
Decision making and best practices for taxonomy-free eDNA

metabarcoding in biomonitoring using Hill numbers
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Abstract1

Environmental DNA (eDNA) metabarcoding raises expectations for biomonitoring to cover organisms2

that have hitherto been neglected or excluded. To bypass current limitations in taxonomic assignments3

due to incomplete or erroneous reference data bases, taxonomic-free approaches are proposed for biomon-4

itoring at the level of operational taxonomic unites (OTUs). However, this is challenging, because OTUs5

cannot be annotated and directly compared to classically derived data. The application of good strin-6

gency treatments to infer validity of OTUs and the clear understanding of the consequences to such7

treatments is thus especially relevant for biodiversity assessments. We investigated how common prac-8

tices of stringency filtering affect diversity estimates based on Hill numbers derived from eDNA samples.9

We collected eDNA at 61 sites across a 740 km2 river catchment, reflecting a spatially realistic sce-10

nario in biomonitoring. After bioinformatic processing of the data, we studied how different stringency11

treatments affect conclusions with respect to biodiversity at the catchment and site levels. The applied12

stringency treatments were based on the consistent appearance of OTUs across filter replicates, a relative13

abundance cut-off and rarefaction. We detected large differences in diversity estimates when accounting14

for presence/absence only, such that the detected diversity at the catchment scale differed by an order15

of magnitude between the treatments. These differences disappeared between the stringency treatments16

with increasing weighting of the OTUs’ abundances. Our study demonstrated the usefulness of Hill num-17

bers for comparisons between data sets with large differences in diversity, and suggests best practice for18

data stringency filtering for biomonitoring.19

Key words: environmental DNA, biodiversity monitoring, COI, high-throughput sequencing, diversity20

measures, freshwater21
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1 Introduction22

Increasing anthropogenic stressors, such as habitat degradation or pollution, threaten biodiversity and23

related ecosystem services in freshwater habitats (Dudgeon et al., 2006; Grooten, Almond, et al., 2018;24

Vörösmarty et al., 2010). To protect and preserve these precious habitats, effective biomonitoring is es-25

sential to establish and implement good management practices (e.g., Hering et al., 2006; Johnson, Furse,26

Hering, & Sandin, 2007; Kelly et al., 2008). Historically, biomonitoring has been restricted to surveys of27

a few indicator taxa, such as fish, certain groups of benthic macro-invertebrates, and diatoms (Barbour,28

Gerritsen, Snyder, & Stribling, 1999; Tachet, Richoux, Bournaud, & Usseglio-Polatera, 2010), for which29

changes in richness and abundance were used to assess the state of ecosystems. Extensive procedures30

exist for such assessments, often including field collection of specimens and their subsequent identification31

in the lab. However, the acquisition of adequate biomonitoring data on most taxa is challenging because32

of time, labor, and cost (Ferraro, Cole, DeBen, & Swartz, 1989; Haase et al., 2004). Environmental DNA33

(eDNA) analysis and metabarcoding have been proposed as alternative methods with the potential to34

improve the field of biomonitoring (Bohmann et al., 2014; Deiner et al., 2017; Leese et al., 2018; Pawlowski35

et al., 2018), because they allow to detect and describe communities at unprecedented scales due to the36

massive parallel sequencing (Altermatt et al., 2020; Bálint et al., 2018; Taberlet, Coissac, Hajibabaei, &37

Riesenberg, 2012).38

39

While initial metabarcoding approaches have mostly focused on mirroring or matching data on the40

well-established indicator taxa (e.g., Douglas et al., 2012; Elbrecht, Vamos, Meissner, Aroviita, & Leese,41

2017; Visco et al., 2015), (eDNA) metabarcoding allows us to go well-beyond these indicator groups and42

has raised the expectation to improve the detection of taxonomic groups that have hitherto been ignored,43

for example because morphological identification is difficult. Consequentially, eDNA metabarcoding may44

be offering new opportunities to include currently underused groups of organisms for biomonitoring (e.g.,45

chironomids, Czechowski, Stevens, Madden, & Weinstein, 2020; or oligochaetes, Vivien, Apothéloz-Perret-46

Gentil, Pawlowski, Werner, & Ferrari, 2019) or even extend to groups that are abundant but currently47

excluded in aquatic biomonitoring (e.g., rotifers, ciliates). In this context, an accurate taxonomic assign-48

ment of eDNA sequences is seen as a crucial but difficult step, because many of these indicator organisms49
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are not completely or inaccurately covered in reference databases (McGee, Robinson, & Hajibabaei,50

