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Abstract: Groundwater is a critical resource in India for the supply of drinking water and for irrigation.
Its usage is limited not only by its quantity but also by its quality. Among the most important
contaminants of groundwater in India is arsenic, which naturally accumulates in some aquifers.
In this study we create a random forest model with over 145,000 arsenic concentration measurements
and over two dozen predictor variables of surface environmental parameters to produce hazard
and exposure maps of the areas and populations potentially exposed to high arsenic concentrations
(>10 µg/L) in groundwater. Statistical relationships found between the predictor variables and arsenic
measurements are broadly consistent with major geochemical processes known to mobilize arsenic in
aquifers. In addition to known high arsenic areas, such as along the Ganges and Brahmaputra rivers,
we have identified several other areas around the country that have hitherto not been identified as
potential arsenic hotspots. Based on recent reported rates of household groundwater use for rural
and urban areas, we estimate that between about 18–30 million people in India are currently at
risk of high exposure to arsenic through their drinking water supply. The hazard models here can
be used to inform prioritization of groundwater quality testing and environmental public health
tracking programs.
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1. Introduction

Around the world, but particularly so in India, there is an ever-increasing dependence on
groundwater for drinking water supplies and irrigation [1,2]. This is related, in part, to population and
economic growth as well as to climate change.

Groundwater is generally much less susceptible to biological and other sources of anthropogenic
contamination than is surface water. Its longer residence time and exposure to varying geochemical
environments in an aquifer, however, can subject groundwater to the accumulation of various chemical
elements in sufficiently high concentrations to pose a health risk to those using it for drinking
or cooking [3]. Examples of such naturally occurring (geogenic) contaminants include arsenic,
fluoride, manganese, and uranium. Of these, arsenic is one of the most serious contaminants, both in
terms of toxicity and ubiquity, which is due to its widespread presence in trace amounts in minerals
found in all types of rocks and sediments [3,4]. Many of the large-scale occurrences of geogenic
arsenic contamination of groundwater are found in Asia and are due to the release of arsenic found in
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recently deposited sediments that are exposed to geochemical conditions that are either predominantly
reducing (e.g., Ganges-Brahmaputra and Mekong deltas [5]) or oxidizing (e.g., Indus plain [6]).
The dominant mobilization mechanisms involve microbially mediated reductive dissolution of host
Fe(III) oxyhydroxide minerals and/or reduction of arsenic [7] in reducing environments, while in general
intra-aquifer concentrations may be strongly modified by pH- and competitive anion-dependent
reversible sorption processes [8]. Other common but less widespread sources or mechanisms of arsenic
release into aquifers include the oxidation of sulfide minerals and geothermal activity [9,10].

Long-term exposure to arsenic can lead to various skin diseases, cancers, and cardiovascular
diseases [3]. The most common intake pathways include drinking arsenic-contaminated groundwater
or consuming high inorganic arsenic crops, particularly rice and those grown in high arsenic soils
and/or irrigated with arsenic-contaminated water [11]. Although at least some of the arsenic found in
food is present in a less toxic organic form, the arsenic present in groundwater predominantly occurs
as one of the more toxic inorganic species, that is, arsenate or arsenite [3]. For this reason, the World
Health Organization (WHO) recommends keeping arsenic concentrations in drinking water as low
as possible. Although it has a guideline concentration of 10 µg/L, this is only provisional due in part
to the difficulties of removing arsenic from water [12]. Likewise, India has set the concentration of
10 µg/L as a requirement (“acceptable limit”), whereas 50 µg/L is kept as a permissible limit in the
absence of alternate sources [13].

Aside from some of the well-known arsenic-contaminated areas of India, such as along the Ganges
and Brahmaputra rivers in parts of Assam, Bihar, Uttar Pradesh, and West Bengal, groundwater arsenic
is not comprehensively tested throughout the country. The complete picture of arsenic contamination
in India may therefore not be fully understood. There may also exist in the country areas of arsenic
groundwater contamination that have not yet been identified. In order to help determine where high
concentrations of arsenic in groundwater may exist in India, we have employed machine learning
with a comprehensive dataset of arsenic concentrations and various environmental parameters to
produce a model of arsenic-contaminated groundwater for the whole of India. This should indicate
where in the country high groundwater arsenic concentrations are likely to be found where no arsenic
measurements currently exist. Such an approach has been previously been carried out for the states
of Gujarat [14] and Uttar Pradesh [15], as well as the entire world [16], but never solely for all of the
country of India or with the substantially larger dataset of arsenic concentrations as in this study.
All other factors being equal, a modeling study conducted on a smaller area allows the model to
focus on, and better characterize, the arsenic occurrences in that area and thereby produce a more
accurate model.

2. Materials and Methods

2.1. Arsenic Concentration Measurements

A total of 145,099 geographically distinct arsenic concentration measurements in groundwater
were assembled from a multitude of sources including from a systematic compilation of published
sources (Table 1). Although the focus of this study is on India, data from adjoining countries,
where available, were incorporated to help characterize the occurrence of arsenic in border areas. As such,
data acquisition was concentrated on India, which contributed 91% of the data, whereas available
datasets from the neighboring countries of Bangladesh (3%), Nepal (5%), and Pakistan (1%) were also
included. Reported concentrations were mainly determined by ICP-MS or AA, although some field kit
test measurements assured by cross-calibration with laboratory measurements were also included,
particularly for areas with otherwise limited data. However, the model sensitivity to the precision of
the arsenic measurements in the dataset is lessened by the fact that we convert them to binary format
before modeling (see below).
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Table 1. Summary of groundwater arsenic concentration data used in the model. Existing arsenic
measurements taken from over 30 sources, mainly from India but also from some neighboring South
Asian countries. Summaries are given for before and after spatial averaging.

