 8 mm per event, with minimum and maximum values of 0 202 

to greater than 20 mm per event. 203 
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 204 

Figure 3: Boxplots of analysed parameters for the three year time period (2014 to 2016) 205 

The results from the XBAR and R – charts (Supplementary Figures 1 and 2), showed that the 206 

values are varying across the average range and mostly fall within the confidence limits. The 207 

aluminium values in particular showed higher values at the end of each year possibly indicating 208 

the influence of increased rainfall and deposition during the wet season. It is assumed that 209 

aluminium is mobilised from sediments, e.g. aluminium silicates. Aluminium becomes more 210 

soluble at lower pH. Thus a lowering of pH values mobilises aluminium which can then be 211 

transported into rivers during rainfall events. 212 

The X-Bar and R control charts also indicated a slightly rising trend for turbidity with higher values 213 

towards the end of the year again likely due to increased rainfall which showed an increasing trend 214 

towards the end of the year.  215 

While the amount of rainfall dropped significantly between 2016 and 2014 with 2829 mm in 2014 216 

and 2158 mm in 2016 the rainfall intensities clearly increased year by year. Analysis of the 1 hour 217 

rainfall intensities showed that the 1 h maximum rainfall intensities for these years increased from 218 

56.8 mm to around 67 mm in 2016 (Table 1). It can be seen from Table 1 that rainfall intensities 219 

showed a continuous increase in line with climate change predictions (e.g. Hasan et al. 2016). 220 

 221 
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 223 

Table 1: Recorded maximum 1 hour rainfall intensities for the years 2014 to 2016 224 

Year 

Observed 

maximum 1 hour 

rainfall intensities 

(mm) 

2014 56.8 

2015 61.6 

2016 66.7 

 225 

The stacked area charts clearly show a rising trend in aluminium concentrations in the water which 226 

is obvious in the wet season in particular (October to January). It is attributed to the higher rainfall 227 

in particular high rainfall intensity events during this time period (Figure 4-8). 228 

The rise in aluminium however is attributed to the overall drop in rainfall and increasing rainfall 229 

intensities over the years, which leads to acidification due to the presence and exposure of acid 230 

sulphate soils in Brunei (Grealish and Fitzpatrick 2013, Marshall et al. 2019). Rivers and 231 

unconfined aquifers are vulnerable to acidification e.g. as discharge of sulphuric acid into river 232 

systems and increased aluminium loading (Osaki and Tsuji 2015, de Meyer et al. 2017). This 233 

increased acidity can yield higher metal leaching which can be carried into rivers and streams in 234 

particular during high intensity rainfall events. In order to investigate the influence of river water 235 

abstraction (Figure 2) on aluminium concentration in the raw water a correlation between 236 

aluminium and river water abstraction was performed on the monthly abstraction and monthly 237 

average aluminium concentrations. A correlation coefficient of 0.72 was obtained which indicated 238 

that higher abstraction is correlated with higher aluminium concentrations.  239 

In 2018 another sampling campaign was started in order to confirm the rising trend. It becomes 240 

obvious that the rising trend in aluminium concentrations has continued (Figure 4). In addition 241 
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analysis of trace metals were conducted in order to investigate if other metals were also displaying 242 

elevated concentrations compared to drinking water guidelines. (Table 2). 243 

 244 

 245 

Figure 4: Stacked area graph for aluminium for the years 2014 to 2016 and 2018 246 

Aluminium can be toxic to aquatic life and is a gill toxicant to adult fish, causing both 247 

ionoregulatory and respiratory effects (Gensemer and Playle, 1999). The chronic value, intended 248 

to protect against significant toxicity in long-term exposures, is 87μg · L–1 Al. The toxicity of 249 

aluminium is reduced with humic substances as the aluminium can form complexes with humic 250 

substances (Gensemer and Playle, 1999). 251 
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 252 

Figure 5: Stacked area chart for rainfall for the years 2014 to 2016 253 

 254 

Figure 6: Stacked area chart for turbidity for the years 2014 to 2016 255 
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It can be seen that turbidity values were highly variable following a similar pattern of peaks and 256 

troughs as can be seen from the rainfall stacked area graph.  257 

 258 

Figure 7: Stacked area chart for pH for the years 2014 to 2016 259 

pH concentrations showed some variations with some very low pH values during the period from 260 

May to August with single values below 4. These low pH values are typical for acid sulphate soils 261 

which occur in Brunei (Grealish and Fitzpatrick, 2013; Proum et al., 2018, Azhar et al., 2019; 262 

Marshall et al. 2019).  Sulphidic minerals such as pyrite present in these soils when exposed to the 263 

air will cause an oxidation reaction in which 1 mol of pyrite contributes to 4 mol of acidity as 264 

shown in equation 10:  265 

 2 FeS2 + 7 O2 + 2 H2O  2 Fe2+ + 4 SO4
2- + 4 H+     (10) 266 

Sulphuric acids from these soils are usually produced either when the soil is drained or when the 267 

exposed sulphides in soil react with oxygen. 268 

It can also be seen that the variability of pH values increased with time. 269 
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 270 