2019; Weigand et al., 2019). Also, taxonomic names change over time and entries in databases can differ51

from currently accepted names. As an alternative, the use of taxonomic-free analysis of eDNA has been52

proposed. This approach is based on the level of operational taxonomic units (OTU), and does not53

depend/require any taxonomic association (Apothéloz-Perret-Gentil et al., 2017). An OTU is a cluster54

of sequences grouped by sequence similarity (Blaxter et al., 2005) and is reflecting a pragmatic proxy for55

species, but is not necessarily in line with classical taxonomy. Taxonomic-free approaches may facilitate56

rapid implementation of eDNA in biomonitoring. They are, however, challenging because an OTU has57

no independent verification of any taxonomic unit, unlike taxonomic names assigned to an OTU that58

can be compared to classically derived data. Using OTUs thus requires good understanding of the data59

analysis and the steps involved for validation. Of particular importance, especially for biomonitoring60

and the assessment of biodiversity, is the decision and implementation of stringency treatments to infer61

validity of OTUs. Multiple strategies to omit OTUs have been reported (see Deiner et al., 2017). Some62

of these steps are also frequently implemented for eDNA metabarcoding analysis resulting in a taxa list,63

but the final interpretation of the data is often made in comparison to previously detected taxa in the64

study area (e.g., Deiner, Fronhofer, Mächler, Walser, & Altermatt, 2016; Hänfling et al., 2016; Mächler65

et al., 2019). Unfortunately, implemented stringency treatments are often based on somewhat arbitrary66

decisions but their effects on the downstream diversity analysis has been rarely investigated. Especially67

in case of taxonomy-free eDNA approaches, we need better understanding of how our decisions during68

the analysis are affecting the outcome.69

After passing stringency selection, OTUs can be used to calculate and compare diversity and rich-70

ness measures. Virtually all biomonitorings and assessments of biodiversity are based on such data71

giving numbers or divergence in diversity, and describing diversity at the regional, local or between-site72

scale (gamma, alpha or beta diversity) to inform decision making processes (e.g., biodiversity monitoring73

program in Switzerland, BDM Coordination Office, 2009, 2014; or the Multiple Species Inventory and74

Monitoring for the National forest system in USA, Manley & Van Horne, 2006). While this is com-75

mon practice, diversity is often calculated in non-compatible ways across its scales or studies, which is76

severely limiting comparability between the diversity levels, as well as between studies, and thus chal-77
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lenges interpretation and cross-comparisons. Furthermore, it is often neglected that alpha, gamma, and78

beta diversities are often related in an additive or multiplicative way. Consequently, calculation of beta79

diversity is not independent from alpha diversity and can lead to incorrect conclusions when comparing80

beta values of regions with different alpha diversities (Jost, 2007). The framework of Hill numbers (Hill,81

1973) has been developed to avoid this problem. Hill numbers mathematically unify the broad array of82

diversity concepts through incorporating relative abundance and species richness. As a result, all Hill83

numbers are in the intuitive units of ‘species’, overcome many of the shortcoming of traditionally used84

diversity metrics and different diversity levels calculated as Hill numbers can be directly compared to85

each other. While the framework of Hill numbers is already relatively well-established in community86

ecology (Chao, Chiu, & Jost, 2014; Chase et al., 2018; Jost, 2007), its advantages have only more recently87

been suggested for DNA-based analysis of micro-organisms (Kang, Rodrigues, Ng, & Gentry, 2016) and88

macro-organisms (Alberdi & Gilbert, 2019a).89

In our study, we investigated how common practices of OTU stringency filtering are affecting diver-90

sity estimates based on Hill numbers derived from eDNA samples. We collected eDNA at many sites91

across a river catchment, reflecting a spatially realistic scenario in riverine biomonitoring. At each site,92

we collected three replicates of eDNA samples and used a metabarcoding approach by amplifying the93

cytochrome c oxidase subunit I (COI) region to uncover a broad spectrum of eukaryotic diversity, con-94

taining both multiple currently used as well as potential future indicator groups. After bioinformatic95

data preparation with established quality filtering and clustering criteria, we then studied how different96

stringency treatments applied to the analysis of the eDNA data affect the interpretation and conclusions97

with respect to biodiversity: The first set of strategies used were based on consistent presence of each op-98

erational taxonomic unit across filter replicates (Alberdi, Aizpurua, Gilbert, & Bohmann, 2018; Beentjes,99

Speksnijder, Schilthuizen, Schaub, & van der Hoorn, 2018; Mächler et al., 2019). The other strategies100

were based on a relative abundance cut-off value (Elbrecht & Leese, 2015; Macher et al., 2018; Taberlet,101

Bonin, Zinger, & Coissac, 2018; Yamamoto et al., 2017) by comparing the data from two different MiSeq102

runs, and the rarefaction of the data set to the smallest sequencing depth of a sampling site (Taberlet et103

al., 2018). We investigated how these different selections of stringency treatments are affecting diversity104

detected at the catchment and the site levels. We conducted all of our analyses in the Hill diversity105
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framework, which not only allowed comparison of these strategies, but also gives direct and intuitive106

comparability of diversities at different levels, crucial to unify and generalize biomonitoring studies.107

2 Material and Methods108

We used a data set specifically collected for the analysis of diversity patterns across a large riverine109

ecosystem, as commonly surveyed in biomonitoring studies. We investigated how diversity estimates110

derived by eDNA are affected by stringency decisions during analytical steps after the bioinformatic data111

preparation. Below, we first describe the collection of the data set and, second, how we applied stringency112

decisions during the data analysis.113

2.1 Data set collection114

We used data on diversity of eukaryotes estimated by eDNA metabarcoding in a riverine network. To115

do so, we sampled eDNA at 61 sites in a 740 km2 catchment of the river Thur (Fig. 1A), northeastern116