Country
[Data Sources]

Number of Data
Points, before

Spatial Averaging
(% of Total)

Mean (±Standard
Deviation) As
Concentration,
before Spatial

Averaging

Number of Data
Points, after

Spatial Averaging
(% of Total)

Mean (±Standard
Deviation) As
Concentration,

after Spatial
Averaging

India [17–47] 132,028 (91%) 53 ± 451 µg/L 17,528 (74%) 33 ± 162 µg/L

Bangladesh [42,48] 4215 (3%) 62 ± 139 µg/L 3674 (15%) 56 ± 120 µg/L

Nepal [49] 7575 (5%) 15 ± 62 µg/L 1846 (8%) 16 ± 66 µg/L

Pakistan [6,50] 1279 (1%) 103 ± 123 µg/L 760 (3%) 71 ± 98 µg/L

Total 145,097 52 ± 438 µg/L 23,808 37 ± 150 µg/L

As many data are heavily concentrated in a few areas in West Bengal and to a lesser degree Bihar
and the Terai (Nepal), an effort was made to reduce the disproportionately high frequency of data
coming from these areas and thereby temper their influence on the model. To this end, the concentration
measurements were averaged to generate individual data points corresponding to the 1-km × 1-km
resolution of the predictor variables where more than one original data point was located within a
1-km × 1-km pixel. This considerably reduced the size of the dataset to 23,799 data points (Figure 1),
with the breakdown by country being: India (74%), Bangladesh (15%), Nepal (8%), and Pakistan (3%).
The resulting cumulative distribution of arsenic concentrations is shown in Figure S1, with 42% of the
concentrations exceeding 10 µg/L. As explained below, a binary target variable was modeled, for which
the arsenic concentrations were first recoded to either 0 or 1 according to them being either less than or
equal to 10 µg/L or greater than 10 µg/L.

Int. J. Environ. Res. Public Health 2020, 17, 7119 5 of 17 

 

 
Figure 1. Groundwater arsenic data points and simplified geology of the Indian subcontinent. (a) 
Spatially averaged arsenic data points used in modeling along with topography in India and 
neighboring countries. (b) Lithology of the Indian subcontinent. 

Although other statistical learning approaches, such as logistic regression and support vector 
machines, were initially attempted, the random forest method [59] was ultimately adopted due its 
superior prediction performance in initial tests and was implemented using the R programming 
language [60]. Random forests are ensembles of decision trees that are grown with elements of 
introduced randomness. The data used to grow an individual tree are randomly selected by sampling 
with replacement from the full (training) dataset, which results in about 2/3 of the data rows being 
utilized, some of which multiple times. Furthermore, the number of predictor variables made 
available at each branch is restricted and the variables are randomly chosen. Because not all variables 
are considered simultaneously, any possible effects of multicollinearity among predictors can 
generally be disregarded in a random forest [61]. 

The typical number of variables made available at each branch of the trees grown in a random 
forest is the square root of the number of predictors, which in this case would have been five (taking 
the square root of 26). This parameter was tuned in order to find the optimal value to use with our 
dataset by trying values between 1 and 26 (the total number of variables) and comparing the results. 
This showed that making 10 variables available at each branch produces the most accurate model as 
measured against the out-of-bag (OOB) data that are randomly sorted out of each tree grown. 

For the actual model, the full dataset of 23,799 data points was randomly split into training (80%) 
and testing (20%) datasets. This was done by stratified sampling so as to maintain the same balance 
between low and high cases (0 or 1) of the binary target variable, for which 42% of values were greater 
than 10 µg/L. The training dataset was used to develop the model (encompassing 10,001 trees), which 
was then cross validated with the testing dataset to determine its accuracy in predicting low (≤10 
µg/L) and high (>10 µg/L) arsenic concentrations on new data. The model was then applied to the 26 
spatially continuous predictor variables to create a map of the probability of the occurrence of the 
concentration of arsenic in groundwater exceeding 10 µg/L for all of India. 

2.4. Importance of Predictor Variables 

The effect of the predictor variables on the random forest model was evaluated directly through 
two statistics: (i) decrease in accuracy and (ii) decrease in Gini node impurity. In calculating both of 
these, the values of each predictor variable were randomly shuffled in turn and the resulting decrease 
in accuracy and decrease in Gini node impurity (how well the target variable is split at a branch) were 
measured on the OOB data of each tree and averaged. A higher (positive) value indicates a greater 

Figure 1. Groundwater arsenic data points and simplified geology of the Indian subcontinent.
(a) Spatially averaged arsenic data points used in modeling along with topography in India and
neighboring countries. (b) Lithology of the Indian subcontinent.

2.2. Predictor Variables

Although the target of the modeling is the concentration of arsenic located at some depth from the
surface, only parameters determined at the surface are available in a spatially continuous sense across
all of India. This is due to the generally high cost and/or difficulty of obtaining relevant subsurface
data (e.g., geophysical measurements, drill logs) across the entire country.
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In total, 26 different spatially continuous parameters were used as predictor variables in modeling
(Table 2). These variables were selected based on their known or perceived function as proxies for
the accumulation of arsenic in groundwater [16]. Most of the variables are related to climate or
the surface geology, which includes metamorphic and sedimentary rocks in the Himalayas in the
north, volcanic and metamorphic units in Deccan plateau in the south, and extensive unconsolidated
sediments along the Ganges and Brahmaputra rivers in between (Figure 1b). In addition, included are
many soil parameters, which are influenced by both climate and geology, as well as land cover,
topography, and water table depth. All but two of the variables are available as 1-km x 1-km rasters
(30 arc-second resolution). The two exceptions are the categorical variables of land cover and lithology,
both of which are provided as polygon files that were then converted to the same 30 arc-second
resolution (1 km at the equator). In preparation for modeling, the geographical coordinates of the
23,799 arsenic data points were used to retrieve the corresponding values of these predictor variables
and added to a modeling table.

Table 2. Predictor variables and descriptions. The 26 parameters used as predictor variables in
modeling are grouped into the categories ‘Climate’, ‘Soil’ and ‘Other’. Their resolution is one square
km at the equator.

Variable Description

Climate

Actual evapotranspiration (AET) [51] Average rate of actual evapotranspiration (mm/yr)

Aridity PET/Precipitation

Potential evapotranspiration (PET) [52] Average rate of potential evapotranspiration (mm/yr)

Precipitation [53] Average rate of precipitation (mm/yr)

Priestley-Taylor alpha coefficient [51] AET/PET

Soil

Calcisols [54] Probability of the occurrence of calcisols

Clay, subsoil [54] Weight % of clay particles (<0.0002 mm) at 2 m depth

Clay, topsoil [54] Weight % of clay particles (<0.0002 mm) at 0 m depth

Coarse fragments, subsoil [54] Volumetric % of coarse fragments (>2 mm) at 2 m depth

Coarse fragments, topsoil [54] Volumetric % of coarse fragments (>2 mm) at 0 m depth

Fluvisols [54] Probability of the occurrence of fluvisols

Gleysols [54] Probability of the occurrence of gleysols

Sand, subsoil [54] Weight % of sand particles (0.05–2 mm) at 2 m depth

Sand, topsoil [54] Weight % of sand particles (0.05–2 mm) at 0 m depth

Silt, subsoil [54] Weight % of silt particles (0.0002–0.05 mm) at 2 m depth

Silt, topsoil [54] Weight % of silt particles (0.0002–0.05 mm) at 0 m depth

Soil cation exchange capacity [54] Cation exchange capacity (cmolc/kg) at 2 m depth

