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Introduction The supporting texts describe details of our river flood simulations (Text
S1), drought simulations (Text S2), wildfire simulations (Text S3), crop simulations (Text
S4), tropical cyclone simulations (Text S5) and heatwave simulations (Text S6). The
supporting figures show absolute and relative changes in global land area and population
exposure to extremes from all six individual categories (Figs. S1-S6) and from aggregated
categories (Figs. S7-S9), grid-level changes in land area and population exposure to ex-
tremes from all six categories (Figs. S10-S15), river flood protection levels according to
the FLOPROS database (Fig. S16), and simulated and observed historical wildfire expo-
sure at the grid level (Figs. S17-S20). The supporting tables list the main characteristics
of our hydrological models (Table S1), crop models (Table S2), and wildfire models (Ta-

ble S3), which direct human influences were considered in simulations with these models

Corresponding authors: S. Lange and K. Frieler, Potsdam Institute for Climate Impact
Research (PIK), Telegrafenberg A56, 14473 Potsdam, Germany. (slange@pik-potsdam.de,
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(Table S4), and the GCM-specific number of simulation years per global warming level

bin (Table S5).
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Text S1. The global river model CaMa-Flood is used to translate daily runoff from
the GHMs into daily discharge. For each GCM-GHM combination and at every grid
cell, a Generalized Extreme Value (GEV) distribution (Jenkinson, 1955) is fitted to the
preindustrial reference distribution of annual maximum discharge (up to 639 years worth of
data) using L-moment estimators (Hosking & Wallis, 2005). The preindustrial reference
samples used here are much larger than the 30 historical years often used in previous
studies and allow for a more robust estimate of return periods. Since the preindustrial
climate forcing could still contain biases, we use the frequency distribution of annual
maximum daily discharge instead of flood depth and flooded area directly simulated by
CaMa-Flood. Following the approach by Hirabayashi et al. (2013), annual maximum daily
discharge with a return period of more than 100 years is mapped to a corresponding river
flood depth from a retrospective CaMa-Flood run with MATSIRO (Takata et al., 2003)
runoff, driven by observed climate forcing. To estimate the fraction of a 0.5° x 0.5° grid
cell that is exposed to the flood, the flood depth mapped to the retrospective MATSIRO
run is then downscaled by CaMa-Flood based on high-resolution topography data (about
100 m spatial resolution) to yield the annual maximum flood inundation area fraction on
a 2.5 x 2.5 grid.

Text S2. The monthly soil moisture information used in this study that was provided by
the individual GHMs refers to soil layers of different thicknesses (see Table S1). We use
root moisture as directly provided by HO8, MPI-HM, PCR-GLOBWB, and WaterGAP2.
To approximate this variable for the other GHMs, we integrated soil moisture across the

first seven soil layers of CLM45 (down to a depth of 78cm), the first three layers of
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JULES-W1 (down to a depth of 1m), the first three layers of LPJmL (down to a depth
of 1m), and the first 9 layers of ORCHIDEE (down to a depth of 75 cm).

Text S3. CARAIB, LPJmL and LPJ-GUESS simulate a global land area exposed to
wildfire in the 20th century ranging from 0.05 to 1.2% per year while the global land
area exposed to wildfire in the 20th century reaches about 5.5% and even up to 8.5%
per year for some years for VISIT and ORCHIDEE, respectively. Hence, three GVMs
underestimate and two overestimate the global land area exposed to wildfire compared
to a reconstruction from a wide array of sources over the same period of about 4.0 % per
year by Mouillot and Field (2005). As shown in Figs. S17-S20, this pattern remains the
same when the simulated burned area is compared to three satellite-derived burned area
datasets, namely GLOBCARBON (Plummer et al., 2007), L3JRC (Tansey et al., 2008)
and GFED3.1 (Giglio et al., 2010). However, this comparison has to be interpreted with
caution given that the satellite data only cover a short time period (2001-2005) and the
climate data used to drive the GVM simulations during this time period do not correspond
to the actual, observed climate.