Switzerland, in June 2016. The streams at the selected sites range from first to seventh stream order and117

cover an elevation gradient from 472 to 1241 m above sea level. All details of collection and preparation of118

the herein presented data are extensively described in previous studies (?), which analysed the diversity119

of the taxonomic subgroups of may-, stone-, and caddisflies. Here, we only give a short overview of the120

general field and laboratory methods, necessary for the understanding of the data and the experimental121

setup (Fig. 1B), and we then explain the analysis of the complete metabarcoding data set covering all122

eukaryotic eDNA.123

At each site, we filtered 250 mL of water on a single GF/F glass fiber filter (25 mm diameter, 0.7124

µm pore size, Whatman International Ltd., Maidstone, U.K.). We replicated the filtration three times125

(Fig. 1B). After filtration, we transferred the filters to independent Eppendorf tubes and stored them126

immediately in the dark on ice. At the end of the sampling day, samples were moved to –20 °C until127

extraction. In total, we collected 183 filter samples over the whole sampling campaign. At the beginning128

of each field day, we produced replicated filter controls (FC) consisting of 250 mL of UVC light treated129

nanopore water, to estimate possible contamination of used material. Over the 11 sampling days, we130

produced 33 filter controls. Additional to the eDNA samples, we measured environmental variables (pH,131
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conductivity, organic phosphor) and calculated mean temperature based on hourly measurements of Hobo132

pendant logger (model UA-001-08; Onset Computer Corporation, Pocaset, MA) over the course of five133

weeks at each site.134

The extraction was performed in a specialised clean-lab facility (Eawag, Switzerland; see Deiner,135

Walser, Mächler, & Altermatt, 2015; Mächler, Deiner, Steinmann, & Altermatt, 2014) with the DNeasy136

Blood & Tissue kit (Qiagen GmbH, Hilden, Germany) following an adjusted spin-column protocol. We137

eluted the filter samples in 75 µL of AE buffer. On each batch of extraction, we included an extraction138

control (EC), resulting in eight ECs. To remove inhibition of the field samples, we cleaned all extractions139

with OneStep PCR inhibitor removal kit (Zymo Research, Irvine, California). We used the Illumina140

MiSeq dual-barcoded 2-step PCR amplicon sequencing approach to sequence a 313 base pair fragment141

of the COI barcoding region (Geller, Meyer, Parker, & Hawk, 2013; Leray et al., 2013). We performed142

the first PCR with primers containing an Illumina adaptor-specific tail, a heterogeneity spacer and the143

amplicon target site. This PCR reaction consisted of 25 µL reaction mix and 5 µL of eDNA template,144

with the exception of samples coming from five sites (Site ID 8, 18, 16, 32 and 47) where we used 5145

µL of a 1:10 dilution of the eDNA sample, due to amplification difficulties of pure eDNA. A negative146

control (NC), consisting of 5 µL sigma water, and a positive control (PC), consisting of 1 µL artificially147

produced dummy DNA (Mächler et al., 2019) and 4 µL of a randomly selected eDNA sample, were run148

along each 96-well PCR plate, resulting in a total of 3 NCs and 3 PCs. We produced three PCR replicates149

of each sample and pooled them before cleaning up with SPRI beads (Applied Biological Materials Inc.,150

Richmond, Canada). The second PCR consisted of 25 µL reaction mix, 5 µL Index N, 5 µL Index S151

(Nextera XT Index kit v2) and 15 µL of cleaned template. We used 10 PCR cycles to index the samples;152

thereby the filter replicates were tagged individually to allow analysis between the filter replicates. We153

then cleaned 25 µL of the indexed reaction with SPRI beads and quantified the clean samples with the154

Spark 10M Multimode Microplate Reader (Tecan® Group Ltd., Männedorf, Switzerland). We pooled155

the samples equimolar and cleaned the resulting pool again with SPRI beads. We added 16 pM of156

libraries and 16 pM of 10% PhiX control to the flow cell. On an Illumina MiSeq platform, we performed157

a paired-end 600 cycle (2 x 300 nt) sequencing with the Reagent Kit v3 (300 cycles). We conducted a158

second run on the identical Illumina MiSeq machine with the same libraries, where we added again 16159
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pM of each PhiX control and the pooled libraries.160

The NGS data was demultiplexed with the MiSeq Reporter and the read quality was checked with161

FastQC (Andrews, 2015). Next, raw reads were end-trimmed (usearch, version 10.0.240) and merged162

(Flash, version 1.2.11). We then removed the primer sites (cutadapt, version 1.12) and quality-filtered163

the data (prinseq-lite, version 0.20.4). We used UNOISE3 (usearch, version 10.0.240) to determine zero-164

radius OTUs (ZOTUs). ZOTUs are valid operational taxonomic units that are corrected for point errors165

to retrieve reliable sequence clustering and are further filtered to remove chimeric sequences (Edgar, 2016).166