Soil organic carbon [54] Soil organic carbon (permille) at 2 m depth

Soil organic carbon density [54] Soil organic carbon density (kg/m3) at 2 m depth

Soil pH [54] Soil pH measured in water at 2 m depth

Solonchaks [54] Probability of the occurrence of solonchaks

Water wilting point [54] Vol. % of available soil water until wilting point at 2 m depth

Other

Land cover [55] 17 different land cover categories according to the International
Geosphere-Biosphere Programme (IGBP)

Lithology [56] 15 different categories of lithology

Topographic wetness index [57] Combination of upslope contributing area and slope

Water table depth [58] Mean water table depth (m)
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2.3. Prediction Modeling

The arsenic concentration dataset and predictor variables described above were used to create
a statistical prediction model of the occurrence of arsenic in groundwater exceeding the WHO and
national India guideline concentration of arsenic in drinking water of 10 µg/L. A binary rather
than a continuous response variable was chosen due to the anticipated application of the resulting
prediction model being to address progressing towards fuller compliance with the 10 µg/L regulatory
standard. Furthermore, as we were restricted by necessity to using surface parameters to predict
arsenic concentrations at depth, modeling a binary target variable circumvents some of the associated
uncertainty and as a consequence should improve the model’s effectiveness.

Although other statistical learning approaches, such as logistic regression and support vector
machines, were initially attempted, the random forest method [59] was ultimately adopted due its
superior prediction performance in initial tests and was implemented using the R programming
language [60]. Random forests are ensembles of decision trees that are grown with elements of
introduced randomness. The data used to grow an individual tree are randomly selected by sampling
with replacement from the full (training) dataset, which results in about 2/3 of the data rows being
utilized, some of which multiple times. Furthermore, the number of predictor variables made available
at each branch is restricted and the variables are randomly chosen. Because not all variables are
considered simultaneously, any possible effects of multicollinearity among predictors can generally be
disregarded in a random forest [61].

The typical number of variables made available at each branch of the trees grown in a random
forest is the square root of the number of predictors, which in this case would have been five (taking
the square root of 26). This parameter was tuned in order to find the optimal value to use with our
dataset by trying values between 1 and 26 (the total number of variables) and comparing the results.
This showed that making 10 variables available at each branch produces the most accurate model as
measured against the out-of-bag (OOB) data that are randomly sorted out of each tree grown.

For the actual model, the full dataset of 23,799 data points was randomly split into training
(80%) and testing (20%) datasets. This was done by stratified sampling so as to maintain the same
balance between low and high cases (0 or 1) of the binary target variable, for which 42% of values were
greater than 10 µg/L. The training dataset was used to develop the model (encompassing 10,001 trees),
which was then cross validated with the testing dataset to determine its accuracy in predicting low
(≤10 µg/L) and high (>10 µg/L) arsenic concentrations on new data. The model was then applied to
the 26 spatially continuous predictor variables to create a map of the probability of the occurrence of
the concentration of arsenic in groundwater exceeding 10 µg/L for all of India.

2.4. Importance of Predictor Variables

The effect of the predictor variables on the random forest model was evaluated directly through
two statistics: (i) decrease in accuracy and (ii) decrease in Gini node impurity. In calculating both of
these, the values of each predictor variable were randomly shuffled in turn and the resulting decrease
in accuracy and decrease in Gini node impurity (how well the target variable is split at a branch) were
measured on the OOB data of each tree and averaged. A higher (positive) value indicates a greater
relative importance of a variable, whereas a negative value (corresponding to greater accuracy or node
purity when the values are reassigned) shows that a variable does not benefit a model and should
be removed.

As the measures of random forest variable importance described above do not indicate
how a predictor variable relates to the target variable, e.g., with a positive or negative trend,
Pearson correlations between each (continuous) predictor variable and the proportion of arsenic
measurements exceeding 10 µg/L were calculated. This was done by first ordering the values of each
predictor and placing them into 16 bins, each containing the same number of values. The proportion
of arsenic measurements in each bin greater than 10 µg/L was then calculated. The number of bins



Int. J. Environ. Res. Public Health 2020, 17, 7119 6 of 17

was determined using Sturges’ formula (1 + log2 n) [62]. The correlation was calculated between the
average value of the predictor in each bin and the proportion of high arsenic concentrations.

2.5. Estimating Potentially Affected Population

The prediction map generated from the random forest model was subsequently used to estimate
the population potentially exposed to high concentrations of arsenic in drinking water. The first step
of this procedure was to determine the areas at high risk of having arsenic concentrations greater than
10 µg/L. This was done using two approaches that have been described in more detail by Podgorski
and Berg [16]. The sensitivity and specificity, that is, the correct classification of high and low values,
respectively, were plotted for 100 probabilities between 0 and 1. Where both curves intersect indicates
the probability cutoff at which the model classifies low and high values equally well. The second
approach that was used follows a similar procedure that instead finds the intersection of the positive
predictive value (PPV) and negative predictive value (NPV), which are defined as rate of correct
positive and negative predictions, respectively. These analyses for determining how to interpret
the model were conducted with all available data (training and testing datasets). Each probability
threshold found with these two approaches was subsequently used to identify high hazard areas on
the probability map. The two sets of high hazard areas were then used for further calculations to
produce a range of values of populations at risk.

The populations living in the high hazard areas determined according to the above procedure
were then multiplied by the modeled probabilities. The population figures were taken from a
population model for 2020 based on existing patterns of development [63]. The at-risk population was
further refined by differentiating between rural and urban areas [55] and multiplying by recent (2016)
estimated nationwide usage rates of untreated groundwater in rural (0.637) and urban (0.238) areas,
respectively [64].

3. Results and Discussion

3.1. Arsenic Prediction Model

The cross-validation results of the final random forest model as applied to the test dataset are
shown in Table 3. The area under the ROC (receiver operator characteristic) curve (AUC) is 0.86,
which in general can range between 0.5 (random model) and 1 (perfect model) and represents how
well a binary model can predict both low and high values as assessed over numerous probability
cutoff values [65]. The AUC of this model is generally a better result than that of similar regional or
country-scale groundwater quality studies (where reported), for example, 0.84 for fluoride in India [66],
0.71–0.83 for arsenic in Gujarat [14], 0.82 for arsenic in the USA [67], 0.80 for arsenic in Pakistan [6],
or 0.74 for arsenic in Uttar Pradesh [15]. The overall accuracy of the model as applied to the test
dataset of 0.79 is significantly higher than the no information rate of 0.58 (p value < 2.2 × 10−16) and is
comparable to the average accuracy with OOB samples of 0.77. The no information rate refers to the
accuracy that would be achieved without a model and is simply the proportion of the more frequent
class of the dataset, i.e., 58% of the arsenic measurement points are equal to or less than 10 µg/L.
Similarly, the Cohen’s kappa statistic [68] (0.5606) is an indicator of accuracy beyond what could be
expected by chance and varies from 0 (no agreement) to 1 (perfect agreement).
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Table 3. Confusion matrix and other statistics resulting from the analysis of the final random forest
model with the test dataset at a probability cutoff of 0.5.