The underestimation of burned area by three GVMs might be partly explained by an
underestimation of fire return intervals in strongly fire-dominated ecosystem. (Mind that
we compute the land area exposed to wildfire assuming fire return intervals of 1 year or
longer.) However, we expect a more important factor to be the neglectance of GVMs to
account for fire being intentionally or unintentionally used to clear natural vegetation as
part of land-use changes. Even though the reconstruction by Mouillot and Field (2005)
does not account for burning of agricultural wastes, nor for prescribed burning as part

of landscape clearing or deforestation, overall, it does account for a wider range of fires
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than considered by the GVMs such as fires escaping from agricultural lands and during
land clearing (as long as these have been reported by firefighters). Additionally, there are
model-specific reasons for an underestimation of burned area: CARAIB only considers
natural ignitions from lightning and the fire module parameters are uncalibrated, i.e.
have not been adjusted to observed burned area. LPJmL underestimates fire occurrence
in savannah regions due to a lack of human ignitions and also defines rangelands and
other extensively managed grasslands as pastures that cannot burn. LPJ-GUESS, despite
allowing fire to occur on croplands and pastures, features a rather small burned area.
LPJ-GUESS has been found to be very sensitive to the choice of the fire module (Andela
et al., 2017) and the fire module used in this study (GlobFIRM; Thonicke et al., 2001)
is known to underestimate burned area, since at the time it was developed estimates of
burned area were lower (Giglio et al., 2013) and GlobFIRM was calibrated with data on
fire return intervals rather than burned area (Thonicke et al., 2001).

The reasons for overestimating the global burned area are also model specific. One
reason might be that ORCHIDEE and VISIT are the only GVMs in our ensemble that
do not simulate dynamic vegetation, which might lead to increasing maladaptation of
regrowing vegetation after a fire to climate change-induced changes in fire risk. Addition-
ally, the overestimation of fire in boreal regions and in Northern China/India and several
other regions due to a lack of fire suppression in VISIT is known to outweigh the under-
estimation of fire in savannah regions due to lacking human ignitions (Kato et al., 2013).
ORCHIDEE overestimates global burned area also because of the large grassland and pas-
ture fraction available to burn and a lower tree fraction as compared to previous burned

area evaluations of the model (Yue et al., 2014). In ORCHIDEE, the fire spread rate is
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inversely linked with the fuel bulk density. Grassland have a low fuel bulk density (more
loosely packed fuel) so a higher grassland fraction leads to lower fuel bulk density and a
high spread rate, which leads to higher burned area. Another reason for the difference
between the burned area simulations of ORCHIDEE in this study and the ORCHIDEE
model evaluation study presented in Yue et al. (2014) could be the different climate input
data used.
Text S4. When calculating population exposure to crop failure we only account for local
effects on people working in agriculture. Large-scale market effects cannot be captured
here with biophysical impact models. Also, we argue that most crop failure events are
too small-scale to significantly affect consumers thanks to buffering by the market.

If fraction Agjue of the land area of a grid cell is exposed to crop failure, then the

exposed population fraction of that grid cell, Ppjue, is calculated according to

Ag;
ailure
P, failure — F )

Aagriculture

where F' is national employment in agriculture as a fraction of total employment and
Apgricuiture 15 the land area fraction of the grid cell used for agriculture. The factor
Aaiture / Aagricuiture 15 supposed to estimate the fraction of the local population working
in agriculture that is exposed to the crop failure. This factor is smaller than one if not all
of the crops grown in the grid cell failed. Values for F' are taken from the World Devel-
opment Indicators (2017). Gaps in the national time series of employment in agriculture
are filled by linear interpolation and the fraction is assumed to stay constant before the
first and the last available data point.