To reduce sequence diversity, we conducted an additional clustering at 99% sequence identity. To ensure167

an intact open reading frame, we checked the resulting ZOTUs for stop codons using the invertebrate168

mitochondrial code.169

We cleaned the data by following the description of Evans et al. (2017) due to indication of contami-170

nation (i.e., presence of ZOTUs in negative controls). We calculated the relative frequency of each ZOTU171

appearing in the negative controls by dividing the total reads of an individual ZOTU in all negative con-172

trols by the total number of reads in the negative controls. We removed all ZOTUs that occurred with173

a lower relative frequency within a given field sample. For all further analysis, we removed all samples174

from the sites that used diluted eDNA for the first PCR (Site ID 8, 16, 18, 23 and 47), as we observed175

low consistency among the three filter replicates. To obtain consistent results between replicates, it is not176

recommended to dilute eDNA, even though this is a favored method implemented to reduce inhibition177

(McKee, Spear, & Pierson, 2015). Fifty-six sampling sites remained and were used for the subsequent178

analyses.179

2.2 Hill numbers and stringency treatments180

We conducted all our diversity analyses in the framework of Hill numbers, which mathematically unifies181

diversity concepts based on relative abundances (Hill, 1973; Jost, 2007). As such, the sensitivity of Hill182

numbers towards abundant taxa can be modulated with the parameter q, also known as the order of Hill183

numbers. A Hill number with an order 0 (q = 0) is insensitive to abundance, and is analogue to the184

classical species richness measure. A Hill number of order 1 (q = 1) takes the exact relative abundance185

into account and is analogue to the exponential of Shannon diversity as alpha diversity measure. A Hill186
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number of order 2 (q = 2) gives abundant taxa more weight and is analogue to the inverse of the Simpson187

index. The partitioning of biological diversities into the classical alpha, beta and gamma diversity can be188

directly computed and expressed as Hill numbers, whereby alpha measures reflect the average diversity of189

the sampling sites, gamma the overall diversity, and beta the dissimilarity between sites and the overall190

diversity, for example of a catchment (Jost, 2007). All Hill numbers are calculated and interpreted as191

units of ‘species’ (i.e., in our case as units of ZOTUs), can be directly compared across orders (Alberdi192

& Gilbert, 2019a; Chao et al., 2014; Jost, 2007), and directly allow us to study differences between the193

stringency treatments.194

We then applied five different stringency treatments to identify how these affect diversity patterns in195

the eDNA data, and thus may directly affect interpretation of biomonitoring and biodiversity-assessments.196

The first three strategies are based on consistent appearance of ZOTUs across replicates (Alberdi et al.,197

2018; Beentjes et al., 2018; Mächler et al., 2019). We assessed how often each individual ZOTU was198

detected across the three filter replicates of an individual site and differentiated between additive (counting199

all ZOTUs found in any of the three replicates), relaxed (counting only ZOTUs with a minimal presence in200

two replicates), and strict (counting only ZOTUs with presence in all three replicates). These categories201

are based on the description of Alberdi et al. (2018), but here we are referring to filter replicates rather202

than PCR replicates (as in Alberdi et al., 2018). The fourth strategy was based on a relative abundance203

cut-off values (Elbrecht & Leese, 2015; Macher et al., 2018; Taberlet et al., 2018; Yamamoto et al., 2017).204

We plotted for each ZOTU its relative abundance in the first run against its relative abundance in the205

second run (Fig. S1) and identified a valid threshold of 0.005%, as abundances between the two runs206

were relatively similar above this value and it also corresponds to the recommended percentage to use for207

studies without the positive control of a mock community (Bokulich et al., 2013). We subsequently refer208

to this stringency strategy as the threshold treatment. As a fifth stringency treatment, we rarefied the209

data set to the smallest sequencing depth of a sampling site (251,207 reads, all three replicates combined),210

which we subsequently refer to as the rarefaction treatment. These five stringency treatments resulted211

in five distinct data sets, that were analyzed subsequently in R (R Core Team, 2018, version 3.5.2) and212

the package ‘phyloseq’ (McMurdie & Holmes, 2013, version 1.24.2).213
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2.2.1 At catchment level214

We were interested in how the different stringency measures are affecting the partitioning of diversity215

measures at the catchment level. We partitioned for alpha, gamma and beta diversity based on qualitative216

(i.e., presence/absence, order 0) and quantitative (i.e., abundance based, from order 0.5–2, in steps of217

0.5) Hill numbers for each of the five stringency treatments (function div part in the ’hilldiv’ R package,218

Alberdi & Gilbert, 2019b, version 1.5.0). As diversity measures tend to increase with increasing sampling219

effort, ecologists implement rarefaction to correct for this bias (Gotelli, 2001; Gotelli & Colwell, 2011).220

Classically, rarefaction is based on sample size, which can be represented by the number of collected221

individuals (e.g., Simberloff, 1978), or the number of sites visited (e.g., Gotelli, 2001). Alternatively, Good222

