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Abstract 23 

Exposure assessment of pesticides has substantially improved over time, with methods 24 

that now include a combination of advanced analytical techniques and fate/transport models to 25 

evaluate their spatio-temporal distribution. However, current regulatory environmental risk 26 

assessment considers thresholds from laboratory studies completed under standardized 27 

conditions that do not reflect environmental dynamics. Using the GUTS model framework, we 28 

predicted the impact of time-varying pesticide exposures on the survival of gammarids in a small 29 

agricultural stream.  LP50 values were used as an additional metric for assessing risks (defined in 30 

GUTS as the multiplication factor applied to the concentration time series to induce 50% 31 

mortality by the end of exposure). Although real-case exposures to individual pesticides were 32 

predicted to produce little to no impact on survival, the LP50 values indicate acute (LP50≤100) 33 

and/or chronic (LP50≤10) toxicities for azoxystrobin, chlorpyrifos, diazinon, and imidacloprid, 34 

while risk to propiconazole exposure was considered very low (LP50≫100). Finally, the model 35 

was extended to reflect mixture toxicity via concentration addition. It predicted risks under acute 36 

and chronic exposures to organophosphates and neonicotinoids. Given that gammarids are 37 

simultaneously exposed to multiple chemicals and other stressors throughout their lifetime, a 38 

decline in survival probabilities due to chemical stress can likely influence their overall fitness. 39 

We recognize that some assumptions require validation, but our work included a level of realism 40 

that can assist risk managers when evaluating the cumulative consequences of chemical 41 

exposure.   42 
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1. Introduction 46 

Pesticide use in agriculture has offered a wide array of benefits, including improvements 47 

in crop production (i.e. reduce crop failure) and provision of fresh goods that are available to 48 

consumers at reasonable rates 1. However, the use of these chemicals has been associated with 49 

several environmental issues, including biodiversity loss in terrestrial and aquatic environments 50 

2. Therefore, many jurisdictions have established regulatory standards to limit the unintended 51 

consequences of pesticide exposure 1, 2. These regulations are typically based on environmental 52 

risk assessment that incorporate information on the fate and transport (exposure) and 53 

ecotoxicological effects of a chemical on exposed organisms 3.  54 

Over the last decade, tremendous advances in analytical methodology and 55 

instrumentation improved the acquisition of reliable exposure data in various environmental 56 

matrices. Together with well-established environmental models, the occurrence and distribution 57 

of pesticides and other trace organics have been assessed in many watersheds around the globe 4. 58 

However, the effects data remained focused on laboratory exposure studies that are typically 59 

completed under standardized conditions (i.e., single contaminant, constant concentration, fixed 60 

exposure duration, and a few model organisms) 5.  Assessment factors are then employed to 61 

address some of the uncertainties in lab exposures, including species specificity 6 and lab-to-field 62 

extrapolation. However, the assessment factor values are somewhat arbitrary and do not 63 

explicitly account for the dynamics in exposure conditions that have been made available via 64 

measured (i.e., analytical detections) or predicted (i.e., fate/transport models) data sets 7, 8. 65 

Merging toxicokinetics (TK) and toxicodynamics (TD) models was suggested as a 66 

potential tool that can improve the environmental risk assessment of trace organic chemicals 7, 8. 67 

TK describes the time course of concentration within the whole organism or at the target site of 68 
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action resulting from exposure to fluctuating levels in the environment, and TD describes the 69 

damage dynamics associated with this exposure 9. Combining these two "modules" can offer the 70 

possibility of linking the impacts of exposure to relevant effects endpoints over time 3, and this 71 

approach is particularly advantageous for assessing the effects of pesticide exposures in 72 

receiving environments. Pesticide concentrations are especially more dynamic than wastewater-73 

derived substances (e.g., pharmaceuticals and personal care products) due to a significant 74 

interplay between climatological conditions and agricultural management practices that impact 75 

their fate and transport in the environment 10.  76 

Despite the advantage of TKTD modelling, it continues to be underutilized within the 77 

context of environmental risk assessment 5 due to several reasons. As indicated earlier, 78 

ecotoxicological assessments are firmly rooted in standardized lab studies, and the use of 79 

mechanistic modelling within this field is not yet a common practice. In fact, guidance 80 

frameworks associated with mechanistic effects modelling have just been made available. For 81 

example, the European Food and Safety (EFSA) opinion on good practices in effects modelling 82 

was only released in 2014 11, and their opinion specific to TKTD as an effective tool for 83 

regulatory risk assessment of pesticides in aquatic organisms was  provided in 2018 12. Also, the 84 

use of TKTD models requires calibration for each compound-species combination, and until 85 

recently, a software with efficient and standardized calibration technique was not available. 86 

Hence, TKTD parameters are scarce compared to the fate and transport parameters associated 87 

with chemical exposure (e.g., biodegradation/photolysis rate constants, sorption coefficients). 88 

Similar to the way fate and transport models have evolved and gained their place as a useful tool 89 

in risk assessment, it is logical that we start employing mechanistic effects modelling (such as 90 

TKTD) to obtain its true benefits in ecotoxicology 5, 7, 13.  91 
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In this study, we evaluated the suitability of a TKTD model, specifically the General 92 