Figure 8: Stacked area chart for chloride for the years 2014 to 2016 271 

 272 

 273 

 274 

 275 

 276 

 277 

 278 

 279 

 280 

 281 

 282 

 283 

0.00

5.00

10.00

15.00

20.00

25.00

30.00

Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec

C
h

lo
ri

d
e 

(m
g/

l)

Avg_Chloride_2014 Avg_Chloride_2015 Avg_Chloride_2016



 

17 
 

Table 2: Concentrations of trace metals from river water as well as peat groundwater analysed with 284 

ICP-MS 285 

Parameter Unit 
Layong 

2018 

Layong 

2019 

Peat-

GW 

2019 

Al mg/l N/A 0.38 2.93 

Li µg/l 4.12 1.88 0.08 

B µg/l 814.6 16.5 22 

P mg/l 0.01 0 0.84 

V µg/l 0.68 0.62 4.65 

Cr µg/l 5.64 0.08 0.38 

Fe mg/l 0.56 2.95 8.81 

Cu µg/l 77.44 9.3 6 

Zn µg/l 27.42 42 127 

As µg/L 2.56 1.03 0.49 

Se µg/L 0.39 0.2 N/D 

Br mg/L 0.04 0.003 0.023 

Sr µg/L 34.38 4.6 100.1 

Mo µg/L 0.77 0 N/D 

Cd µg/L 0.03 0.01 1.03 

Pb µg/L 1.31 1 14.6 

U µg/L 0.2 0 N/D 
 286 

The results showed that none of the analysed trace elements exceeded drinking water standards. 287 

The elevated concentration of boron in 2018, which is still below guideline values, could be related 288 

to the proximity of the coastal region of the South China Sea. None of the trace metals exceeds 289 

guideline value. It becomes obvious that higher aluminium concentrations are found in the nearby 290 

peat groundwater, which indicates that draining of peatland combined with the exposure of acid 291 

sulphate soils can lead to elevated concentrations of aluminium in the river water.  292 

Figure 9 to 11 show the ACF and PACF plots of water quality and climate parameters. No 293 

seasonality within any year is found except for rainfall. For pH, there are significant spikes at lags 294 

1, 8, 9 and 28 in ACF. However, from the PACF figure we can see that pH tapers non-seasonally, 295 

following lag 1. For colour, there is a linear relationship with past values at low-order lags in the 296 
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ACF. This is usually found in strongly trended series.  But, PACF has no correlation of residuals 297 

after lag 1.  298 

For turbidity, there appears to be some autocorrelation at low-order lags, but ACF exponentially 299 

decreases to zero (Figure 10). PACF coefficients taper non-seasonally after lag 2. Similar 300 

observation as for colour was found for aluminium where a high positive autocorrelation value at 301 

low-order lag values from lag 1 to 13 exists but PACF coefficients fluctuate non-seasonally. No 302 

significant correlation was found in ACF and PACF, meaning no significant linear relationship 303 

with past values, nor correlation between residual and values are found respectively. For rainfall, 304 

there are seasonal fluctuations in ACF, in the PACF significant coefficients appear at lower order 305 

lags indicating seasonality (Figure 11).  306 

  307 

Figure 9: ACF and PACF plots for water quality parameters (pH and colour) 308 

Colour Colour 
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 309 
Figure 10: ACF and PACF plots for water quality (turbidity and aluminium) parameters 310 

 311 
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 312 

  313 

Figure 11: ACF and PACF plots for water quality (chloride) and climate (rainfall) parameters 314 

 315 

The Pearson correlation coefficients between the parameters are shown in the below table (Table 316 

3). It becomes obvious from Table 3 that the highest negative correlation coefficient is obtained 317 

for the parameters aluminium and pH (Figure 12). This shows that lower pH values can trigger 318 

increased aluminium concentrations in water. As pH decreases, inorganic and organic aluminium 319 

complexes tend to dissociate to offset the drop in pH which in turn increases the mobilization of 320 

inorganic monomeric aluminium. It has been recognised that increased aluminium solubility can 321 
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increase with soil depth in particular when pH values are less than around 4.5 (Li and Johnson, 322 