(1953, 2000) suggested a coverage-based approach, which standardizes samples based on their recovered223

completeness (i.e., the recovered proportion of the total number of individuals and species of a community224

represented in the sample). We calculated site- and coverage-based rarefaction and extrapolation curves225

(Chao & Jost, 2012; Colwell et al., 2012) for the catchment diversity with the ’iNEXT’ R package (Hsieh,226

Ma, & Chao, 2016, version 2.0.20). To do so, we utilized incidence data, which are based on relative227

detection (presence/absence) over the whole catchment rather than relative abundances at the individual228

sites (Alberdi & Gilbert, 2019a; Colwell & Coddington, 1994).229

2.2.2 At site level230

To assess in how the different stringency treatments are affecting the diversity measures at the individual231

sampling sites, we calculated Hill numbers for each of the five treatments using presence/absence data232

(order 0) and abundance based data (order 1 and 2). To identify whether there were significant differences233

in detected diversity between the stringency criteria or not, we performed the following tests: Within234

each order, we tested whether the variance is equal between the stringency treatments by using a Bartlett235

test. When significant, we performed a Kruskal-Wallis test to identify whether there was at least one236

difference in means. If so, we then did a multiple mean comparison post-hoc test based on rank sums237

(R package ’pgirmess’, Giraudoux, 2018, version 1.6.9). We further investigated beta diversity between238

the individual sites for the orders 0, 1, and 2 (function ’part div’, Sørensen-type overlap from the R239

package ’hilldiv’, Alberdi & Gilbert, 2019b) and tested for differences between the mean of the stringency240
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treatments as explained above.241

To identify how decisions and implementations of stringency criteria are affecting the diversity at242

individual sites, we selected three different sampling sites (Gertenau, Niederuzwil, and Stocken) from the243

catchment as proof-of-concept examples. These sites correspond to different stream orders (1, 4, and 7244

respectively) and reflect distinct habitats, but are geographically still relatively close to each other, and245

thus do not experience different large-scale environmental drivers. We investigated sample-size based246

rarefaction/extrapolation curves with abundance data of the individual sampling sites.247

3 Results248

The two Illumina MiSeq runs resulted in 17,495,861 and 21,026,108 raw sequences, respectively. After the249

bioinformatic data preparation, 12,619,152 and 14,735,110 merged, primer-trimmed, and quality filtered250

sequences remained for run 1 and run 2, respectively. In the combined data set, in total 26,544,120 counts251

assigned to the samples remained for our analysis after the correction for ZOTUs in negative controls.252

After the application of the five stringency treatments, the resulting five data sets differed mainly by253

the number of ZOTUs. The biggest difference in numbers of ZOTUs occurred between the threshold254

treatment and the additive stringency treatment, with the former containing only 12.4% of the ZOTUs255

found in the latter (Table 1). Differences in counts were relatively moderate. We detected the biggest256

difference between the additive and rarefied treatments, where the rarefied treatment had about 43% less257

counts. The rarefaction curves were mostly saturating for sampling sites of the relaxed, strict, and rarefied258

treatments (Fig. S2 B, C, E), but not for most of the sites of the additive and threshold treatment (Fig.259

S2 A, D).260

3.1 At the catchment level261

The partitioning of the five stringency-filtered data sets into Hill numbers of order 0 resulted in alpha and262

gamma diversity (corresponding to richness) varying over nearly an order of magnitude (Fig. 2, Table263

S1). The beta diversity estimated by Hill numbers quantifies how many times the diversity of the entire264

catchment is richer than the average sampling site and varies greatly between the stringency treatments.265

Beta values indicated that the difference between sites and the catchment data set was largest for the266
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strict data set, where the regional (gamma) diversity was nearly 12 times higher than the average local267

(alpha) diversity, indicating large differences between the diversity at the individual sites. Contrary, the268

richness for threshold treatment was only 2.39 times higher for the catchment than the sites, indicating269

less differences between the richness of the individual sites.270

271

Taking abundances into account (order 0.5 and higher), the partitioning values for all five data sets272

became more similar when abundances were stronger weighted, indicating that all stringency data sets273

were dominated by a few, very abundant ZOTUs (Fig. 2). All five stringency treatments ended up with274

a beta diversity value of around 9 for order 2 (Table S1). The beta value for the threshold data set was275

increasing from order 0 to order 2, demonstrating that the ZOTUs of this data set were present in many276

samples and dissimilarity between sites increased with abundance weighting.277

Whether the accumulation of diversity with number of sampling sites was saturating or not depends278

on the used order of Hill numbers (Fig. 3A). For the order q = 0, only the threshold data set was279

saturating (even at a very low number of sampling sites), while the other stringency treatments did not280

reach a saturation phase. With increasing order, the shape of the curves started to saturate with lower281

number of samples and for the order q = 2 all stringency treatments were saturating.282

The sample coverage of the catchment diversity was highest for the threshold treatment (99.9%),283

followed by the additive (97.1%), rarefied (95.6%), relaxed (93.0%) and strict with a sample coverage of284