Unified Threshold model for Survival (GUTS) 14, to address the impacts of dynamic pesticide 93 

exposure on the survival of gammarids in the field. We explored the impact of substances that 94 

have been known to contribute to "unsatisfactory" or "bad" water quality conditions based on the 95 

acute risk quotient profiles reported in small agricultural streams in Switzerland 15. The list 96 

includes the neonicotinoid insecticides imidacloprid and thiacloprid; the organophosphate 97 

insecticides diazinon, chlorpyrifos, and chlorpyrifos-methyl; and the fungicides azoxystrobin and 98 

propiconazole. Since there are no survival data in the field to validate the simulations, we 99 

explored the predictions based on different survival model representations and GUTS parameter 100 

sets derived from various laboratory studies. We further hypothesized that the simultaneous 101 

exposure to multiple substances would exacerbate the survival of gammarids; hence, we 102 

extended the model to assess the impacts of pesticide mixtures with the same toxic mode of 103 

action using a simple application of the concentration addition concept. Finally, we compared the 104 

model predictions to current water quality standards for aquatic ecosystem protection in 105 

Switzerland and in Europe.   106 

2. Materials and Methods 107 

2.1. Exposure data and compound selection 108 

The availability of well-resolved concentration profiles is an essential requirement when 109 

predicting impacts of pesticide exposure on the survival of gammarids in the field. In 2015, the 110 

exposure profiles of pesticides in five small streams (mainly agricultural) were assessed from 111 

March to August based on time-proportional composite samples collected every 12 hours 15. Out 112 

of these streams, Eschelisbach was selected as a catchment representing intensive agriculture, 113 
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and we have also observed a higher detection frequency of our target compounds compared to 114 

other sites.  115 

The monitoring program analyzed >200 substances for target screening. However, it 116 

appeared that stream concentrations of diazinon, chlorpyrifos, chlorpyrifos-methyl, thiacloprid, 117 

nicosulfuron, and azoxystrobin showed potential adverse effects on aquatic invertebrates at 118 

Eschelisbach. Conveniently, most of these compounds have raw gammarids survival data 119 

available that were employed to calibrate the GUTS parameters (reference studies listed in Table 120 

S1). Chlorpyrifos-methyl and thiacloprid did not have their unique survival data, but information 121 

for other compounds with the same toxic mode of action was available. No survival data is 122 

available for nicosulfuron nor other compounds with a similar toxic mode of action and was 123 

therefore not included in the study. Finally, we included propiconazole due to the availability of 124 

raw survival data for gammarids. It also provides additional insights into our analyses by 125 

confirming that the environmental concentrations of propiconazole were indeed unlikely to cause 126 

adverse effects in invertebrates as what was initially determined for Eschelisbach 15. 127 

2.2. GUTS model – a brief background  128 

The GUTS model predicts the survival of an organism after accruing and recovering from 129 

the damage (i.e., TD) due to the bioaccumulation, distribution, biotransformation, and 130 

elimination (i.e., TK) of chemicals in the organism 14. Its mathematical framework was first 131 

published in 2011 and exemplifies the two major assumptions employed in survival modelling, 132 

the (1) stochastic death (SD) and individual tolerance (IT) concepts. The SD assumption suggests 133 

that individuals are identical and have a chance to die upon chemical stress, and this probability 134 

increases with increasing internal exposure once some threshold damage has been exceeded. The 135 

IT approach assumes that individuals have differences in their sensitivity to chemical stress, and 136 
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there will be mortality when the damage exceeds the individual’s thresholds. The representation 137 

of thresholds (a constant value in SD vs. a model distribution within a cohort of individuals in 138 

IT), and mortality rates (as a probability in the SD model vs. a specific event in the IT model) are 139 

the primary differences in their mathematical formulations (see Jager and Ashauer 14 for further 140 

details).  141 

The TK and TD processes are modelled separately in GUTS. However, since most of the 142 

exposure data available do not include the whole-body concentrations (i.e. internal 143 

concentrations) that are required to calibrate the TK parameters, GUTS is also available in its 144 

reduced form (GUTS-RED) that lumps TK with damage. A user-friendly software (openGUTS) 145 

that incorporates this simplification has been made publicly available recently and was used for 146 

the simulations (see https://openguts.info).  147 

To effectively employ the model, the parameters must be calibrated first using lab-derived 148 

survival data. Note that the raw survival data for chlorpyrifos, diazinon, imidacloprid, and 149 

propiconazole have already been used to fit GUTS parameters in previous studies 16-20. However, 150 

they were rarely utilized to predict gammarids survival in real environments except for a study by 151 

Ashauer, et al. 20 on a single compound (diazinon). Also, the GUTS model formulations employed 152 

within these studies either have slightly different mathematical representations or the parameter 153 

confidence intervals were not provided. To harmonize the process of parameter calibration, 154 

including the provision of confidence intervals, we re-fitted the parameters for all compounds 155 

using the optimization algorithms embedded within the openGUTS in Matlab (updated Dec 2019).  156 

2.2.1. GUTS model parameterization 157 

Specific equations that represent both GUTS-RED-SD/IT formulations are not included 158 

here as they are described in detail in  Jager and Ashauer 14 or http://openguts.info. Briefly, the 159 

about:blank
about:blank
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scaled damage, 𝐷𝐷𝑤𝑤(𝑡𝑡) (ng/L) is referenced to the external concentration 𝐶𝐶𝑤𝑤(𝑡𝑡) (ng/L), and the 160 

overall dynamics is dominated by a single rate constant, 𝑘𝑘𝑑𝑑 (1/d). 𝐷𝐷𝑤𝑤(𝑡𝑡) is then used to calculate 161 

survival probabilities under SD or IT conditions.  162 

For GUTS-RED-SD formulation, the hazard rate (ℎ𝑆𝑆𝑆𝑆(𝑡𝑡)) is first calculated, which is a 163 

function that increases proportionally with the killing rate constant, 𝑏𝑏𝑤𝑤 (1/d), once the threshold 164 