Text S5. For every year we generate 100 realizations of tropical cyclone (TC) tracks and

consider every realization as equivalent to the output of one TC impact model. For the
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historical period and the RCP scenarios, a global total of 300 potential TC tracks per year
as well as the expected number of cyclones for each year are generated based on GCM
output. Let N be the expected number of TCs for an arbitrary but fixed year. We then
generate 100 TC track realizations by drawing 100 random samples of size N from the
300 potential TC tracks of that year.

The approach differs somewhat for the preindustrial baseline scenario because in this
case (i) there are only 100 potential TC tracks available per year and (ii) the underlying
GCM years do not necessarily match the years used by all other impact models. To gen-
erate a sample of 100 potential realizations of TC tracks that correspond to the years used
by the other impact models, we select at least three years of TC simulations that match
a year used by the other impact models in terms of the low frequency variability of global
mean temperature (GMT; 21-year running-mean) and the 3-month running-mean of the
Equatorial Southern Oscillation Index (ESOI; as defined by NOAAs Climate Prediction
Center; see http://www.cpc.ncep.noaa.gov/data/indices/). The algorithm initially
sets a very strong threshold of similarity and iteratively and alternatively for GMT and
ESOI lowers the threshold until at least three years have been selected. In this way we
create a sample of at least 300 TCs we can draw from. The expected number of TCs
to draw is randomly selected from the expected numbers of cyclones associated with the
years contributing to the sample. As both GMT and ESOI (or variants thereof) have been
shown to significantly modulate the occurrence of climate extremes, see e.g. Frank and
Young (2007) and Ward et al. (2014), we thereby account for relevant regional climate

extreme patterns within this and across extreme event categories.
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A special case is HadGEM2-ES as for this GCM, TC tracks are neither available for

the preindustrial baseline scenario nor for the historical period 1861-1949. In order to
still provide results for this GCM, the missing data are filled by repeated copies of data
from the historical period 19501979, which is characterized by approximately stationary
global mean temperature for HadGEM2-ES.
Text S6. A grid cell is considered to be exposed to a heatwave in a given year if (i) the
Heat Wave Magnitude Index daily (HWMId) of that year exceeds the 97.5th percentile
of the HWMId distribution under preindustrial climate conditions of that grid cell and
(ii) the Humidex exceeds a value of 45 on all days of the hot period corresponding to the
HWMId value of the given year.

The HWMId is defined as the maximum magnitude of all hot periods occurring in a
year, where a hot period is a period of at least 3 consecutive days with daily maximum
temperature exceeding a threshold value Ti9o which is defined as the 90th percentile
of daily maximum temperatures under preindustrial climate conditions, centered on a
31-day window. The magnitude of each hot period in a year is the sum of the daily
magnitudes on the consecutive days composing the hot period, with daily magnitude
calculated according to My(Ty) = 0 if Ty < Tpies else (Ty — Tpios)/(Tpirs — Tpizs), where
T4 is the daily maximum temperature on day d of the hot period and T},95 and 7,75 are
the 25th and 75th percentile, respectively, of the annual maximum of the daily maximum
temperature under preindustrial climate conditions. In order to estimate Tpigo, Thios, and
Thi7s, we use more than 400 years of daily maximum temperature data of 0.5 spatial
resolution representing preindustrial climate conditions as available from the ISIMIP2b

climate input data set (Frieler et al., 2017). Based on these more than 400 years of
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temperature data we then derive the 97.5th percentile of the HWMId distribution under
preindustrial climate conditions.