90.3% (Fig. 3B). The coverage-based rarefaction curves turned towards a positive linear relationship with285

increasing order of Hill numbers, revealing that with higher abundance weighting the coverage increases286

only linearly with each additional sample.287

3.2 At sampling site level288

In biomonitoring studies, the diversity uncovered at the site level is important, for example, to define289

management priorities between individual sites. When analysing the mean of the alpha diversity, no290

significant difference were ever observed for the additive and rarefied stringency criteria, no matter how291

strong abundances were weighted (Table 2, Fig 4). Additionally, these two stringency treatments were292

always significantly different from the strict treatment. When comparing the mean of the recovered293
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diversities, we observed a dependency on the order of the Hill number (Table 2). The significant difference294

of the relaxed and threshold treatment to others was depending on the Hill order. With q = 0, both295

treatments were significantly different to the other treatments, but not each other. With q = 1, the296

threshold was significantly different from the strict, but the relaxed stringency treatment was not different297

from any other treatment. For q = 2, both treatments were indifferent from the other treatments. For298

the beta diversity between sites we also observed different patterns for the various Hill orders. When299

looking at q = 0 (i.e., Jaccard dissimilarity), all five stringency treatments had significantly different300

means (Table S2, Fig. S3). With q = 1, three different groups appeared: additive, relaxed, and rarefied301

were different from strict, as well as from the threshold treatment, but did not differ from each other,302

and the strict treatment significantly differed from the threshold treatment. For the order q = 2 (i.e., the303

Morisita-Horn index) there was no significant difference in means observed.304

Sequence-based rarefaction curves behaved similarly between the three sites, but differed between305

orders of Hill numbers (Fig. 5). For the order q = 0, the additive and rarefied stringency treatments did306

not saturate, while the other three treatments did. However, for orders q > 0 the saturation for all five307

stringency treatments occurred even at a low number of sequences. Surprisingly, the strict stringency308

treatment resulted in highest alpha diversity for higher Hill orders q > 0 for the site of Niederuzwil (Fig.309

5, middle panel). Increased alpha diversity can be observed if few, but very abundant ZOTUs are leading310

to low Hill numbers for order q > 0. However, without these ZOTUs present in all three samples, the311

abundance of the remaining ZOTUs are more equally distributed and resulted in a higher diversity even312

for more stringent criteria.313

4 Discussion314

The recent increase in the proposition and use of eDNA metabarcoding for biomonitoring requires that315

methodological steps in data analysis and calculation of diversity measures are well-understood. This316

is relevant for metabarcoding data focusing on well-defined taxonomic groups paralleling existing moni-317

torings (e.g., diatoms, Visco et al., 2015; or benthic macroinvertebrates, Elbrecht et al., 2017), but even318

more so when the metabarcoding extends beyond these groups and is performed in a taxonomy-free ap-319

proach (Apothéloz-Perret-Gentil et al., 2017; Porter & Hajibabaei, 2018). Biomonitoring goes beyond320
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presence-absence measures, and especially in the context of ecological functions and services provided by321

an ecosystems, relative or absolute abundances become important. Thus, a coherent understanding of322

diversity measures needs to consider also abundance-based estimates, and do so in ways that are com-323

parable across and within data sets. This is possible in the mathematical unifying framework of Hill324

numbers when calculating diversity measures (Alberdi & Gilbert, 2019a; Chao et al., 2014; Jost, 2007).325

In this study, we investigated how common practices of stringency filtering in the analysis of eDNA326

metabarcoding data are affecting diversity estimates. The evaluation of different stringency treatments327

within the Hill number framework showed that differences between treatments scale with the abundance328

weighting of the ZOTUs. While we observed large differences between the individual stringency treat-329

ments for orders q = 0, the differences decreased or even disappeared with the stronger weighting of330

abundances. Overall, the stringency treatment of rarefied and additive were leading to very similar re-331

sults for all diversity measures, potentially due to relatively high sequencing depth for the individual sites332

minimizing the effect of rarefaction. The relaxed treatment produced intermediate estimates of diver-333

sity, while the strict and threshold were usually resulting in the lowest estimates for alpha and gamma334

diversity. The effects of such stringency treatments on diversity measures have been rarely investigated,335

but are important to infer validity of (Z)OTUs in the statistical data analysis of taxonomy-free eDNA336

metabarcoding data.337

The applied stringency measures already showed an effect in the overall number of ZOTUs. The338

consistent presence in at least two (i.e., relaxed) or three (i.e., strict) replicates reduced the numbers of339

ZOTUs to half or even a third, respectively. Such a variation in detectability across replicates might be340

due to stochasticity in the field (i.e., due to heterogeneous distribution of eDNA, Adrian-Kalchhauser &341

Burkhardt-Holm, 2016; Macher & Leese, 2017), or in the lab through sub-sampling and stochasticity in342

the PCR reaction. Especially errors or biases in PCR reactions can contribute to an inconsistency across343

true replicates (Alberdi et al., 2018; Leray & Knowlton, 2017; Murray, Coghlan, & Bunce, 2015), which344

cannot be eliminated during bioinformatic data preparation. The use of technical (e.g., PCR reactions,345