𝑚𝑚𝑤𝑤,𝑆𝑆𝑆𝑆 (ng/L) is exceeded. The hazard rate is then used to estimate the survival probability (𝑆𝑆𝑆𝑆𝑆𝑆) 165 

by integrating ℎ𝑆𝑆𝑆𝑆 over the exposure duration. The GUTS-RED-IT estimates the probability of 166 

an individual with a threshold value, 𝑚𝑚𝑤𝑤,𝐼𝐼𝐼𝐼 (ng/L), to survive until a particular day within the 167 

exposure period. This threshold follows a log-logistic distribution described by the spread-factor, 168 

𝐹𝐹𝑠𝑠 (-). The background hazard (ℎ𝑏𝑏)was pre-fitted to the control data for both SD and IT 169 

simulations and was considered constant over time.  170 

The raw survival data from previously published studies were used to calibrate the 171 

parameters 𝑘𝑘𝑑𝑑 , 𝑚𝑚𝑤𝑤,𝑆𝑆𝑆𝑆, 𝑏𝑏𝑤𝑤, 𝑚𝑚𝑤𝑤,𝐼𝐼𝐼𝐼, and 𝐹𝐹𝑠𝑠 (Table S1). The software has its built-in optimization 172 

methods that combine grid-search, genetic, and likelihood profiling algorithms that not only 173 

ensure a robust parameterization but also generate confidence intervals on model predictions and 174 

allow visual inspections of the parameter space. The calibrated parameters are then used to 175 

estimate the survival probabilities of gammarids in the field using the monitoring data as inputs 176 

for 𝐶𝐶𝑤𝑤(𝑡𝑡) (data from 15).  The calibrated parameters for chlorpyrifos and imidacloprid were 177 

employed for chlorpyrifos-methyl and thiacloprid respectively due to the lack of available 178 

survival data specific for these compounds. At present, it is not possible to validate the calibrated 179 

parameter predictions for all compounds due to the lack of independent survival data. However, 180 

two sets of survival data from two independent studies for chlorpyrifos are available (Table S1). 181 
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For this compound, we explored the differences in model parameters when they were calibrated 182 

using (1) each dataset separately or (2) when two datasets were combined.  183 

Under real-case exposure scenarios, it is likely that the GUTS predictions will show no 184 

impact on survival as the field concentrations tend to be lower than the acute concentrations 185 

employed in laboratory studies that measures gammarids survival. A useful information provided 186 

by openGUTS is the derivation of an LPx value defined as the multiplication factor applied to the 187 

concentration profile before an x % reduction in survival is observed at the end of the exposure. 188 

Here, we examined the LP50 values to be consistent with the EFSA recommendations. EFSA 189 

further suggests LP50 values of 100 or 10 as reasonable thresholds for acute or chronic risks, 190 

respectively (Tier 2C1 methodology 12). 191 

2.3. Survival predictions of pesticides in mixtures 192 

Within the GUTS framework, mixture toxicity can be approached via (1) body-residue 193 

addition, (2) damage addition, or (3) survival probability multiplication 14. The first two 194 

approaches reflect the classical “concentration addition” (CA) concept in mixture toxicity 195 

assessment, whereas survival probability multiplication mirrors “independent action”. In body-196 

residue addition, chemicals are assumed to act on the same target site and create the same 197 

amount of damage. Hence, the internal concentrations (body-residue) of the chemicals can be 198 

expressed with respect to each other. Damage addition assumes that chemicals produce the same 199 

form of damage, but the degree of this damage varies relative to each other. For example, 200 

organophosphates and carbamates both inhibit acetylcholinesterase but the magnitudes of the 201 

overall damage may be different. In this case, a damage potency factor is used as a weighting 202 

factor based on the level of damages produced by two different chemicals. In survival 203 

multiplication approach, the chemicals of interest act on different target sites and hence, different 204 
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forms of damages are expressed. The survival probabilities are assumed independent and can 205 

then be multiplied.  206 

In openGUTS, the two forms of addition options cannot be differentiated since the 207 

reduced form of GUTS is implemented. Hence, we opted for the addition of exposure 208 

concentrations for assessing mixture toxicity (i.e., concentration addition). First, we grouped the 209 

compounds according to their toxic mode of action (organophosphates or neonicotinoids) and 210 

represented the 𝐶𝐶𝑤𝑤(𝑡𝑡) of each compound in terms of their toxic equivalence relative to a 211 

reference compound. Hence, in the mixture simulation, only a single set of GUTS parameters is 212 

employed (i.e., that of a selected reference compound). Chlorpyrifos and imidacloprid were used 213 

to represent the organophosphate and neonicotinoid groups, respectively. The toxic equivalence 214 

of a compound relative to the reference was calculated using the following equation:  215 