Reference

Prediction 0 1

0 2223 462

1 561 1514

Statistic Value

Accuracy (Acc) 0.7851

No information rate (NIR) 0.5849

p value (Acc > NIR) <2.2 × 10−16

Cohen’s kappa 0.5606

Sensitivity 0.7662

Specificity 0.7985

Positive predictive value 0.7296

Negative predictive value 0.8279

Prevalence 0.4151

Balanced accuracy 0.7823

Despite the spatial averaging of data to 1-km pixels, there still remains a much higher density of
data points in a few regions, particularly in West Bengal where nearly 50% of the averaged data points
are located. In order to test if such an imbalance considerably biases the model by allocating excessive
weight to the conditions found in a particular region, the data from West Bengal were randomly
split into 10 subsets that were each modeled separately with the rest of the dataset. The results of
the 10 different models were averaged and compared with the single model using the full dataset
(containing all West Bengal data). As the model performance was essentially identical, e.g., AUC of
0.86 and balanced accuracy of 0.78, the simpler approach of using a single model was retained and that
of splitting the West Bengal data was not further pursued.

Early attempts to separately model areas corresponding to reducing environments, arid-oxidizing
environments, and sulfide oxidation arsenic mobilization processes did not result in considerably
different predictions or accuracy and were therefore abandoned in favor of a single model for India.
It appears that the single model is able to effectively account for different geochemical environments
due to utilizing the same parameters of climate, geology, and soil pH that were used to define the
different environments. For example, in the ten thousand trees that make up the random forest,
splits would have been made on significant differences in these parameters, which is similar in principle
to having done so manually.

The arsenic prediction map generated from the final random forest model is displayed in Figure 2a.
As most of the data used in the model is from India with the data from neighboring countries having
been incorporated merely to help characterize border areas, the analysis that follows will focus only
on India. Nonetheless, the arsenic prediction map including the rest of South Asia is presented in
Figure S2, which, as seen with model continuity across international borders, also serves as a reminder
that political boundaries do not necessarily coincide with those of natural systems.
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Figure 2. Arsenic hazard maps. (a) Probability of arsenic concentration in groundwater exceeding 10
µg/L. (b) High hazard areas in India based on probability cutoffs of 0.49 and 0.55.

The prediction model (Figure 2a) captures known arsenic-prone areas in the alluvial sediments
along the Ganges and Brahmaputra plains [27] and in Gujarat [14] and Punjab [43]. It also identifies
less well-known or previously undocumented areas such as Haryana, Jammu and Kashmir, and central
Madhya Pradesh. Elevated arsenic hazard also appears in Himachal Pradesh, Kerala, and Uttarakhand,
from where no arsenic concentration data were available to us. Consistent with the findings of Sovann
and Polya [69] for Cambodia, this confirms that small alluvial systems, in addition to the larger
systems, such as those of the Ganges, Brahmaputra, and Mekong, may also host elevated groundwater
arsenic concentrations. This highlights some of the advantages and uses of a prediction model based
on machine learning rather than spatial interpolation. That is, predictions can be made in areas
removed from where concentration measurements exist by relying on statistical relationships between
measurements in other areas and predictor variables that cover the entire model domain. The model
can then be used to prioritize areas for testing where there is a dearth of data. The results of new water
quality testing can then in turn be fed back into the model to further improve it.

3.2. Influence of Predictor Variables

The importance of the predictor variables in the random forest model was assessed as the mean
decrease in accuracy and mean decrease in Gini impurity. Each of these was normalized by the
maximum value calculated among the predictor variables, and both are displayed together in Figure 3.
This shows both silt variables (subsoil and topsoil) placing markedly above the others in importance,
followed by aridity and both actual and potential evapotranspiration. The least important variables
relative to the others are topographic wetness index, water wilting point, gleysols, and land use.
Nevertheless, none of the predictors has a negative importance value, which suggests that they are all
beneficial to the model.
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Figure 3. Normalized variable importance in terms of mean decrease in accuracy and mean decrease in
Gini as calculated on the test dataset. Both decrease in accuracy and decrease in Gini were normalized
by their respective greatest values (see Table S1).

In order to better understand how the predictor variables may relate to high arsenic concentrations
(>10 µg/L), the proportion of high arsenic measurements were plotted against the averages of
binned predictor values, for which rank-order correlations (Kendall Tau-b) were also calculated
(Figure 4). The strongest rank-order correlations were found with topsoil coarse fragments (−0.95),
silt in both the topsoil (0.92) and subsoil (0.80), topsoil sand (−0.82), fluvisols (0.72), gleysols (0.68),
and actual evapotranspiration (0.65). Well-defined peaks are also observed with subsoil and topsoil clay
(Figure 4d,e), subsoil coarse fragments (Figure 4f), subsoil and topsoil sand (Figure 4m,n), soil cation
exchange capacity (Figure 4q), soil pH (Figure 4t), and water wilting point (Figure 4x), which highlights
why it can be important to use a nonlinear classifier for modeling, such as random forest, to capture
such relationships.

The importance of gleysols and their positive correlation with high arsenic concentrations can be
linked to chemically reducing conditions, which are conducive to arsenic release [7,9], brought about
by the poor drainage associated with this soil type. The negative relationship between soil cation
exchange capacity and groundwater arsenic is at first glance counterintuitive given that higher CEC
may give rise to higher pHs at which anionic, deprotonated As(III) or As(V) species will be more
likely to desorb. Accordingly, this relationship might instead reflect the typically higher clay/silt
contents of high CEC soils. The inverse correlation with water table depth is likely related to the
occurrence of higher arsenic concentrations in the shallower Holocene layers of alluvial sedimentary
systems [70] and that tend to contain higher concentrations of labile reactive organics associated with
arsenic mobilization [71–73]. Furthermore, the strong dependence of the model on the silt content of
soil, including a positive relationship with high arsenic concentrations, points toward the occurrence
of high arsenic concentrations beneath floodplains, as do similar relationships with fluvisols.
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Figure 4. Correlations of predictor variables (a–x) with percentages of arsenic data points exceeding
10 µg/L in 16 equally sized bins. Kendall correlations (τB) with a statistically significant p value
(95% confidence level) are shown in bold.