The Humidex was developed to capture the experienced effects of hot weather on the
human body by combining temperature and relative humidity via the dew point to an
effective temperature. We use the Humidex definition by Environment Canada (https://
climate.weather.gc.ca/glossary_e.html#h) and calculate the index at the time of

maximum daily temperature, according to

5 1 1
Humidex = Tho + 2 6,11 A17.753 _ — 10},
Hmdex * {6 P [5 0 (273.16 97315 + Tdewﬂ O}

where Ty, is the daily maximum temperature and Ty, is the dew point at the time of
maximum daily temperature, which we approximately compute using daily mean temper-
ature and relative humidity, exploiting that the dew point does usually not vary much over
the course of a day (Pierce, 1934; Schwartzman et al., 1998). We use a Humidex threshold
value of 45 because the Canadian Center for Occupational Health and Safety (CCOHS,
2017) links the Humidex to stress on the human body using the categories comfortable
(for values between 20 and 29), some discomfort (30-39), great discomfort, avoid exertion

(40-45), and dangerous, heat stroke possible (above 45).
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Pure effect of climate change on global (left) land area and (right) population

annually exposed to river floods. Shown are (top) changes and (bottom) relative changes in

global exposure at different levels of global mean temperature change relative to the preindustrial

baseline. Symbols indicate multi-year mean changes for each GHM (symbol) and GCM (color).

Lines represent medians over all GHMs per GCM. Shaded areas represent the multi-GHM median

of the multi-year mean change in exposure + the multi-GHM median of the interannual standard

deviation of exposure. Grey numbers at the bottom of panels ¢—d indicate the central 90 % multi-

model range of change factors at 1°C, 2°C, and 3°C global warming relative to preindustrial

conditions.
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Figure S2.  Pure effect of climate change on global (left) land area and (right) population
annually exposed to tropical cyclones. Shown are (top) changes and (bottom) relative changes in
global exposure at different levels of global mean temperature change relative to the preindustrial
baseline. Bars indicate multi-year mean changes for each GCM (color) and tropical cyclone
track realization. Lines represent medians over all realizations per GCM. Shaded areas represent
the multi-realization median of the multi-year mean change in exposure 4+ the multi-realization
median of the interannual standard deviation of exposure. Grey numbers at the bottom of panels
c—d indicate the central 90 % multi-model range of change factors at 1°C, 2°C, and 3°C global

warming relative to preindustrial conditions.
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Figure S3. Same as Fig. S1 but for global exposure to crop failure.
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Figure S4. Same as Fig. S1 but for global exposure to wildfires.
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Figure S6. Same as Fig. S1 but for global exposure to heatwaves.
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Figure S7.  Pure effect of climate change on global (left) land area and (right) population
annually exposed to extreme events from all six event categories combined. Shown are (top)
changes and (bottom) relative changes in global exposure at different levels of global mean tem-
perature change relative to the preindustrial baseline. Bars indicate multi-year mean changes
for each GCM (color) and impact model combination. Lines represent medians over all im-
pact model combinations per GCM. Shaded areas represent the multi-impact-model median of
the multi-year mean change in exposure + the multi-impact-model median of the interannual
standard deviation of exposure. Grey numbers at the bottom of panels c-d indicate the cen-

tral 90 % multi-model range of change factors at 1°C, 2°C, and 3°C global warming relative to

preindustrial conditions. September 25, 2020, 3:14pm
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Figure S8. Same as Fig. S7 but for global exposure to confined events.
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Figure S9. Same as Fig. S7 but for global exposure to extensive events.
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Figure S10.  Change in (left) land area and (right) population annually exposed to river
floods at the grid scale for (a, b) 1°C, (¢, d) 1.5°C, and (e, f) 2°C global warming relative
to preindustrial climate conditions. Changes are expressed as percentages of the land area or
population of each 0.5° x 0.5° grid cell. Colors indicate multi-model median changes in multi-year
mean exposure. White indicates missing data over Greenland and a small change or less than

66 % model agreement on the sign of the change elsewhere.
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Figure S11. Same as Fig. S10 but for grid scale exposure to tropical cyclones.
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Figure S12. Same as Fig. S10 but for grid scale exposure to crop failure.
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Figure S13. Same as Fig. S10 but for grid scale exposure to wildfire.
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Figure S14. Same as Fig. S10 but for grid scale exposure to droughts.
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Same as Fig. S10 but for grid scale exposure to heatwaves.