2016). 323 

 Table 3: Pearson correlation coefficients for the different parameters of bimonthly data for the 324 

years 2014 to 2016 325 

 pH Colour Turbidity Aluminium Chloride Rain Fall 

pH 1 -0.212 -0.128 -0.353 -0.091 -0.169 

Colour -0.212 1 0.829 -0.134 -0.008 0.183 

Turbidity -0.128 0.829 1 -0.079 0.097 0.149 

Aluminium -0.353 -0.134 -0.079 1 -0.256 -0.041 

Chloride -0.091 -0.008 0.097 -0.256 1 -0.047 

Rain Fall -0.169 0.183 0.149 -0.041 -0.047 1 

 326 

While the correlations with rainfall were low to moderate, the correlation of turbidity with colour 327 

was particularly strong (Figure 13), which would allow to make predictions using one of the 328 

parameters and estimating the other parameter with confidence and thus possibly saving analysis 329 

costs as both parameters are currently measured separately. 330 

 331 
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 337 

 338 

Figure 12: Aluminium against pH with linear regression trend line 339 
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 346 

 347 

 348 

Figure 13: Turbidity against colour with linear regression trend line 349 

In order to investigate if significantly more aluminium is found in the surface water at low pH, a 350 

two sample t-test for statistical significance was performed showing that at an alpha of 0.05 the 351 

aluminium values in water samples are statistically different at pH of 4.5 and below compared to 352 

the aluminium in water samples for pH values of 4.5 and above. Furthermore, the results showed 353 

that 53 % of all pH values lower than 4.5 were associated with the 4-month time period from May 354 

to August. Previous research (Cobb et al., 2017) showed that in particular during this time period 355 

groundwater levels in peatlands are at or near their lowest yearly groundwater level (Figure 14). 356 

The water levels were observed along several transects with water levels for each transect being 357 

very similar. pH values of tropical peatlands which are assumed to be generally fairly stable 358 

throughout the peatland have been reported to be in the range of 3 to 4 pH units (Kӧnӧnen et al., 359 

2015; Kӧnӧnen et al., 2018). It is possible that the observed low pH values are from a mix of 360 

blackwater as well as whitewater sources. 361 
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 362 

Figure 14: Waterlevels of a tropical peatland in Mendaram, Brunei Darussalam, with period of 363 

low waterlevels (red lines) observed between May and August (Cobb and Harvey 2019a, Cobb 364 

and Harvey 2019b)   365 

In this respect the cross-correlation function (CCF) between rainfall and pH is of interest, 366 

indicating a significant correlation between pH and rainfall at a lag, indicating that pH values were 367 

low before the onset of rainfall (Figure 15). This indicates that lower pH values are likely occurring 368 

during dry spells due to the possible exposure of acid sulphate soils as well as the lowering of 369 

water levels in peat lands. After the onset of rain pH values are increasing.  Thus the investigations 370 

indicate the vulnerability of these tropical peatlands and ecosystems to climate change. The CCF 371 

between aluminium and pH shows the significant correlation at lag 0, showing that low pH values 372 

lead to increased aluminium values in the river water (Figure 16). 373 
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 374 

Figure 15: Cross-Correlation function between pH and rainfall showing significant correlations at 375 

a lag of -1 and 0 376 

 377 
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 378 

Figure 16: Cross-correlation function between pH and aluminium showing significant correlations 379 

at a lag of 0 380 

  381 

Conclusion 382 

The goal of the study was to show if possible changes in climate based on rainfall data can be 383 

linked to observed changes in river water quality data of the Tutong River. The river water from 384 

this location is of key importance as a source of drinking water in Brunei Darussalam. 385 

The study analysed high frequency data (twice daily) from the river Tutong for selected water 386 

quality data over a three-year period. Starting from boxplots, XBAR and R-Charts, Pearson 387 

correlation coefficients were calculated. In addition, auto-correlation and partial auto-correlation 388 

functions were used to identify whether there are serial dependencies or seasonal patterns within 389 

each time series. The results show that a statistically significant rise in aluminium concentrations 390 

occurred during the three-year time period. The aluminium concentrations are negatively 391 
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correlated with pH giving rise to higher aluminium concentrations at lower pH values. The highest 392 

aluminium concentrations were observed for pH values lower than 4.5.  Furthermore, the positive 393 

correlation between aluminium concentration and water abstraction suggest that water abstraction 394 

needs to consider the rise in aluminium concentrations. Thus, possibly water abstraction may need 395 

to be reduced to avoid further increases. The highest correlation was observed between turbidity 396 

and colour, with a Pearson correlation coefficient greater than 0.8. During the observed time period 397 

an overall drop in rainfall occurred but at the same time rainfall intensity increased, which can be 398 

considered as typical for a climate change scenario. The analysis suggests that changes in pH 399 

triggered by changes in rainfall intensities as well as groundwater levels are contributing to the 400 

rise in aluminium concentration in the river water. The results indicate that climate change can 401 

have a significant impact on water quality. Long-term sampling with more water quality 402 

parameters including groundwater level measurements are suggested to confirm these findings. 403 
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Supplementary Figure 1: XBAR and R chart for aluminium 622 
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Supplementary Figure 2: XBAR and R chart for pH  625 
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