Alberdi et al., 2018; Beentjes et al., 2018) or biological (e.g., Macher & Leese, 2017; Mächler et al., 2019)346

replicates allows to apply such stringency treatments that are capable to infer validity of ZOTUs. Our347

study highlights, consistent with other studiess Alberdi et al., 2018; Leray & Knowlton, 2017Alberdi et348
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al., 2018, the importance of taking multiple replicates, and to use these replicates to get more coherent349

and robust conclusions on the diversity assessed (Alberdi et al., 2018; Leray & Knowlton, 2017)(Alberdi350

et al., 2018).351

The application of a customized abundance thresholds requires either the performance of at least two352

separate sequencing runs or the implementation of a mock community (Bokulich et al., 2013), with the353

latter being complicated for complex and broad taxonomic communities. As shown in our study, the two354

sequencing runs on the same data set allow the identification of good estimates for a cut-off values of355

minimal read numbers to be included and should be preferred over the selection of a random threshold.356

We acknowledge that there are higher costs associated with additional sequencing runs, which may be357

limiting in some monitoring programs. However, in the long run, monitoring programs are only valuable358

when they provide reliable data, and thus these additional costs may be well-invested. Alternatively,359

rarefaction can be applied without further investment in replication of samples or runs, but is often360

heavily criticized (McMurdie & Holmes, 2014), as it tends to loose rare, but potentially essential, ZOTUs361

that can reflect important aspects of communities (Ainsworth et al., 2015; Eren et al., 2015; Zhan et al.,362

2013).363

Our analysis showed that differences, and thus conclusions on diversity, between the five stringency364

treatments at the catchment level are large, given that the diversity estimates between treatments spanned365

nearly an order of magnitude when considering richness only. Also, the differentiation between sites and366

the overall catchment was limited for the threshold treatment for richness, indicating that remaining367

ZOTUs of the threshold stringency treatment had a high prevalence in all the sampling sites, also reflected368

in the fast saturation of the catchment diversity with accumulating number of samples. However, the369

individual sites became more distinct with increasing abundance weighting (i.e., most ZOTUs are present370

in all sampling sites but differ in abundances), an effect that was similar for all stringency treatments371

for the order q ≥ 1. The observed effect might be a specific feature of our study, where we expected372

little differences between the sites as they are connected and do not have substantial gradients in habitat373

quality between sites. However, such a data set can reflect a biomonitoring study and it is important374

to be aware that the application of cut-off values for abundances and the simultaneous use of richness375

measurements can minimize differences between sites.376
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When comparing differences between the treatments at the site level, both alpha diversity and beta377

dissimilarity estimates get more similar with increased weighting of abundances. Nevertheless, the mean378

alpha diversity of the strict treatment was always significantly lower compared to the additive and rarefied379

treatments, regardless how strong ZOTU abundances were weighted. But the situation can differ when380

focusing on an individual site, as shown in one of the selected sampling location of Niederuzwil (Fig. 5).381

We generally could observe that differences between the treatments disappeared with higher weighting382

of abundances. This indicates that weighing abundances may be one way to make data sets more robust383

when comparing across studies. However, it is yet unclear whether the focus on the abundant (z)OTUs384

only is an eligible option for biomonitoring studies. Recent research showed that, for classical biomon-385

itoring studies and subsequently derived indices on ecological state, presence-absence data of classical386

approaches are resulting mostly in the same conclusions then when including abundance information387

(Beentjes et al., 2018; Buchner et al., 2019). In contrast, our study shows that the eDNA metabarcoding388

results will differ to quite some extent depending on the used stringency treatment in the data analysis,389

and thus needs critical considerations of the selected criteria and may be most robust when including390

information on abundance data. This seemingly contradictory outcome may be explained because indices391

on the biological state commonly used in ecotoxicology and environmental sciences are already strong392

integration of complex data, and this integration of multiple information may make them more robust.393

In our approach the values of interest are much closer to the units ecologists and biodiversity scientists394

are using, namely number and differentiation of taxa, and those are indeed sensitive to the cut-offs and395

stringency treatments applied.396

Finally, our study demonstrated the usefulness of Hill numbers for comparisons between data sets397

with large differences in diversity. With the application of Hill numbers, comparability of delivered data398

can be reached and are highly needed for decision processes in policy making, for example to generalize399

and prioritize between individual sites or programs. We suggest that the use of Hill numbers and an400

appropriate stringency treatment is especially relevant for biodiversity monitoring and bioassessment401

that are mainly interested in taxon richness and less on indices (e.g., Altermatt, Seymour, & Martinez,402

2013; Wüthrich & Altermatt, 2019). The intermediate stringency treatment of consistent appearance in403

at least two filter replicates (i.e., relaxed) possibly balances best between the detection of rare ZOTUs404
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and the inflation of diversity measures through sequencing errors, similar to the findings in Alberdi et al.405