𝐸𝐸𝐹𝐹𝑖𝑖 =  𝐸𝐸𝐸𝐸50𝑔𝑔𝑔𝑔𝑔𝑔,𝑟𝑟𝑔𝑔𝑟𝑟

𝐸𝐸𝐸𝐸50𝑔𝑔𝑔𝑔𝑔𝑔,𝑖𝑖
     Eqn. 1 216 

𝐶𝐶𝑤𝑤,𝑖𝑖
∗ = 𝐸𝐸𝐹𝐹𝑖𝑖𝑖𝑖 × 𝐶𝐶𝑤𝑤,𝑖𝑖      Eqn. 2 217 

where EF (-) is the equivalence factor, 𝐸𝐸𝐶𝐶50𝑔𝑔𝑔𝑔𝑔𝑔,𝑟𝑟𝑔𝑔𝑟𝑟 and 𝐸𝐸𝐶𝐶50𝑔𝑔𝑔𝑔𝑔𝑔,𝑖𝑖 are the geometric means of 218 

EC50s (µg/L) of the reference compound and compound 𝑖𝑖, respectively. EC50s were obtained 219 

from the database generated by De Zwart 21 which contains information on the toxicity test 220 

endpoints, toxic mode of action, and general descriptors of toxicity tests of >80,000 chemicals 221 

(Tables S5/S6). Data specific to Gammarus spp were selected, except for chlorpyrifos-methyl, 222 

imidacloprid, and thiacloprid where no gammarid-specific data were available. For these 223 

compounds, acute EC50s reported for arthropods were used instead. EF is then multiplied by the 224 

measured stream concentration of compound 𝑖𝑖 to obtain its toxic equivalence (𝐶𝐶𝑤𝑤,𝑖𝑖
∗ ). If the 225 

compounds have similar modes of action, then the total concentration can be calculated using 226 

concentration addition (Eqn. 3).  227 
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𝐶𝐶𝑤𝑤,𝐼𝐼
∗ = ∑ 𝐸𝐸𝐹𝐹𝑖𝑖 × 𝐶𝐶𝑤𝑤,𝑖𝑖

∗𝑗𝑗
1       Eqn. 3 228 

We also explored an alternative to estimating toxic equivalence (EF) using the 96h-LC50 229 

estimates provided by openGUTS. For organophosphates (chlorpyrifos and diazinon), we found 230 

a two-fold difference between EFs calculated using Eqn. 1 and  De Zwart 21 database compared 231 

to EFs estimated using GUTS LC50 (Table S6). Hence, there is a potential to use GUTS for 232 

estimating relative potencies, but not all target chemicals will have raw survival data required to 233 

run the GUTS model. The suitability of the concentration addition approach using Eqn. 1 was 234 

tested for diazinon by comparing the survival predictions (1) when its uniquely calibrated GUTS 235 

parameters are employed and (2) when it is expressed as chlorpyrifos-equivalence. 236 

3. Results and Discussion 237 

The goal of this paper is to provide predictions on the likely impacts of mixtures on 238 

gammarids survival based on real-case exposures stemming from pesticide pollution. Many steps 239 

were taken before we achieved the predictions we deemed necessary to address our study 240 

objectives. The results of using the GUTS modelling framework are described subsequently. 241 

We first investigated the predictions when the individual and combined survival data 242 

were used to calibrate the parameters for chlorpyrifos. It was evident that the two independent 243 

survival datasets for chlorpyrifos produced different survival predictions, albeit the model 244 

uncertainty intervals overlap (Fig. 1a). Note, however, that the values for all calibrated 245 

parameters are similar except for the damage threshold (𝑚𝑚𝑤𝑤,𝑆𝑆𝑆𝑆) with magnitudes differing by ~2 246 

orders of magnitude (Table S1). This result suggests that the toxic dynamics of chlorpyrifos 247 

towards gammarids from both studies are similar (i.e., dominant and killing rates constants 248 

differed by 1.19-2.3-fold only), but their sensitivities vary widely. This is not a rare observation 249 

as gammarids collected at the same site but at different periods (April vs. October) can be ~31-250 
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fold different in their sensitivities towards the same chemical 22. A similar finding was 251 

encountered in other macroinvertebrates such as mayflies 23. Our observation is further supported 252 

by a 10-fold variation in the 48h acute EC50s reported by Rubach, et al. 24 and Ashauer, et al. 17. 253 

  254 

 255 

Figure 1. a) GUTS-SD Survival probability predictions for chlorpyrifos using the calibrated 256 

parameters derived from the individual and combined survival data of  Ashauer, et al. 17 and 257 

Rubach, et al. 25. The stream concentrations were measured at Eschelisbach from March to 258 

August 2015 (see Spycher, et al. 15. b) LPx curves describe the required increase in exposure 259 

time series to produce a certain effect on survival. Depending on which GUTS parameter sets 260 

were employed, increasing the concentrations by a factor of <10-20 results to a survival 261 

probability of 50%.   262 
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Although both model calibration results are considered satisfactory, it appears that the 263 

parameters derived when using the survival data from Ashauer, et al. 17 were better than that of 264 

Rubach, et al. 25 based on the model performance evaluators recommended by EFSA 12 (Tables 265 