Many of the observations made above are compatible with each other and are consistent
with the reductive dissolution of arsenic in known high arsenic-hazard areas of Figure 2a found
within unconsolidated sediments (Figure 1b), particularly along the Ganges and Brahmaputra rivers.
Notable exceptions to this are the arsenic areas in central Madhya Pradesh (Figure 2a), which occur
primarily within mafic volcanic rocks as well as the high hazard areas located in acidic plutonic rocks
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(e.g., granite) in Kerala and northeast Karnataka. The last example may be due to the oxidation of
arsenic-bearing sulfide minerals, which is likely responsible for high arsenic concentrations in areas of
historical gold mining activity in Karnataka [74].

3.3. Populations at Risk

The estimated arsenic-risk areas based on the probability cutoffs of 0.49 and 0.55 (see Figure 5)
are shown in Figure 2b, in which most of the risk areas are seen to be concentrated along the
Brahmaputra river (Assam) and the lower half of the Ganges river (Uttar Pradesh, Bihar, and West
Bengal). Other notable risk areas are found in Jammu and Kashmir, Punjab, Gujarat, Madhya Pradesh,
and most of the states neighboring Assam. The proportion of land area and populations that are
potentially affected are broken down by state/territory in Table 4. Because only grid cells with a
probability exceeding 0.49 or 0.55 were considered, underestimation may occur where there is localized
arsenic contamination. In total, we estimate that between about 18 and 30 million people in India may
be currently consuming arsenic in groundwater at concentrations exceeding 10 µg/L. This population
estimate is substantially lower than that estimated (~41 million) for the five most impacted Indian states
by Chakraborti et al. [75] and is consistent with the estimate of 31 million derivable from Ravenscroft
et al. [9]. It is difficult to state possible reasons for these differences as the methods used to calculate
these other estimates are not clear. Our range of potentially affected population is also toward the
lower end of the range of 18–90 million estimated for India as part of a global groundwater arsenic
prediction model [16], which highlights how a separate study, such as this one, concentrated on a
single area can lead to more precise results.
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Figure 5. Analyses of model performance using full modeling dataset. (a) Sensitivity and specificity
were found to be equivalent at a probability cutoff of 0.49 with a corresponding accuracy of 96%.
(b) Positive predictive value (PPV) and negative predictive value (NPV) were found to be equivalent at
a probability cutoff of 0.55 also with a corresponding accuracy of 96%.
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Table 4. Area and population potentially exposed to arsenic concentrations greater than 10 µg/L by
state/territory. Based on probabilities in Figure 2a exceeding 0.49 and 0.55 along with the rates [64] of
household groundwater use in rural and urban areas. See text for limitations.

State/Territory Percentage of Land Area Exposed Population Exposed

Andaman and Nicobar 0.4–2.9% 300–2700

Andhra Pradesh <0.1% 2700–6600

Arunachal Pradesh 4.3–21.6% 69,800–157,700

Assam 42.3-59.7% 6,536,000–8,771,100

Bihar 3.0–12.0% 1,226,800–4,636,500

Chandigarh n/a n/a

Chhattisgarh <0.1% 700–1100

Dadra and Nagar Haveli and Daman and Diu n/a n/a

Delhi n/a n/a

Goa n/a n/a

Gujarat 0.3–4.0% 19,300–97,300

Haryana 0.4–5.0% 39,200–447,200

Himachal Pradesh 0.4–0.9% 36,800–76,900

Jammu and Kashmir 0.7–1.1% 337,800–470,800

Jharkhand 0.2–0.6% 103,600–231,400

Karnataka 0.1–0.5% 29,400–93,900

Kerala <0.4% 10,400–77,300

Madhya Pradesh 0.7–2.1% 201,200–552,100

Maharashtra <0.1% 300–1700

Manipur 8.6–22.7% 46,500–121,900

Meghalaya 0.2–1.5% 3300–13,800

Mizoram 4.5–18.0% 23,500–82,400

Nagaland 5.9–21.5% 54,300–188,600

Odisha <0.4% 1300–194,600

Puducherry n/a n/a

Punjab 2.3–6.8% 299,100–788,500

Rajasthan <0.1% 2300–10,800

Sikkim n/a n/a

Tamil Nadu <0.1% 200–200

Telangana <0.2% 4100–12,900

Tripura 0.1–1.4% 800–10,000

Uttar Pradesh 1.0–2.4% 1,222,800–2,458,500

Uttarakhand <0.7% 900–42,300

West Bengal 12.9–20.5% 7,432,200–10,144,700

Total 2.0–4.2% 17,710,000–29,690,000

4. Conclusions

The purpose of the hazard models produced here is to offer an overview of where high
concentrations of geogenic arsenic are likely to be found in groundwater across the whole of India,
with some insight into the physical processes at work, as well as to assess the size of the populations
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potentially affected. Particularly since arsenic is often not routinely analyzed in many areas without a
known problem, the maps should serve as a guide to identifying where additional testing should be
conducted as well as in assessing health impacts. In addition to drinking water supplies, the hazard
map is relevant to the utilization and siting of wells for the irrigation of crops.

Although this study is based on over 145,000 groundwater samples, targeted testing is still
required to determine if a specific well is highly contaminated with arsenic or not. This is due, at least
in part, to the heterogeneous nature of aquifers that can lead to great variability of groundwater arsenic
concentrations over short distances. Further, additional groundwater arsenic concentration data would
help improve the model, particularly in areas (e.g, in parts of Maydha Pradesh) in which anthropogenic
processes may have had a material influence on groundwater arsenic concentrations and thereby the
rendered model.

Despite the hazard model presented here being very effective in predicting high groundwater
arsenic concentrations, it is unable to account for the depth dependency of arsenic in an aquifer,
which, for example, can vary according to sediment age and/or redox conditions as well as 3-D
heterogeneous permeability structures [76]. As such, it can be assumed that the predictions become
less accurate with greater depth, as was demonstrated in a recent global study [16]. Although ~3/4 of
the modeled data points used here have an associated well depth, essentially all of these data were
confined to just a few areas in West Bengal and Bihar. Given the size of India and its variations in
climate and geology, it was not feasible to generalize depth relationships based on data from just a
small part of the country. However, incorporating depth as a predictor variable could be effective in a
smaller-scale study of a single region.