(2018). Regular application of Hill numbers will also advance and unify the field of eDNA metabarcoding406

to increase comparability across studies and promote the development of best practices.407
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Deiner, K., Bik, H. M., Mächler, E., Seymour, M., Lacoursiere-Roussel, A., Altermatt, F., . . . Bernatchez,

L. (2017). Environmental DNA metabarcoding: Transforming how we survey animal and plant

communities. Mol Ecol , 26 (21), 5872–5895. doi: 10.1111/mec.14350
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Deiner, K., Walser, J. C., Mächler, E., & Altermatt, F. (2015). Choice of capture and extraction methods

affect detection of freshwater biodiversity from environmental DNA. Biological Conservation, 183 ,

53–63. doi: 10.1016/j.biocon.2014.11.018

Douglas, W. Y., Ji, Y., Emerson, B. C., Wang, X., Ye, C., Yang, C., & Ding, Z. (2012). Biodiversity

soup: metabarcoding of arthropods for rapid biodiversity assessment and biomonitoring. Methods

in Ecology and Evolution, 3 (4), 613–623.

Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z.-I., Knowler, D. J., Lévêque, C., . . .
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Mächler, E., Deiner, K., Steinmann, P., & Altermatt, F. (2014). Utility of Environmental DNA for

Monitoring Rare and Indicator Macroinvertebrate Species. Freshwater Science, 33 (4), 1174–1183.

doi: 10.1086/678128
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Tables

Table 1: Numbers of reads and ZOTUs for the five stringency measures after cleaning the data set from

contamination.

Additive Relaxed Strict Threshold Rarefied

Reads 24,640,037 22,105,491 19,401,888 22,917,814 14,067,592

ZOTUs 11,129 5,948 3,167 1,385 11,102
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Table 2: Results of Kruskal-Wallis test on ranks of the alpha diversity and the following multiple mean

comparisons post-hoc tests based on rank sums. Chi-Squared, degrees of freedom (DF), number

of data points (n) and p-values are given. Stringency treatments with the same letter are not

significantly different according to multiple comparison post-hoc test after Kruskal-Wallis (p-

value = 0.05).

Kruskal-Wallis test on ranks Multiple mean comparisons

post-hoc tests

Hill

order

Chi-

Squared

DF n p-value Additive Relaxed Strict Threshold Rarefied

0 224.54 4 280 < 0.001 a b c b a

1 39.66 4 280 < 0.001 a ab b a a

2 10.26 4 280 0.0113 a ab b ab a
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Figure Legends

Figure 1

Overview of the study catchment (A) and the 61 individual sampling sites indicated with red dots. Yellow

points show the three sites that we picked specifically for further site analysis (see Fig. 5). At each site

(B), we collected three individual and independent filter replicates that were separately extracted and

tagged. Data source: swisstopo: VECTOR200 (2017), DEM25 (2003), SWISSTLM3D (2018); BAFU:

EZG (2012); Bundesamt für Landestopographie (Art.30 Geo IV): 5,704,000,000, reproduced by permission

of swisstopo/JA100119.

Figure 2

Diversity partitioning of the five stringency treated data sets for Hill numbers of different orders. The

higher the order, the more weight is put on abundant ZOTUs; order q = 0 reflects presence-absence

data. While gamma and alpha diversity behave similar for all the treatments, beta dissimilarity shows

differences: For each stringency treatment, the differentiation between the individual sites (alpha) and

the overall (gamma) increases with higher weighting of abundances. Hill numbers are presented on a

logarithmic scale for better visualization. Exact numbers can be found in Table S1. The colors represent

the different stringency treatments: additive (blue), relaxed (green), strict (red), threshold (orange), and

rarefied (yellow).

Figure 3

Accumulation curves of Hill diversity based on number of samples (A) and sample coverage (B) over the

whole catchment. Diversity for the Hill numbers are calculated for the order q = 0 (left panels), q = 1

(middle panels) and q = 2 (right panels). The solid lines indicate parameter space that is established by

rarefaction of the measured data, while dashed lines indicate extrapolated values.
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Figure 4

Hill numbers given for the five stringency measures (additive, relaxed, strict, threshold, and rarefied) and

the different orders of Hill numbers (indicated by the exponent of D given in the y-axis). Violin plots

depict the distribution of values of the 56 sites. The inserted boxplots are indicating the 25%, 50%

(bold) and 75% quantile, respectively. Stringency treatments with dissimilar letters (a, b, and c) are

significantly different according to multiple mean comparison test after Kruskal-Wallis applied separately

to the individual Hill number orders.

Figure 5

Rarefaction curves of Hill diversity based on number of retrieved sequences for three sampling sites:

Gertenau (stream order 1, left panels), Niederuzwil (stream order 4, middle panels), and Stocken (stream

order 7, right panels). Diversity for the Hill numbers are calculated for the order q = 0 (upper panels),

q = 1 (middle panels) and q = 2 (lower panels). The solid lines indicate parameter space that is

established by rarefaction of the measured data, while dashed lines correspond to extrapolated values.
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Figure 1
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Figure 2
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Figure 3
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Figure 4
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Figure 5
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