S1/S2, Fig. S2).  The use of log-likelihood values or other classical criteria based on the 266 

loglikelihood (e.g., Akaike Information Criterion (AIC)) to compare model adequacy in 267 

representing the survival data sets are not applicable here since their values depend on number 268 

and absolute quantities of the underlying data. Given that the Ashauer, et al. 17 data were from 269 

varying exposures (pulsed) and Rubach, et al. 25 performed their study under constant exposures, 270 

one might be convinced to use the parameters derived from the former, especially when 271 

predicting the effects under fluctuating exposures 26. However, we argue that this choice may 272 

underestimate the variabilities that are inherent among laboratory studies, including differences 273 

in age, sex, diet, and natural habitat of the test organisms.  274 

A primary advantage of the GUTS model framework is its ability to combine different 275 

survival data from different studies. However, the calibrated internal threshold parameter derived 276 

using the combined survival datasets appeared to be driven more by the Ashauer, et al. 17 data, 277 

likely due to their more intensive experimental design (i.e., survival data collected over 20 days 278 

vs. 4 days in Rubach, et al. 25). Nevertheless, we deem this approach (i.e., combined survival 279 

data) to be more robust and appropriate since the variabilities in the methodologies associated 280 

with each lab study are well-integrated. It can also be observed that the confidence range of the 281 

calibrated threshold value was considerably wider for the combined data than the one resulting 282 

from the single data sets (Table S1). 283 

3.1. LP50 analysis and influence of exposure duration and magnitude on predictions 284 
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Based on LP50, the exposure profile of chlorpyrifos even at relatively low concentration 285 

can potentially induce acute and chronic toxicities to gammarids, similar to what was described 286 

by Spycher, et al. 15 about the same site using the risk quotient approach. Specifically, increasing 287 

the concentrations by only a factor of <10-20 (depending on which GUTS parameters are 288 

employed) will reduce the average survival of gammarids to 50% at the end of the exposure 289 

period (180 days) (Fig. 1b). Interestingly, it is during the lower concentration but relatively more 290 

prolonged pulsed exposure that mostly contributed to the decline in gammarids' survival chances 291 

(Fig. 1a). It is possible then that short-duration spills (0.5 d here) which tend to occur at higher 292 

magnitudes, may not be as damaging to gammarids compared to longer duration exposure (up to 293 

6 days in this study). This rapid exposure does not likely provide sufficient time for the chemical 294 

to be bioaccumulated in gammarids as what has been estimated when the internal concentrations 295 

of wastewater-derived micropollutants were modelled at various spill conditions 27. Hence, high 296 

magnitude but short-duration spikes in river concentrations will result to lower body residue and 297 

little tissue damage as predicted in this study. Unfortunately, we do not have the measured 298 

internal concentrations of gammarids in the field to confirm this hypothesis. However, we 299 

predicted the whole-body burden using a separate TK model with uptake and rate constants 300 

derived from a previous study (Fig. S1, Table S8). Indeed, our TK predictions showed that 301 

exposure to low concentrations but at a longer duration produced higher internal concentrations 302 

in gammarids than high concentration-short duration exposure. Of course, the combination of 303 

exposure duration and the magnitude of exposure ultimately determines the total damage (as 304 

illustrated in Fig. S6), but our analysis is precisely the type of assessment that can be achieved 305 

via the TKTD approach. By explicitly linking the predicted effects to the fluctuations in pesticide 306 

concentrations, one can develop hypotheses on the likely hazardous exposure conditions. More 307 
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importantly, this process incorporates effects as a function of time, which is often missed in 308 

traditional risk assessment.   309 

3.2. Survival predictions upon exposure to other pesticides – SD vs IT 310 

Up to this point, we have only presented the survival predictions using the GUTS-RED-311 

SD approach. We additionally explored the primary differences in IT and SD predictions for 312 

other compounds. The openGUTS predictions of gammarids' survival upon exposure to varying 313 

concentrations of azoxystrobin and diazinon are illustrated in Fig. 2 (see Fig. S3 for imidacloprid 314 

and propiconazole). As laid down in the ESFA opinion, the suitability of SD and IT in predicting 315 

gammarid survival would ideally be tested with validation data through experimentally observed 316 

survival of gammarids under time-variable exposure. Since such validation data were not 317 

available for the chemicals analysed in this study, the second-best option is to describe the 318 

suitability of SD and IT predictions based on the quality of the calibrated parameters (Tables 319 

S1/S2, Fig. S2). Recall that we re-fitted these parameters to the survival data from published 320 

studies and have reached the same conclusions: for diazinon, the SD parameters are better 321 

constrained than IT parameters 16, the opposite was observed for imidacloprid 18, and either 322 

representation appears to be suitable for propiconazole 19. The GUTS parameters for 323 

azoxystrobin are reported for the first time (raw survival data in Table S7), and it appeared that 324 

the SD represents the survival slightly better than IT (Fig. S2, Tables S1). Note, however, that 325 

the survival data for azoxystrobin are not as extensive as other pesticides where GUTS 326 

parameters have been calibrated, so caution must be exercised as large prediction uncertainties 327 

are expected. 328 
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 329 

Figure 2. GUTS-RED-SD/IT predictions for azoxystrobin and diazinon. Recently approved acute 330 

and chronic environmental quality standards (EQS) for pesticides in Swiss surface water are 331 

indicated along with the regulatory acceptable concentrations (RAC) from Swiss pesticide 332 

registration dossiers 28. Uncertainty in the LP50 predictions results from the propagation of the 333 

parameter uncertainty. Acute and chronic risks are expected when LP50 values are <100 and 334 

<10 respectively. Predictions for imidacloprid and propiconazole are presented in Fig. S3. 335 