Another dimension that could enhance the modeling is that of time. For example, accounting
for fluctuations in arsenic concentrations relative to the monsoon season could possibly improve
the accuracy of the model, particularly in areas with extensive hyporheic zones undergoing surface
water–groundwater exchange and particularly including those proximal to rivers with large differences
in post- and pre-monsoonal stages. Any long-term secular trends in arsenic concentration related to
aquifer exploitation [77–80], aquifer depletion, or climate change could also produce useful results.
This was not possible in this study due to each of the arsenic measurement points representing spatially
distinct locations that also generally lacked information on the timing of sampling.

The population estimates rely on a single country-wide set of groundwater-use rates for rural and
urban areas. Knowing this rate at a finer scale (e.g., state, division, and district) could be expected
to lead to more accurate results. In order get a better grasp of who is physically impacted by high
groundwater arsenic concentrations, exposure studies and environmental public health tracking [81]
leveraging the arsenic hazard map produced here would be very helpful.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/17/19/7119/s1,
Figure S1: Cumulative frequency of groundwater arsenic concentrations, Figure S2: Prediction model of arsenic in
groundwater for South Asia, Table S1: Importance of predictor variables.

Author Contributions: Conceptualization, J.P. and D.A.P.; methodology, software, validation, formal analysis, J.P.
with input from R.W.; data curation, R.W. and J.P.; writing—original draft preparation, J.P.; writing—review and
editing J.P., R.W., B.C. and D.A.P.; supervision and project administration, D.A.P.; funding acquisition, D.A.P. & J.P.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Engineering and Physical Sciences Research Council (UK) (IAA Impact
Support Fund Award via University of Manchester); the Swiss Agency for Development and Cooperation
(project no. 7F-09963.01.01), the Natural Environmental Research Council (UK) (NE/R003386/1) and DST (India)
(DST/TM/INDO-UK/2K17/55(C) & 55(G)).

Acknowledgments: We thank NERC (UK) and DST (India) for their joint funding of the Newton Bhabha Indo-UK
Water Quality project, FAR-GANGA (www.farganga.org). We thank colleagues at the FAR-GANGA stakeholder
partner, the Central Ground Water Board (CGWB, Faridabad, India), for the acquisition and provision of many of
the groundwater arsenic data utilized in this study. We acknowledge the further support of and/or discussions
with Benjamin Ambühl, Michael Berg, Abhijit Mukherjee, Prashant Rai, Laura A. Richards and Dipankar Saha.
The views expressed in this work do not necessarily reflect those of any of the funders, organizations, or individuals
that we acknowledge here.

http://www.mdpi.com/1660-4601/17/19/7119/s1
www.farganga.org


Int. J. Environ. Res. Public Health 2020, 17, 7119 14 of 17

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Rodell, M.; Velicogna, I.; Famiglietti, J.S. Satellite-based estimates of groundwater depletion in India. Nature
2009, 460, 999. [CrossRef] [PubMed]

2. Famiglietti, J.S. The global groundwater crisis. Nat. Clim. Chang. 2014, 4, 945–948. [CrossRef]
3. Polya, D.A.; Middleton, D.R. Arsenic in drinking water: Sources & human exposure. In Best Practice Guide

on the Control of Arsenic in Drinking Water, 1st ed.; Bhattacharya, P., Polya, D.A., Draganovic, D., Eds.;
International Water Association Publishing: London, UK, 2017; Chapter 1; ISBN 9781843393856.

4. Smedley, P.; Kinniburgh, D. A review of the source, behaviour and distribution of arsenic in natural waters.
Appl. Geochem. 2002, 17, 517–568. [CrossRef]

5. Charlet, L.; Polya, D.A. Arsenic in shallow, reducing groundwaters in southern Asia: An environmental
health disaster. Elements 2006, 2, 91–96. [CrossRef]

6. Podgorski, J.E.; Eqani, S.A.M.A.S.; Khanam, T.; Ullah, R.; Shen, H.; Berg, M. Extensive arsenic contamination
in high-pH unconfined aquifers in the Indus Valley. Sci. Adv. 2017, 3. [CrossRef] [PubMed]

7. Islam, F.S.; Gault, A.G.; Boothman, C.; Polya, D.A.; Charnock, J.M.; Chatterjee, D.; Lloyd, J.R. Role of
metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature 2004, 430, 68–71. [CrossRef]

8. Richards, L.A.; Casanueva-Marenco, M.J.; Magnone, D.; Sovann, C.; Van Dongen, B.E.; Polya, D.A.
Contrasting sorption behaviours affecting groundwater arsenic concentration in Kandal Province, Cambodia.
Geosci. Front. 2019, 10, 1701–1713. [CrossRef]

9. Ravenscroft, P.; Brammer, H.; Richards, K. Arsenic Pollution: A GLOBAL Synthesis; Wiley-Blackwell:
Chichester, UK, 2009; p. 588.

10. Polya, D.A.; Lawson, M. Geogenic and anthropogenic arsenic hazard in groundwaters and soils:
Distribution, nature, origin, and human exposure routes. In Arsenic—Exposure Sources, Health Risks,
and Mechanisms of Toxicity, 1st ed.; States, J.C., Ed.; Wiley: Hoboken, NJ, USA, 2016; Chapter 2; pp. 23–60.
ISBN 978-1-118-51114-5.

11. Dittmar, J.; Voegelin, A.; Roberts, L.C.; Hug, S.J.; Saha, G.C.; Ali, M.A.; Badruzzaman, A.B.M.; Kretzschmar, R.
Spatial distribution and temporal variability of arsenic in irrigated rice fields in Bangladesh. 2. Paddy soil.
Environ. Sci. Technol. 2007, 41, 5967–5972. [CrossRef]

12. WHO. Guidelines for drinking-water quality. WHO Chron. 2011, 38, 104–108.
13. Bureau of Indian Standards (BIS). Indian Standard Drinking Water-Specification (Second Revision) IS: 10500;

Bureau of Indian Standards (BIS): New Delhi, India, 2012; p. 16.
14. Wu, R.; Podgorski, J.; Berg, M.; Polya, D.A. Geostatistical model of the spatial distribution of arsenic in

groundwaters in Gujarat State, India. Environ. Geochem. Health 2020. published online. [CrossRef]
15. Bindal, S.; Singh, C.K. Predicting groundwater arsenic contamination: Regions at risk in highest populated

state of India. Water Res. 2019, 159, 65–76. [CrossRef]
16. Podgorski, J.; Berg, M. Global threat of arsenic in groundwater. Science 2020, 368, 845–850. [CrossRef]
17. Kumar, M.; Ramanathan, A.; Rahman, M.M.; Naidu, R. Concentrations of inorganic arsenic in groundwater,

agricultural soils and subsurface sediments from the middle Gangetic plain of Bihar, India. Sci. Total Environ.
2016, 573, 1103–1114. [CrossRef]