Figure S15.
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Figure S16. Estimated present day protection levels against river floods expressed in return
levels of discharge based on the FLOPROS database (Scussolini et al., 2016). Red areas: Flood
protection is lower than assumed here. Yellow areas: Flood protection corresponds to the protec-
tion level assumed here. Green areas: Flood protection exceeds the level of protection assumed

here.
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Figure S17. Mean annual burned area fraction at grid scale (color, in percent) and annual
global burned area (annotated in the lower left corner of each panel) over 2001-2005 as simulated
by (a) CARAIB, (b) LPJ-GUESS, (c) LPJmL, (d) ORCHIDEE, and (e) VISIT driven with IPSL-
CMbBA-LR historical climate input data, and as observed according to the satellite-derived burned
area datasets (f) GLOBCARBON (Plummer et al., 2007), (g) L3JRC (Tansey et al., 2008) and

(h) GFED3.1 (Giglio et al., 2010).
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Figure S18. Same as Figure S17 but for GVMs driven with GFDL-ESM2M historical climate

input data.
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Figure S19. Same as Figure S17 but for GVMs driven with MIROCS5 historical climate input

data.
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Figure S20. Same as Figure S17 but for GVMs driven with HadGEM2-ES historical climate

input data.
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Table S4. Direct human influences (DHIs) considered in impact model simulations analysed
in this study. The following abbreviations are used: hist, historical changes of DHIs considered
up to 2005 and fixed at 2005 levels thereafter (histsoc and 2005soc according to ISIMIP2b pro-
tocol, respectively); fixed, DHIs considered fixed at 2005 levels (2005soc according to ISIMIP2b
protocol); fixed*, DHIs considered fixed at levels representative of some recent historical period

(see Table S2); NA, DHIs not considered.

Global hydro- land-use pat- irrigation pat- domestic and livestock wa- dams and

logical model terns terns industrial wa- ter use reservoirs
ter use

CLM4.5 fixed fixed NA NA NA

HO8 fixed fixed fixed NA fixed

LPJmL hist hist hist NA hist

JULES-W1 fixed NA NA NA NA

MPI-HM hist hist NA NA NA

ORCHIDEE  hist hist NA NA NA

PCR- hist hist hist hist hist

GLOBWB

WaterGAP2  fixed hist hist hist hist

Global vegeta- land-use pat- irrigation pat- influence on fire ignition and suppression
tion model terns terns

CARAIB hist NA NA

LPJ-GUESS  hist NA NA

LPJmL hist hist NA

ORCHIDEE  hist hist hist

VISIT hist NA NA

Global  grid- land-use pat- irrigation pat- cultivars sowing dates fertilizer input
ded crop terns terns

model

GEPIC hist hist fixed* fixed* fixed
LPJmL hist hist fixed* fixed* NA
PEPIC hist hist fixed* fixed* fixed

September 25, 2020, 3:14pm



X-44 LANGE ET AL.: PROJECTING EXPOSURE TO EXTREME CLIMATE IMPACT EVENTS

Table S5.  GCM-specific number of simulation years from CMIP5 experiments historical,

RCP2.6, and RCP6.0 per global warming level bin.
AT bin (°C) TPSL-CMb5A-LR HadGEM2-ES MIROC5 GFDL-ESM2M

[—0.5,0.0[ 18 65 a7 36
[0.0,0.5] 82 71 84 96
[0.5,1.0] 33 19 51 38
[1.0,1.5] 23 93 228 119
[1.5,2.0] 121 230 96 20
[2.0,2.5] 201 16 19 24
[2.5,3.0[ 25 12 8 0
[3.0,3.5] 18 18 0 0
[3.5,4.0[ 11 6 0 0
[4.0,4.5] 1 0 0 0
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