 336 

There have been many attempts to differentiate the assumption that dominates the 337 

survival upon exposure to chemical stress 29-31. Indeed, these studies have found it challenging to 338 

identify which of the mechanisms describe survival better, and extending these hypotheses to 339 
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real environments with different confounding factors makes it even more difficult to determine 340 

the exact mechanism of survival due to chemical stress. There have been indications in the 341 

literature that survival is driven more by the SD process, not only at the organism level 32, 33, but 342 

also in describing population dynamics 34.  However, there is a large consensus that SD and IT 343 

are only extreme, special cases of survival mechanisms 14, 35. Hence, it is likely that true survival 344 

falls between these two assumptions, and if one is to decide on the dominant mechanism, the 345 

choice must be supported with enough evidence (e.g., additional lab studies, literature) 29, 31. 346 

Furthermore, the calculated LP50 curves show large differences between SD and IT 347 

model representations (Fig. 2, Fig S3), although the calibration quality appears very similar (Fig. 348 

S2). It is not surprising that despite similar calibration quality, SD and IT model predictions can 349 

show these differences. This has not yet been mechanistically demonstrated for LP𝑥𝑥 values, but 350 

within the context of model validation, it has been reported that often, one of the SD or the IT 351 

models show a much better match to the validation data (e.g. Focks, et al. 36).  For our study, we 352 

presented the results of both models (Fig. 2) as we lack the measured data to confirm whether the 353 

survival of gammarids upon exposure to these chemicals in the field fits the SD or IT (or neither) 354 

assumptions.  355 

Regardless of which models are employed, it initially appears that there would be little to 356 

no impact on survival upon exposure to individual chemicals. However, it is important not to 357 

conclude the GUTS analysis here, but rather extend the assessment to infer the level of exposure 358 

needed before a certain effect may be observed (i.e., through LP𝑥𝑥 analysis). After examining the 359 

LP𝑥𝑥 curves, some of these compounds can potentially have damaging effects on gammarids 360 

(LP50 values in Table S3). For instance, the LP50 for azoxystrobin is <100 and <10 under SD and 361 

IT predictions respectively, suggesting that this chemical may be both acutely and chronically 362 



19 
 

 

toxic to gammarids at the end of the exposure. The concentration dynamics of diazinon in the 363 

field suggest acute toxicity (LP50<100 for both SD and IT predictions), but for imidacloprid 364 

acute (LP50<100) toxicities may be expected depending on which model formulation is used (SD 365 

vs. IT, see Table S3). The risks of exposure to propiconazole appear to be very minimal as LP50 366 

values are much greater than 100. Diazinon was banned in Switzerland as a plant protection 367 

product in 2013 but is still registered as a veterinary pharmaceutical. It is likely that the spike in 368 

diazinon concentration in Eschelisbach is driven by a rain event as the total sum of pesticides 369 

shortly after this event was highly elevated (see SI in Spycher, et al. 15). Given that diazinon 370 

degrades rapidly in soil 37, the source of diazinon might have been due to veterinary uses or from 371 

an unauthorized application in the field. Imidacloprid and propiconazole were frequently 372 

detected, but the exposure concentrations are not large enough to result in acute toxicities upon 373 

exposure. 374 

3.3. Mixture impacts – the case of organophosphates and neonicotinoids 375 

Our predictions showed that exposure to individual compounds may not produce 376 

substantial impacts on survival (e.g., imidacloprid, Fig. 2), but toxicity may arise once chemicals 377 

are in mixtures. There are several ways to address mixture toxicity, and a straightforward 378 

approach is via concentration addition (CA). Here, we assumed that if the chemicals have the 379 

same mechanism of action and similar slopes in classical dose-response curves, then one 380 

compound can be represented in terms of the other based on their relative potency (expressed as 381 

EF in Eqn. 1). In addition to method simplicity, CA is advantageous within the context of the 382 

GUTS modelling framework, especially for compounds with field monitoring data that do not 383 

have chemical-specific survival data to parameterize GUTS. Chlorpyrifos-methyl and 384 

thiacloprid, for instance, were deemed as relevant compounds contributing to high risk of 385 
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exposure to invertebrates at our site (see acute toxic profiles in Spycher, et al. 15), but there are 386 

no available survival data specific for gammarids. We recognize, of course, that concentration 387 

addition is a major assumption employed here, but there are no available studies to date that 388 

asses the “relative internal damage” of pesticides belonging in the same toxic mode of action so 389 

we cannot assess the possibilities of using body-residue and/or damage addition within GUTS.  390 

To test whether the CA hypothesis is acceptable, we applied this concept to diazinon by 391 

expressing it as chlorpyrifos-equivalence. Both compounds are organophosphates that disrupt the 392 

function of acetylcholinesterase in invertebrate nervous system. We estimated the impacts on 393 

gammarid survival using the GUTS parameters for chlorpyrifos and compared the predictions 394 

when diazinon-specific GUTS parameters were employed. As shown in Fig. 3, we observed that 395 

the CA hypothesis is acceptable under the SD predictions (uncertainties overlap). The survival 396 

predictions via the IT were also similar for both presentations (Fig. S4).  397 

 398 

 399 

Figure 3.  a) Survival predictions for diazinon when its own GUTS parameters were employed 400 

(blue) in comparison to when the exposure concentrations were expressed as chlorpyrifos 401 

equivalence and chlorpyrifos GUTS parameters were employed (green). b) LP50 values from 402 
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both models are very similar and suggest an acute risk of exposure to diazinon (LP50 <100). 403 