18. Shah, B.A. Status of groundwater arsenic pollution of Mirzapur district in Holocene aquifers from parts of
the Middle Ganga Plain, India. Environ. Earth Sci. 2015, 73, 1505–1514. [CrossRef]

19. Ghosh, T.; Kanchan, R. Geoenvironmental appraisal of groundwater quality in Bengal alluvial tract,
India: A geochemical and statistical approach. Environ. Earth Sci. 2014, 72, 2475–2488. [CrossRef]

20. Sailo, L.; Mahanta, C. Arsenic mobilization in the Brahmaputra plains of Assam: Groundwater and
sedimentary controls. Environ. Monit. Assess. 2014, 186, 6805–6820. [CrossRef] [PubMed]

21. Ghosh, S.; Sar, P. Identification and characterization of metabolic properties of bacterial populations recovered
from arsenic contaminated ground water of North East India (Assam). Water Res. 2013, 47, 6992–7005. [CrossRef]

22. Shah, B.A. Role of Quaternary stratigraphy on arsenic-contaminated groundwater from parts of Barak Valley,
Assam, North–East India. Environ. Earth Sci. 2012, 66, 2491–2501. [CrossRef]

http://dx.doi.org/10.1038/nature08238
http://www.ncbi.nlm.nih.gov/pubmed/19675570
http://dx.doi.org/10.1038/nclimate2425
http://dx.doi.org/10.1016/S0883-2927(02)00018-5
http://dx.doi.org/10.2113/gselements.2.2.91
http://dx.doi.org/10.1126/sciadv.1700935
http://www.ncbi.nlm.nih.gov/pubmed/28845451
http://dx.doi.org/10.1038/nature02638
http://dx.doi.org/10.1016/j.gsf.2019.02.010
http://dx.doi.org/10.1021/es0702972
http://dx.doi.org/10.1007/s10653-020-00655-7
http://dx.doi.org/10.1016/j.watres.2019.04.054
http://dx.doi.org/10.1126/science.aba1510
http://dx.doi.org/10.1016/j.scitotenv.2016.08.109
http://dx.doi.org/10.1007/s12665-014-3501-5
http://dx.doi.org/10.1007/s12665-014-3155-3
http://dx.doi.org/10.1007/s10661-014-3890-7
http://www.ncbi.nlm.nih.gov/pubmed/24981878
http://dx.doi.org/10.1016/j.watres.2013.08.044
http://dx.doi.org/10.1007/s12665-011-1472-3


Int. J. Environ. Res. Public Health 2020, 17, 7119 15 of 17

23. Chandra, S.; Ahmed, S.; Nagaiah, E.; Singh, S.K.; Chandra, P. Geophysical exploration for lithological control
of arsenic contamination in groundwater in Middle Ganga Plains, India. Phys. Chem. Earth Parts A/B/C 2011,
36, 1353–1362. [CrossRef]

24. Chauhan, V.S.; Nickson, R.; Chauhan, D.; Iyengar, L.; Sankararamakrishnan, N. Ground water geochemistry of
Ballia district, Uttar Pradesh, India and mechanism of arsenic release. Chemosphere 2009, 75, 83–91. [CrossRef]

25. Nath, B.; Stüben, D.; Mallik, S.B.; Chatterjee, D.; Charlet, L. Mobility of arsenic in West Bengal aquifers
conducting low and high groundwater arsenic. Part I: Comparative hydrochemical and hydrogeological
characteristics. Appl. Geochem. 2008, 23, 977–995. [CrossRef]

26. Shah, B.A. Role of Quaternary stratigraphy on arsenic-contaminated groundwater from parts of Middle
Ganga Plain, UP–Bihar, India. Environ. Geol. 2008, 53, 1553–1561. [CrossRef]

27. Nickson, R.; Sengupta, C.; Mitra, P.; Dave, S.; Banerjee, A.; Bhattacharya, A.; Basu, S.; Kakoti, N.; Moorthy, N.;
Wasuja, M. Current knowledge on the distribution of arsenic in groundwater in five states of India. J. Environ.
Sci. Health Part A 2007, 42, 1707–1718. [CrossRef]

28. McArthur, J.; Ravenscroft, P.; Banerjee, D.; Milsom, J.; Hudson-Edwards, K.A.; Sengupta, S.; Bristow, C.;
Sarkar, A.; Tonkin, S.; Purohit, R. How paleosols influence groundwater flow and arsenic pollution: A model
from the Bengal Basin and its worldwide implication. Water Resour. Res. 2008, 44, W11411. [CrossRef]

29. Kar, S.; Maity, J.P.; Jean, J.-S.; Liu, C.-C.; Nath, B.; Yang, H.-J.; Bundschuh, J. Arsenic-enriched aquifers:
Occurrences and mobilization of arsenic in groundwater of Ganges Delta Plain, Barasat, West Bengal,
India. Appl. Geochem. 2010, 25, 1805–1814. [CrossRef]

30. Maity, J.P.; Nath, B.; Chen, C.-Y.; Bhattacharya, P.; Sracek, O.; Bundschuh, J.; Kar, S.; Thunvik, R.; Chatterjee, D.;
Ahmed, K.M. Arsenic-enriched groundwaters of India, Bangladesh and Taiwan—Comparison of hydrochemical
characteristics and mobility constraints. J. Environ. Sci. Health Part A 2011, 46, 1163–1176. [CrossRef]

31. Paul, D.; Kazy, S.K.; Gupta, A.K.; Pal, T.; Sar, P. Diversity, metabolic properties and arsenic mobilization
potential of indigenous bacteria in arsenic contaminated groundwater of West Bengal, India. PLoS ONE
2015, 10, e0118735. [CrossRef]

32. Saha, D.; Sahu, S. A decade of investigations on groundwater arsenic contamination in Middle Ganga Plain,
India. Environ. Geochem. Health 2016, 38, 315–337. [CrossRef]

33. Sharma, S.; Kaur, J.; Nagpal, A.K.; Kaur, I. Quantitative assessment of possible human health risk associated
with consumption of arsenic contaminated groundwater and wheat grains from Ropar Wetand and its
environs. Environ. Monit. Assess. 2016, 188, 506. [CrossRef]

34. Chatterjee, D.; Roy, R.; Basu, B. Riddle of arsenic in groundwater of Bengal Delta Plain—Role of non-inland
source and redox traps. Environ. Geol. 2005, 49, 188–206. [CrossRef]

35. Shukla, D.P.; Dubey, C.; Singh, N.P.; Tajbakhsh, M.; Chaudhry, M. Sources and controls of Arsenic
contamination in groundwater of Rajnandgaon and Kanker District, Chattisgarh Central India. J. Hydrol.
2010, 395, 49–66. [CrossRef]

36. Shah, B.A. Arsenic-contaminated groundwater in Holocene sediments from parts of middle Ganga plain,
Uttar Pradesh, India. Curr. Sci. 2010, 98, 1359–1365.