Only the SD predictions are shown here; IT predictions are found in Fig. S4. 404 

 405 

When ultimately evaluating the risks, the LP𝑥𝑥 predictions can provide indications of the 406 

severity of the exposure. Here, expressing diazinon as chlorpyrifos equivalence and using 407 

chlorpyrifos GUTS-SD parameters for survival predictions result in similar LP50 as when 408 

diazinon-specific parameters were employed (Fig. 3b). However, a four-fold difference was 409 

observed between GUTS-SD and GUTS-IT LP50 values (Table S3). A previous study claims that 410 

gammarids survival after exposure to diazinon follows the SD process, but it is again challenging 411 

to select the dominant mechanism of survival, especially when examining the effects of 412 

mixtures. Nevertheless, our analysis of LP50 under the GUTS-SD representation suggests that 413 

CA may be sufficient for the purposes of our study.  414 

A potential issue in this approach may be associated with the selection of a compound 415 

that represents the pesticide group of interest. For simplicity, we selected chlorpyrifos over 416 

diazinon as it employed more than one raw survival data sets available for model calibration, and 417 

it is also structurally very similar to chlorpyrifos-methyl. When we then evaluated the mixture 418 

effects of the three organophosphates, our predictions suggest some impact on gammarid 419 

survival at the end of the exposure period (Fig 4). Specifically, the mixture exposures were 420 

predicted to be both acutely and chronically toxic to gammarids, and it only requires up to ~5 421 

times the exposure concentrations before the survival probability drops to 50% (see LP50, Fig. 422 

4b). This is a highly probable event as chlorpyrifos and chlorpyrifos-methyl were detected at 423 

concentrations higher than what had been observed at our site (e.g., up to 750 ng/L 38). When we 424 

further explored the changes in survival probabilities under varying exposure concentration 425 
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multiplications (MF), the overall decline in predicted survival probabilities corresponds to the 426 

spikes in stream concentrations. Obviously, higher concentration peaks led to larger drops in 427 

survival probabilities, but with mixture toxicity assessment (in time series), we can identify the 428 

compound which mostly contributed to the overall changes in survival (i.e., chlorpyrifos-methyl 429 

in the case of organophosphates).  430 

Note that an additional uncertainty in the model prediction is associated with the 431 

calculation of toxic equivalence (EF). When EFs were estimated based on all arthropod acute 432 

EC50 data, diazinon and chlorpyrifos-methyl were found to be 0.5 and 2.1 times as toxic to 433 

chlorpyrifos (vs. EFs of 0.03 and 0.9 respectively in the current predictions). These EF values 434 

resulted to survival predictions that were more severe than what was illustrated in Fig. 4a (see 435 

Fig. S5), but obviously, gammarid-specific data were deemed more appropriate for the study. 436 

Nevertheless, this observation alludes to the flexibility for mixture modelling within the GUTS 437 

framework where EFs can be adjusted based on the availability of EC50 data associated with the 438 

species of interest.  439 
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  440 

Figure 4. GUTS predictions for a mixture of 2 groups of insecticides with different toxic modes 441 

of action. a) exposure concentration expressed in the as equivalent concentration. For 442 

organophosphates, the GUTS parameters for chlorpyrifos (combined survival data) were 443 

employed and the stream concentrations were converted to chlorpyrifos (chlor) equivalence 444 

based on the EC50s (see section 2.3). Diazinon (diaz) and chlorpyrifos-methyl (chlorm) are 0.03 445 

and 0.9 times as toxic as chlorpyrifos. Imidacloprid (imida) was employed as the reference 446 

compound for neonicotinoids. The EF thiacloprid (thia) is 0.4 (Table S5). b) evaluation of 447 

survival probabilities when different multiplication factors (MF) were imposed on the exposure 448 

time series. With mixture toxicity assessment illustrated here, we can hypothesize the compound 449 

that mostly contributed to the cumulative drop in survival. 450 

 451 
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 It has been reported that there are minor differences in the relative toxicity of 452 

neonicotinoids, and they tend to be additively or synergistically toxic together 39. We further 453 

confirmed the applicability of the CA hypothesis for imidacloprid and thiacloprid by comparing 454 

the GUTS parameters derived by Focks, et al. 36 for mayfly (Cloeon dipterum). When the values 455 

were compared on a molar basis, we found that the mortality-related parameters for both 456 

compounds, 𝐹𝐹𝑠𝑠, 𝑚𝑚𝑤𝑤, and 𝑏𝑏𝑤𝑤, only differed by a factor of 0.4,1.5, and 7 respectively (i.e., if 457 

toxicity are similar, these parameters should also be similar). Hence, the CA approach can be 458 

applied to gammarids when exposed to a mixture of neonicotinoids by expressing the total 459 

concentrations as imidacloprid-equivalence. Overall, it appears that only a minimal impact on 460 

survival is predicted at the end of the exposure, but the corresponding LP50 values indicate acute 461 