37. Hazarika, S.; Bhuyan, B. Fluoride, arsenic and iron content of groundwater around six selected tea gardens
of Lakhimpur District, Assam, India. Arch. Appl Sci. Res. 2013, 5, 57–61.

38. Mukherjee, A.; Fryar, A.E.; Rowe, H.D. Regional-scale stable isotopic signatures of recharge and deep
groundwater in the arsenic affected areas of West Bengal, India. J. Hydrol. 2007, 334, 151–161. [CrossRef]

39. Mukherjee, A.; Fryar, A.E.; Eastridge, E.M.; Nally, R.S.; Chakraborty, M.; Scanlon, B.R. Controls on high
and low groundwater arsenic on the opposite banks of the lower reaches of River Ganges, Bengal basin,
India. Sci. Total Environ. 2018, 645, 1371–1387. [CrossRef]

40. Olea, R.A.; Raju, N.J.; Egozcue, J.J.; Pawlowsky-Glahn, V.; Singh, S. Advancements in hydrochemistry
mapping: Methods and application to groundwater arsenic and iron concentrations in Varanasi, Uttar Pradesh,
India. Stoch. Environ. Res. Risk Assess. 2018, 32, 241–259. [CrossRef]

41. Chidambaram, S.; Thilagavathi, R.; Thivya, C.; Karmegam, U.; Prasanna, M.V.; Ramanathan, A.;
Tirumalesh, K.; Sasidhar, P. A study on the arsenic concentration in groundwater of a coastal aquifer
in south-east India: An integrated approach. Environ. Dev. Sustain. 2017, 19, 1015–1040. [CrossRef]

42. UNEP. Water Quality. In 2005 State of the UNEP GEMS/Water Global Network and Annual Report;
UNEP: Nairobi, Kenya, 2005.

http://dx.doi.org/10.1016/j.pce.2011.05.009
http://dx.doi.org/10.1016/j.chemosphere.2008.11.065
http://dx.doi.org/10.1016/j.apgeochem.2007.11.016
http://dx.doi.org/10.1007/s00254-007-0766-y
http://dx.doi.org/10.1080/10934520701564194
http://dx.doi.org/10.1029/2007WR006552
http://dx.doi.org/10.1016/j.apgeochem.2010.09.007
http://dx.doi.org/10.1080/10934529.2012.598711
http://dx.doi.org/10.1371/journal.pone.0118735
http://dx.doi.org/10.1007/s10653-015-9730-z
http://dx.doi.org/10.1007/s10661-016-5507-9
http://dx.doi.org/10.1007/s00254-005-0011-5
http://dx.doi.org/10.1016/j.jhydrol.2010.10.011
http://dx.doi.org/10.1016/j.jhydrol.2006.10.004
http://dx.doi.org/10.1016/j.scitotenv.2018.06.376
http://dx.doi.org/10.1007/s00477-017-1390-3
http://dx.doi.org/10.1007/s10668-016-9786-7


Int. J. Environ. Res. Public Health 2020, 17, 7119 16 of 17

43. Kumar, A.; Singh, C.K.; Bostick, B.; Nghiem, A.; Mailloux, B.; van Geen, A. Regulation of groundwater
arsenic concentrations in the Ravi, Beas, and Sutlej floodplains of Punjab, India. Geochim. et Cosmochim. Acta
2020, 276, 384–403. [CrossRef]

44. Ambühl, B.; Department Sanitation, Water and Solid Waste for Development, Eawag, Swiss Federal Institute
of Aquatic Science and Technology, 8600 Dübendorf, Switzerland. Unpublished Data Shared by Personal
Communication, 2019.

45. Richards, L.A.; Kumar, A.; Shankar, P.; Gaurav, A.; Ghosh, A.; Polya, D.A. Distribution and Geochemical
Controls of Arsenic and Uranium in Groundwater-Derived Drinking Water in Bihar, India. Int. J. Environ.
Res. Public Health 2020, 17, 2500. [CrossRef]

46. Central Ground Water Board. Groundwater Year Book—2015–2016 Gujarat state and UT of Daman & Diu.
Available online: http://cgwb.gov.in/Regions/GW-year-Books/GWYB-2015-16/GWYB%20WCR%202015-16.pdf
(accessed on 2 May 2019).

47. Central Ground Water Board. Ground Water Quality in Shallow Aquifers in India; Supplemented by further
location-specific data for Andhra Pradesh, Rajasthan, Telengana, Uttar Pradesh directly from provided
by CGWB, 2019–2020; CGWB: Faridabad, India, 2018. Available online: http://cgwb.gov.in/documents/
Waterquality/GW_Quality_in_shallow_aquifers.pdf (accessed on 2 May 2019).

48. Kinniburgh, D.; Smedley, P. Arsenic Contamination of Groundwater in Bangladesh; British Geological Survey:
Nottingham, UK, 2001.

49. Shrestha, B.R.; Whitney, J.W.; Shrestha, K.B. The State of Arsenic in Nepal-2003; National Arsenic Steering
Committee (Nepal) & Environmental and Public Health Organization (Nepal): Kathmandu, Nepal, 2004;
p. 126. ISBN 99933-895-4-4.

50. Nickson, R.; McArthur, J.; Shrestha, B.; Kyaw-Myint, T.; Lowry, D. Arsenic and other drinking water quality
issues, Muzaffargarh District, Pakistan. Appl. Geochem. 2005, 20, 55–68. [CrossRef]

51. Trabucco, A.; Zomer, R. Global Soil Water Balance Geospatial Database. CGIAR Consortium for Spatial
Information. 2010. Published online CGIAR-CSI GeoPortal. Available online: http://www.cgiar-csi.org
(accessed on 15 April 2016).

52. Trabucco, A.; Zomer, R.J. Global Aridity Index (Global-Aridity) and Global Potential Evapo-Transpiration
(Global-PET) Geospatial Database; CGIAR Consortium for Spatial Information. 2009. CGIAR-CSI GeoPortal.
Available online: http://www.cgiar-csi.org (accessed on 11 February 2015).

53. Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas.
Int. J. Climatol. 2017, 37, 4302–4315. [CrossRef]

54. Hengl, T.; De Jesus, J.M.; Heuvelink, G.B.; Gonzalez, M.R.; Kilibarda, M.; Blagotić, A.; Shangguan, W.;
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