(LP50<100) and chronic risks (LP50<10). Although thiacloprid is not as toxic to invertebrates as 462 

imidacloprid (EF=0.4), it occurs at higher environmental concentrations and thus was observed 463 

to contribute more to the predicted risk.  464 

We further hypothesize that the combined exposure to organophosphates and 465 

neonicotinoids have detrimental effects on gammarids. Low biodiversity and the absence of 466 

several sensitive species at Eschelisbach have already been reported, indicating that this stream is 467 

indeed heavily impacted not only in the year we made the predictions but also at another year as 468 

documented in 2017 40. Given that chemical exposure is just one of the stressors that gammarids 469 

experience in the field, reducing the exposure to pesticides will likely improve their overall 470 

fitness in response to other types of environmental pressures (e.g., increased predation, warming 471 

climates).   472 

3.4. Comparison of the predictions to current environmental quality standards 473 
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In Switzerland, the individual environmental quality standards (EQS) for 19 pesticides 474 

have just been recently added as part of their nationwide Water Protection Ordinance (SR 475 

814.20, Annex 2, No. 11, Par. 3). For compounds with no specific EQS values (e.g., 476 

propiconazole), a threshold of 0.1 µg/L is still in place. As expected, the compounds with 477 

frequent exceedance to acute or chronic EQS values were also considered by the model to be 478 

acutely or chronically (or both) toxic based on the analysis of their LP50 values (e.g., 479 

azoxystrobin at 17% and 40% exceedance for acute and chronic EQS respectively) (Fig. 2). This 480 

observation suggests that the GUTS model predictions are supportive of the Swiss standards and 481 

confirms that these thresholds can adequately protect the aquatic environment.  482 

There are no specific environmental standards set for these substances within the 483 

European Union (EU) as only a few pesticides belonging to the priority substances list are 484 

regulated under the Water Framework Directive 2000/60/EC (e.g. atrazine, diuron). The EU 485 

Plant Protection Regulation (1107/2009) suggests the use of regulatory acceptable concentration 486 

(RAC) for surface water protection, but these values are more intended for prospective 487 

monitoring (edge-of-field exposure) within the context of pesticide (re-) registration and 488 

approvals (RAC values also shown in Fig. 3 and Table S9).  Recent studies however, have used 489 

the guidelines set by the EU drinking water directive (98/83/EC) 41-43, i.e., the individual 490 

pesticide concentration of pesticides should not exceed 0.1µg/L in source waters, and their total 491 

sum should not go over 0.5 µg/L. When this was applied to our monitoring data, the 492 

environmental concentrations of most substances included in this study rarely or never exceed 493 

0.1µg/L. However, the GUTS predictions showed that low concentrations of these substances 494 

could be acutely and/or chronically toxic (e.g., chlorpyrifos and diazinon). Hence, relying on 495 

these values for water quality protection may underestimate the true risk for aquatic organisms.  496 
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4. Model Limitations and Environmental Significance 497 

Our modelling study added a layer of realism when evaluating the risk of exposure to 498 

fluctuating concentration levels of pesticides in comparison to traditional risk assessment 499 

methods that require the calculation of risk quotients (RQ) based on maximum peak or average 500 

concentrations. Additionally, the GUTS model provided LP50, a reasonable metric that examines 501 

the impact of time-variable exposure data (measured or modelled) while explicitly considering 502 

the uncertainty of the assessment. LP50 values could be used as an endpoint in addition to the 503 

traditional RQs. It is important to note, however, that the LP𝑥𝑥 predictions between SD and IT 504 

representations may vary. If there are insufficient evidence to indicate that survival follows one 505 

form more than the other, it is important to show the LP𝑥𝑥 values from both model formulations.  506 

We acknowledge that there are limitations in our modelling approach, especially the CA 507 

hypothesis within our mixture toxicity predictions (e.g., EF derivation, reference compound 508 

when calculating toxic equivalence, additivity vs. synergism). Also, only a few compounds were 509 

considered for each group and the presence of other pesticides that are less toxic but at higher 510 

concentration levels may add more to the cumulative effects on survival. Nevertheless, the model 511 

has generated some useful suggestions that can be beneficial for future mechanistic mixture 512 

effects modelling. First, the use of GUTS models in assessing the potential impacts of large 513 

numbers of chemicals as detected in environmental monitoring would require their calibration 514 

based on laboratory toxicity data. It would be useful to generate laboratory standard toxicity tests 515 

for more chemicals, ideally representing more mode-of-action groups, and to collect the GUTS 516 

parameter in open databases. Specifically, the number and quality of available survival data are 517 

not only instrumental for acceptable model calibration, but they also determine the uncertainties 518 

in parameter estimates as well as uncertainties related to extrapolation to field conditions (i.e., 519 
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pulsed exposure vs. constant exposure). The availability of these datasets does not only allow 520 

users to compare modelled results, but can help generate hypotheses when conducting future lab 521 

validation or field exposures. There is also a potential to examine mixture toxicities 522 

comprehensively in GUTS especially when assessing the mechanism (body residue, damage 523 

addition or survival multiplication). Second, the sequence of exposure to compounds with 524 

different toxic modes of action may matter as what has been investigated by Ashauer, et al. 44 in 525 

the lab. It can be hypothesized further that survival may be different when gammarids were 526 

exposed to organophosphates first before neonicotinoids and vice-versa. Given that the 527 

application rates of pesticides vary for each pesticide, knowing the impact of exposure sequence 528 

to survival can provide recommendations related to best management practices. Overall, the 529 

modelling strategy presented here is a reasonable first step to address mixture toxicities, but 530 

caution must be exercised if the results are employed for mixture-based risk assessment purposes 531 

as they still require validation.  532 
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